带尾纤激光器(光纤激光器)
光纤激光器行业标准
光纤激光器行业标准光纤激光器是一种利用光纤作为增益介质的激光器,具有高能量密度、高光束质量、稳定性好等特点,被广泛应用于通信、医疗、材料加工等领域。
为了规范光纤激光器的生产和应用,制定行业标准是非常必要的。
本文将从光纤激光器的基本原理、技术特点、应用领域以及行业标准等方面进行介绍。
光纤激光器的基本原理是利用激光介质中的受激辐射原理,通过激发光纤中的掺杂离子或分子,使其产生受激辐射而放大光信号,最终形成激光。
相比于传统的气体激光器和固体激光器,光纤激光器具有体积小、重量轻、抗干扰能力强等优势,因此在通信领域得到了广泛的应用。
光纤激光器的技术特点主要包括高功率、高效率、窄线宽、单模输出等。
高功率是光纤激光器的重要特点之一,其功率可以达到数千瓦甚至更高。
高效率是指光纤激光器能够将电能转化为光能的效率,目前光纤激光器的电光转换效率已经超过了50%。
窄线宽和单模输出则保证了光纤激光器在光学通信和激光加工领域有着重要的应用。
光纤激光器在通信、医疗、材料加工等领域都有着广泛的应用。
在通信领域,光纤激光器被用于光纤通信系统中的光源,其稳定的输出特性和高效的能量转换使得其在长距离、高速传输中有着重要的地位。
在医疗领域,光纤激光器被应用于激光手术、激光治疗等领域,其精细的光束质量和可控的输出功率使得其成为医疗器械中不可或缺的部分。
在材料加工领域,光纤激光器被用于激光切割、激光焊接等工艺,其高能量密度和稳定性使得其在工业生产中有着广泛的应用前景。
为了规范光纤激光器的生产和应用,制定行业标准是非常必要的。
光纤激光器的行业标准应包括产品的基本参数、性能要求、测试方法、质量控制等内容,以确保光纤激光器的质量和性能达到国家和行业的标准要求。
同时,行业标准还应包括光纤激光器在通信、医疗、材料加工等领域的应用规范,以保障其在不同领域的安全和可靠性。
总的来说,光纤激光器作为一种新型的激光器,具有独特的技术特点和广泛的应用前景。
制定光纤激光器的行业标准对于推动其产业发展、规范市场秩序、提高产品质量具有重要的意义,希望相关部门和企业能够加强合作,共同制定和执行光纤激光器的行业标准,推动光纤激光器产业的健康发展。
光纤激光器原理
光纤激光器原理光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。
泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。
光纤激光器特点光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值,光纤激光器原理图1:峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。
这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。
这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为1 秒,我们用T 表示这个脉冲重复周期。
如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。
例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。
如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns,P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。
脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒平均功率P=E/T=0.001J/0.00005s=20WP峰值功率=E/t激光的分类:激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。
光纤激光器的特点与应用
光纤激光器的特点与应用光纤激光器是在EDFA技术基础上发展起来的技术。
近年来,随着光纤通信系统的极大的应用和发展,超快速光电子学、非线性光学、光传感等各种领域应用的研究已得到日益重视。
光纤激光器在降低阂值、振荡波长范围、波长可调谐性能等方面,已明显取得进步。
它是目前光通信领域的新兴技术,它可以用于现有的通信系统,使之支持更高的传输速度,是未来高码率密集波分复用系统和未来相干光通信的基础。
1.光纤激光器工作原理光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。
光纤激光器的基本结构如图1所示。
掺稀土元素的光纤放大器推动了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。
当泵浦光通过光纤中的稀土离子时,就会被稀土离子所吸收,这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转。
