2007-2013无锡中考数学题集

合集下载

DA江苏省无锡市中考真题

DA江苏省无锡市中考真题

2007年无锡市 考试数学试题参考答案及评分说明一、细心填一填(本大题共有12小题,15空,每空2分,共30分)1.5,3 2.(2)(2)b b +- 3.6,4 4.71.0110⨯ 5.322x x ≠,≥ 6.120 7.2- 8.1080 9.110 10.611.明天我市下雨(答案不唯一) 12.6.37二、精心选一选(本大题共有7个小题,每小题3分,共21分)13.A 14.C 15.D 16.B 17.A 18.C 19.B 三、认真答一答(本大题共有8小题,共60分)20.解:(1)原式23231=-- ······················································································ 3分1=-. ······································································································ 4分(2)由12x x +≤,得1x ≥. ··························································································· 2分 由512x->,得3x <. ········································································································ 4分 ∴不等式组的解集是13x <≤. ·························································································· 5分 它的所有整数解为12x =,. ·································································································· 6分21.证明:菱形ABCD 中,AD CD =. ············································································ 1分 E F ,分别是CD AD ,的中点,1122DE CD DF AD DE DF ∴==∴=,,. ······································································ 3分又ADE CDF ∠=∠ ,AED CFD ∴△≌△. ································································· 5分 AE CF ∴=. ························································································································ 7分22.解:PA 切O 于A AB ,是O 的直径,90PAO ∴∠=. ································· 2分30P ∠= ,60AOP ∴∠= . ·························································································· 4分 1302B AOP ∴∠=∠= . ····································································································· 6分 23.(1)解:环数 6 7 8 9 10 甲命中次数 2 2 2 乙命中次数132列表正确得2分.(2)9x =甲环,9x =乙环,22213S S ==乙甲,, ····························· 6分(算对一个得1分) x x =乙甲,22S S <乙甲,∴甲与乙的平均成绩相同,但甲发挥的比乙稳定. ···················· 8分 24.解:列树状图如下:初中毕业高级中等学校招生第一次摸得奖品价格 1020 30第二次摸得奖品价格 10 20 30 10 20 30 10 20 30 ··················· 4分两次奖品价格之和 20 30 40 30 40 50 40 50 60两次摸奖结果共有9种情况,其中两次奖品价格之和超过40元的有3种情况,故所求概率为13. ····································································································································· 6分 25.解:(1)67.··················································································································· 2分 (2)图4中所有圆圈中共有12(121)12312782+++++== 个数, 其中23个负数,1个0,54个正数, ··················································································· 4分∴图4中所有圆圈中各数的绝对值之和|23||22||1|01254=-+-++-+++++(12323)(12354)27614851761=+++++++++=+= . ·································· 6分26.解:(1)线段OA 对应的函数关系式为:112s t =(012t ≤≤) ···························· 2分 线段AB 对应的函数关系式为:1(1220)s t =<≤. ························································· 4分 (2)图中线段AB 的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟. ···················································································· 7分 (3)如图中折线段CD DB -. ··························································································· 9分27.解法一:如图,设自上往下第2,3,4,5,6,7级踏板的 长依次为22A B ,33A B ,…,77A B ,过1A 作18B B 的平行线分别 交22A B ,33A B ,…,88A B 于点2C ,3C ,…,8C .每两级踏板之间的距离相等,8877221150cm C B C B C B A B ∴===== ,88805030cm A C =-=.2288A C A B ∥,∴122188A A C A A C ∠=∠,122188AC A AC A ∠=∠,122188A A C A A C ∴△∽△,2288:1:7A C A C ∴=,22307A C ∴=,2230507A B ∴=+, ················································································································································· 2分 设要制作11A B ,22A B ,…,77A B ,88A B 这些踏板需用木板的长度分别为1cm a ,2cm a ,…,1A B 2012 t (分钟)s (千米)O10 16 D C 1A 1B 8B8A 8C2C2B2A8cm a ,则150858a =+=,230305085877a =++=+,360587a =+,490587a =+,5120587a =+,6150587a =+,7180587a =+,85830a =+. ··································· 5分12341802322107a a a a +++=+> ,∴王大伯买的木板肯定不能少于3块. ················································································ 6分 又 1362101742042107a a a ++=+=<,24527025217417421077a a a ++=+<+=, 78180514617121077a a +=+=<,∴王大伯最少买3块这样的木板就行了. ············································································ 8分 解法二:如图,分别取18A A ,18B B 的中点P Q ,, 连结PQ .设自上往下第2,3,4,5,6,7级踏板的长依次为22A B ,33A B ,…,77A B ,则由梯形中位线定理可得11882277336644552A B A B A B A B A B A B A B A B PQ +=+=+=+=.························· 2分 118850cm 80cm A B A B == ,,∴1188227733664455130A B A B A B A B A B A B A B A B +=+=+=+=. ······························· 3分 设要制作11A B ,22A B ,…,77A B ,88A B 这些踏板需用木板的长度为1cm a ,2cm a ,…,8cm a ,则182********a a a a a a a a +=+=+=+=.12814645842102a a a +++=⨯=>⨯ ,∴王大伯买的木板肯定不能少于3块.················································································································································· 4分 过1A 作18B B 的平行线分别交22A B ,33A B , ,88A B 于点2C ,3C , ,8C .每两级踏板之间的距离相等,8877221150cm C B C B C B A B ∴===== ,88805030cm A C =-=.2288A C A B ∥,122188A A C A A C ∴∠=∠,122188AC A AC A ∠=∠,122188A A C A A C ∴△∽△,2288:1:7A C A C ∴=,22307A C ∴=,2230507A B ∴=+, ················································································································································· 6分230587a ∴=+.而158a =,888a =,13658146204210a a a ∴++=+=<, 1A 1B8B8A 8C2C2B 2AP Q24530305814620421077a a a ++=++=+<,7888882210a a a a +<+=⨯<. ∴王大伯最少买3块这样的木板就行了. ············································································ 8分 解法三:如果在梯子的下面再做第9级踏板,它与其上面一级踏板之间的距离等于梯子相邻两级踏板之间的距 离(如图),设第9级踏板的长为x cm ,则由梯形中位 线的性质,可得第5级踏板的长551(50)cm 2A B x =+, 第7级踏板的长7711(50)cm 22A B x x ⎛⎫=++ ⎪⎝⎭,由题意,得第8级踏板的长()881115080222A B x x x ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭,解这个方程,得2847x =,················································································································································· 2分 由此可求得775757A B =cm ,55167cm 7A B =,66371cm 7A B =,33458cm 7A B =,22254cm 7A B =,44662cm 7A B =.设要制作11A B ,22A B ,…,77A B ,88A B 这些踏板需截取的木板长度分别为1cm a ,2cm a ,…,8cm a ,则150858a =+=,22627a =,32667a =,46707a =,51757a =,63797a =,75837a =,888a =. ··········································································································· 5分(下同解法一)四、实践与探索(本大题共2小题,满分19分)28.解:(1)AB y ∥轴. ···································································································· 1分 理由: Rt OAB △中,tan :ABO OA OB ∠=1:3=,30ABO ∴∠=. ··················· 2分 设AB 交OP 于点Q ,交x 轴于点S , 矩形的对角线互相平分且相等,则QO QB =,30QOB ∴∠= ,过点M 作MT x ⊥轴于T ,则3t a n 1:33M O T ∠==,30MOT ∴∠= ,60BOS ∴∠= ,90BSO ∴∠= ,AB y ∴∥轴. ···························· 3分(2)设l 在运动过程中与射线OM 交于点C ,过点A 且垂直于射线OM 的直线交OM 于点D ,过点B 且垂直于射线OM 的直线交OM 于点E ,则OC t =.2OP t =+ ,3(2)2OB t ∴=+,3(2)4OE t =+,1(2)2OA t =+,1(2)4OD t =+.················································································································································· 4分1A 1B8B8Ax①当10(2)4t t <+≤,即203t <≤时,2233S t =. ···················································· 6分 ②当13(2)(2)44t t t +<+≤,即263t <≤时,设直线l 交OB 于F ,交PA 于G ,则23OF t =,2433PG CP ==,433233AG PA t ∴=-=-, 2133217333(2)223224263S t t t t t ⎛⎫=-++=+- ⎪ ⎪⎝⎭ . ··········································· 8分 ③当3(2)4t t >+,即6t >时,2CP = , 1431834(2)(2)22233S S t t ∴=-⨯⨯=+⨯+-矩 22383353(2)34343t t t =+-=+-………………………………………………10分 29.解:(1)如图(共有2种不同的分割法,每种1分,共2分)(2)设ABC y ∠=,C x ∠=,过点B 的直线交边AC 于D .在DBC △中, ①若C ∠是顶角,如图1,则90ADB ∠>,11(180)9022CBD CDB x x ∠=∠=-=- ,180A x y ∠=-- . 此时只能有A ABD ∠=∠,即1180902x y y x ⎛⎫--=--⎪⎝⎭, 34540x y ∴+= ,即31354ABC C ∠=-∠ . ·································································· 4分 ②若C ∠是底角,则有两种情况.第一种情况:如图2,当DB DC =时,则DBC x ∠=, ABD △中,2ADB x ∠=,ABD y x ∠=-.1.由AB AD =,得2x y x =-,此时有3y x =,即3ABC C ∠=∠. ························ 5分2 .由AB BD =,得1802x y x --= ,此时3180x y +=,即1803ABC C ∠=-∠.ABC备用图① 67.5 67.5 22.522.5A BC备用图②22.522.54545················································································································································· 6分3 .由AD BD =,得180x y y x --=- ,此时90y = ,即90ABC ∠=,C ∠为小于45 的任意锐角. ··················································································································· 7分第二种情况,如图3,当BD BC =时,BDC x ∠=,18090ADB x ∠=->,此时只能有AD BD =,从而12A ABD C C ∠=∠=∠<∠,这与题设C ∠是最小角矛盾. ∴当C ∠是底角时,BD BC =不成立. ············································································· 9分BDCA 图 1BDCA 图2BD C A 图3。

江苏省无锡市中考数学试卷及答案

江苏省无锡市中考数学试卷及答案

2013年无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) 1.2-的值等于( ▲ )A .2B .-2C .2±D .22.函数y=1-x +3中自变量x 的取值范围是( ▲ ) A .x >1 B .x ≥1C .x ≤1D .1≠x 3.方程0321=--xx 的解为( ▲ ) A .2=x B .2-=xC .3=xD .3-=x4.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是( ▲ ) A .4,15B .3,15C .4,16D .3,165.下列说法中正确的是( ▲ )A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直6.已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ( ) A .30cm 2 B .30πcm 2 C .15cm 2 D .15πcm 2 7.如图,A 、B 、C 是⊙O 上的三点,且∠ABC =70°,则∠AOC 的度数是 ( ) A .35° B .140° C .70° D .70°或140°8.如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD =1,BC =4,则△AOD 与△BOC 的面积比等于 ( )A .21B .41C .81D .1619.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 ( ) A .3∶4 B .13∶52 C .13∶62 D .32∶1310.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ). 记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为 ( )(第9题)QP FED CBAODCBA(第8题)OCBA(第7题)A .6、7B .7、8C .6、7、8D .6、8、9二、填空题(本大题共8小题,每小题2分,共16分. 不需写出解答过程,只需把答案直接填写在答题..卡上相应的位......置.) 11.分解因式:2x 2-4x =.12.去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为元.13.已知双曲线x k y 1+=经过点(-1,2),那么k 的值等于.14.六边形的外角和等于°.15.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于.16.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC =°. 17.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.18.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为. 19.(本题满分8分)计算:(1)()()2920.1--+-;(2)(x +1)2-(x +2)(x -2).20.(本题满分8分) (1)解方程:x 2+3x -2=0;(2)解不等式组:231,12(1).2x x x x -+⎧⎪⎨->+⎪⎩≥21.(本题满分6分)如图,在Rt △ABC 中,∠C =90°,AB =10,sin ∠A =25,求BC 的长和tan ∠B 的值.左视图俯视图主视图26(第17题)FEDCBA(第16题) BAC(第15题) O EDCBA22.(本题满分8分)小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.(本题满分6分)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修工程的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.人数80 - 60 - 40 - 20 - 0803050选修四个项目人数的条形统计图艺术鉴赏科技制作数学思维阅读写作选修项目选修四个项目人数的扇形统计图阅读写作25%数学思维艺术鉴赏科技制作请根据图中提供的信息,解答下面的问题:(1)此次共调查了▲ 名学生,户型统计图中“艺术鉴赏”部分的圆心角是▲ 度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修工程,请你估计其中有多少名学生选修“科技制作”工程.24.(本题满分10分)如图,四边形ABCD 中,对角线AC 与BD 相交于O ,在①AB ∥CD ;②AO =CO ;③AD =BC 中任意选取两个作为条件,“四边形ABCD 是平行四边形”为结论构成命题. (1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)OD CBA25.(本题满分8分)已知甲、乙两种原料中均含有A 元素,其含量及每吨原料的购买单价如下表所示:A 元素含量 单价(万元/吨) 甲原料 5% 2.5 乙原料 8% 6已知用甲原料提取每千克A 元素要排放废气1吨,用乙原料提取每千克A 元素要排放废气0.5吨.若某厂要提取A 元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?26.(本题满分10分)如图,直线x =-4与x 轴交于E ,一开口向上的抛物线过原点O 交线段OE 于A ,交直线x =-4于B .过B 且平行于x 轴的直线与抛物线交于C ,直线OC 交直线AB 于D ,且AD:BD =1:3.(1)求点A 的坐标;(2)若△OBC 是等腰三角形,求此抛物线的函数关系式.xyOx =-4 EBCAD27.(本题满分10分)如图1,菱形ABCD 中,∠A =600.点P 从A 出发,以2cm/s 的速度沿边AB 、BC 、CD 匀速运动到D 终止;点Q 从A 与P 同时出发,沿边AD 匀速运动到D 终止,设点P 运动的时间为t s .△APQ 的面积s (cm 2)与t (s)之间函数关系的图像由图2中的曲线段OE 与线段EF 、FG 给出.(1)求点Q 运动的速度;(2)求图2中线段FG 的函数关系式;(3)问:是否存在这样的t ,使PQ 将菱形ABCD 的面积恰好分成1:5的两部分?若存在,求出这样的t 的值;若不存在,请说明理由.(图1)CDABQ P(图2)GS (cm 2)t (s )9323OFE28.(本题满分10分)下面给出的正多边形的边长都是20 cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.(图1)(图2)(图3)11 / 11。

