数学人教版七年级下册完全平方公式
七年级数学-第03讲 平方差与完全平方公式(解析版)
2021-2022学年七年级数学【赢在寒假】同步精讲精练系列第1章整式的乘除第03讲平方差与完全平方公式【考点梳理】考点1:完全平方公式1.2222)(bab a b a +±=±公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。
ab b a ab b a b a 2)(2)(2222-+=-+=+ab b a b a 4)()(22-+=-222)()]([)(b a b a b a +=+-=--222)()]([)(b a b a b a -=--=+-完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。
2.三项式的完全平方公式:bcac ab c b a c b a 222)(2222+++++=++考点2:平方差公式22))((b a b a b a -=-+注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。
右边是相同项的平方减去相反项的平方。
如:))((z y x z y x +--+【题型归纳】题型一:完全平方公式1.(2022·全国·七年级)下列关系式中,正确的是()A .(a ﹣b )2=a 2﹣b 2B .(a +b )(﹣a ﹣b )=a 2﹣b 2C .(a +b )2=a 2+b 2D .(﹣a ﹣b )2=a 2+2ab +b 2【答案】D 【分析】根据完全平方公式判断即可.【详解】解:A 选项,原式=a 2﹣2ab +b 2,故该选项计算错误;B 选项,原式=﹣(a +b )2=﹣a 2﹣2ab ﹣b 2,故该选项计算错误;C 选项,原式=a 2+2ab +b 2,故该选项计算错误;D 选项,原式=[﹣(a +b )]2=(a +b )2=a 2+2ab +b 2,故该选项计算正确;故选:D .【点睛】本题考查了完全平方公式,掌握(a ±b )2=a 2±2ab +b 2是解题的关键.2.(2022·福建·厦门市第十一中学八年级期末)运用完全平方公式()2222a b a ab b -=-+计算212x ⎛⎫- ⎪⎝⎭,则公式中的2ab 是()A .12x B .﹣x C .x D .2x【答案】C 【分析】运用完全平方公式计算,然后和()2222a b a ab b -=-+对比即可解答.【详解】解:2222111122224x x x x x ⎛⎫⎛⎫-=-⨯+=-+⎪ ⎪⎝⎭⎝⎭对比()2222a b a ab b -=-+可得-2ab =-x ,则2ab =x .故选C.【点睛】本题主要考查了完全平方公式,理解完全平方公式的特征成为解答本题的关键.3.(2022·广东东莞·八年级期末)如果x 2﹣3x +k (k 是常数)是完全平方式,那么k 的值为()A .6B .9C .32D .94【答案】D 【分析】根据完全平方公式解答即可.【详解】解:∵x 2-3x +k (k 是常数)是完全平方式,∴x 2-3x +k =(x -32)2=x 2-3x +94,∴k =94.故选:D .【点睛】本题主要考查了完全平方公式的运用;其中两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.4.(2021·黑龙江·绥棱县克音河乡学校八年级期末)要使24x kx ++是完全平方式,那么k 的值是()A .4k =±B .4k =C .4k =-D .2k =±【答案】A 【分析】根据完全平方公式:222)2(a ab b a b ±+=±进行求解即可.【详解】∵24x kx ++是完全平方式,∴2()42k =,解得:4k =±,故选:A .【点睛】本题考查了完全平方式,解题的关键是掌握常数项是一次项系数一半的平方.5.(2022·辽宁庄河·八年级期末)若2a b +=-,3ab =,则代数式22a ab b -+的值是()A .5-B .13C .5D .9【答案】A 【分析】将2a b +=-两边平方,利用完全平方公式化简,把3ab =-代入求出22a b +的值,即可确定出所求式子的值.【详解】解:将2a b +=-两边平方得:222()24a b a b ab +=++=,把3ab =代入得:2264a b ++=,即222a b +=-,则22235a ab b -+=--=-,故选:A .【点睛】本题考查了完全平方公式,求代数式的值,解题的关键是熟练掌握完全平方公式.6.(2022·重庆·八年级期末)如果216x mx ++是完全平方式,那么m 的值是()A .8B .4C .4±D .8±【答案】D 【分析】先写出22816(4)x x x ±+=±,进一步求出m 的值,即可求解.【详解】解:∵22816(4)x x x ±+=±,且216x mx ++是完全平方式,∴8m =±;故选:D 【点睛】本题主要考查了完全平方式,掌握满足完全平方式的情况只有222a ab b ++和222a ab b -+两种,两种情况的熟练应用是解题关键.7.