反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。
从激发态到基态的辐射方式有两种,即自发辐射和受激辐射,其中受激辐射是一种同频率、同相位的辐射,可以形成相干性很好的激光。
激光发射是受激辐射远远超过自发辐射的物理过程,为了使这种过程持续发生,必须形成离子数反转,因此要求参与过程的能级应超过两个,同时还要有泵浦源提供能量。
光纤激光器实际上也可以称为是一个波长转化器,通过它可以将泵浦波长光转化为所需的激射波长光。
例如掺饵光纤激光器将980nm的泵浦光进行泵浦,输出1550nm的激光。
激光的输出可以是连续的,也可以是脉冲形式的。
光纤激光器有两种激射状态,三能级和四能级激射。
三能级和四能级的激光原理如图2所示,泵浦(短波长高能光子)使电子从基态跃迁到高能态E4或者E3,然后通过非辐射方式跃迁过程跃迁到激光上能级E43或者E3 2,当电子进一步从激光上能级跃迁到下能级E扩或者E3,时,就会出现激光的过程。
光纤激光器的原理及应用
光纤激光器的原理及应用前言光纤激光器是一种利用光纤作为介质传输激光能量的器件,具有高效率、高可靠性和方便布线的特点。
本文将介绍光纤激光器的工作原理以及其在各个领域的应用。
工作原理光纤激光器是通过一系列的光学元件将光线限制在光纤内部,并利用光纤中的光耦合技术将激光能量传输到目标位置的设备。
下面将详细介绍光纤激光器的工作原理。
1.激光器结构光纤激光器一般由泵浦源、光纤增益介质、谐振腔和输出光纤组成。
泵浦源提供能量供给,激发光纤增益介质中的活性离子跃迁发射出光子。
谐振腔用于产生激光的振荡和放大。
2.光纤增益介质光纤增益介质一般采用掺杂了活性离子的光纤,并且活性离子的浓度要足够高以保证放大效果。
常用的增益介质有掺铒光纤、掺镱光纤、掺铥光纤等。
3.泵浦源泵浦源一般采用激光二极管或固体激光器,通过泵浦能量将活性离子兴奋到激发态。
4.谐振腔谐振腔是光纤激光器中光的振荡和放大的地方。
谐振腔通常由两面具有高反射率的光纤光栅组成,形成一个光学腔,使激光在腔内进行反复反射,增强激光的能量。
5.输出光纤输出光纤负责将激光能量从激光器传输到目标位置。
输出光纤一般具有高纯度、低损耗和稳定的特点。
应用领域光纤激光器具有广泛的应用领域,下面将分别介绍光纤激光器在工业、医疗和通信领域的应用。
工业应用•材料加工:光纤激光器可以用于金属切割、焊接、打孔等材料加工工序,具有精确性高、速度快、不产生物理接触等优点。
•雷达测距:光纤激光器可以应用于测距仪器,利用激光器发射一束光线,通过测量光的反射时间来计算距离。
•光纤通信:光纤激光器可在光纤通信中作为信号的光源和放大器,具有高效率、高信号质量和大带宽等特点。
医疗应用•激光手术:光纤激光器可用于激光手术,如激光手术切割、焊接和去除异物等,具有创伤小、出血少、精确性高等优点。
•激光治疗:光纤激光器可用于激光治疗,如激光照射疗法、激光物理疗法和激光穿透疗法等,可以用于肌肤美容、康复和疾病治疗等。
光纤激光器的基本结构和工作原理
光纤激光器的基本结构和工作原理一、光纤激光器的基本结构光纤激光器是一种利用光纤作为光学谐振腔的激光器。
它由光纤、泵浦光源、谐振腔和输出耦合器件组成。
1. 光纤:光纤作为光传输的介质,具有较高的光学质量和较低的损耗。
它通常由二氧化硅或氟化物等材料制成。
2. 泵浦光源:泵浦光源是提供激发能量的装置,常见的泵浦光源有半导体激光器、氘灯等。
泵浦光源通过能级跃迁将电能转化为光能,将光纤中的掺杂物激发至激发态。
3. 谐振腔:谐振腔是产生激光放大的空间,由两个反射镜构成,其中一个是部分透射的输出耦合镜。
谐振腔中的光纤被反射镜反射多次,形成光学谐振,增强光的幅度。
4. 输出耦合器件:输出耦合器件是将放大的激光从谐振腔中输出的装置,常见的输出耦合器件有反射镜、光栅等。
它通过调节输出耦合器件的透射率,实现激光的输出。
二、光纤激光器的工作原理光纤激光器的工作原理是基于激光的受激辐射过程。
其工作过程主要可以分为三个步骤:泵浦、光放大和激射。
1. 泵浦:泵浦光源产生的高能量光通过耦合装置输入光纤,激发光纤中的掺杂物(如铥、镱、铍等)的原子或离子跃迁到激发态,形成一个能级反转。
2. 光放大:光纤中的激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。
这些光子经过多次反射,在谐振腔中不断放大,形成光的增强。
3. 激射:当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射。
激射的激光经过输出耦合器件,部分透射出光纤,形成激光输出。
光纤激光器的工作原理可以通过能级图来解释。
在泵浦过程中,泵浦光源提供的能量使得光纤中的掺杂物原子或离子跃迁到激发态。
在光放大过程中,激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。
这些光子通过多次反射,在谐振腔中不断受到增益介质的放大。