无锡市近五年中考数学试卷真题

无锡市近五年中考数学试卷真题

2013年无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) 1.2-的值等于()A .2B .-2C .2±D .2 2.函数y=1-x +3中自变量x 的取值范围是( )A .x >1B .x ≥1C .x ≤1D .1≠x3.方程0321=--xx 的解为 ( )A .2=xB .2-=xC .3=xD .3-=x4.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是( ) A .4,15 B .3,15 C .4,16 D .3,165.下列说法中正确的是 ( ) A .两直线被第三条直线所截得的同位角相等 B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直6.已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ( ) A .30cm 2 B .30πcm 2 C .15cm 2 D .15πcm 27.如图,A 、B 、C 是⊙O 上的三点,且∠ABC =70°,则∠AOC 的度数是 ( ) A .35° B .140° C .70° D .70°或140°8.如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD =1,BC =4,则△AOD 与△BOC 的面积比等于 ( ) A .21 B .41 C .81D .1619.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 ( ) A .3∶4 B .13∶52 C .13∶62 D .32∶1310.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ). 记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为( )A .6、7B .7、8C .6、7、8D .6、8、9(第9题)QP FED CBAODCBA(第8题)A(第7题)二、填空题(本大题共8小题,每小题2分,共16分.) 11.分解因式:2x 2-4x = .12.去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为 元. 13.已知双曲线xk y 1+=经过点(-1,2),那么k 的值等于 . 14.六边形的外角和等于 °.15.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于 .16.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC = °. 17.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是 . 18.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 . 19.(本题满分8分)计算:()()220.1-+-;(2)(x +1)2-(x +2)(x -2).20.(本题满分8分) (1)解方程:x 2+3x -2=0;(2)解不等式组:231,12(1).2x x x x -+⎧⎪⎨->+⎪⎩≥21.(本题满分6分)如图,在Rt △ABC 中,∠C =90°,AB =10,sin ∠A =25,求BC 的长和tan ∠B 的值.左视图俯视图(第17题) FEDCBA(第16题)(第15题) O EDCBA22.(本题满分8分)小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.(本题满分6分)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,户型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.24.(本题满分10分)如图,四边形ABCD中,对角线AC与BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构成命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)25.(本题满分8分)已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如下表所示:A元素含量单价(万元/吨)甲原料5% 2.5乙原料8% 6已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨.若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?26.(本题满分10分)如图,直线x=-4与x轴交于E,一开口向上的抛物线过原点O交线段OE于A,交直线x=-4于B.过B且平行于x轴的直线与抛物线交于C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.27.(本题满分10分)如图1,菱形ABCD中,∠A=600.点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止;点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的图像由图2中的曲线段OE与线段EF、FG给出.(1)求点Q运动的速度;(2)求图2中线段FG的函数关系式;(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.28.(本题满分10分)下面给出的正多边形的边长都是20 cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.2014年无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。

无锡市2013年中考数学试卷

无锡市2013年中考数学试卷

无锡市2013年中考数学试卷(满分:130分 时间:120分钟)一、 选择题(本大题共10小题,每小题3分,共30分)1. |-2|的值等于 ( )A. 2B. -2C. ±2D. 22. 函数y =x -1+3中自变量x 的取值范围是 ( )A. x>1B. x ≥1C. x ≤1D. x ≠13. 方程1x -2-3x =0的解为 ( )A. x =2B. x =-2C. x =3D. x =-34. 已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( )A. 4,15B. 3,15C. 4,16D. 3,165. 下列说法中正确的是 ( )A. 两直线被第三条直线所截得的同位角相等B. 两直线被第三条直线所截得的同旁内角互补C. 两平行线被第三条直线所截得的同位角的平分线互相垂直D. 两平行线被第三条直线所截得的同旁内角的平分线互相垂直6. 已知圆柱的底面半径为3 cm ,母线长为5 cm ,则圆柱的侧面积是( )A. 30 cm 2B. 30π cm 2C. 15 cm 2D. 15π cm 27. 如图,A 、B 、C 是⊙O 上的三点,且∠ABC =70°,则∠AOC 的度数是 ( )A. 35°B. 140°C. 70°D. 70°或140°第7题 第8题 第9题8. 如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD =1,BC =4,则△AOD 与△BOC 的面积比等于( )A. 12 B.14 C.18 D.1169. 如图,在▱ABCD中,AB∶BC=3∶2,∠DAB=60°,点E在AB上,且AE∶EB=1∶2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP∶DQ等于()A. 3∶4B. 13∶25C. 13∶26D. 23∶1310. 已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为()A. 6、7B. 7、8C. 6、7、8D. 6、8、9二、填空题(本大题共8小题,每小题2分,共16分)11. 分解因式:2x2-4x=________.12. 去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为________元.13. 已知双曲线y=k+1x经过点(-1,2),那么k的值等于________.14. 六边形的外角和等于________°.15. 如图,在菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE 的长等于________.第15题第16题第17题16. 如图,在△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC =________°.17. 如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是________.18. 已知点D与点A(8,0),B(0,6),C(a,-a)是一平行四边形的四个顶点,则CD 长的最小值为________.三、解答题(本大题共10小题,共84分)19. (本小题满分8分)计算: (1) 9-(-2)2+(-0.1)0;(2) (x +1)2-(x +2)(x -2).20. (本小题满分8分)(1) 解方程:x 2+3x -2=0;(2) 解不等式组:⎩⎪⎨⎪⎧2x -3≥x +1,x -2>12(x +1).21. (本小题满分6分)如图,在Rt △ABC 中,∠C =90°,AB =10,sin A =25,求BC 的长和tan B的值.第21题22. (本小题满分8分)小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:若三人中仅有一人出“手心”或“手背”,则这个人获胜;若三人都出“手心”或“手背”,则不分胜负.在一个回合中,若小明出“手心”,则他获胜的概率是多少(请用“画树状图”或“列表”等方法写出分析过程)?23. (本小题满分6分)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.第23题请根据图中提供的信息,解答下列的问题:(1) 此次共调查了________名学生,扇形统计图中“艺术鉴赏”部分的圆心角是________度;(2) 请把这个条形统计图补充完整;(3) 现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.24. (本小题满分10分)如图,在四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;② AO=CO;③ AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.(1) 以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2) 写出按题意构成的所有命题中的假命题,并举出反例加以说明(命题请写成“如果…,那么…”的形式).第24题25. (本小题满分8分)已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如下表所示:已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨,若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?26. (本小题满分10分)如图,直线x=-4与x轴交于点E,一开口向上的抛物线过原点O交线段OE于点A,交直线x=-4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于点D,且AD∶BD=1∶3.(1) 求点A的坐标;(2) 若△OBC是等腰三角形,求此抛物线的函数解析式.第26题27. (本小题满分10分)如图①,在菱形ABCD中,∠A=60°.点P从A出发,以2 cm/s的速度沿边AB、BC、CD匀速运动到D终止;点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t s.△APQ的面积S(cm2)与t(s)之间函数关系的图象由图②中的曲线段OE与线段EF、FG给出.第27题(1) 求点Q运动的速度;(2) 求图②中线段FG的函数解析式;(3) 问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1∶5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.28. (本小题满分10分)下面给出的正多边形的边长都是20 cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明).(1) 将图①中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2) 将图②中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3) 将图③中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.第28题无锡市2013年中考数学试卷1. A [解析]一个负数的绝对值等于它的相反数.2. B [解析]要使二次根式有意义,必须满足它的被开方数是非负数.由x -1≥0得x ≥1.3. C [解析]方程两边同乘以x(x -2),得x -3(x -2)=0,解得x =3.本题也可以利用方程根的定义将选项代入方程,得出正确答案.4. A [解析]极差是指一组数据中最大值与最小值的差,众数指一组数据中出现次数最多的数.5. D [解析]同位角不一定相等、同旁内角不一定互补,故选项A 、B 错误;两平行线被第三条直线所截得的同位角的平分线互相平行,故选项C 错误.6. B [解析]圆柱的侧面是矩形,其中矩形的长等于圆柱的底面圆的周长,矩形的宽等于圆柱的母线,即S =(2π×3)×5=30π(cm 2).7. B [解析]根据圆周角定理得,∠AOC =2∠ABC =140°.8. D [解析]由AD ∥BC 得△AOD ∽△BOC ,∴ S △AOD S △BOC =⎝⎛⎭⎫AD BC 2=116. 9. D [解析]如图,分别过F 、C 作FG ⊥AB 、CH ⊥AB ,交AB 的延长线于点G 、H.设AE =k(k>0),由AE ∶EB =1∶2,AB ∶BC =3∶2,得BE =2k ,BF =CF =k.∵ 在Rt △FBG和Rt △CBH 中,∠CBH =∠DAB =60°,∴ BG =12k ,BH =k.根据勾股定理可得,FG =32k ,CH =3k.在Rt △AGF 和Rt △EHC 中,AF =AG 2+FG 2=13k ,EC =EH 2+CH 2=23k.连接DE 、DF ,则S △ADF =S △DEC =12S ▱ABCD .即12AF ·DP =12EC ·DQ ,∴ DP ∶DQ =23∶13.第9题 第18题10. C [解析]考查几个特殊的t 值,画出图形观察N(t)的值,利用排除法解题.当t =0时,N(t)=6,当t =1时,N(t)=8,当t =1.5时,N(t)=7,选C.11. 2x(x -2) [解析]采用提取公因式法分解因式,要注意公因式提取完.12. 8.2×109 [解析]科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.当原数的绝对值大于1时, n 的值等于原数的整数位数减去1.13. -3 [解析]将点(-1,2)代入y =k +1x ,得2=k +1-1,解得k =-3. 14. 360 [解析]任意多边形的外角和等于360°.15. 4 [解析]根据菱形的性质,得DC =AB =8,AC ⊥BD ,又∵ E 是CD 的中点,∴ OE =12DC =4. 16. 45 [解析]由DE 垂直平分AB ,得AE =BE.又∵ BE ⊥AC ,∴ △AEB 是等腰直角三角形,即∠ABE =∠BAC =45°.∵ AB =AC ,AF ⊥BC ,∴ BF =CF.∴ ∠ABC =∠C =67.5°,即∠EBC =22.5°.在Rt △BEC 中,EF =12BC =BF ,∴ ∠EBF =∠BEF =22.5°,因此∠EFC =∠EBF +∠BEF =45°.17. 72 [解析]由题意可知,几何体是一个长方体,其长为6,宽为2,设它的高为h ,则6×2×h =36,解得h =3,从而长方体的表面积为2×(6×2+6×3+2×3)=72.18. 72 [解析]由点C 的坐标(a ,-a)知点C 在直线y =-x 上,由点A(8,0)、B(0,6)得OA =8,OB =6,则AB =62+82=10.(1) 当线段AB 为平行四边形的一边时,CD =AB =10;(2) 当线段AB 为平行四边形的对角线时,如图,设AB 的中点为E ,则CD =2ED ,分别过点A 、B 作直线y =-x 的垂线,垂足分别为G 、F ,则BF =62=32,AG =82=4 2.取线段FG 的中点D ,由梯形中位线性质知ED ⊥FG ,此时ED 取得最小值,即CD 取得最小值.∵ ED 的最小值为12(BF +AG)=722,∴ CD 的最小值为7 2.综上所述,∵ 10>72,∴ CD 的最小值为7 2.19. [解析](1) 先利用算术平方根、乘方、零指数幂的意义分别化简各项,再求和;(2) 利用乘法公式进行整式的乘法运算,再进行整式的加减运算:合并同类项.解:(1) 原式=3-4+1=0;(2) 原式=x 2+2x +1-(x 2-4)=x 2+2x +1-x 2+4=2x +5.20. [解析](1) 根据一元二次方程的特征,利用公式法解此方程;(2) 先分别求出每个不等式的解集,再利用数轴找出它们的公共部分作为不等式组的解集.解:(1) Δ=32-4×1×(-2)=17,∴ x =-3±172.∴ x 1=-3+172,x 2=-3-172;(2) 由2x -3≥x +1,得x ≥4;由x -2>12(x +1),得x>5,∴ 原不等式组的解集为x>5. 21. [解析]先利用锐角的正弦的定义求出BC 的值,结合勾股定理可求出AC 的值,再利用锐角的正切的定义求出 tan B 的值.解:∵ sin A =BC AB =25,AB =10,∴ BC =4.又∵ AC =AB 2-BC 2=221,∴ tan B =AC BC =212. 22. [解析]由于游戏中小明出的种类已确定是“手心”,甲、乙两人出的种类不明确,因此可以通过“画树状图”或“列表”的方法来确定甲、乙两人出的种类,再根据约定的游戏规则求出小明获胜的概率.解:画树状图:第22题或列表:∵ 小明出的是手心,甲、乙两人出手心、手背的所有可能有4种,其中都是手背的情况只有1种,∴ P(小明获胜)=14. 23. [解析](1) 从条形统计图可看出选修“阅读写作”有50人,从扇形图可看出它占总人数的25%,从而可求出被抽样的总人数;“艺术鉴赏”部分的圆心角度数为360°与该部分百分比之积;(2) 被抽样的总人数减去参加“艺术鉴赏”、“科技制作”、“阅读写作”的学生数即得“数学思维”的具体学生数;(3) 利用样本估计总体的思想,800×选修“科技制作”项目的百分比即得待求学生数.解:(1) 200 144;(2) 条形统计图中“数学思维”部分具体学生数为 200-80-30-50=40(名),补全的图形如图;(3) 选修“科技制作”项目的人数约为800×30200=120(名). 第23题24. [解析](1) 先证△ABO ≌△CDO ,得AB =CD ,用一组对边平行且相等的四边形是平行四边形说明命题的正确性;(2) 条件①③构成的假命题的反例:等腰梯形;条件②③构成的假命题的反例:将AC 的垂直平分线绕点O 适当旋转,使得AO =CO ,AD =BC ,但此时四边形ABCD 不是平行四边形.解:(1) 是真命题.∵ AB ∥CD ,∴ ∠ABO =∠CDO.又∵ ∠AOB =∠COD ,AO =CO ,∴ △ABO ≌△CDO.∴ AB =CD.∴ 四边形ABCD 是平行四边形;(2) 假命题:① 在四边形ABCD 中,如果AB ∥CD ,AD =BC ,那么四边形ABCD 是平行四边形;② 在四边形ABCD 中,AC 交BD 于点O ,如果AO =CO ,AD =BC ,那么四边形ABCD 是平行四边形.反例分别如下:如图①,在四边形ABCD 中,AB ∥CD ,AD =BC ,但四边形ABCD 不是平行四边形;如图②,在四边形ABCD 中,AO =CO ,AD =BC ,但四边形ABCD 不是平行四边形.第24题25. [解析]设购买甲、乙两种原料分别为x 吨和y 吨,购买甲、乙两种原料所需要的费用为W 万元,根据题意列出关于x 、y 的相等关系与不等关系,由此可以求出x 的最大值或y 的最小值,再构造W 与x 或y 之间的一次函数,由一次函数的性质可以求出W 的最小值.本题列式时需要注意单位的一致.解:设购买甲、乙两种原料分别为x 吨和y 吨,则⎩⎪⎨⎪⎧5%·x·1 000+8%·y·1 000=20,5%·x ·1 000×1+8%·y·1 000×0.5≤16,即⎩⎪⎨⎪⎧5x +8y =2,50x +40y ≤16,∴ y ≥0.1.设购买甲、乙两种原料所需要的费用为W 万元,则W =2.5x +6y =2.5×2-8y 5+6y =1+2y ≥1.2,∴ 当y =0.1,x =0.24时,W 最小=1.2.∴ 该厂购买这两种原料最少需要1.2万元.26. [解析](1) 为利用已知条件“AD ∶BD =1∶3”,过点D 作DH ⊥OA 于H ,构造可以相似的基本图形“X 型”:△DAH ∽△BAE ,结合抛物线的对称性、BC ∥x 轴等条件,可以求出点A 的坐标;(2) 由于抛物线过x 轴上的两个已知点A 、点O ,可以设出二次函数的交点式,注意到点O 不在抛物线的对称轴x =-1上,即BO ≠CO.若△OBC 是等腰三角形,则只有BC =BO 或BC =CO 两种情况,分别利用点B 、点C 的坐标求出相应的抛物线的函数解析式.解:(1) 如图,作DH ⊥OA 于H.∵ 抛物线与x 轴交于点O 、A ,且BC ∥x 轴,∴ BA 、CO 关于直线DH 对称,∴ 点D 一定在抛物线的对称轴上.设点A 的坐标为(m ,0),则点H 的坐标为⎝⎛⎭⎫m 2,0.∵ ∠DHA =∠BEA =90°,∠DAH =∠BAE ,∴ △DAH ∽△BAE.∴ AH AE =AD AB .∵ AD ∶BD =1∶3,∴ AD AB =12.∴ AH AE =12.∴ -m 2m +4=12,即m =-2,即点A 的坐标为(-2,0);(2) ∵ 抛物线过点O 、A ,∴ 抛物线的函数解析式可设为y =ax(x +2),∵ 抛物线的对称轴为直线x =-1,∴ BC =6.∵ O 不在抛物线的对称轴x =-1上,∴ BO ≠CO.① 若BC =BO =6,∵ OE =4,∴ BE =62-42=2 5.∴ 点B(-4,25).由25=a·(-4)(-4+2),得a =54.∴ 抛物线的函数解析式为y =54x 2+52x.② 若BC =CO =6,设BC 交y 轴于点M ,则CM =2,∴ OM =62-22=4 2.∴ 点C(2,42).由42=a·2(2+2),得a =22.∴ 抛物线的函数解析式为y =22x 2+2x. 第26题27. [解析](1) 设点Q 在AD 上的速度为a cm/s ,由于点P 在边AB 、BC 、CD 上匀速运动,而图②中△APQ 的面积S 与t 之间的图象涉及曲线段OE 与线段EF 、FG 三种情况,用t 的代数式来表示点P 分别在AB 、BC 上运动时的S ,由此得到图①中点P 到达点B 时,恰好对应图②中点E 反映的S 与t 之间的关系;(2) 从点E 的横坐标入手,可以求出菱形ABCD 的边长为6 cm ,结合点P 、Q 的速度可知图②中的图象FG 对应的是点Q 在点D 、点P 在CD 上运动时S 与t 之间的函数关系式,据此可求出图②中线段FG 的函数解析式,本小题也可先求出点F 、G 的坐标,利用待定系数法求出线段FG 的函数解析式;(3) 分点P 在AB 上、BC 上运动两种情况讨论求解.解:(1) ∵ 点Q 始终在AD 上做匀速运动,∴ 它运动的速度可设为a cm/s.过点P 作PH ⊥AD 于H.当点P 在AB 上运动时,AP =2t ,则 PH =AP ·sin60°=3t ,S =12·at ·3t =32at 2,S 是关于t 的二次函数.当点P 在BC 上运动时,PH =32AB ,此时,S =34AB ·at ,S 是关于t 的一次函数,∴ 图②中的图象OE 对应着点P 由A 运动到B 的过程中S 与t 的函数关系.∴ E ⎝⎛⎭⎫3,932在函数S =32at 2的图象上,即932=32a ·9.∴ a =1,即点Q 的运动速度为1 cm/s ;(2) 当点P 运动到点B 时,t =3,∴ AB =6 cm.当点P 在BC 上运动且运动到点C 时,点Q 恰好运动到点D ;当点P 由点C 运动到点D 时,点Q 始终在点D ,∴ 图②中的图象FG 对应的是点Q 在点D 、点P 在CD 上运动时S与t 之间的函数关系式,此时PD =18-2t ,PH =PD· sin 60°=3(9-t),此时S =12×6×3(9-t),∴ FG 的函数解析式为 S =-33t +273(6≤t<9);(3) 当点P 在AB 上运动时,PQ 将菱形ABCD 分成△APQ 和五边形PBCDQ ,此时,△APQ 的面积S =32t 2,根据题意,得32t 2=16S 菱形ABCD =16×6·6sin 60°,解得t = 6.当点P 在BC 上运动时,PQ 将菱形ABCD 分成四边形ABPQ 和四边形PCDQ ,此时,有S 四边形ABPQ =56S 菱形ABCD ,即12(2t -6+t)×6×32=56×6×6×32,解得t =163.∴ 存在t =6和t =163,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分.28. [解析]直棱柱的特征:上、下底面是相同的多边形,侧面都是长方形.将一个边长为20 cm 的正方形剪拼成一个底面是正方形的直四棱柱,不妨从如何构造直四棱柱的上、下底面入手,且剩下的纸片恰好能形成四个全等的长方形作为直四棱柱的四个侧面;而正三角形纸片、正五边形纸片的剪拼可以类比正方形纸片的剪拼方案.解:答案不唯一,如图:第28题(1) 将图①中四个角上的4个小正方形剪下,拼成一个正方形,作为直四棱柱的一个底面,剩下的纸片沿虚线折叠;(2) 将图②中三个角上的3个四边形剪下,拼成一个正三角形,作为直三棱柱的一个底面,剩下的纸片沿虚线折叠;(3) 将图③中五个角上的5个四边形剪下,拼成一个正五边形,作为直五棱柱的一个底面,剩下的纸片沿虚线折叠.。