(2022·广东·塘厦初中八年级期末)下列运算中,结果正确的是()A .824a a a ÷=B .()222a b a b +=+C .()2242a b a b =D .()()2122a a a -+=-【答案】C 【分析】根据同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式的计算法则计算求解即可.【详解】解:A 、826a a a ÷=,计算错误,不符合题意;B 、()2222a b a ab b +=++,计算错误,不符合题意;C 、()2242a b a b =,计算正确,符合题意;D 、()()2212222a a a a a a a -+=+--=+-,计算错误,不符合题意;故选C .本题主要考查了同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式,熟知相关计算法则是解题的关键.8.(2022·北京·八年级期末)已知一个正方形的边长为a+1,则该正方形的面积为()A.a2+2a+1B.a2-2a+1C.a2+1D.4a+4【答案】A【分析】由题意根据正方形的面积公式可求该正方形的面积,再根据完全平方公式计算即可求解.【详解】解:该正方形的面积为(a+1)2=a2+2a+1.故选:A.【点睛】本题主要考查列代数式,解题的关键是熟练掌握正方形的面积公式以及完全平方公式.9.(2022·甘肃·金昌市龙门学校八年级期末)若x2+mxy+25y2是一个完全平方式,那么m的值是()A.±10B.-5C.5D.±5【答案】A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x2+mxy+25y2=x2+mxy+(5y)2,∴mxy=±2x×5y,解得:m=±10.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.题型二:平方差公式11.(2022·全国·七年级)已知(2x+3y)2=15,(2x﹣3y)2=3,则3xy=()A.1B.32C.3D.不能确定【分析】根据平方差公式即可求出答案.【详解】解:2(23)15x y += ,2(23)3x y -=,22(23)(23)12x y x y ∴+--=,(2323)(2323)12x y x y x y x y ∴+-+++-=,6412y x ∴⋅=,332xy ∴=,故选:B .【点睛】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.12.(2022·全国·七年级)下列各式,能用平方差公式计算的是()A .(2a +b )(2b ﹣a )B .(﹣a ﹣2b )(﹣a +2b )C .(2a ﹣3b )(﹣2a +3b )D .(113a +)(﹣113a -)【答案】B 【分析】根据平方差公式为22()()a b a b a b +-=-逐项判断即可.【详解】A .既没有相同项,也没有相反项,不能用平方差公式进行计算,故本选项不符合题意;B .原式[][]()2()2a b a b =---+,符合平方差公式,故本选项符合题意;C .原式(23)(23)a b a b =---,只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;D .原式11(1)(1)33a a -++只有相同项,没有相反项,不符合平方差公式,故本选项不符合题意;故选:B .【点睛】本题考查平方差公式,掌握平方差公式为22()()a b a b a b +-=-是解答本题的关键.13.(2022·河南川汇·八年级期末)如图,在边长为()x a +的正方形中,剪去一个边长为a 的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x ,a 的恒等式是().A .()()22x a x a x a -=-+B .()222x ax x x a +=+C .()()222x a a x x a +-=+D .()()222x a x a a x +-=+【答案】C 【分析】根据公式分别计算两个图形的面积,由此得到答案.【详解】解:正方形中阴影部分的面积为22()x a a +-,平行四边形的面积为x (x +2a ),由此得到一个x ,a 的恒等式是()()222x a a x x a +-=+,故选:C .【点睛】此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键.14.(2021·福建同安·八年级期中)若02021a =,2201920212020b =⨯-,202020212332c ⎛⎫⎛⎫=-⨯ ⎪⎪⎝⎭⎝⎭则下列a ,b ,c 的大小关系正确的()A .a b c <<B .a c b<<C .b a c<<D .c b a<<【答案】C 【分析】利用零次幂的含义求解a 的值,利用平方差公式求解b 的值,利用积的乘方的逆运算求解c 的值,再比较大小即可.