当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射,形成激光输出。
光纤激光器具有很多优点,如小型化、高效率、高质量光束、稳定性好等。
光纤激光器的原理与结构
光纤激光器的原理与结构光纤激光器是一种利用光纤作为激光器介质的激光器。
它以光纤的光导特性为基础,具有小巧、灵活、高效等优点,被广泛应用于通信、医疗、材料加工等领域。
光纤激光器的基本原理可以归纳为激光放大、光反馈和能量转换三个方面,下面将对其进行详细介绍。
第一,激光放大。
光纤激光器一般采用掺杂有特定材料的光纤作为放大介质。
其中,掺杂的材料可为稀土离子如铒、钕等,其主要作用是提供能级,实现电能到光能的转换。
当外界的能量供给(如光能、电能等)作用于掺杂材料时,稀土离子吸收入射光并转化为激活态,激活态颗粒与基底发生碰撞而迅速跃迁到较低能级并释放出辐射能,形成激光。
由于掺杂材料分布于光纤核心区域,使得光能在光纤中的驻留时间增加,从而增加放大系数,提高激光功率。
第二,光反馈。
为了获得高质量的激光输出,光纤激光器需要实现光的随轴反馈。
它一般采用光纤光栅和光耦合器等装置来实现。
光纤光栅是一种通过改变光纤折射率分布而形成的光波束反射镜,起到光反馈的作用。
光耦合器则是将输入光和输出光分别通过两根相互独立的光纤引入和引出,用以将反射的激光光束分离出来。
通过调整光栅结构和光耦合器的参数,可以实现激光的特定波长选择和功率调节,进而实现激光器的稳定输出。
第三,能量转换。
光纤激光器需要将外部能源(如电能)转化为激光输出。
一般情况下,光纤激光器采用半导体激光器作为光纤激励源。
通过将电能输入到半导体器件中,形成电子与空穴的复合,产生光子并通过光纤输送到激光器中进行放大和反馈,最终实现激光输出。
同时,光纤激光器还需要提供稳定的电源供给和温度控制系统,以保证激光器的正常工作。
光纤激光器的结构一般包括激光介质、激光泵浦、光栅和耦合器等组成。
其中,激光介质即掺杂有稀土离子的光纤,可为单模光纤或多模光纤。
激光泵浦是提供能源的装置,一般采用半导体激光器。
光栅是实现光的反馈的装置,采用了周期性折射率变化的结构。
耦合器则是实现输入光和输出光的分离,并且可根据需要进行功率调节和波长选择。
光纤激光器的基本结构
光纤激光器的基本结构光纤激光器是一种基于光纤的固态激光器,具有高效、稳定、可靠等优点,被广泛应用于通信、制造业、医疗等领域。
它的基本结构包括泵浦光源、光纤放大器、光纤反射镜和激光输出光纤。
下面将详细介绍每个部分的结构和作用。
一、泵浦光源泵浦光源是光纤激光器的核心部件,它的作用是提供能量激发光纤中的掺杂物,使其产生激光。
常用的泵浦光源有半导体泵浦二极管、光纤耦合的激光二极管等。
半导体泵浦二极管是最常用的泵浦光源,它的结构由n型和p型半导体材料组成,两端连接金属电极。
当电流流过二极管时,n型和p型半导体之间的结电场使得电子和空穴结合并释放出能量,这种能量被传递到掺杂光纤中,使其产生激光。
光纤耦合的激光二极管是一种将激光通过光纤耦合到掺光纤中的泵浦光源,它的结构由激光二极管、光纤耦合器和掺光纤组成。
二、光纤放大器光纤放大器是光纤激光器中的另一个关键部件,它的作用是将泵浦光源产生的激光放大。
光纤放大器的结构包括掺杂光纤、泵浦光源和光纤反射镜。
当泵浦光源激发掺杂光纤中的掺杂物时,产生的激光被反射到光纤反射镜上,不断地被反射和放大,最终形成高质量的激光输出。
三、光纤反射镜光纤反射镜是将激光反射回掺杂光纤中的镜子,它的结构包括镜头和反射膜。
当激光经过反射膜时,一部分激光被反射回掺杂光纤中,使其不断地被反射和放大,最终形成高质量的激光输出。
四、激光输出光纤激光输出光纤是将产生的激光传输到需要的地方的光纤,它的结构和普通光纤类似。
激光输出光纤的质量对激光器的输出功率和稳定性有很大的影响,因此要选择高质量的光纤。
总的来说,光纤激光器的基本结构包括泵浦光源、光纤放大器、光纤反射镜和激光输出光纤。
这些部件的结构和作用紧密相连,协同工作,才能产生高质量的激光输出。
光纤激光器的原理和应用
光纤激光器的原理和应用光纤激光器是一种以光纤为介质的激光器,其主要原理是利用激光二极管或其他激励源,通过特定的激光工作介质,通过非线性光学效应来产生激光。
光纤激光器的原理和应用广泛,是现代科学技术领域的重要组成部分。
本文将着重探讨光纤激光器的原理和应用。
一、光纤激光器的原理光纤激光器的工作原理基于光纤内部的非线性光学效应。
光纤内部由纯净的石英或玻璃制成,具有高折射率和低损耗的特点。
通过在光纤内部放置激光介质,可以在光纤内部产生激光。
具体而言,光纤激光器主要包括光纤、激光介质、泵浦光源、激光反馈回路、输出光束及功率控制电路等几大部分。
泵浦光源通过激发激光介质的原子或分子转化,激发出粒子之间的能级跃迁,从而实现激光器的起振。
光波被泵浦到光纤内部,通过高折射率的光纤材料逐渐聚焦在光纤核心。
激光介质将泵浦光转化为激发能量,通过非线性光学效应形成激光。