2013年江苏省无锡市中考数学试卷详解版

2013年江苏省无锡市中考数学试卷详解版

2013年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)|﹣2|的值等于()A.2 B.﹣2 C.±2 D.【考点】M113 绝对值【难度】容易题【分析】根据负数的绝对值等于它的相反数可得:|﹣2|=2.【解答】A.【点评】本题主要考查了绝对值的性质,题目比较简单,解题的关键是熟记负数的绝对值是它的相反数.2.(3分)函数y=+3中自变量x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x≠1【考点】M139 函数自变量的取值范围【难度】容易题【分析】根据被开方数大于等于0列式计算即可得:x﹣1≥0,解得x≥1.【解答】B.【点评】本题主要考查了函数自变量的范围,题目比较简单,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)方程的解为()A.x=2 B.x=﹣2 C.x=3 D.x=﹣3【考点】M12B 解可化为一元一次方程的分式方程【难度】容易题【分析】去分母得:x﹣3(x﹣2)=0,去括号得:x﹣3x+6=0,解得:x=3,经检验x=3是分式方程的解.【解答】C【点评】本题主要考查了解分式方程,题目较为简单,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4.(3分)已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是()A.4,15 B.3,15 C.4,16 D.3,16【考点】M212 平均数、极差、方差和标准差M214 中位数、众数【分析】根据极差是一组数中最大值与最小值的差;众数是这组数据中出现次数最多的数.可得:极差为:17﹣13=4,数据15出现了3次,最多,故众数为15,【解答】A.【点评】本题重点考查了众数和极差的概念.题目比较简单,解题关键是熟记众数是一组数据中出现次数最多的数;极差就是这组数中最大值与最小值的差.5.(3分)下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直【考点】M317 相交线(对顶角、邻补角、同位角、同旁内角、内错角、)M318 平行线分线段成比例【难度】容易题【分析】根据平行线的性质,结合各选项进行判断即可.A、两直线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B、两直线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C、两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确;【解答】D.【点评】本题主要考查了平行线的性质,题目比较简单,在判断正误时,一定要考虑条件,否则很容易出错.6.(3分)已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是()A.30cm2B.30πcm2C.15cm2D.15πcm2【考点】M34E 圆柱的相关计算【难度】容易题【分析】根据圆柱的侧面积公式:圆柱侧面积=底面周长×高,可得该圆柱的侧面积为:2π×3×5=30πcm2.【解答】B.【点评】本题主要考查了圆柱侧面积的计算方法,属于基础题.题目比较简单,熟记圆柱侧面积计算公式是解决本题的关键.7.(3分)如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35°B.140°C.70°D.70°或140°【考点】M343 圆心角与圆周角【分析】根据A、B、C是⊙O上的三点,且∠ABC=70°,由圆周角定理可得:∠AOC=2∠ABC=2×70°=140°.【解答】B.【点评】本题重点考查了圆周角定理.题目比较简单,解题关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,且等于这条弧所对的圆心角的一半.8.(3分)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于()A.B.C.D.【考点】M339 梯形的有关性质M32E 相似三角形性质与判定【难度】容易题【分析】梯形ABCD中,AD∥BC,∴△AOD∽△COB,∵AD=1,BC=4,即AD:BC=1:4,∴△AOD与△BOC的面积比等于:1:16.【解答】D.【点评】本题主要考查了相似三角形的判定与性质.题目比较简单,解题关键是应用数形结合思想得到相似比.9.(3分)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ 等于()A.3:4 B.:2C.:2D.2:【考点】M332 平行四边形的性质与判定M325 三角形的面积M32A 勾股定理【难度】中等题【分析】连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=S平行四边形ABCD,即AF×DP=CE×DQ,∴AF×DP=CE×DQ,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,BN=a,BM=a,由勾股定理得:FN=a,CM=a,AF==a,CE==2a,∴a•DP=2a•DQ,∴DP:DQ=2:.【解答】D.【点评】本题主要考查了平行四边形面积、勾股定理、三角形的面积以及含30度角的直角三角形等知识点的应用,题目难度中等,解决本题的关键是求出AF×DP=CE×DQ和求出AF、CE的值.10.(3分)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为()A.6、7 B.7、8 C.6、7、8 D.6、8、9【考点】M332 平行四边形的性质与判定M136 不同位置的点的坐标的特征【难度】中等题【分析】先分别求出t=1,t=1.5,t=2,t=0时的整数点,再和选项对比即可求出答案.当t=0时,A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=1.5时,A(0,0),B(0,4),C(3,5.5),D(3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;当t=2时,A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A错误,选项B错误;选项D错误,选项C正确;【解答】C.【点评】本题主要考查了平行四边形的性质.题目难度中等,解决本题的关键是结合分类思想,根据t的取值进行分析归纳.二、填空题(本大题共8小题,每小题3分,共16分)11.(3分)分解因式:2x2﹣4x=.【考点】M11K 因式分解【难度】容易题【分析】首先找出多项式的公因式,然后提取公因式法进行因式分解即可得:2x2﹣4x=2x(x﹣2).【解答】2x(x﹣2).【点评】本题主要考查了提取公因式法因式分解,题目比较简单,根据题意找出公因式是解决问题的关键.12.(3分)去年,中央财政安排资金8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为元.【考点】M11F 科学记数法【难度】容易题【分析】科学记数法的表示形式为a×10n的形式,将8 200 000 000 用科学记数法表示为8.2×109.【解答】8.2×109.【点评】本题重点考查科学记数法的表示方法.题目比较简单,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(3分)已知双曲线y=经过点(﹣1,2),那么k的值等于.【考点】M152 反比例函数的图象、性质【难度】容易题【分析】直接把点(﹣1,2)代入双曲线y=,可得:2=,解得k=﹣3.【解答】﹣3.【点评】本题主要考查的是反比例函数图象上点的坐标特点,题目比较简单,解决本题的关键是掌握反比例函数图象上各点的坐标一定满足函数的解析式.14.(3分)六边形的外角和等于度.【考点】M337 多边形内角与外角【难度】容易题【分析】根据任何多边形的外角和是360度即可直接写出答案.【解答】360.【点评】本题主要考查了多边形内角与外角,题目比较简单,解决本题的关键是熟记任何多边形的外角和是360度.注意:外角和与多边形的边数无关.15.(3分)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于.【考点】M334 菱形的性质与判定M32J 直角三角形斜边上的中线【难度】容易题【分析】依题意:∵四边形ABCD是菱形,∴DO=OB,∵E是BC的中点,∴OE=AB,∵AB=8,∴OE=4.【解答】4.【点评】本题主要考查了菱形的性质和三角形的中位线定理的应用,题目比较简单,解题关键是求出OE=AB.16.(3分)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=°.【考点】M326 等腰三角形性质与判定M312 线段垂直平分线性质、判定、画法M32J 直角三角形斜边上的中线【难度】容易题【分析】根据已知:DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.【解答】45.【点评】本题主要考查了等腰三角形的性质以及线段垂直平分线性质,题目较为简单,掌握等腰三角形两底角相等的性质、线段垂直平分线上的点到线段两端点的距离相等的性质、直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE是等腰直角三角形是解决本题的关键.17.(3分)如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.【考点】M414 简单组合体的三视图【难度】容易题【分析】由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3,∴它的表面积是:2×3×2+2×6×2+3×6×2=72.【解答】72.【点评】本题主要考查了简单组合体的三视图,题目比较简单,得出图形的高是解题关键.18.(3分)已知点D与点A(8,0),B(0,6),C(a,﹣a)是一平行四边形的四个顶点,则CD长的最小值为.【考点】M332 平行四边形的性质与判定M136 不同位置的点的坐标的特征M329 全等三角形性质与判定M163 二次函数的最值【难度】较难题【分析】解:有两种情况:①CD是平行四边形的一条边,那么有AB=CD==10②CD是平行四边形的一条对角线,过C作CM⊥AO于M,过D作DF⊥AO于F,交AC于Q,过B作BN⊥DF于N,则∠BND=∠DFA═∠CMA=∠QFA=90°,∠CAM+∠FQA=90°,∠BDN+∠DBN=90°,∵四边形ACBD是平行四边形,∴BD=AC,∠C=∠D,BD∥AC,∴∠BDF=∠FQA,∴∠DBN=∠CAM,∵在△DBN和△CAM中∴△DBN≌△CAM(AAS),,∴DN=CM=a,BN=AM=8﹣a,D(8﹣a,6+a),由勾股定理得:CD2=(8﹣a﹣a)2+(6+a+a)2=8a2﹣8a+100=8(a﹣)2+98,当a=时,CD有最小值,是,又<10,∴CD的最小值是=7.【解答】7.【点评】本题主要考查了平行四边形性质、全等三角形的性质和判定、二次函数的最值等知识点,涉及的知识点较多,题目难度较大,解决本题的关键是能得出关于a的二次函数解析式.三、计算题19.(8分)计算:(1)﹣(﹣2)2+(﹣0.1)0;(2)(x+1)2﹣(x+2)(x﹣2).【考点】M117 实数的混合运算M116 平方根、算术平方根、立方根M11A 整数指数幂M119 零指数幂M11B 幂的乘方与积的乘方M11O 提公因式法和公式法M11S 合并同类项【难度】容易题【分析】(1)首先将原式第一项利用平方根的定义化简,第二项表示两个﹣2的乘积,最后一项利用零指数幂法则计算,然后按照实数的运算法则综合计算即可得到结果;(2)将原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=3﹣4+1=0;·············4分原式=x2+2x+1﹣x2+4=2x+5.·············8分【点评】本题主要考查了实数的混合运算,涉及到平方根、整数指数幂、零指数幂、完全平方公式,平方差公式、合并同类项等知识点,熟练掌握公式及法则是解决本题的关键.20.(8分)(1)解方程:x2+3x﹣2=0;(2)解不等式组:.【考点】M126 解一元二次方程M12K 解一元一次不等式(组)【难度】容易题【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)先求出两个不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:(1)x2+3x﹣2=0,∵b2﹣4ac=32﹣4×1×(﹣2)=17,∴x=,x1=,x2=﹣;·············4分(2)∵解不等式①得:x≥4,解不等式②得:x>5,∴不等式组的解集为:x>5.·············8分【点评】本题主要考查的是解一元二次方程和解不等式组的应用,题目比较简单,解题关键是熟记解一元二次方程公式以及解一元一次不等式组的计算步骤.21.(6分)如图,在Rt△ABC中,∠C=90°,AB=10,sin∠A=,求BC的长和tan∠B 的值.【考点】M32D 解直角三角形M32B 锐角三角函数M32A 勾股定理【难度】容易题【分析】首先在直角三角形ABC中,利用sinA的值及AB的长求出BC的长,再利用勾股定理求出AC的长,最后利用锐角三角函数定义即可求出tanB的值.【解答】解:在Rt△ABC中,∠C=90°,AB=10,sinA===,∴BC=4,根据勾股定理得:AC==2,则tanB===.·············6分【点评】本题是一道解直角三角形应用题,涉及的知识有锐角三角函数定义、勾股定理,题目比较简单,熟练掌握勾股定理是解题的关键.22.(12分)小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【考点】M222 概率的计算M223 列表法与树状图法【难度】容易题【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明获胜的情况,再根据概率公式求解即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,在一个回合中,如果小明出“手心”,则他获胜的有1种情况,∴他获胜的概率是:.·············12分【点评】本题主要考查的是用列表法或画树状图法求概率.题目比较简单,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.23.(6分)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图:请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇形统计图中“艺术鉴赏”部分的圆心角是度;(2)请把这个条形统计图补充完整;(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.【考点】M211 总体、个体、样本、容量M217 统计图(扇形、条形、折线)【难度】容易题【分析】(1)先用阅读写作的人数和所占的百分比求出总学生数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出答案;(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图;(3)用“科技制作”所占的百分比乘以总人数800,即可得出答案.【解答】解:(1)根据题意得:调查的总学生数是:50÷25%=200(名),“艺术鉴赏”部分的圆心角是×360°=144°;故答案为:200,144;·············2分(2)数学思维的人数是:200﹣80﹣30﹣50=40(名),补图如下:·············4分(3)根据题意得:800×=120(名),答:其中有120名学生选修“科技制作”项目.