【详解】解: 020211,a ==()()222220192021202020201202012020=2020120201,b =⨯-=-+---=-()202020212020202023233331,3232222c ⎛⎫⎛⎫⎛⎫=-⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭而311,2-<<,b ac \<<故选C 【点睛】本题考查的是零次幂的含义,平方差公式的应用,积的乘方运算的逆运算,先计算,,a b c 的值再比较大小是解本题的关键.15.(2022·黑龙江肇源·七年级期末)下列各式中,能用平方差公式计算的是()A .(a +b )(﹣a ﹣b )B .(a +b )(a ﹣b )C .(a +b )(a ﹣d )D .(a +b )(2a ﹣b )【答案】B 【分析】根据平方差公式(a +b )(a ﹣b )=a 2﹣b 2对各选项分别进行判断.【详解】解:A 、(a +b )(﹣a ﹣b )=﹣(a +b )(a +b )两项都相同,不能用平方差公式计算.故本选项不符合题意;B 、(a +b )(a ﹣b )存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C 、(a +b )(a ﹣d )中存在相同项,没有相反项,不能用平方差公式计算.故本选项不符合题意;D 、(a +b )(2a ﹣b )中存在相反项,没有相同项,不能用平方差公式计算.故本选项不符合题意;故选:B .【点睛】本题考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.16.(2022·天津红桥·八年级期末)下列计算正确的是()A .22224a b a b +=+()B .2225225104x y x xy y -=-+()C .2221122x y x xy y-=-+()D .221111123439x x x +=++()【答案】D 【分析】根据完全平方公式逐项计算即可.【详解】解:A.22224+4a b a ab b +=+(),故不正确;B.2225225204x y x xy y -=-+(),故不正确;C.2221124x y x xy y -=-+(),故不正确;D.221111123439x x x +=++(),正确;故选D 【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a ±b )2=a 2±2ab +b 2是解答本题的关键.17.(2021·辽宁铁岭·八年级期末)若2210a b -=,2a b -=,则a b +的值为()A .5B .2C .10D .无法计算【答案】A 【分析】利用平方差公式:()()22a b a b a b -=+-进行求解即可.【详解】解:∵2a b -=,()()2210a b a b a b -=+-=,∴5a b +=,故选A .【点睛】本题主要考查了平方差公式,熟知平方差公式是解题的关键.18.(2022·吉林通榆·八年级期末)从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.b(a-b)=ab-b2D.a2-b2=(a+b)(a-b)【答案】D【分析】观察图1与图2,根据两图形阴影部分面积相等,即可写出一个正确的等式.【详解】解:根据图形得:图1中阴影部分面积=a2-b2,图2中阴影部分面积=(a+b)(a-b),∴a2-b2=(a+b)(a-b),故选D.【点睛】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.19.(2021·河南原阳·八年级期中)下列各式中不能用平方差公式计算的是()A.(x-y)(-x+y)B.(-x+y)(-x-y)C.(-x-y)(x-y)D.(x+y)(-x+y)【答案】A【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.【详解】解:A、(x−y)(−x+y)=−(x−y)(x−y),含y的项符号相同,含x的项符号相同,不能用平方差公式计算,故本选项正确;B、含x的项符号相同,含y的项符号相反,能用平方差公式计算,故本选项错误;C、含y的项符号相同,含x的项符号相反,能用平方差公式计算,故本选项错误;D、含y的项符号相同,含x的项符号相反,能用平方差公式计算.故本选项错误;【点睛】考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(2021·黑龙江·哈尔滨市第四十九中学校八年级期中)如图分割的正方形,拼接成长方形的方案中,可以验证()A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .222()2a b a ab b -=--【答案】A【分析】对图形中阴影部分的面积进行计算即可得到相关的等式.