激光反馈回路将激光反馈到泵浦光源中,通过反馈系统反复得到增加,从而提高激光器的输出功率。
输出光束则是将激光发送到需要的地方,功率控制电路则负责控制整个激光器的功率和稳定性。
二、光纤激光器的应用光纤激光器在现代科学技术领域有着广泛的应用,我们仅列举一些比较典型的应用场景:1. 通信领域随着数字化和互联网的发展,通信成为人们日常生活中不可或缺的一部分。
而光纤激光器亦得到了广泛的应用。
光纤激光器的小型化、高可靠性、稳定性以及在通信网络中的低损耗等优点使其成为现代通信传输的主要方式。
2. 材料加工领域光纤激光器可以提供高能量、高亮度和小点位等优质的激光,广泛应用于各种科学和工程领域中。
特别是在材料加工领域,在金属、非金属等材料的切割、焊接、微机械加工等方面具有独特的优势。
光纤激光器在钢管开槽、卷板整平,以及铝、钛、不锈钢等金属加工方面的应用越来越广泛。
3. 医疗领域光纤激光器可以通过光纤导引可见光线照射到身体内部,特别是在泌尿系、胃肠道、喉部等狭窄部位的检查和治疗方面拥有独特优势。
光纤激光器的原理及应用
光纤激光器的原理及应用光纤激光器的工作原理是通过受激辐射的过程产生激光。
首先,通过把电能、光能等能量输入石英玻璃纤维中,激发其中的电子从基态跃迁到激发态,电子在激发态寿命极短,相互作用强烈,从而形成了大量的受激辐射和激光产生,最后在光纤的末端通过光束输出。
1.制造业:光纤激光器在制造业中有广泛的应用,如切割、焊接和打标。
由于激光光束的高能量密度和小发散性,激光切割和激光焊接在金属加工中得到了广泛应用。
光纤激光器的高功率和高能量密度可实现更精确的切割和焊接,提高生产效率。
2.医疗领域:光纤激光器被广泛应用于医疗领域,例如激光手术、激光美容和激光治疗等。
光纤激光器的小尺寸和光纤的柔性使其能够在医疗设备中灵活使用,激光的高能量密度可精确控制和切割组织,可以用于手术刀替代、病变组织消融和切割等医疗操作。
3.通信领域:光纤激光器也广泛应用于通信领域,例如光纤通信和光纤传感。
光纤激光器的窄线宽和高功率输出能够提供更高的传输速率和传输距离,同时它的稳定性也能够保证信息的可靠传输。
光纤激光器在光纤传感中的应用主要是通过改变激光器输出的光强度或频率来检测物理变量,如温度、压力和应力等。
4.科学研究:在科学研究中,光纤激光器也扮演着重要的角色。
例如,在原子物理研究中,光纤激光器可用于冷却和操纵原子,使其接近绝对零度,从而研究量子行为。
在激光光谱学中,光纤激光器的高能量密度和带宽可用于光谱分析和材料表征等。
总之,光纤激光器凭借其小巧灵活、可靠性高、能量密度高、功率稳定等特点,在制造业、医疗、通信、科学研究等领域得到了广泛的应用。
随着光纤技术的不断发展和完善,光纤激光器在未来将继续发挥重要的作用,为各个领域的创新和发展提供有力支持。
光通讯专业名词
光纤激光器(Fiber Laser)掺铒光纤放大器(EDFA)光纤准直器(Fiber Collimator)光波分复用器(CWDM & DWDM)光隔离器(Isolator)光开关(Switch)光衰减器(MVOA、EVOA、MO-EVOA & LC-EVOA)全胶工艺光波分复用器系列(All-Epoxy-Process WDM series)(三波长)高隔离度光波分复用器(High Isolation WDM)磁光电控可调光衰减器(MO-EVOA)液晶电控可调光衰减器(LC-EVOA)光环行器(Circulator)梳波复用器(Interleaver)小型化粗波分复用器模块(CCWDM)熔融拉锥式光纤耦合器(Coupler)平面光波导分路器(PLCS)标准具(Etalon)固体和半导体激光器(DPSS、DFB Laser)增益平坦滤波器(Gain Flattening Filter,GFF)光环行器(Optical Circulator)波长标准具(Wavelength Etalon)梳波复用器(Optical Interleaver)小型化紧凑型粗波分复用器模块(Compact Course Wavelength Multiplex Module,CCWDM)熔融拉锥式光纤耦合器(Fused-tapered Fiber Coupler)平面光波导分路器(Planar Lightwave Circuit Splitter,PLCS)带尾纤型光电二极管(Pigtail Integrated Photodiode)固体激光器(Diode Pumped Solid State Laser,DPSS)半导体激光器(Semiconductor Laser,DFB Laser)平面光波导(Planar Lightwave Circuit,PLC)微电子机械系统(Micro-Electro-Mechanical Systems,MEMS)液晶(Liquid Crystal,LC)硅基液晶(Liquid Crystal on Silicon,LCoS)实验设计(Design of Experiment,DOE)失效模式与效应分析(FMEA,Design Failure Modes and Effects Analysis & Process Failure Modes and Effects Analysis)统计过程控制(Statistical Process Control,SPC)静电防护(Electro-Static Discharge,ESD)有害物质限制指令(The Restriction of Hazardous Substances Directive,RoHS)高斯光学(Gaussian Optics)近轴光学(Paraxial Optics)矩阵光学(Matrix Optics)物理光学(Physical Optics)光学理论(Optics Theory)。