·············6分【点评】本题主要考查的是条形统计图和扇形统计图,题目比较简单,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(12分)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)【考点】M511 命题、定理和证明M332 平行四边形的性质与判定M329 全等三角形性质与判定M336 等腰梯形的性质与判定【难度】容易题【分析】(1)首先根据平行得出全等三角形,即可求出OB=OD,再根据平行四边形的判定推出即可;(2)根据等腰梯形和平行四边形的判定判断即可.【解答】(1)以①②作为条件构成的命题是真命题证明:∵AB∥CD,∴∠OAB=∠OCD,在△AOB和△COD中,,∴△AOB≌△COD(ASA),∴OB=OD,∴四边形ABCD是平行四边形.·············4分(2)根据①③作为条件构成的命题是假命题即如果有一组对边平行,另一组对边相等,那么四边形是平行四边形,如等腰梯形符合,但不是平行四边形;·············8分根据②③作为条件构成的命题是假命题即如果一个四边形ABCD的对角线交于O,且OA=OC,AD=BC,那么这个四边形是平行四边形,如图:根据已知不能推出OB=OD或AD∥BC或AB=DC,即四边形不是平行四边形.·············12分【点评】本题主要考查了平行四边形的判定、全等三角形的性质和判定、等腰梯形的判定等知识点的应用,题目比较简单,熟记各个判定定理及性质即可解题.25.(8分)已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如下表所A元素要排放废气0.5吨,若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?【考点】M142 一次函数的图象、性质M144 一次函数的应用M12K 解一元一次不等式(组)【难度】容易题【分析】首先设需要甲原料x吨,乙原料y吨.根据20千克=0.02吨列出方程5%x+8%y=0.02和不等式5%x×1000×1+8%y×1000×0.5≤16,再设购买这两种原料的费用为W万元,根据条件列出关于W的表达式,由函数的性质即可得出结论.【解答】解:设需要甲原料x吨,乙原料y吨.由题意,得由①,得y=.把①代入②,得x≤.设这两种原料的费用为W万元,由题意,得W=2.5x+6y=﹣1.25x+1.5.∵k=﹣1.25<0,∴W随x的增大而减小.∴x=,y=0.1时,W最小=1.2.答:该厂购买这两种原料的费用最少为1.2万元.·············8分【点评】本题是一道一次函数的应用题,主要考查了一次函数的性质和解一元一次不等式组,题目较为简单,解决本题的关键是列出不等式组,建立一次函数模型并运用一次函数的性质求出最值.26.(12分)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.【考点】M162 二次函数的的图象、性质M164 求二次函数的关系式M133 用待定系数法求函数关系式M32E 相似三角形性质与判定M326 等腰三角形性质与判定M12F 解二元一次方程组【难度】中等题【分析】(1)过点D作DF⊥x轴于点F,先由抛物线的对称性可知OF=AF,则2AF+AE=4①,再由DF∥BE,得到△ADF∽△ABE,根据相似三角形对应边成比例得出==,即AE=2AF②,①与②联立组成二元一次方程组,解出AE=2,AF=1,进而得到点A的坐标;(2)先由抛物线过原点(0,0),设此抛物线的解析式为y=ax2+bx,再根据抛物线过原点(0,0)和A点(﹣2,0),求出对称轴为直线x=﹣1,则由B点横坐标为﹣4得出C点横坐标为2,BC=6.然后由OB>OC,可知当△OBC是等腰三角形时,可分两种情况讨论:①当OB=BC时,设B(﹣4,y1),列出方程,解方程求出y1的值,将A,B两点坐标代入y=ax2+bx,运用待定系数法求出此抛物线的解析式;②当OC=BC时,设C(2,y2),列出方程,解方程求出y2的值,将A,C两点坐标代入y=ax2+bx,运用待定系数法求出此抛物线的解析式.【解答】解:(1)如图,过点D作DF⊥x轴于点F.由题意,可知OF=AF,则2AF+AE=4①.∵DF∥BE,∴△ADF∽△ABE,∴==,即AE=2AF②,①与②联立,解得AE=2,AF=1,∴点A的坐标为(﹣2,0);·············4分(2)∵抛物线过原点(0,0),∴可设此抛物线的解析式为y=ax2+bx.∵抛物线过原点(0,0)和A点(﹣2,0),∴对称轴为直线x==﹣1,∵B、C两点关于直线x=﹣1对称,B点横坐标为﹣4,∴C点横坐标为2,∴BC=2﹣(﹣4)=6.∵抛物线开口向上,∴∠OAB>90°,OB>AB=OC,∴当△OBC是等腰三角形时,分两种情况讨论:①当OB=BC时,设B(﹣4,y1),则16+=36,解得y1=±2(负值舍去).将A(﹣2,0),B(﹣4,2)代入y=ax2+bx,得,解得.∴此抛物线的解析式为y=x2+x;·············8分②当OC=BC时,设C(2,y2),则4+=36,解得y2=±4(负值舍去).将A(﹣2,0),C(2,4)代入y=ax2+bx,得,解得.∴此抛物线的解析式为y=x2+x.综上可知,若△OBC是等腰三角形,此抛物线的函数关系式为y=x2+x或y=x2+x.·············12分【点评】本题是一道二次函数的综合题,涉及到二次函数的对称性、相似三角形的判定与性质、用待定系数法求抛物线的解析式、等腰三角形的性质、两点间的距离公式等知识点,综合性较强,题目难度适中,运用数形结合、分类讨论及方程思想是解决本题的关键.27.(12分)如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.(1)求点Q运动的速度;(2)求图2中线段FG的函数关系式;(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.【考点】M134 动点问题的函数图像M334 菱形的性质与判定M32B 锐角三角函数M32D 解直角三角形M325 三角形的面积M331 四边形的面积【难度】较难题【分析】(1)根据函数图象中E点所代表的实际意义求解.先由E点表示点P运动到与点B重合时的情形,运动时间为3s,可得AB=6cm;再由S△APQ=,可求得AQ的长度,进而得到点Q的运动速度;(2)函数图象中线段FG,表示点Q运动至终点D之后停止运动,而点P在线段CD上继续运动的情形.如答图2所示,求出S的表达式,并确定t的取值范围;(3)当点P在AB上运动时,PQ将菱形ABCD分成△APQ和五边形PBCDQ两部分,如答图3所示,求出t的值;当点P在BC上运动时,PQ将菱形分为梯形ABPQ和梯形PCDQ两部分,如答图4所示,求出t的值.【解答】解:(1)由题意,可知题图2中点E表示点P运动至点B时的情形,所用时间为3s,则菱形的边长AB=2×3=6cm.此时如答图1所示:AQ边上的高h=AB•sin60°=6×=cm,S=S△APQ=A Q•h=AQ×=,解得AQ=3cm,∴点Q的运动速度为:3÷3=1cm/s.·············4分(2)由题意,可知题图2中FG段表示点P在线段CD上运动时的情形.如答图2所示:点Q运动至点D所需时间为:6÷1=6s,点P运动至点C所需时间为12÷2=6s,至终点D 所需时间为18÷2=9s.因此在FG段内,点Q运动至点D停止运动,点P在线段CD上继续运动,且时间t的取值范围为:6≤t≤9.过点P作PE⊥AD交AD的延长线于点E,则PE=PD•sin60°=(18﹣2t)×=t+.S=S△APQ=AD•PE=×6×(t+)=t+,∴FG段的函数表达式为:S=t+(6≤t≤9).············8分(3)菱形ABCD的面积为:6×6×sin60°=.当点P在AB上运动时,PQ将菱形ABCD分成△APQ和五边形PBCDQ两部分,如答图3所示.此时△APQ的面积S=AQ•AP•sin60°=t•2t×=t2,根据题意,得t2=×,解得t=s(舍去负值);当点P在BC上运动时,PQ将菱形分为梯形ABPQ和梯形PCDQ两部分,如答图4所示.此时,有S梯形ABPQ=S菱形ABCD,即(2t﹣6+t)×6×=×,解得t=s.∴存在t=和t=,使PQ将菱形ABCD的面积恰好分成1:5的两部分.·············12分【点评】本题是一道动点问题的函数图像综合题,主要考查了菱形的性质、解直角三角形、三角形的面积、梯形的面积等知识点,综合性比较强,题目难度较大,解题关键是结合函数图像分析,理解动点的完整运动过程,了解图象中关键点所代表的实际意义.28.(12分)下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.【考点】M415 图形的拼接M33A 正多边形的有关性质M34F 棱柱的相关计算【难度】容易题【分析】(1)在正方形四个角上分别剪下一个边长为5的小正方形,拼成一个正方形作为直四棱柱的底面即可;(2)在正三角形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正三角形,作为直三棱柱的一个底面即可;(3)在正五边形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正五边形,作为直五棱柱的一个底面即可.【解答】解:(1)如图1,沿黑线剪开,把剪下的四个小正方形拼成一个正方形,再沿虚线折叠即可;·············4分(2)如图2,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可;·············8分(3)如图3,沿黑线剪开,把剪下的五部分拼成一个正五边形,再沿虚线折叠即可.·············12分【点评】本题主要考查了图形的剪拼,题目比较简单,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.。

2013年江苏省无锡市中考数学试卷

2013年江苏省无锡市中考数学试卷

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前江苏省无锡市2013年中考数学试卷数 学本试卷满分130分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.|2|-的值等于( ) A .2B .2-C .2± D2.函数3=y 中自变量x 的取值范围是( )A .1>xB .1≥xC .1≤xD .1≠x 3.方程1302-=-x x的解为 ( ) A .2=x B .2=-x C .3=x D .3=-x4.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( )A .4,15B .3,15C .4,16D .3,16 5.下列说法中正确的是( )A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直6.已知圆柱的底面半径为3 cm ,母线长为5 cm ,则圆柱的侧面积是 ( ) A .30 2cm B .30π 2cm C .15 2cm D .15π 2cm7.如图,A 、B 、C 是O 上的三点,且70ABC ∠=,则∠AOC 的度数是( )A .35B .140C .70D .70140或8.如图,梯形ABCD 中,∥AD BC ,对角线AC 、BD 相交于O ,1=AD ,4=BC ,则△AOD 与△BOC 的面积比等于( ) A .12 B .14C .18D .1169.如图,平行四边形ABCD 中,:3:2AB BC =,60DAB ∠=,E 在AB 上,且1:2AE EB =:,F 是BC 的中点,过D 分别作⊥DP AF 于P ,⊥DQ CE 于Q ,则:DP DQ 等于 ( ) A .3:4 BCD.10.已知点00(,)A ,04(,)B ,34(,)+C t ,3D t (,).记()N t 为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则()N t 所有可能的值为 ( )A .67、B .78、C .678、、D .689、、 二、填空题(本大题共8小题,每小题2分,共16分) 11.分解因式:224-x x = .12.去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为 元.13.已知双曲线1+=k y x 经过点12(,)-,那么k 的值等于 . 14.六边形的外角和等于.15.如图,菱形ABCD 中,对角线AC 交BD 于O ,8=AB ,E 是CD 的中点,则OE 的长等于 .16.如图,△ABC 中,=AB AC ,DE 垂直平分AB ,⊥BE AC ,⊥AF BC ,则∠EFC = .17.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是 . 18.已知点D 与点()80,A ,06(,)B ,(),-C a a 是一平行四边形的四个顶点,则CD 长的最小值为.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)三、解答题(本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算: (120(2)(0.1)--+-;(2)2(1)(2)(2)+-+-x x x .20.(本小题满分8分)(1)解方程:2320-+=x x ;(2)解不等式组:231,12(2.1)x x x x -+⎧⎪⎨-+⎪⎩≥>21.(本小题满分6分)如图,在Rt △ABC 中,90C ∠=,10=AB ,2sin 5∠=A ,求BC 的长和tan ∠B 的值.22.(本小题满分8分)小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.(本小题满分6分)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了 名学生,扇形型统计图中“艺术鉴赏”部分的圆心角是 度; (2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.24.(本小题满分10分)如图,四边形ABCD 中,对角线AC 与BD 相交于O ,在①∥AB CD ;②=AO CO ;③=AD BC 中任意选取两个作为条件,“四边形ABCD 是平行四边形”为结论构造命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例; (2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果……,那么……”的形式)25.(本小题满分8分)已知甲、乙两种原料中均含有A 元素,其含量及每吨原料的购买单价如下表所示:A 元素要排放废气0.5吨.若某厂要提取A 元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?数学试卷 第5页(共6页) 数学试卷 第6页(共6页)26.(本小题满分10分)如图,直线4=-x 与x 轴交于E ,一开口向上的抛物线过原点,交线段OE 于点A ,交直线4=-x 于点B .过B 且平行于x 轴的直线与抛物线交于点C ,直线OC 交直线AB 于D ,且:1:3=AD BD . (1)求点A 的坐标;(2)若△OBC 是等腰三角形,求此抛物线的函数关系式.27.(本小题满分10分)如图1,菱形ABCD 中,60A ∠=.点P 从A 出发,以2 cm/s 的速度沿边AB 、BC 、CD 匀速运动到D 终止;点Q 从A 与P 同时出发,沿边AD 匀速运动到D 终止,设点P 运动的时间为()t s .△APQ 的面积()2cm S 与()t s 之间函数关系的图像由图2中的曲线段OE 与线段EF 、FG 给出.(1)求点Q 运动的速度;(2)求图2中线段FG 的函数关系式; (3)问:是否存在这样的t ,使PQ 将菱形ABCD 的面积恰好分成1:5的两部分?若存在,求出这样的t 的值;若不存在,请说明理由.28.(本小题满分10分)下面给出的正多边形的边长都是20 cm .请分别按下列要求设计一种剪拼方法.用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(2)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