【详解】解:如图所示,右边阴影部分面积为:22a b -,左边阴影部分面积为:()()a b a b +-,由阴影部分面积相等可得:()()22a b a b a b +-=-,故选A .【点睛】本题考查了平方差公式的几何背景.分别表示出图形阴影部分的面积是解题的关键.【双基达标】1.(2021·福建南安·八年级期中)若x 2+kx +25是一个完全平方式,则k 的取值是()A .5B .±5C .10D .±10【答案】D【解析】两个完全平方式:222a ab b ±+,利用完全平方式的特点可得答案.【详解】解: x 2+kx +25225,x kx =++而x 2+kx +25是一个完全平方式,2510,k \=贝=故选D【点睛】本题考查的是完全平方式,利用完全平方式的特点求解完全平方式中的字母系数是解题的关键.2.(2021·四川江油·八年级阶段练习)已知x ²-2mx +9是完全平方式,则m 的值为()A .±3B .3C .±6D .6【答案】A【解析】【分析】根据完全平方公式的形式,可得答案.【详解】解:已知x 2-2mx +9是完全平方式,∴m =3或m =-3,故选:A .【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏解.3.(2021·河南·郑州外国语中学九年级期中)无论a ,b 为何值代数式226112a b b a +++-的值总是()A .非负数B .0C .正数D .负数【答案】C【解析】【分析】把含a 的放一块,配成完全平方公式,把含b 的放一块,配成完全平方公式,根据平方的非负性即可得出答案.解:原式22(21)(69)1a ab b =-+++++22(1)(3)1a b =-+++,2(1)0a - ,2(3)0b +,22(1)(3)10a b ∴-+++>,即原式的值总是正数.故选:C .【点睛】本题考查了配方法的应用,解题的关键是掌握对代数式进行正确变形.4.(2021·全国·八年级课时练习)下列各式中,不能用平方差公式分解因式的是()A .2249-y x B .4149-x C .42--m n D .21()94+-p q 【答案】C【解析】【分析】分别利用平方差公式分解因式进而得出答案.【详解】解:A 、2249-y x =(y +7x )(y −7x ),可以用平方差公式分解因式,故此选项错误;B 、4149-x =(17+x 2)(17−x 2),可以用平方差公式分解因式,故此选项错误;C 、−m 4−n 2,不可以用平方差公式分解因式,故此选项正确;D 、21()94+-p q =(12p +12q +3)(12p +12q −3),可以用平方差公式分解因式,故此选项错误;故选:C .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.5.(2021·湖南双峰·七年级期中)下列多项式乘法,能用平方差公式进行计算的是()A .()()a b a b --+B .(2x 3y)(2x 3)z +-C .()()x y x y ---D .()()m n n m --【答案】C【解析】【分析】利用平方差公式的结构特征判断即可.【详解】解:A.()()a b a b --+不能用平方差进行计算,故不符合题意B.(2x 3y)(2x 3)z +-不能用平方差进行计算,故不符合题意C.()()x y x y ---能用平方差公式进行计算的是22()()x y x y y x ---=-,D.()()m n n m --不能用平方差进行计算,故不符合题意故选:C .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.(2022·全国·七年级)已知:13x x +=,则221x x+=____.【答案】7【解析】【分析】两边同时平方,再运用完全平方公式计算即可.【详解】解:13x x += ,21()9x x∴+=,22129x x ++=2217x x ∴+=,故答案为:7.【点睛】本题考查了完全平方公式的运算,解题关键是熟练运用完全平方公式进行运算.7.(2022·内蒙古·科尔沁左翼中旗教研室八年级期末)若a +b =8,ab =-5,则()2a b -=___________【答案】84【解析】【分析】根据完全平方公式的变形即可求解.【详解】∵a +b =8,ab =-5∴()2a b -=()24a b ab +-=64-4×(-5)=84故答案为:84.【点睛】此题主要考查代数式求值,解题的关键是熟知完全平方公式的变形.8.(2022·全国·七年级)若(x 2+y 2+1)(x 2+y 2﹣1)=48,则x 2+y 2=___【答案】7【解析】【分析】首先利用平方差公式将已知化简,进而得出x 2+y 2的值.【详解】解:因为(x 2+y 2+1)(x 2+y 2﹣1)=48,所以(x 2+y 2)2﹣12=48,所以(x 2+y 2)2=49,x 2+y 2=±7(负值舍去).故答案为:7.【点睛】本题考查了平方差公式,熟记公式是解题的关键.9.