光纤激光器
什么是光纤激光器光纤激光器的原理利用掺杂稀土元素的光纤研制成的光纤放大器给光波技术领域带来了革命性的变化。
由于任何光放大器都可通过恰当的反馈机制形成激光器,所以早期的光纤激光器就是基于光纤放大器的基础上研制开发的。
目前开发研制的光纤激光器主要采用掺稀土元素的光纤作为增益介质。
由于光纤激光器中光纤纤芯很细,在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”。
当加入正反馈回路(构成谐振腔)便形成激光振荡。
由于光纤基质具有很宽的荧光谱,光纤激光器一般都可做成可调谐的,以用于WDM 系统中。
光纤激光器的谐振腔[1]设计主要有两大类。
一类是激光器中常见的Fabry-Perot腔。
将增益介质放置在两块具有高反射率的镜子中间而组成。
由于介质镜对光纤端面的缺陷非常敏感且镜子的覆盖层容易被损坏,目前光纤激光器的谐振腔设计中均不采用含介质镜的腔型结构。
现最常见的F-P腔是用光纤光栅、WDM耦合器或光纤环路镜代替介质镜。
另一类是环型谐振腔。
环型腔中不需使用反射镜,因而可做成全光纤谐振腔。
最简单的设计是把WDM 耦合器的两端连在一起形成包括掺杂光纤在内的环型腔,输出连续激光脉冲(图1a)。
图1b为锁模光纤激光器常用的特殊设计—8字型光纤激光器。
激光器由两个环型腔通过耦合器连接组成。
右边的环型腔为带增益的非线性环路镜腔,具有放大作用和快的开关特性。
在脉冲低功率部分,环内透射率小。
当脉冲的峰值功率达到一临界值时,环对脉冲的透射达100%,和锁模操作一样。
左腔为含有单向光隔离器的光纤环。
采用不同的器件构成谐振腔反射镜时,激光器便有不同的输出特性。
例如利用波长选择器或滤波器可获得单一所需的激光波长;利用阵列波导光栅(AWG)可获得多信道的激光输出[2~3],这是DWDM技术所希望的光源具有的能力。
另外,由于光纤的非线性效应,振荡脉冲在光纤内传输时因非线性效应(主要是自相位调制效应)与色散效应的相互作用而被压缩,输出皮秒乃至飞秒的超短光脉冲。
光纤激光器的原理
光纤激光器的原理光纤激光器是一种将能量与信息传输相结合的高科技设备,它将硅光源、光纤传输技术和激光器器件有机地结合在一起。
它具有高度的一致性,输出功率稳定可靠,为广大应用领域提供了强有力的支持。
下面将从光纤激光器的基本原理、构造与工作过程等方面进行详细介绍。
光纤激光器是利用材料在受到外界激发后能够放出高纯度、高能量的激光而产生的。
它的基本原理是通过能量界面的跃迁来产生放大光与反射光。
光纤激光器由光泵浦源、增益介质、耦合具和光腔四部分组成。
其中光泵浦源向增益介质输送能量,增益介质将能量转化为激光光子,耦合具将激光光子耦合到光纤中传输,光腔则对激光光子进行放大、反射及输出控制。
光纤激光器由光纤产生器和激光发射器两部分组成。
光纤产生器主要由掺杂有稀土元素的光纤、高反射率的光纤折射镜和电光调制器组成。
激光发射器主要由半导体激光器、电光调制器、光养波带通滤波器、扫描器、光阻等组成。
光纤激光器通过光纤传输技术将产生的激光传输到需要的地方。
光纤激光器的工作过程分为两个基本阶段:光泵浦阶段和激光发射阶段。
在光泵浦阶段,光泵浦源产生的光能量通过耦合具输送到光纤中,激发增益介质中的稀土元素,从而形成激光。
在激光发射阶段,激光从增益介质中通过光纤传输到激光发射器,在发射器中被电光调制器、光养波带通滤波器、扫描器等组件处理和控制后,最终输出到需要的位置。
光纤激光器的应用前景非常广阔,尤其在通信、制造、医疗等领域有着重要的应用。
光纤激光器具有输出功率稳定、光束质量好、激光光子能量高、光腔具有自强振和均匀等特点。
因此,光纤激光器可以应用于高度精密的微观加工、纳米材料加工、光纤通信、医疗器械等领域。
随着科技的发展,光纤激光器将会有更多的应用场景出现。
1550nm蝶形SLED激光器
1550nm 14 PIN 蝶形封装SLED 宽带激光器产品说明:1550nm14PIN 蝶形封装带温控尾纤型SLED 宽带激光器系列,采用高性能SLED 宽带激光器芯片,内置半导体制冷器,先进的激光焊接工艺实现14PIN 蝶形(butterfly )尾纤式封装,结构紧凑,体积小,在光纤通信、光纤传感、光纤测控等领域得到广泛应用;半导体制冷器高精度温度控制下,激光器功率高稳定输出,使得激光器在居多领域得到广泛应用。