无锡市中考数学试题专题十年分类汇编

无锡市中考数学试题专题十年分类汇编

2003-2012年江苏省无锡市中考数学试题分类解析汇编专题1 :实数锦元数学工作室编辑、选择题【答案】2.(江苏省无锡市2004年3分)下列各式中的最简二次根式是【】【答案】A 。

【考点】最简二次根式【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检 查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽 方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否 则就不是。

因此。

1.(江苏省无锡市2003年3分)化简的结果是【A..3 .2B. 3-2C.2—3【考分母有理化。

【分将原式分母有理化,将分子、分母同时乘以分母的有理化因式-3 .2,然后化简即可:\3 .3, —2 .3,2務= (2)故本题选A 。

B 、 .12C 、 18•/ .12=2 3 , 58=3、一 2 ,舅」-12 -18和9都不是最简二次根式。

故选A 。

3・(江苏省无锡市2005年3分)比较一丄,」丄的大小,结果正确的是23 4【 】【答案】A【考点】有理数大小比较。

【分析】根据有理数大小比较的方法即可求解:T —1 V 0, —1V 0, 1 >0,二 1 最大;2344又..1 1. 1 1^又* — > —,・ ・ --- ::。

2 32 3••——1 ::: -1 :::丄。

故选 A 。

2344.(江苏省无锡市2006年3分)下列各式中,与 二是同类根式的是【】A . .18B . 24C .12D . 、9【答案】C 。

【考点】同类二次根式。

【分析】将四个选项化简,找出被开方数为 3的选项即可:A 、 & 与 G 被开方数不同,故不是同类二次根式;B 、 24不是二次根式与'、3被开方数不同,故不是同类二 次根式;C 、 12 =2,3与.3被开方数相同,故是同类二次根式;D 、 ■ 9 =3与' 3被开方数不同,故不是同类二次根式。

故选C 。

5.(江苏省无锡市2006年3分)如图,0是原点,实数a 、b 、c 在数C1 1 3 41 1 1 1 1轴上对应的点分别为A、B、C,则下列结论错误的是【】A. a—b>0B. ab< 0C. a+ b v OD. b (a—c) >0 【答案】B。

2013年无锡中考数学试卷及解析

2013年无锡中考数学试卷及解析

2013无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) 1.2-的值等于()A .2B .-2C .2±D .2 2.函数y=1-x +3中自变量x 的取值范围是( )A .x >1B .x ≥1C .x ≤1D .1≠x 3.方程0321=--xx 的解为 ( )A .2=xB .2-=xC .3=xD .3-=x4.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是()A .4,15B .3,15C .4,16D .3,165.下列说法中正确的是 ( )A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直6.已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是 ( ) A .30cm 2 B .30πcm 2 C .15cm 2 D .15πcm 2 7.如图,A 、B 、C 是⊙O 上的三点,且∠ABC =70°,则∠AOC 的度数是 ( ) A .35° B .140° C .70° D .70°或140°8.如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD =1,BC =4,则△AOD 与△BOC 的面积比等于 ( ) A .21 B .41 C .81D .1619.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 ( ) A .3∶4 B .13∶52 C .13∶62 D .32∶13(第9题)QP FED CBAODCBA(第8题)A(第7题)10.已知点A (0,0),B (0,4),C (3,t +4),D(3,t ). 记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为 ( )A .6、7B .7、8C .6、7、8D .6、8、9 二、填空题(本大题共8小题,每小题2分,共16分.) 11.分解因式:2x 2-4x = .12.去年,中央财政安排资金8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为 元.13.已知双曲线x k y 1+=经过点(-1,2),那么k 的值等于 .14.六边形的外角和等于 °.15.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于 .16.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC = °. 17.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是 .18.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 . 19.(本题满分8分)计算:()()220.1-+-;(2)(x +1)2-(x +2)(x -2).20.(本题满分8分) (1)解方程:x 2+3x -2=0;(2)解不等式组:231,12(1).2x x x x -+⎧⎪⎨->+⎪⎩≥21.(本题满分6分)如图,在Rt △ABC 中,∠C =90°,AB =10,sin ∠A =25,求BC 的长和tan ∠B 的值.22.(本题满分8分)小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.(本题满分6分)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思左视图俯视图主视图(第17题)FEDCBA(第16题)(第15题) O EDCBA维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.选修四个项目人数的扇形统计图选修四个项目人数的条形统计图人数艺术鉴赏科技制作数学思维阅读写作选修项目请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,户型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.24.(本题满分10分)如图,四边形ABCD中,对角线AC与BD相交于O,在①AB∥CD;②AO=CO;③AD =BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构成命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)ADOB25.(本题满分8分):已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨.若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?26.(本题满分10分)如图,直线x =-4与x 轴交于E ,一开口向上的抛物线过原点O 交线段OE 于A ,交直线x =-4于B .过B 且平行于x 轴的直线与抛物线交于C ,直线OC 交直线AB 于D ,且AD:BD =1:3.(1)求点A 的坐标;(2)若△OBC 是等腰三角形,求此抛物线的函数关系式.27.(本题满分10分)如图1,菱形ABCD 中,∠A =600.点P 从A 出发,以2cm/s 的速度沿边AB 、BC 、CD 匀速运动到D 终止;点Q 从A 与P 同时出发,沿边AD 匀速运动到D 终止,设点P 运动的时间为t s .△APQ 的面积s (cm 2)与t (s)之间函数关系的图像由图2中的曲线段OE 与线段EF 、FG 给出.(1)求点Q 运动的速度;(2)求图2中线段FG 的函数关系式;(3)问:是否存在这样的t ,使PQ 将菱形ABCD 的面积恰好分成1:5的两部分?若存在,求出这样的t 的值;若不存在,请说明理由.28.(本题满分10分)下面给出的正多边形的边长都是20 cm .请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等; (2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.xyOx =-4EBCAD。

2013年无锡市中考数学试题

2013年无锡市中考数学试题

2013年无锡中考数学试题、选择题(本大题共 10小题,每小题3分,共30 分)9.如图,平行四边形 ABCD 中,AB : BC=3 : 2,/ DAB=60°, E 在 AB 上,且 AE : EB=1 : 2, F 是 BC 的中点,过 D 分别作DP 丄AF 于P , DQ 丄CE 于Q ,贝U DP : DQ 等于 ()A . 3 : 4B . ^3 : 2 J5C . -.113 : 2 J6D . 2躬:10 .已知点 A ( 0, 0), B ( 0, 4), C (3 , t+4), D ( 3, t ) •记 N (t )为口 ABCD 内部(不含边界)整 点的个数,其中整点是指横坐标和纵坐标都是整数的点,贝U N (t )所有可能的值为()A . 6、7B . 7、8C . 6、7、8D . 6、8、91 .2的值等于( )A . 2B . -2C .2D .122 .函数y= Jx 1 +3中自变量x 的取值范围是( )A . x > 1B . x > 1C . x w 1D . x 13 .方程1 x 23x0的解为( )A . x 2B . x 2C . x 3D . x 34 .已知一组数据:15,13,15,16,17,16,14,15 ,则这组数据的极差与众数分别是( )A . 4,15B . 3,15C . 4,16D . 3,165 .卜列说法中止确的是( )B .两直线被第三A .两直线被第三条直线所截得的同位角相等条直线所截得的同旁内角互补 C .两平行线被第三条直线所截得 的同位角的平分线互相垂直 D .两平行线被第三条直线所截得的 同旁内角的平分线互相垂直 6.已知圆柱的底面半径为3 cm ,母线长为 2 2A . 30cmB . 30 冗cm7. 如图,A 、B 、C 是O O 上的三点,且/ 140 ° 5cm ,则圆柱的侧面积是 2C . 15cm ABC=70°,则/ AOC 的度数是 C . 70°15 冗cmD . 70° 或 140&如图,梯形 积比等于 ABCD 中, AD // BC ,对角线 AC 、BD 相交于 O , AD=1, BC=4,则厶AOD 与厶BOC 的面( )D . 16A .丄1C .5 15.如图,菱形 ABCD 中,对角线 AC 交 BD 于 O , AB=8, AE 是CD 的中点,贝U OE 的长等于B F C(第16题)16.如图,△ ABC 中,AB=AC , DE 垂直平分 AB , BE 丄 AC , AF 丄 BC ,则/ EFC= ________ 17 .如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是 __________.18.已知点D 与点A (8, 0), B (0, 6), C (a ,— a )是一平行四边形的四个顶点,则CD 长的最小值为 ________ . 19.(本题满分8分)计算:(1) 192 2 0.1;(2)(x+1)2 — (x+2)(x — 2).20.(本题满分8分)2(1)解方程:x +3x — 2=0;(2)解不等式组:2x 3> x 1,1x 2 (x 1).221.(本题满分6分)如图,在Rt A ABC 中,/ C=90°,AB=10, 2sin / A= 2,求BC 的长和tan / B 的值.二、填空题(本大题共 8小题,每小题2分,共16分) 11 .分解因式:2x — 4x= _________ . 12.去年,中央财政安排资金 8 200 000 000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为 ____________ 元•13. ________________________________________________________ 已知双曲线y k —1经过点(一1, 2),那么k 的值等于 _______________________________________________________x14. __________________________ 六边形的外角和等于(第 17 题)左视图C22. (本题满分8分)小明与甲、乙两人一起玩“手心手背”的游戏•他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23. (本题满分6分)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图据图中提供的信息,解答下面的问题:(1)此次共调查了▲名学生,扇形统计图中“艺术鉴赏”部分的圆心角是▲度(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目请根③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明形式)A兀素含量单价(万兀/吨)甲原料5% 2.5乙原料8%6已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨,若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?.(命题请写成“如果,,那么,•”的交直线x 4于点B,过B且平行于x轴的直线与抛物线交于点C,直线0C交直线AB于D,且AD : BD=1:3.(1)求点A的坐标;(2)若厶OBC是等腰三角形,求此抛物线的函数关系式•)CD 匀速运动到D 终止;点Q 从A 与P 同时出发,沿边 AD 匀速运动到D 终止,设点P 运动的时间为 t (s).A APQ 的面积S(cm 2)与t(s)之间函数关系的图像由图2中的曲线段0E 与线段EF 、FG 给出.彳 S(cm 2)F(图2)(1) 求点Q 运动的速度;(2) 求图2中线段FG 的函数关系式; (3)问:是否存在这样的 t ,使PQ 将菱形ABCD 的面积恰好分成1:5的两部分?若存在,求出这样 的t 的值;若不存在,请说明理由.虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明(1) 将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积 相等; (2) 将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角 形的面积相等;(3) 将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边 形的面积相等•t ( s )(图1)图2图3)。

2013学年江苏省无锡中考数学年试题答案

2013学年江苏省无锡中考数学年试题答案

数学试卷 第1页(共6页) 数学试卷 第2页(共6页) 数学试卷 第3页(共6页)绝密★启用前2013年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 的共轭复数z 12i =+(i 为虚数单位),则z 在复平面内对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限D. 第四象限2. 已知集合{1,}A a =,{1,2,3}B =,则“3a =”是“A B ⊆”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 3. 双曲线2214x y -=的顶点到其渐进线的距离等于( )A. 2B.4C.D.4. 某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A. 588B. 480C. 450D. 1205. 满足,{1,0,1,2}a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A. 14B. 13C. 12D. 106. 阅读如图所示的程序框图,若输入的10=k ,则该算法的功能是( )A. 计算数列1{2}n -的前10项和B. 计算数列1{2}n -的前9项和 C. 计算数列{21}n -的前10项和 D. 计算数列{21}n -的前9项和7. 在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则该四边形的面积为( ) A.B. C. 5 D. 108. 设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A. x ∀∈R ,0()()f x f x ≤B. 0x -是()f x -的极小值点C. 0x -是()f x -的极小值点D. 0x -是()f x --的极小值点9. 已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)n m n m n m n m b a a a -+-+-+=++⋅⋅⋅+,(1)1(1)2(1)n m n m n m n m c a a a -+-+-+=**⋅⋅⋅*(,*)m n ∈N ,则以下结论一定正确的是( )A. 数列{}n b 为等差数列,公差为m qB. 数列{}n b 为等比数列,公比为2m qC. 数列{}n c 为等比数列,公比为2m q D. 数列{}n c 为等比数列,公比为mm q10. 设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足: (ⅰ){()|}T f x x S =∈;(ⅱ)对任意12,x x S ∈,当12x x <时,恒有12()()f x f x <,那么 称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A. *A =N ,B =NB. {|13}A x x =-≤≤,{|8010}B x x x ==-或<≤C. {|01}A x x =<<,B =RD. A =Z ,B =Q第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11. 利用计算机产生0~1之间的均匀随机数a ,则事件“310a ->”发生的概率为________.12. 已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______.13. 如图,在ABC △中,已知点D 在BC 边上,AD AC ⊥,sin BAC ∠,AB =3AD =,则BD 的长为________.14. 椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,焦距为2c .若直线)y x c +与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于_________.15. 当x ∈R ,||1x <时,有如下表达式:2111n x x x x+++⋅⋅⋅++⋅⋅⋅=-. 两边同时积分得:11111222222011d d d d 1ndx x x x x x x x x+++⋅⋅⋅+⋅⋅⋅=-⎰⎰⎰⎰⎰, 从而得到如下等式: 23111111111()()()ln 22223212n n +⨯+⨯+⨯+⋅⋅⋅+⨯+⋅⋅⋅=+. 请根据以上材料所蕴含的数学思想方法,计算: 0122311111111()()()2223212nn n n n n C C C C n +⨯+⨯+⨯+⋅⋅⋅+⨯=+_________.姓名________________ 准考证号_____________---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品. (Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求3X ≤的概率;(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?17.(本小题满分13分)已知函数()ln ()f x x a x a =-∈R .(Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (Ⅱ)求函数)(x f 的极值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,,A A A ⋅⋅⋅和129,,,B B B ⋅⋅⋅.连接i OB ,过i A 作x 轴的垂线与i OB 交于点(*,19)i P i i ∈N ≤≤. (Ⅰ)求证:点(*,19)i P i i ∈N ≤≤都在同一条抛物线上,并求该抛物线E 的方程; (Ⅱ)过点C 作直线l 与抛物线E 交于不同的两点M ,N ,若OCM △与OCN △的面积比为4:1,求直线l 的方程.19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ⊥底面ABCD ,AB DC ∥,11AA =,3AB k =,4AD k =,5BC k =,6(0)DC k k =>.(Ⅰ)求证:CD ⊥平面11ADD A ;(Ⅱ)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值;(Ⅲ)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼成一个新的四棱柱.规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的解析式.(直接写出答案,不必说明理由)20.(本小题满分14分)已知函数()sin()(0,0π)f x x ωϕωϕ=+><<的周期为π,图象的一个对称中心为π(,0)4,将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移π2个单位长度后得到函数()g x 的图象.(Ⅰ)求函数()f x 与()g x 的解析式;(Ⅱ)是否存在0ππ(,)64x ∈,使得0()f x ,0()g x ,00()()f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由;(Ⅲ)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,π)n 内恰有2013个零点.21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4—2:矩阵与变换 已知直线:1l ax y +=在矩阵1201A ⎛⎫= ⎪⎝⎭对应的变换作用下变为直线:1l x by '+=. (Ⅰ)求实数a ,b 的值;(Ⅱ)若点00(,)P x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,求点P 的坐标.(2)(本小题满分7分)选修4—4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为π)4,直线l 的极坐标方程为πcos()4a ρθ-=,且点A 在直线l 上.(Ⅰ)求a 的值及直线l 的直角坐标方程;(Ⅱ)圆C 的参数方程为1cos ,sin ,x y αα=+⎧⎨=⎩(α为参数),试判断直线l 与圆C 的位置关系.(3)(本小题满分7分)选修4—5:不等式选讲设不等式|2|(*)x a a -<∈N 的解集为A ,且32A ∈,12A ∉.(Ⅰ)求a 的值;(Ⅱ)求函数()|||2|f x x a x =++-的最小值.。