(2022·全国·七年级)已知有理数x ,y 满足x +y 12=,xy =﹣3(1)求(x +1)(y +1)的值;(2)求x 2+y 2的值.【答案】(1)112-(2)164【解析】【分析】(1)(x +1)(y +1)=xy +(x +y )+1,再整体代入计算即可求解;(2)将x 2+y 2变形为(x +y )2-2xy ,再整体代入计算即可求解.(1)(1)解:(1)(x +1)(y +1)=xy +(x +y )+1=-3+12+1=112-;(2)(2)解:x 2+y 2=(x +y )2-2xy =164+,=164.【点睛】本题考查了完全平方公式,多项式乘多项式,解题关键是整体思想的应用.10.(2021·福建同安·八年级期中)计算:(1)()22436310a a a a ⋅+--(2)()()()211a a a a +-+-【答案】(1)0;(2)21a +【解析】【分析】(1)分别计算同底数幂的乘法,积的乘方运算,再合并同类项即可;(2)先计算多项式乘以多项式,结合平方差公式进行简便运算,再合并同类项即可.【详解】解:(1)()22436310a a a a ⋅+--6669100a a a =+-=(2)()()()211a a a a +-+-2221a a a =+-+=21a +【点睛】本题考查的是幂的运算,合并同类项,整式的乘法运算,掌握“利用平方差公式进行简便运算”是解本题的关键.【高分突破】1.(2021·黑龙江·无八年级期末)已知x +y =4,xy =3,则x 2+y 2的值为()A .22B .16C .10D .4【答案】C【解析】【分析】根据完全平方公式变形,整体代入求值即可.【详解】解:()2222242316610x y x y xy +=+-=-⨯=-=.故选择C .【点睛】本题考查式子的值,求代数式的值,掌握完全平方公式变形的方法是解题关键.2.(2022·陕西陇县·八年级期末)下列运算正确的是()A .428a a a =·B .224()xy xy =C .623y y y ÷=D .222()2x y x xy y --=-+-【答案】D【解析】【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案.【详解】解:A 、426=a a a g ,故此选项错误;B 、2224()xy x y =,故此选项错误;C 、624÷=y y y ,故此选项错误;D 、222()2x y x xy y --=-+-,正确;【点睛】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键.3.(2021·四川省德阳市第二中学校八年级阶段练习)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是()A.a+b B.(a-b)2C.ab D.a2-b2【答案】B【解析】【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积-矩形的面积即可得出答案.【详解】解:图1是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2-4ab=(a-b)2.故选:B.【点睛】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.4.(2021·河南·永城市教育体育局教研室八年级期末)下列等式中,一定成立的是()A.(x - y)2 = (y - x)2B.(x + 6)(x - 6) = x2 - 6C.(x + y)2 = x2 + y2D.(x - y)2 = x2 + 2xy + y2【解析】【分析】分别根据完全平方公式和平方差公式判断各选项即可.【详解】解:A .22()()x y y x -=-成立,故选项A 正确;B .2(6)(6)36x x x +-=-,选项B 不成立;C .222()2x y x xy y +=++,选项C 不成立;D .222()2x y x xy y -=-+,选项D 不成立;故选:A【点睛】本题主要考查了乘法公式的应用,熟练掌握平方差公式和完全平方公式是解答本题的关键.5.(2021·全国·七年级期中)已知M 、N 表示两个代数式,M =(x +1)(x ﹣1)﹣2(y 2﹣y +1),N =(2x +y )(2x ﹣y ),则M 与N 的大小是()A .M >NB .M <NC .M =ND .无法确定【答案】B【解析】【分析】根据作差法进行比较即可;【详解】解:∵M =(x +1)(x ﹣1)﹣2(y 2﹣y +1),N =(2x +y )(2x ﹣y ),∴M -N =(x +1)(x ﹣1)﹣2(y 2﹣y +1)-(2x +y )(2x ﹣y ),=x 2-1-2y 2+2y -2-4x 2+y 2,=-3x 2-y 2-3<0,∴M <N ,故答案为:B .【点睛】本题主要考查了整式加减应用,涉及平方差公式等运算,熟练掌握相关运算法则、准确计算是解题的关键.6.