飞博源(FBYGD)光电为您提供实物图如右所示。
产品特征及应用领域:额定极限工作条件:参 数符号 参数值 单 位 激光二极管正向电流I f(LD)150 350 mA 激光二极管反向电压 V r(LD) 2V 致冷器工作电流 I TEC 1.6 A 致冷器工作电压 V TEC 2.6 V 工作温度 T opr -45~+70 ℃ 储存温度 T stg -55~+80 ℃ 引线焊接温度 T sld 260 ℃ 引线焊接时间Ti sld10s技术参数:(测试环境温度为25℃)参数 符号 测试条件 Min Typ Max 单位出光功率 P O Iop =100 0.2 − 4 mW Iop =300 5 − 10光谱宽度 Bw Iop=100 30 40 − nm 工作电压 V opIop=100 −1.2 − V 中心波长 λcIop=100− 1550 − nm 光谱纹波Iop =100 −− 0.2dB 偏振消光比 FER 低偏 −− 1.5dB 偏振消光比FER高偏15− − dB 热敏电阻 Rth Ttherm = 25ºC 9.51010.5k Ω引脚定义与尺寸图:。
光纤激光器综述
摘要:光纤激光器技术是光学领域最为重要的技术之一,作为第三代激光技术的代表,其稳定性好、效率高、阈值低、线宽窄、可调谐、紧凑小巧和性价比高等优点,使得它在光纤传感、光纤通信、工业加工等领域都有着重要的应用。
而掺镱双包层光纤激光器是国际上近年来发展的一种新型固体激光器。
本文就介绍了这种高功率掺镱双包层光纤激光器,主要介绍了高功率掺镱双包层光纤激光器的概念、发展历史及发展现状、基本原理、优点、实现的关键技术、应用及其广阔的前景。
同时总结出了未来光纤激光器的发展方向,并且可以预计光纤激光器最终将可能会替代掉全球大部分高功率CO2激光器和绝大部分YAG激光器。
关键词:光纤激光器;掺镱双包层光纤激光器;光纤融合技术;激光加工。
引言光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,虽然光纤激光器得到了社会各方面的广泛重视,但是光纤激光器并不是新型光器件。
1961年,美国光学公司的Snitzer和Koester等在一根芯径300um的掺Nd3+玻璃波导中进行试验观察到了激光现象,并与1963年和1964年发表了多组分玻璃光纤中的光放大结果,提出了光纤激光器和光纤放大器的思想。
1975~1985年中有关这个领域的文章较少,不过在这期间许多发展光纤激光器的必须工艺技术已趋于成熟[1]。
上个世纪80年代后期,美国Polaroid公司提出了包层抽运技术,之后双包层光纤激光器,特别是掺镱双包层光纤激光器发展非常迅速。
1994年,PASK等首先在掺Yb3+石英光纤中实现了包层抽运,得到了0.5W的最大激光输出。
1998年,Lucent技术公司的KOSINKI和INNISS报道了一种内包层截面形状为星形的掺Yb3+双包层光纤激光器,得到了20W的激光输出。
1999年,DOMINIC等用4个45W的半导体激光二极管阵列组成总功率为180W的抽运源,在1120nm得到110W的激光输出。
2002年,IPG公司公布了2000W的掺Yb3+双包层光纤激光器。
光纤激光器的优势
光纤激光器的优势1.高效能量传输:光纤激光器可将激光能量高效地传输到目标位置。
光纤作为传输媒介,具有低损耗、高承载能力的特点,能够将激光能量稳定可靠地传输到需要加工的地方。
传输效率高,避免了能量损失,提高了加工效率。
2.高质量激光束:光纤激光器发出的激光束质量高,光斑质量好,光束直径小,并且光斑能量分布均匀。
这使得光纤激光器适用于对高精度、高质量加工要求的应用,如激光雕刻、激光切割等。
3.小体积、轻便:光纤激光器采用光纤作为激光介质,与传统的准分子激光器相比,体积小、重量轻。
这使得光纤激光器易于携带和移动,可以满足一些特定场合下对设备便携性的要求。
4.高稳定性:光纤激光器具有较高的稳定性,能够在长时间运行过程中保持稳定的输出性能。
光纤激光器采用了光纤稳定器和温度控制技术,可以减少输出能量的波动,提升激光器的使用寿命。
5.高可靠性:光纤激光器的光学器件(光纤、二极管等)不易受到污染和机械冲击的影响,因此光纤激光器具有较高的可靠性。
由于光纤激光器没有使用任何易损坏的材料,因此能够在恶劣的环境下工作,并能够经受得住工程应用和工业环境的考验。
6.高灵活性:光纤激光器能够根据需要进行灵活控制,可以改变激光器的输出功率和脉冲频率,实现对加工效果的调节。
可以根据材料的不同特性和不同的加工要求,将激光器调整到最佳工作状态,以提高加工质量。
7.低维护成本:光纤激光器由于采用了先进的光学技术和稳定性较强的光纤传输,减少了维护的需要。
相比传统的准分子激光器,光纤激光器的器件寿命更长,无需频繁更换损坏的光学元件,减少了维护成本。
总之,光纤激光器由于其高效的能量传输、高质量的激光束、小体积轻便、高稳定性、高可靠性、高灵活性和低维护成本等优点,已经在多个领域得到广泛应用,如激光切割、激光打标、激光焊接、医疗美容等。