2013年无锡市中考数学试题及答案解析

2013年无锡市中考数学试题及答案解析

一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)1、2的值等于 ( )A 、2B 、-2C 、2D 、22、函数中,自变量x 的取值范围是 ( ) A 、1>x B 、1≥x C 、1≤x D 、1≠x3、方程0312=--xx 的解为 ( ) A 、2=x B 、2-=x C 、3=x D 、3-=x4、已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( ) A 、4,15 B 、3,15 C 、4,16 D 、3,165、下列说法中正确的是 ()A 、两直线被第三条直线所截得的同位角相等B 、两直线被第三条直线所截得的同旁内角互补C 、两平行线被第三条直线所截得的同位角的平分线互相垂直D 、两平行线被第三条直线所截得的同旁内角的平分线互相垂直20. 已知圆柱的底面半径为3cm ,母线长为 5cm ,则圆柱的侧面积是 ( ) A 、30cm 2B 、30πcm 2C 、15cm 2D 、15πcm 27、如图,A 、B 、C 是⊙O 上的三点,且∠ABC=70°,则∠AOC 的度数是 ( )A 、35°B 、140°C 、70°D 、70°或 140° 8、如图,梯形 ABCD 中,AD ∥BC ,对角线 A C 、BD 相交于 O ,AD=1,BC=4,则△AOD 与△BOC 的面 积比等于 ( ) A 、21 B 、41 C 、81 D 、1611、如图,平行四边形 A BCD 中,AB :BC=3:2,∠DAB=60°,E 在 A B 上,且 A E :EB=1:2,F 是BC 的中点,过 D 分别作 D P ⊥AF 于 P ,DQ ⊥CE 于 Q ,则 D P ∶DQ 等于 ( ) A 、3:4 B 、3:52 C 、13:62 D 、32:1310、已知点 A (0,0),B (0,4),C (3,t +4),D (3,t ). 记 N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则 N (t )所有可能的值为 ( ) A 、6,7B 、7,8C 、6,7,8D 、6,8,9二、填空题(本大题共 8小题,每小题 2分,共 16分)第7题图第8题图第9题图11、分解因式:2x 2-4x = 。

江苏省无锡市2013年中考数学试卷(解析版)(含解析)

江苏省无锡市2013年中考数学试卷(解析版)(含解析)

江苏省无锡市2013年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2013•无锡)|﹣2|的值等于()A.2B.﹣2C.±2D.考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:|﹣2|=2.故选A.点评:本题考查了绝对值的性质,主要利用了负数的绝对值是它的相反数.2.(3分)(2013•无锡)函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠1考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2013•无锡)方程的解为()A.x=2B.x=﹣2C.x=3D.x=﹣3考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣3(x﹣2)=0,去括号得:x﹣3x+6=0,解得:x=3,经检验x=3是分式方程的解.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4.(3分)(2013•无锡)已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是()A.4,15B.3,15C.4,16D.3,16考点:极差;众数分析:极差是一组数中最大值与最小值的差;众数是这组数据中出现次数最多的数.解答:解:极差为:17﹣13=4,数据15出现了3次,最多,故众数为15,故选A.点评:考查了众数和极差的概念.众数是一组数据中出现次数最多的数;极差就是这组数中最大值与最小值的差.5.(3分)(2013•无锡)下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直考点:平行线的性质;同位角、内错角、同旁内角分析:根据平行线的性质,结合各选项进行判断即可.解答:解:A、两平行线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B、两平行线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C、两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确;故选D.点评:本题考查了平行线的性质,在判断正误时,一定要考虑条件,否则很容易出错.6.(3分)(2013•无锡)已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是()A.30cm2B.30πcm2C.15cm2D.15πcm2考点:几何体的表面积;圆柱的计算分析:圆柱侧面积=底面周长×高.解答:解:根据圆柱的侧面积公式,可得该圆柱的侧面积为:2π×3×5=30πcm2.故选B.点评:本题主要考查了圆柱侧面积的计算方法,属于基础题.7.(3分)(2013•无锡)如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC 的度数是()A.35°B.140°C.70°D.70°或 140°考点:圆周角定理分析:由A、B、C是⊙O上的三点,且∠ABC=70°,利用圆周角定理,即可求得答案.解答:解:∵A、B、C是⊙O上的三点,且∠ABC=70°,∴∠AOC=2∠ABC=2×70°=140°.故选B.点评:此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.(3分)(2013•无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于()A.B.C.D.考点:相似三角形的判定与性质;梯形.分析:由梯形ABCD中,AD∥BC,可得△AOD∽△COB,又由AD=1,BC=4,根据相似三角形的面积比等于相似比的平方,即可求得△AOD与△BOC的面积比.解答:解:∵梯形ABCD中,AD∥BC,∴△AOD∽△COB,∵AD=1,BC=4,即AD:BC=1:4,∴△AOD与△BOC的面积比等于:1:16.故选D.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.9.(3分)(2013•无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4B.:2C.:2D.2:考点:平行四边形的性质;三角形的面积;勾股定理分析:连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积和平行四边形的面积得出S△DEC=S△DFA =S平行四边形ABCD,求出AF×DP=CE×DQ,设AB=3a,BC=2a,则BF=a,BE=2a,BN=a,BM=a,FN=a,CM=a,求出AF=a,CE=2a,代入求出即可.解答:解:连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA =S平行四边形ABCD,即AF×DP=CE×DQ,∴AF×DP=CE×DQ,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,BN=a,BM=a,由勾股定理得:FN=a,CM=a,AF==a,CE==2a,∴a•DP=2a•DQ∴DP:DQ=:2,故选D.点评:本题考查了平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,关键是求出AF×DP=CE×DQ和求出AF、CE的值.10.(3分)(2013•无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为()A.6、7B.7、8C.6、7、8D.6、8、9考点:平行四边形的性质;坐标与图形性质.分析:分别求出t=1,t=2,t=0时的整数点,根据答案即可求出答案.解答:解:当t=0时,A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=2时,A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;故选项A错误,选项B错误;选项D错误,选项C正确;故选C.点评:本题考查了平行四边形的性质,函数的性质的应用,主要考查学生的理解能力和归纳能力.二、填空题(本大题共8小题,每小题3分,共16分)11.(3分)(2013•无锡)分解因式:2x2﹣4x=2x(x﹣2).考点:因式分解-提公因式法分析:首先找出多项式的公因式,然后提取公因式法因式分解即可.解答:解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).点评:此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.12.(3分)(2013•无锡)去年,中央财政安排资金 8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为8.2×109元.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8 200 000 000 用科学记数法表示为8.2×109.故答案为:8.2×109.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(3分)(2013•无锡)已知双曲线y=经过点(﹣1,2),那么k 的值等于﹣3.考点:反比例函数图象上点的坐标特征分析:直接把点(﹣1,2)代入双曲线y=,求出k的值即可.解答:解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.14.(3分)(2013•无锡)六边形的外角和等于360度.考点:多边形内角与外角分析:根据任何多边形的外角和是360度即可求出答案.解答:解:六边形的外角和等于360度.点评:任何多边形的外角和是360度.外角和与多边形的边数无关.15.(3分)(2013•无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于4.考点:菱形的性质;直角三角形斜边上的中线.分析:根据菱形的性质得出OD=OB,根据三角形的中位线性质得出OE=AB,代入求出即可.解答:解:∵四边形ABCD是菱形,∴DO=OB,∵E是AD的中点,∴OE=AB,∵AB=8,∴OE=4.故答案为4.点评:本题考查了菱形的性质和三角形的中位线定理的应用,关键是求出OE=AB,此题比较简单.16.(3分)(2013•无锡)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=45°.。

2013年无锡市中考数学试题及答案

2013年无锡市中考数学试题及答案

----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 8、如图,梯形 ABCD 中,AD ∥BC ,对角线 A C 、BD 相交于 O ,AD=1,BC=4,则△AOD 与△BOC 的面 积比等于 ( ) A 、21 B 、41 C 、81 D 、1619 如图,平行四边形 A BCD 中,AB :BC=3:2,∠DAB=60°,E 在 A B 上,且 A E :EB=1:2,F 是BC 的中点,过 D分别作 D P ⊥AF 于 P ,DQ ⊥CE 于 Q ,则 D P ∶DQ 等于 ( ) A 、3:4 B 、3:52 C 、13:62 D 、32:1310、已知点 A (0,0),B (0,4),C (3,t +4),D (3,t ). 记 N (t )为□ABCD 内部(不含边界)整 点的个数,其中整点是指横坐标和纵坐标都是整数的点,则 N (t )所有可能的值为 ( )A 、6,7B 、7,8C 、6,7,8D 、6,8,9二、填空题(本大题共 8小题,每小题 2分,共 16分) 14、六边形的外角和等于°。

15、如图,菱形 A BCD 中,对角线 A C 交 B D 于 O ,AB =8, E 是 C D 的中点,则 O E 的长等于 。

16、如图,△ABC 中,AB =AC ,DE 垂直平分 A B ,BE ⊥AC ,AF ⊥BC ,则∠EFC =°。

17、如图是一个几何体的三视图,若这个几何体的体积是 36,则它的表面积是 (72)? 。

18、已知点 D 与点 A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则 C D 长的最小值 为 ?。

三、解答题24、本题满分 10 分)如图,四边形 ABCD 中,对角线 AC 与 BD 相交于点 O ,在①AB//CD ;②AO=CO ;③AD=BC 中任意选取两个作为条件,“四边形 ABCD 是平行四边形”为结论构造命题。

2013学年江苏省无锡中考数学年试题

2013学年江苏省无锡中考数学年试题

一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个备选项中,只 有一项是符合题目要求的.
1.已知全集U {1,2,3,4} ,集合 A={1,2} , B={2,3},则 U (A B)
()

A. {1, 3, 4}
B.{3, 4}
C.{3}
D.{4}
2.命题“对任意 x R ,都有 x2≥0 ”的否定为
()
A.对任意 x R ,都有 x2 0
B.不存在 x R ,使得 x2 0
C.存在 x0 R ,使得 x02≥0
D.存在 x0 R ,使得 x02 0
题 3. (3 a)(a 6) (6≤a≤3) 的最大值为
()
A. 9
B. 9 2
C. 3
D. 3 2 2
4.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).
二、填空题:本大题共 6 小题,考生作答 5 小题,每小题 5 分,共 25 分.把答案填写在答
题卡相应位置上.
11.已知复数 z 5i ( i 是虚数单位),则 | z |
.
1 2i
12.已知{an} 是等差数列, a1 1 ,公差 d 0 , Sn 为其前 n 项和,若 a1 , a2 , a5 成等比数列,
奖级
摸出红、蓝球个数
获奖金额
一等奖
3红1蓝
200 元
二等奖
3红0蓝
50 元
三等奖
2红1蓝
10 元
其余情况无奖且每次摸奖最多只能获得一个奖级.
(Ⅰ)求一次摸球恰好摸到 1 个红球的概率; (Ⅱ)求摸奖者在一次摸奖中获奖金额 X 的分布列与期望 E(X ) .

江苏省无锡市初中中考数学试卷试题专题十年分类汇编

江苏省无锡市初中中考数学试卷试题专题十年分类汇编

2003-2012 年江苏省无锡市中考数学试题分类分析汇编专题 4:数目和地点变化一、选择题1. (江苏省无锡市2004 年 3 分)如图中的图象(折线ABCDE )描绘了一汽车在某向来线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,依据图中供给的信息,给出以下说法:①汽车共行驶了120 千米;②汽车内行驶途中逗留了0.5 小时;③汽车在整个行驶过程中的均匀速度为80千米/时;④汽车自出发后3小时至 4.5 3小时之间行驶的速度在渐渐减少.此中正确的说法共有【】A 、 1 个B 、2 个C、3 个D、 4 个【答案】 A 。

【考点】函数的图象。

【剖析】依据图象上的特别点的实质意义即可作出判断:由图象可知,汽车走到距离出发点 120 千米的地方后又返回出发点,所以汽车共行驶了240 千米,故①错;从1.5 时开始到 2 时结束,时间在增加,而行程没有变化,说明此时汽车在逗留,逗留了 2-1.5=0.5 小时,故②对;汽车用 4.5 小时走了240 千米,均匀速度为:240÷4.5=1603 千米 /时,故③错;汽车自出发后 3 小时至 4.5 小时,图象是直线形式,说明是在匀速行进,故④错。