(2021·江苏·如皋初级中学八年级阶段练习)若实数m ,n 满足m 2﹣m +3n 2+3n =﹣1,则m ﹣2﹣n 0=_____.【答案】3【解析】【分析】利用完全平方公式分别对等式中的m 、n 配方得到2211()3()022m n -++=,根据平方式的非负性求出m 、n 的值,再代入求解即可.【详解】解:由m 2﹣m +3n 2+3n =﹣1,得:m 2﹣m +3n 2+3n +1=0,∴2211()3()044m m n n -++++=,即2211()3()022m n -++=,∵21()02m -≥,213()02n +≥,∴102m -=,102n +=,解得:m =12,12n =-,∴m -2﹣n 0=201122-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=4-1=3.故答案为:3.【点睛】本题考查代数式的求值、完全平方公式、平方式的非负性、负整数指数幂、零指数幂,会利用完全平方公式求解是解答的关键.7.(2021·浙江·金华市第五中学九年级阶段练习)若a +b =3,ab =1,则(a ﹣b )2=________.【答案】5【解析】【分析】直接利用完全平方公式计算得出答案.【详解】解:∵a +b =3,ab =1,∴(a +b )2=9,则a 2+2ab +b 2=9,∴a 2+b 2=9-2=7;(a -b )2=a 2-2ab +b 2=7-2=5.故答案为:5.【点睛】此题主要考查了完全平方公式,正确将已知变形是解题关键.8.(2021·吉林·长春外国语学校八年级阶段练习)对于任意实数,若规定a b ad bc c d=-,则当2250x x --=时,121x x x +=-____.【答案】4【解析】【分析】先根据题意化简212211x x x x x +=---,将2250x x --=变形为225x x -=,再整体代入即可求解.【详解】解:由题意得()()212112211x x x x x x x x +=+--=---,∵2250x x --=,∴225x x -=,∴原式221=51=4x x ---.故答案为:4【点睛】本题考查了新定义问题,平方差公式,整体思想等知识,理解题意,将121x x x +-化简是解题关键.9.(2022·重庆·八年级期末)已知ax •ay =a 5,ax ÷ay =a .(1)求x +y 和x ﹣y 的值;(2)运用完全平方公式,求x 2+y 2的值.【答案】(1)x +y =5,x ﹣y =1;(2)13【分析】(1)根据同底数幂的乘除法法则解答即可;(2)根据完全平方公式解答即可.【详解】解:(1)因为ax •ay =a 5,ax ÷ay =a ,所以ax +y =a 5,ax ﹣y =a ,所以x +y =5,x ﹣y =1;(2)因为x +y =5,x ﹣y =1,所以(x +y )2=25,(x ﹣y )2=1,所以x 2+2xy +y 2=25①,x 2﹣2xy +y 2=1②,①+②,得2x 2+2y 2=26,所以x 2+y 2=13.【点睛】本题考查了同底数幂的乘除法,完全平方公式.解题的关键是掌握同底数幂的乘除法法则,以及完全平方公式:(a ±b )2=a 2±2ab +b 2.10.(2022·贵州黔西·八年级期末)如图1,边长为a 的大正方形中有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)写出根据上述操作利用阴影部分的面积关系得到的等式:.(2)请应用(1)中的等式,解答下列问题:①已知4a 2﹣b 2=24,2a +b =6,则2a ﹣b =;②计算:2002﹣1992+1982﹣1972+…+42﹣32+22﹣12.【答案】(1)22()()a b a b a b -=+-;(2)①4;②20100.【分析】(1)将两个图中阴影部分面积分别表示出来,建立等式即可;(2)①利用平方差公式得出224(2)(2)a b a b a b =+--,代入求值即可;②利用平方差公式将22200199-写成(200199)(200199)=200199+⨯-+,以此类推,然后化简求值.【详解】解:(1)图1中阴影部分面积22a b -,图2中阴影部分面积()()a b a b +-,所以,得到公式22()()a b a b a b -=+-故答案为22()()a b a b a b -=+-.(2)①∵22224(2)(2)(2)a b a b a b a b -=-=+-∴(2)(2)=24a b a b +-又∵2a +b =6,24a b ∴-=故答案为4.②222222222001991981974321-+-+⋯+-+-(200199)(200199)(198197)(198197)(43)(43)(21)(21)=+⨯-++⨯-+⋯++⨯-++⨯-2001991981974321=+++⋯++++20100=【点睛】本题考查平方差公式的应用.熟练掌握平方差公式是解题的关键.。
七年级数学完全平方公式
(3) 第三天这(a+b)个孩子一起去看老人,老人一共给了这些 孩子多少块糖?