随着光纤激光器技术的不断发展,其优势将进一步得到提升,应用领域也将不断拓宽。
ipg光纤激光器参数要求
ipg光纤激光器参数要求IPG光纤激光器参数要求光纤激光器是一种特殊类型的激光器,它采用光纤作为激光介质,具有高效率、高质量光束和稳定性好等优点。
而IPG光纤激光器是一种由IPG光纤激光器公司生产的光纤激光器,它在各个参数方面都有一定的要求和标准。
1. 输出功率(Output Power):IPG光纤激光器的输出功率是指激光器产生的激光功率大小。
根据不同的应用需求,输出功率有不同的要求,一般在几瓦到几千瓦之间。
高输出功率可以提供更强的激光能量,适用于需要大功率激光的应用领域。
2. 波长(Wavelength):波长是指激光器所产生激光的波长大小。
IPG光纤激光器通常采用准连续波长,如1064纳米,适用于许多材料的加工和切割。
3. 光束质量(Beam Quality):光束质量是指光束的空间分布和光束直径的大小。
IPG光纤激光器的光束质量通常采用M²参数来描述,M²值越接近1代表光束质量越好。
光束质量好的激光器可以提供更小的光斑和更高的能量密度,适用于精细加工和高精度测量。
4. 脉冲重复频率(Repetition Rate):脉冲重复频率是指激光器产生脉冲的频率大小。
IPG光纤激光器的脉冲重复频率可以根据不同的应用需求进行调节,一般在几千赫兹到几兆赫兹之间。
高脉冲重复频率可以提高加工效率,适用于需要高速加工的应用领域。
5. 光纤长度(Fiber Length):光纤长度是指激光器中使用的光纤的长度。
IPG光纤激光器通常采用长光纤结构,可以减少光束的损耗和衰减,提高激光器的稳定性和可靠性。
6. 温度稳定性(Temperature Stability):温度稳定性是指激光器在不同温度下输出功率的稳定性。
IPG光纤激光器具有较好的温度稳定性,可以在一定温度范围内保持输出功率的稳定性。
7. 效率(Efficiency):效率是指激光器将输入能量转化为输出激光能量的比例。
IPG光纤激光器具有较高的效率,可以提供更高的输出功率和更低的功耗。
光纤激光器的工作原理
光纤激光器的基本原理1. 引言光纤激光器是一种基于光纤技术的激光装置,利用光纤的特殊结构和激光器的工作原理,产生高功率、窄线宽、可调谐的激光束。
借助其独特的特点,光纤激光器在通信、医学、材料加工等领域有着广泛的应用。
在本文中,我将深入探讨光纤激光器的工作原理,并对其相关的基本原理进行详细解释。
2. 光纤的基本原理光纤是一种具有高折射率的细长玻璃或塑料材料,具有高度透明和反射光的特性。
光纤中有一个称为芯的中心部分,其折射率高于外部的称为包层的材料。
这种差异使得光线能够通过反射的方式沿着光纤传输。
光纤的传输方式是通过光的全内反射实现的。
当光线以大于临界角的角度射入光纤时,它会在芯和包层的交界面上完全内反射,并沿着光纤传输。
光线的全内反射保证了光信号在光纤中的传输损耗很小。
3. 激光的基本原理激光是一种具有高度聚焦和高单色性的电磁辐射波。
它是通过将粒子(如电子或原子)从低能级促使到高能级,并在它们回到低能级时释放能量来产生的。
激光器的基本结构主要由激活介质、能量泵浦装置和光学谐振腔组成。
•激活介质:激活介质是激光器中产生激光的材料。
它可以是固体、液体或气体。
其中,气体激光器常用的激活介质为二氧化碳,固体激光器常用的激活介质为钕、铷等。
•能量泵浦装置:能量泵浦装置用于提供能够将激活介质中的粒子激活到高能级的能量。
通常使用的能量泵浦装置包括光泵浦、电子泵浦和化学泵浦等。
•光学谐振腔:光学谐振腔是激光器中的一个空间,在其中光线来回反射,从而增加光线的相干性和增益。
光学谐振腔由两个光学镜片构成,其中一个镜片是部分穿透和部分反射的,另一个镜片是完全反射的。
在激光器中,激活介质被能量泵浦装置激活,并产生大量的激发态粒子。
这些激发态粒子在光学谐振腔的作用下,通过受激辐射的过程,将能量转移给通过谐振腔的光子,使之增加能量,最终形成了高亮度的激光束。
4. 光纤激光器的工作原理光纤激光器的工作原理是将光纤和激光器的原理相结合。
光纤激光器出光原理
光纤激光器出光原理光纤激光器是一种利用光纤作为激光介质的激光发射器件。
它具有高功率、高效率、小体积和方便控制等优点,在通信、医疗、材料加工等领域有着广泛应用。
光纤激光器的出光原理是通过激发激活介质中的原子或分子,使其处于激发态,然后通过受激辐射的过程,将光子能量转移到光纤中的其他原子或分子上,从而实现光的放大和激光发射。
光纤激光器的主要组成部分包括光纤、泵浦源、激光介质和谐振腔。
光纤是光传输的通道,它具有较高的折射率和低的损耗,能够有效地将光传输到激光介质中。
泵浦源是提供能量的装置,通常采用半导体激光器或光纤耦合二极管激光器。
激光介质是光纤激光器的核心部分,它决定了激光器的发射波长和性能。
谐振腔是光线在光纤中反射的路径,通过反射和增强光线,使得光能够在光纤中传输和放大。