所以, 4 个说法中,正确的说法只有 1 个。

应选 A 。

2. (江苏省无锡市 2006 年 3 分)探究规律:依据以下图中箭头指向的规律,从2004 到 2005 再到 2006,箭头的方向是【】【答案】 A 。

【考点】 分类概括(图形的变化类) 。

【剖析】 依据察看图形可知箭头的方向每4 次重复一遍,∵ 2004 4 501除尽,∴2004 所在的地点与图中的 4 所在的地点同样。

所以从2004 到 2005 再到 2006 的箭头方向为:应选 A 。

3. (江苏省无锡市2007 年 3 分)任何一个正整数 n 都能够进行这样的分解: n s t ( s ,t是正整数,且 s ≤ t ),假如 p q 在 n 的全部这类分解中两因数之差的绝对值最小,我们就称 p q 是 n 的最正确分解,并规定:p.比如 18 能够分解成 118, 2 9 , 3 6 这F (n)q3 1F ( n) 的说法:( 1)F (2)1 3 三种,这时就有 F (18) .给出以下对于;(2)F (24);6228(3) F (27) 3;( 4)若 n 是一个完整平方数,则 F ( n) 1.此中正确说法的个数是 【】A. 1 B. 2C. 3D. 4【答案】 B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007-2013历届无锡中考数学题解析版2007无锡中考数学试题一、细心填一填(本大题共有12小题,15空,每空2分,共30分.) 1.–5的相反数是_________,9的算术平方根是_________. 2.分解因式:b 2–4= ____________________.3.设一元二次方程x 2-6x +4=0的两个实数根分别为x 1和x 2,则x 1+x 2=_________,x 1·x 2=_________.4.据国家考试中心发布的消息,我国今年参加高考的考生数达10 100 000人,这个数据用科学记数法可表示为______________________人.5.函数y = 2x –2中自变量x 的取值范围是__________,函数y = 2x -3中自变量x 的取值范围是________.6.某商场今年五月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是________万元.7.反比例函数y = a x的图象经过点(-1,2),则a 的值为________.8.八边形的内角和为_________度. 9.如图,已知a ∥b ,∠1=70°,则∠2=_________度. 10.如图,AB 是⊙O 的弦,OC ⊥AB 于C ,若AB =25cm ,OC =1cm ,则⊙O 的半径长为__________cm.11.写出生活中的一个随机事件:___________________________________.12.如图1是一种带有黑白双色、边长是20cm 的正方形装饰瓷砖,用这样的四块瓷砖可以拼成如图2的图案.已知制作图1这样的瓷砖,其黑、白两部分所用材料的成本分别为0.02元/cm 2和0.01元/cm 2,那么制作这样一块瓷砖所用黑白材料的最低成本是__________元(π取3.14,结果精确到0.01元). 二、精心选一选(本大题共有7小题,每小题3分,共21分.) 13.化简分式bab+b 2的结果为……………………………………………( ) A .1a +b B .1a +1b C .1a +b 2 D .1ab +b 14.下面与2是同类二次根式的是 ……………………………………………………………………( )A . 3B .12C .8D .2–115.下面四个图案中,是旋转对称图形的是………………………………………………………………( )16.一元二次方程()x –12=2的解是………………………………………………………………………( ) A .x 1=–1–2,x 2=–1+2 B .x 1=1–2,x 2=1+ 2C .x 1=3,x 2=–1 D .x 1=1,x 2=–317.圆锥的底面半径为2,母线长为4,则它的侧面积A . B. C . D . ABCO 第10题第9题 ba c21第12题 图1 图2为………………………………………………( )A .8πB .16πC .43πD .4π18.如图是由一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为………………………………………………………………………………………( )19.任何一个正整数n 都可以进行这样的分解:n =s ×t (s 、t 是正整数,且 s ≤t ),如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:F (n )= p q .例如18可以分解成1×18,2×9,3×6这三种,这时就有F (18)= 36= 12.给出下列关于F (n )的说法:(1) F (2)=12;(2)F (24)=38;(3)F (27)=3;(4)若n 是一个完全平方数,则F (n )=1.其中正确说法的个数是…………( ) A .1 B .2 C .3 D .4三、认真答一答(本大题共有8小题,共60分.)20.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)(1)计算:12–4sin60︒+()–13; (2)解不等式组:⎩⎪⎨⎪⎧x +1≤2x ,5–x 2>1, 并写出它的所有整数解.21.(本小题满分7分)如图,已知四边形ABCD 是菱形,点E 、F 分别是边CD 、AD 的中点,求证:AE =CF .22.(本小题满分6分)如图,AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若∠P =30︒,求∠B 的度数.23.(本小题满分8分)如图是甲、乙两人在一次射击比赛中击中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数所F E D C BA 上面第18题C .B . A . D .AB C O P×9 8 7 6 × 9 8 7 6在圆环被击中所得的环数),每人射击了6次.(1)请用列表法将他俩的射击成绩统计出来;(2)请你用学过的统计知识,对他俩的这次射击情况进行比较.24.(本小题满分6分)某商场搞摸奖促销活动:商场在一只不透明的箱子里放有三个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样.规定:顾客在本商场同一日内,每消费满100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应价格的奖品.现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率. 25.(本小题满分6分)图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n = n ()n +12.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数–23,–22,–21,…,求图4中所有圆圈中各数的绝对值之和. 26.(本小题满分9分)小明早晨从家里出发匀速步行去上学.小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t 分钟时,他所在的位置与家的距离为s 千米,且s 与t 之间函数关系的图像如图中的折线段OA —AB 所示.(1)试求折线段OA —AB 所对应的函数关系式;图1 第1层 第2层 第n 层图3 1 2 3456 图4 –23 –22 –21 –20 –19 –18图2A Bs (千米) 1(2)请解释图中线段AB 的实际意义;(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在的位置与家的距离s (千米)与小明出发后的时间t (分钟)之间函数关系的图像.(友情提醒:请对画出的图像用数据作适当的标注) 27.(本小题满分8分)王大伯要做一张如图1的梯子,梯子共有8级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A 1B 1=0.5m ,最下面一级踏板的长度A 8B 8=0.8m .木工师傅在制作这些踏板时,截取的木板要比踏板长,以保证在每级踏板的两个外端各做出一个长为4cm 的榫头(如图2所示),以此来固定踏板.现市场上有长度为2.1m 的木板可以用来制作梯子的踏板(木板的宽度和厚度正好符合要制作梯子踏板的要求),请问:要制作这些踏板,王大伯最少需要买几块这样的木板? 请说明理由.(不考虑锯缝的损耗)四、实践与探索(本大题共2小题,满分19分.)28.(本小题满分10分)如图,平面上一点P 从点M (3,1)出发,沿射线OM 方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以OP 为对角线的矩形OAPB 的边长OA ∶OB =1∶3;过点O 且垂直于射线OM 的直线l 与点P 同时出发,且与点P 沿相同的方向、以相同的速度运动.(1)在点P 运动过程中,试判断对角线AB 与y 轴的位置关系,并请说明理由. (2)设点P 与直线l 都运动了t 秒,求此时的矩形OAPB 与直线l 在运动过程中所扫过区域的重叠部分的面积S (用含t 的代数式表示).AB POxy M l榫头踏板长图2A 1B 1B 8 A 8 图1 …29.(本小题满分9分)(1)已知△ABC 中,∠A =90︒,∠B =67.5︒,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC 中,∠C 是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC 与∠C 之间的关系.A B C 备用图② A B C 备用图① A BC备用图③2007年无锡市 考试数学试题参考答案 一、细心填一填 1.5,3 2.(b +2)(b -2) 3.6,4 4.1.01×107 5.x ≠2,x ≥326.120 7.–2 8.1080 9.110 10. 6 11.明天我市下雨(答案不唯一) 12.6.73二、精心选一选 13.A 14.C 15.D 16.B 17.A 18.C 19.B 三、认真答一答20.解:(1)原式=23 -23 –1=–1.(2)由x +1<2x ,得x ≥1. 由5-x2>1,得x <3. ∴不等式组的解集是1≤x <3.它的所有整数解为x =1,2. 21.证明:菱形ABCD 中,AD =CD .∵E 、F 分别是CD 、AD 的中点,∴DE =12CD ,DF =12AD ,∴DE = DF .又∵∠ADE =∠CDF ,∴△AED ≌△CFD .∴AE =CF .22.解:(1)∵PA 切⊙O 于A ,AB 是⊙O 的直径,∴∠PAO =90︒.∵∠P =30︒,∴∠AOP =60︒. ∴∠B =12∠AOP =30︒.23.(1)解:环 数 6 7 8 9 10 甲命中次数 2 2 2 乙命中次数132列表正确得2分.(2)x 甲=9环,x 乙=9环,S 2甲=23,S 2乙=1,∵ x 甲=x 乙,S 2甲<S 2乙 ,∴甲与乙的平均成绩相同,但甲发挥得比乙稳定. 24.解:列树状图如下:两次奖品价格之和共有9种情况,其中超过40元的有3种情况,故所求概率为13.25.解:(1)67.(2)图4中所有圆圈中共有1+2+3+…+12=12(12+1)2=78个数,其中23个负数,1个0,54个正数, ∴图4中所有圆圈中各数的绝对值之和=|–23|+|–22|+…+|–1|+0+1+2+…+54 =(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761. 26.解:(1)线段OA 对应的函数关系式为:s =112t (0≤t ≤12)初中毕业高级中等学校招生 第一次摸得奖品价格 两次奖品价格之和 20 30 40 30 40 50 40 50 6010 20 3010 20 10 20 3030 10 20 30第二次摸得奖品价格s (千米)线段AB 对应的函数关系式为:s =1(12<t ≤20)…(3分) (2)图中线段AB 的实际意义是:小明出发12分钟后, 沿着以他家为圆心,1千米为半径的圆弧形道路上匀速 步行了8分钟.(3)如图中折线段CD —DB .27.解法一:如图,设自上往下第2,3,4,5,6,7级踏板的长依次为A 2B 2,A 3B 3,…,A 7B 7,过A 1作B 1B 8的平行线分别交A 2B 2,A 3B 3,…,A 8B 8于点C 2,C 3,…,C 8.∵每两级踏板之间的距离相等,∴C 8B 8=C 7B 7=…=C 2B 2=A 1B 1=50cm , A 8C 8=80–50=30cm .∵A 2C 2∥A 8B 8,∴∠A 1A 2C 2=∠A 1A 8C 8,∠A 1C 2A 2=∠A 1C 8A 8,∴△A 1A 2C 2∽△A 1A 8C 8,∴A 2C 2∶A 8C 8=1∶7,∴A 2C 2=307,∴A 2B 2=50+307,设要制作A 1B 1,A 2B 2,…,A 7B 7,A 8B 8这些踏板需用木板的长度分别为a 1 cm ,a 2 cm ,…,a 8 cm ,则a 1=50+8=58,a 2=50+307+8=58+307,a 3=58+607,a 4=58+907,a 5=58+1207,a 6=58+1507,a 7=58+1807,a 8=58+30.∵a 1+a 2+a 3+a 4=232+1807>210,∴王大伯买的木板肯定不能少于3块.又∵a 1+a 3+a 6=174+2107=204<210,a 2+a 4+a 5=174+2407 <174+2527 =210,a 7+a 8=146+1807 =17157<210,∴王大伯最少买3块这样的木板就行了.解法二:如图,分别取A 1A 8、B 1B 8的中点P 、Q ,连结PQ .设自上往下第2,3,4,5,6,7级踏板的长依次为A 2B 2,A 3B 3,…,A 7B 7,则由梯形中位线定理可得A 1B 1+ A 8B 8= A 2B 2+ A 7B 7= A 3B 3+ A 6B 6= A 4B 4+ A 5B 5=2PQ .∵A 1B 1=50cm ,A 8B 8=80cm ,∴A 1B 1+ A 8B 8= A 2B 2+ A 7B 7= A 3B 3+ A 6B 6= A 4B 4+ A 5B 5=130.设要制作A 1B 1,A 2B 2,…,A 7B 7,A 8B 8这些踏板需用木板的长度分别为a 1 cm ,a 2 cm ,…,a 8 cm ,则a 1+a 8= a 2+a 7= a 3+a 6= a 4+a 5=146.∴a 1+a 2+…+a 8=146³4=584>210³2,∴王大伯买的木板肯定不能少于3块. 过A 1作B 1B 8的平行线分别交A 2B 2,A 3B 3,…,A 8B 8于点C 2,C 3,…,C 8. ∵每两级踏板之间的距离相等,∴C 8B 8=C 7B 7=…=C 2B 2=A 1B 1=50cm ,A 8C 8=80–50=30cm .∵A 2C 2∥A 8B 8,∴∠A 1A 2C 2=∠A 1A 8C 8,∠A 1C 2A 2=∠A 1C 8A 8,∴△A 1A 2C 2∽△A 1A 8C 8,∴A 2C 2∶A 8C 8=1∶7,∴A 2C 2=307,∴A 2B 2=50+307,∴a 2=58+307.而a 1=58,a 8=88,∴a 1+a 3+a 6=58+146=204<210,a 2+a 4+a 5=58+307+146=204+307<210,a 7+a 8<a 8+a 8=88³2<210∴王大伯最少买3块这样的木板就行了.A 1B 1 B 8A 8C 8C 2A 2B 2…A 1B 1B 8 A 8C 8C 2 A 2 B 2P Q …解法三:如果在梯子的下面再做第9级踏板,它与其上面一级踏板之间的距离等于梯子相邻两级踏板之间的距离(如图),设第9级踏板的长为x cm ,则由梯形中位线的性质,可得第5级踏板的长A 5B 5=12()50+x cm ,第7级踏板的长A 7B 7=12⎝⎛⎭⎫12()50+x +x cm ,由题意,得第8级踏板的长A 8B 8=12⎝⎛⎭⎫12⎝⎛⎭⎫12()50+x +x +x =80,解这个方程,得x =8427,由此可求得A 7B 7=7557cm ,A 5B 5=6717cm ,A 6B 6=7137cm ,A 3B 3=5847cm ,A 2B 2=5427cm ,A 4B 4=6267cm .设要制作A 1B 1,A 2B 2,…,A 7B 7,A 8B 8这些踏板需截取的木板长度为a 1 cm ,a 2 cm ,…,a 8cm ,则a 1=50+8=58,a 2=6227,a 3=6647,a 4=7067,a 5=7517,a 6=7937,a 7=8357,a 8=88.(下同解法一)28.解:(1)AB ∥y 轴.理由: ∵△OAB 中,tan ∠ABO =OA ∶OB =1∶3,∴∠ABO =30︒.设AB 交OP 于点Q ,交x 轴于点S ,∵矩形的对角线互相平分且相等,则QO=QB ,∴∠QOB=30︒,过点M 作MT ⊥x 轴于T ,则tan ∠MOT =1∶3=33,∴∠MOT =30︒, ∴∠BOS =60︒,∴∠BSO =90︒,∴AB ∥y 轴.(2)设l 在运动过程中与射线OM 交于点C ,过点A 且垂直于射线OM 的直线交OM 于点D ,过点B 且垂直于射线OM 的直线交OM 于点E ,则OC =t . ∵OP =2+t ,∴OB =32()2+t ,OE = 34()2+t ,OA = 12()2+t ,OD = 14()2+t . ①当0<t ≤14()2+t ,即0<t ≤23时,S =233t 2.②当14()2+t <t ≤34()2+t ,即23<t ≤6时,设直线l 交OB 于F ,交PA 于G ,则OF =23t ,PG = 23CP = 43,∴AG =PA –43= 32t –33,S = 12⎝ ⎛⎭⎪⎫32t –33+23t ²12()2+t = 324()7t 2+12t –4.