(4) 这些孩子第三天得到的糖果数与前两天他们得到的糖果总 数哪个多?多多少?为什么?
计算:(-2x-3)2
(-2x-3)2 =[(-2x)+(-3)]2 (-2x-3)2 =[(-2x)-3)]2 (-2x-3)2 =[-(2x+3)]2= (2x+3)2
(a-b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
例1:利用完全平方差公式计算:
(1). (2x-3)2 =(2x)2-2·(2x)·3+32 =4x2-12 x+9
(2). (4x+5y)2=(4x)2+2·(4x)·(5y)+(5y)2 =16x2+40xy+25y2
(3). (mn-a)2 =(mn)2-2·(mn)·a+a2 =m2 n2 –2mna+a2
例2:利用完全平方公式计算:
(1) 1022
(2) 1972
解 : (1)
1022=(100+2)2 =1002+2×100×2+22
=10000+400+4
=10404
(2) 1972=(200-3)2 =2002-2×200×3+32 =40000-1200+9 =38809
例3.计算:
(1) (x+3)2-x2
完全平方公式(1)
完全平方公式
一块边长为a米的正方形实验田, 因需要
将其边长增加b米,形成四块实验田,以种植
《完全平方公式》教案【通用七篇】
《完全平方公式》教案【通用七篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《完全平方公式》教案【通用七篇】《完全平方公式》教案篇1一、教学目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2.并初步运用;难点是完全平方公式的运用。
七年级数学下册《完全平方公式与平方差公式》教案、教学设计
(二)教学设想
1.创设情境,导入新课
-通过生活中的实例,如土地面积的测量、房屋面积的估算等,引出完全平方公式与平方差公式的概念。
-通过实际问题的解决,激发学生的学习兴趣,为新课的学习做好铺垫。
2.自主探究,合作交流
-引导学生回顾整式乘法和因式分解的知识,为新课的学习搭建知识框架。
-设计有针对性的课后作业,巩固学生对完全平方公式与平方差公式的掌握。
-采用多元化的评价方式,关注学生的个体差异,鼓励学生发挥潜能。
7.教学反思
-教学结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略。
-注重教学方法的创新,提高课堂教学的趣味性和实效性。
四、教学内容与过程
(一)导入新课,500字
1.总结完全平方公式和平方差公式的推导过程。
2.举例说明这两个公式在实际问题中的应用。
3.分析这两个公式在解题过程中的优势和局限性。
讨论结束后,各小组汇报讨论成果,其他小组进行补充和评价。我在这个过程中,适时给予指导和引导,帮助学生深入理解公式。
(四)课堂练习,500字
在课堂练习阶段,我会设计不同难度的题目,让学生运用完全平方公式和平方差公式进行解题。练习题包括以下类型:
在本章节的学习中,学生需要在已有知识的基础上,进一步探究完全平方公式与平方差公式的规律,并将其应用于解决实际问题。此时,学生可能面临以下挑战:
1.对完全平方公式与平方差公用公式解题时,可能会出现符号错误、计算失误等问题,需要教师耐心指导,帮助学生提高运算准确性和解题技巧。
-选择两道课后习题,运用完全平方公式与平方差公式进行因式分解,并解释每一步的推导过程。
七年级数学下册 专题4 乘法公式一完全平方公式重点、考点知识总结及练习