光纤激光器的出光原理可以简单地分为三个步骤:泵浦、放大和激射。
首先,泵浦源产生的光束通过光纤耦合到光纤中,并被激活介质吸收。
激活介质一般是掺杂有稀土离子的光纤芯。
当激活介质吸收光束的能量后,其内部的激发态粒子数量增加,形成激发态粒子的粒子密度分布。
接下来,激发态粒子通过受激辐射的过程,将能量传递给光纤中的其他原子或分子。
这一过程中,激发态粒子发射出与刺激光束相同频率和相位的光子,激光的能量得到放大。
放大的光子经过反射和增强后,形成高质量的激光束。
激光束通过谐振腔的反射和增强,从光纤的一端射出。
谐振腔由两个反射镜组成,其中一个镜子是高反射镜,另一个是部分透射镜。
高反射镜使得光线在光纤中来回反射,并在激光介质中不断增强。
部分透射镜则使一部分激光能够逃逸出来,形成激光束。
光纤激光器的出光原理基于激活介质的受激辐射和光纤中的反射和增强过程,能够产生高功率、高质量的激光束。
光纤激光器具有许多优点,例如光束质量好、效率高、可靠性强和体积小等。
它在通信、医疗、材料加工等领域有着广泛的应用前景。
随着技术的不断进步,光纤激光器的性能将会进一步提高,应用范围也将会更加广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海磐川光电科技有限公司
带尾纤激光器(光纤激光器)
产品说明书
专业术语:带尾纤激光器
俗称:光纤激光器,尾纤激光模组, 通讯光纤激光头
产品特点:*半导体激光管芯;
*智能调制电路;
*高效透过率光学系统;
*低功耗,高效能光功率输出;
*光斑模式TEM;
应用领域:光纤通讯,特殊环境下工业标线定位,防伪检测,机械、石材切割金属锯床、SMT/电路板的对刀、标线、定位、对齐等
带尾纤激光器的特点利用激光器的单色性好、相干性好、方向性好以及高亮度之外,光纤头可弯曲灵活性号,准直性高,光斑很小是其最大特点,可以广泛应用于光纤通讯、工业检测、工业机械、数控设备、电动工具、工程施工、建筑装璜、印刷、纺织服装、切割焊接等领域的激光定位、激光标线、激光水平、激光垂准、激光指示仪以及激光娱乐照明等;.方便快捷、直观实用、易于安装、稳定可靠,可以提高工作效率,降低人力和生产时间的成本,提高工作精确度。
激光光斑效果
(工业应用场合)
售后服务
产品提供一年质保,三年保修。
使用注意事项
1)使用应注意相关的激光使用安全规定,不能直射人眼;
2)激光器中半导体激光管属静电敏感器件,应遵守相关的静电防护规定。
测试和使用环境应保证没有静电;
3)电源线请勿用力拽拉;
4)电源电压不要超过DC 5 V,最好选用激光器专用直流稳压电源供电,“+”(红线)、“−”(黑线)极性绝对不可接反;
5)激光器通电时,“+”(红线)、“−”(黑线)极电源线绝对不可短路,以免烧毁激光器;
6)自制稳压电源请注意消除浪涌脉冲电压电流,稳压5V或<5V将延长使用寿命,避免在各种浪涌脉冲较大的场合中使用激光器;
7)激光器人为损坏或私自拆开激光器后不予保修
出师表
两汉:诸葛亮
先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体;陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。
侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。
将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。
亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。
先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。
侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。
臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。
先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。
后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。
先帝知臣谨慎,故临崩寄臣以大事也。
受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。
今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。
此臣所以报先帝而忠陛下之职分也。
至于斟酌损益,进尽忠言,则攸之、祎、允之任也。
愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。
若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。
臣不胜受恩感激。
今当远离,临表涕零,不知所言。