③当t >34()2+t ,即t >6时,∵CP =2,∴S = S 矩–12³4³43= 32()2+t ³12()2+t –833=34()2+t 2–833= 34t 2+3t –533. 29.解:(1)如图(共有2种不同的分割法)22.5︒22.5︒45︒45︒备用图①A B C备用图②67.5︒22.5︒22.5︒ 67.5︒ABCA 1B 1B 8A 8x…(2)设∠ABC =y ,∠C =x ,过点B 的直线交边AC 于D .在△DBC 中,①若∠C 是顶角,如图1,则∠ADB >90︒, ∠CBD =∠CDB =12()180︒–x =90︒–12x ,∠A =180︒–x –y .此时只能有∠A =∠ABD ,即180︒–x –y =y –⎝⎛⎭⎫90︒–12x ,∴3x +4y =540︒,即∠ABC =135︒–34∠C .②若∠C 是底角,则有两种情况.第一种情况:如图2,当DB =DC 时,则∠DBC =x ,△ABD 中,∠ADB =2x ,∠ABD =y –x .1︒.由AB =AD ,得2x = y –x ,此时有y =3x ,即∠ABC =3∠C .2︒.由AB =BD ,得180︒–x –y =2x ,此时3x +y =180︒,即∠ABC =180︒–3∠C . 3︒.由AD =BD ,得180︒–x –y =y –x ,此时y =90︒,即∠ABC =90︒,∠C 为小于45︒的任意锐角.第二种情况:如图3,当BD =BC 时,∠BDC =x ,∠ADB =180︒–x >90︒,此时只能有AD =BD ,从而∠A ==∠ABD =12∠C <∠C ,这与题设∠C 是最小角矛盾.∴当∠C 是底角时,BD =BC 不成立.AE x =2010年无锡市初中毕业升学考试数 学 试 卷本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试CBA图2DCBA图3DCBA图1 D卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(2010江苏无锡,1,3分)9的值等于()A.3 B.3-C.3±D.3【分析】9表示9的算术平方根.只有非负数有算术平方根,且其算术平方根为非负数.【答案】A【涉及知识点】算术平方根【点评】典型的送分题,关键是看学生对平方根及算术平方根的理解及区分.【推荐指数】★2.(2010江苏无锡,2,3分)下列运算正确的是()A.(a3)2=a5B.a3+a2=a5C.(a3—a)÷a=a2 D.a3÷a3=1【分析】幂的乘法运算法则是,底数不变,指数相乘,故A错,应为a6;a3与a2虽然底数相同,但指数不同,故不是同类项,无法合并,故B错;(a3—a)÷a=a2—1,故C 错.【答案】D【涉及知识点】幂的运算【点评】有关幂的运算类试题,主要是需要抓住概念实质,区别几种常见幂的运算的法则.对于这类较基础的中考试题,在解题时,学生往往容易混淆几类常见概念.【推荐指数】★3.(2010江苏无锡,3,3分)使31x-有意义的x的取值范围是()A.13x>B.13x>-C.13x≥D.13x≥-【分析】当被开方数非负时,二次根式有意义.故本题应3x—1≥0,∴13 x≥【答案】C【涉及知识点】二次根式【点评】本题是代数中较为基础的考题,主要考察学生对基本概念的理解,对主要概念的存在条件的刻画.当被开方数非负..时,二次根式有意义.学生往往容易记成“当被开方数大于..0.时,二次根式有意义.”因此我们在教学时,应深化学生对概念的理解及记忆.初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零. 【推荐指数】★ 4.(2010江苏无锡,4,3分)下列图形中,是中心对称图形但不是轴对称图形的是( )【分析】把一个图形沿着某一条直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形;把一个平面图形绕某一点选择180°,如果旋转后的图形能和原图形互相重合,那么这个图形叫做中心对称图形.对照定义,可知A 是轴对称图形,且有3条对称轴,但不是中心对称图形;C 是中心对称图形,不是轴对称图形;B 是轴对称图形,有1条对称轴,但不是中心对称图形;D 既是中心图形又是轴对称图形,有4条对称轴. 【答案】B【涉及知识点】轴对称图形、中心对称图形【点评】本题是几何中较为基础的考题,主要考察学生对轴对称图形和中心对称图形概念的理解及图形的区别.选取的图形源于生活中常见的图案,体现了考试的公平性. 【推荐指数】★★ 5.(2010江苏无锡,5,3分)已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( )A .20cm 2B .20πcm 2C .10πcm 2D .5πcm 2【分析】计算圆锥的侧面积,往往是将圆锥侧面沿某一母线展开.圆锥侧面展开后为一扇形,扇形的半径为圆锥的母线5cm ,扇形弧的长度为圆锥底的周长4πcm .因此圆锥的侧面积=扇形面积=12弧³母线=12³4π³5=10πcm 2. 【答案】C【涉及知识点】圆锥侧面积【点评】本题考察的是圆锥的侧面积.解题过程体现了化归思想:将“体”的面积转化为“面”的面积.本题题型常见,是一道较基础的常规题.与之类似的还有求直棱柱的侧面积、求圆柱的侧面积,都是用类似方法. 【推荐指数】★★ 6.(2010江苏无锡,6,3分)已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d 的取值满足 ( ) A . d >9 B . d =9 C . 3<d <9 D .d =3【分析】圆与圆的位置关系有5种,外离、外切、相交、内切、内含.具体体现为两圆半径R 、 r 、圆心距d 的关系是:(1)两圆外离⇔d >R +r ; (2)两圆外切⇔d =R +r ;A .B .C .D .(3)两圆相交⇔R-r<d<R+r(R≥r);(4)两圆内切⇔d=R-r(R>r);(5)两圆内含⇔d<R-r(R>r).对照上述关系,当两圆内切时,d=R—r=6—3=3.【答案】D【涉及知识点】圆与圆的位置关系【点评】圆与圆的位置关系,点与圆的位置关系,以及直线与圆的位置关系,都可以根据“距离”之间的关系得到,这个“距离”分别指圆心距、点到圆心的距离、圆心到直线的距离.【推荐指数】★★7.(2010江苏无锡,7,3分)下列性质中,等腰三角形具有而直角三角形不一定具有的是()A.两边之和大于第三边B.有一个角的平分线垂直于这个角的对边C.有两个锐角的和等于90°D.内角和等于180°【分析】两边之和大于第三边,内角和等于180°,这两条性质对于每个三角形都具有.对于直角三角形,还有其特殊的性质,如两个锐角互余,斜边上的中线等于斜边的一半,面积等于两直角边乘积的一半;对于等腰三角形,其特殊性质有:两条边相等,两个底角相等,“三线合一”.【答案】B【涉及知识点】三角形、等腰三角形、直角三角形、“三线合一”【点评】等腰三角形和直角三角形是几何中两个最基本的图形.初中阶段,对二者的性质的研究还是比较深入的.因此本题有较高的公平性.【推荐指数】★★★8.(2010江苏无锡,8,3分)某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数【分析】方差是刻画一组数据的离散情况,方差越大,这组数据的偏离平均数的程度越大;极差刻画一组数学的波动范围;中位数用来反映一组数据的中等水平;平均数是用来衡量一组数据的平均水平.13人中选择前6名参加决赛,说明小颖需要知道自己处在13人中的什么水平:中等以上就能进入决赛,中等水平以下就不等进入决赛.故需要知道中位数,高于中位数即为中等以上,低于中位数即为中等以下.【答案】C【涉及知识点】数据分析【点评】方差、标准差、极差、中位数、平均数、众数都是用来刻画一组数据的量,也是数据分析中常考的知识点.【推荐指数】★★★★=+,当x得值减小1,y的值就减小2,9.(2010江苏无锡,9,3分)若一次函数y kx b则当x的值增加2时,y的值()A.增加4 B.减小4 C.增加2 D.减小2【分析】当x得值减小1,x变成x–1,y的值就减小2,则y变为y–2,因此,y–2=k(x–1)+b ,整理得,y –2=kx –k+b ,而y =kx +b ,故k =2.∴一次函数为y =2x +b ,当x的值增加2时,即x 变为x+2,故y ′=2(x +2)+b =2x +4+b =2x +b +4=y +4,∴y 增加了4. 【答案】A【涉及知识点】一次函数的性质【点评】从斜率的观点刻画一次函数的增减性,高观点,低坡度,深刻的揭示了函数增减性的数量关系.同时,本题又可以通过数形结合加以解决,是考察一次函数增减性难得一见的好题! 【推荐指数】★★★★★ 10.(2010江苏无锡,10,3分)如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线ky x= 交OB 于D ,且OD :DB=1:2,若△OBC 的面积等于3,则k 的值( ) A . 等于2 B .等于34C .等于245D .无法确定【分析】求反比例系数k 的值,一般有两种方法,一种是求反比例函数上一点,用待定系数法求k ;另一种是抓住反比例系数k 的几何意义. 解:延长BC 交y 轴与M 点,过D 作DN ⊥x 轴于N . 由题意易知,四边形OABM 为矩形,且S △OBM =S △OBA 由k 的几何意义知,S △COM =S △DON .∴S 四边形DNAB = S △BOC =3而△ODN ∽△OBA ,相似比为OD :OB =1:3∴S △ODN :S △OBA =1:9,∴S △ODN :S 四边形DNAB =1:8,∴S △ODN =38,∴k =34【答案】B【涉及知识点】反比例函数k 相似三角形【点评】本题是反比例函数与相似的综合题,题目情景熟悉,但变化新颖、独特.需综合应用相似的性质,及反比例系数k 的几何性质,是一道信度、效度较高的选择题中的压轴题.【推荐指数】★★★★★二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在答题卡上相应的位置) 11.(2010江苏无锡,11,2分)5-的相反数是 ▲ .【分析】绝对值相同,符号相反的两个数是互为相反数.正数的相反数是负数,负数的相反数是正数,0的相反数是0.O ABCDxy (第10题)【答案】5【涉及知识点】相反数【点评】典型的送分题,考察学生初中阶段最简单、最基础的知识点.有较高的信度与效度.也体现了无锡中考一直秉承的传统:送分送彻底的传统.具有较高的公平性. 【推荐指数】★ 12.(2010江苏无锡,12,2分)上海世博会“中国馆”的展馆面积为15800 m 2,这个数据用科学记数法可表示为 ▲ m 2.【分析】15800可以写成1.58³10000,10000³104.故15800=1.58³104 【答案】1.58³104【涉及知识点】科学记数法【点评】科学记数法是中考试卷中最常见的问题.把一个数写成a ³10n 的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法),其方法是(1)确定a ,a 是只有一位整数的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零). 【推荐指数】★★13.(2010江苏无锡,13,2分)分解因式:4a 2–1= ▲ .【分析】4a 2=(2a )2,1=12,故本题可以用平方差公式进行因式分解. 【答案】(2a +1)(2a –1)【涉及知识点】分解因式 平方差公式【点评】分解因式关键是选择合适的方法.分解因式的步骤是一提(提公因式)、二套(套公式)、三验(检验是否分解彻底).套公式时可根据需分解多项式的项数进行选择:如果是两项,一般是平方差公式;三项,一般是完全平方公式,或十字相乘;四项及四项以上,一般是分组分解法. 【推荐指数】★★ 14.(2010江苏无锡,14,2分)方程x 2-3x +1=0的解是 ▲ .【分析】根据方程知,a =1,b =–3,c =1,利用一元二次方程求根公式242b b acx a-±-=可得方程的解. 【答案】123535,22x x +-==【涉及知识点】一元二次方程的解法【点评】一元二次方程的解法有直接开方法,配方法,因式分解法,公式法.在解一元二次方程时,我们一般按如下顺序选择解法:直接开方法→因式分解法→配方法→公式法.【推荐指数】★★ 15.(2010江苏无锡,15,2分)如图,AB 是 O 的直径,点D 在 O 上∠AOD =130°,BC ∥OD 交 O 于C ,则∠A = ▲ .【分析】∵∠AOD =130°,∴∠DOB =50°,又BC ∥OD ,∴∠B =∠DOB =50°.∵AB 是O 的直径,∴∠C =90°,在△ABC 中,由内角和定理知,∠A=40°. 【答案】40°【涉及知识点】圆 平行线的性质 内角和定理 补角 【点评】直径所对的圆周角是直角,是圆的一个重要的性质.本题中将“∠AOD=130°”通过补角、内错角、互余等知识点转移到与∠A 相关,充分体现了数学的演绎与证明.题目虽小,但一方面考察了学生的基本知识,另一方面考察了学生的逻辑推理. 【推荐指数】★★ 16.(2010江苏无锡,16,2分)如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A =30°,∠ACB =80°,则∠BCE = ▲ °.【分析】∵DE 垂直平分AC ,∴EA =EC ,∴∠ECA =∠A =30°,又∵∠ACB =80°,∴∠BCE =50°.【答案】50°【涉及知识点】垂直平分线 等边对等角【点评】垂直平分线上的点到线段的两个端点距离相等,可以得到等腰三角形,进一步得到角相等.数学知识间有很多联系与递进关系.很多时候,解决数学题目,只是将条件往前推一步,结论再往深处推一步. 【推荐指数】★★★ 17.(2010江苏无锡,17,2分)如图,梯形ABCD 中,AD ∥BC ,EF 是梯形的中位线,对角线AC 交EF 于G ,若BC =10cm ,EF =8cm ,则GF 的长等于 ▲ cm .【分析】∵EF 是梯形的中位线,∴EF //=12(AD +BC ),∴AD =2EF —BC =6cm ,∵FG ∥AD ,(第15题)OC BDA (第16题)EDCBAGF E D CBA (第17题)∴△CFG ∽△CDA ,∴12GF CF AD CD ==,∴GF =3cm 【答案】3【涉及知识点】梯形中位线 相似【点评】梯形、三角形的中位线,一方面可以得到位置关系(梯形中位线平行两底,三角形中位线平行第三边),另一方面可以得到数量关系(梯形中位线等于两底和的一半,三角形中位线等于第三边的一半).学生在解答本题时,最大的障碍是能直观感觉到GF 是AD 的一半,但比较困难说明理由(有些版本已删去了平行线等分线段定理).【推荐指数】★★★★★ 18.(2010江苏无锡,18,2分)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 ▲ .【注:销售利润率=(售价—进价)÷进价】 【分析】不妨设进价为100元,则销售利润为47元,即售价为147元.进价提高了5%,则此时进价为105元,利润为42元.故利润率为1471054240%105105-==.【答案】40%【涉及知识点】利润问题【点评】利润问题是中考常考常新的应用型问题.处理利润问题关键是掌握三个量:进价、售价、利润.同时,利用特殊值法解决本题,可以突破难点并简化运算,是一种较好的方法.【推荐指数】★★★★★三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(2010江苏无锡,19(1),4分)(1)11|1|()2---+2(-3)【分析】(—3)2=9,|—1|=1,-11()2=2.【答案】原式= 9—1+2=10 【涉及知识点】有理数的计算【点评】典型的送分题,目的是为了考察学生对数学中最基本运算法则的应用. 【推荐指数】★(2010江苏无锡,19(2),4分)(2)221(2).1a a a a -+--- 【分析】a 2—2a +1=(a —1)2【答案】原式=2(1)(2)1211a a a a a ---=--+=- 【涉及知识点】分式的运算 因式分解【点评】本题考察了完全平方差公式,以及去括号.问题较简单,考察内容较平易,体现了考试的有效性及公平性. 【推荐指数】★★20.(本题满分8分)(2010江苏无锡,20(1),4分)(1)解方程:233x x=+;【分析】两边同时乘以最简公分母x(x+3),将分式方程化为整式方程进行求解【答案】解:(1)由原方程,得2(x+3)=3x,∴x=6.经检验,x=6是原方程的解,∴原方程的解是x=6【涉及知识点】分式方程的解法【点评】解分式方程的一般方法是去分母,将分式方程转化为整式方程,进一步解整式方程.但对于解出的整式方程的解,并不一定是分式方程的根,可能是分式方程的增根.因此,检验是分式方程不可或缺的步骤.【推荐指数】★★(2010江苏无锡,20(2),4分)(2)解不等式组:12,132,2xx x->-≤+⎧⎪⎨⎪⎩………………①…………②【分析】先解出第一个不等式,得x>3,再解出第二个不等式得x≤10,然后再求这两个不等式的公共部分.【答案】(2)由①,得x>3.由②,得x≤10.∴原不等式的解集为3<x≤10.【涉及知识点】不等式组的解法【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,一般先分别求出组成不等式组的各个不等式的解集,然后借助数轴(取公共部分)或口诀(同大取大,同小取小,大小小大取中间,大大小小无解答)求出所有解集的公共部分.在利用数轴上表示解时,应注意:“>”空心开口向右,“<”空心开口向左,“≥”实心开口向右,“≤”实心开口向左.【推荐指数】★★21.(2010江苏无锡,21,6分)小刚参观上海世博会,由于仅有一天的时间,他上午从A —中国馆、B—日本馆、C—美国馆中任意选择一处参观,下午从D—韩国馆、E—英国馆、F—德国馆中任意选择一处参观.(1)请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可);(2)求小刚上午和下午恰好都参观亚洲国家展馆的概率.【分析】【答案】解:(1)树状图:列表法:下午上午D E FA (A,D)(A,E)(A,F)B (B,D)(B,E)(B,F)。

相关文档
最新文档