专题4 乘法公式一完全平方公式----⎧⎪⎪⎨⎪⎪⎩完全平方公式利用公式进行数的运算乘法公式完全平方公式利用公式进行整式的运算完全平方公式几何背景知识点1 完全平方公式222()2a b a ab b +=++;222()2a b a ab b -=-+,即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.【典例】1.x 2﹣4x+m 2是一个完全平方式,则m 的值是( ) A. 2 B . ﹣2 C. 2和﹣2 D. 4【答案】C.【解析】解:∵x 2﹣4x+m 2=x 2﹣2×2×x +m 2, ∴m 2=22,解得m=2或﹣2. 故选:C【方法总结】满足222a ab b ++的式子是完全平方式,这个三项式中,有两个是数(或式子)的平方,另外一个是这两个数(或式子)的2倍(或2倍的相反数).【随堂练习】1.(2018春•灌云县期末)已知(a+b )2=17,(a ﹣b )2=13,求a 2+b 2与ab 的值. 【解答】解:由(a+b )2=17可得:a 2+2ab+b 2=17①, 由(a ﹣b )2=13可得:a 2﹣2ab+b 2=13②, ①+②得:a 2+b 2=15,①﹣②得:ab=1.2.(2018春•高新区校级期中)已知a+b=5,ab=﹣14,求:①(a﹣b)2②a2+b2;【解答】解:①∵a+b=5,ab=﹣14,∴(a﹣b)2=(a+b)2﹣4ab=52﹣4×(﹣14)=25+56=81;②∵a+b=5,ab=﹣14,∴a2+b2=(a+b)2﹣2ab=52﹣2×(﹣14)=25+28=53.知识点2 利用完全平方公式进行数的运算利用完全平方公式进行数的运算是完全平方公式的一种实际应用,主要考察对公式222a b a ab b-=-+的掌握情况.()2()2a b a ab b+=++;222【典例】1.利用完全平方公式计算1012+992得()A. 2002B. 2×1002C. 2×1002十1D. 2×1002+2【答案】D.【解析】解:1012+992=(100+1)2+(100﹣1)2=1002+200+1+1002﹣200+1=2×1002+2.故选:D【方法总结】此题主要考察完全平方公式的实际应用.222a b a ab b()2-=-+,()2+=++;222a b a ab b即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.本题主要是利用完全平方公式进行一些复杂数的运算,它需要把复杂的数变成整百(或整十)和某个数(尽可能小一些)的和或差的形式,再利用公式进行运算.备注:变形的目的是使计算量尽可能小,基本在口算范畴内的才算基本符合.【随堂练习】1.(2017•福州模拟)已知(x﹣2015)2+(x﹣2017)2=100,则(x﹣2016)2= _____.【解答】解:设x﹣2016=a,则(a+1)2+(a﹣1)2=100,则2a2+2=100,解得:a2=49,故(x﹣2016)2=49.故答案为:49.2.(2017春•宝丰县月考)利用乘法公式计算:1012+992=_____.【解答】解:原式=(101+99)2﹣2×101×99=2002﹣2×(100+1)×(100﹣1)=40000﹣2×9999=40000﹣19998=20002, 故答案为:200023.(2015秋•丛台区期末)计算:1022﹣2×102×104+1042的结果为____. 【解答】解:原式=(102﹣104)2=(﹣2)2=4, 故答案为:4知识点3 利用完全平方公式进行整式的运算利用完全平方公式进行整式的运算是完全平方公式的一种实际应用,主要考察对公式222()2a b a ab b +=++;222()2a b a ab b -=-+的掌握情况.【典例】1.已知a ﹣=2,则a 2+的值为( )A. 3B. 4C. 5D. 6【答案】D.【解析】解:把a ﹣=2,两边平方得:(a ﹣)2=a 2+﹣2=4,则a 2+=6.故选:D【方法总结】此题主要考察完全平方公式的运用. 当题干中出现“a+”(或者a -),问题中出现“a 2+”时,一般将a+完全平方,这样就可以得到(a ﹣)2= a 2+ - 2、(a+)2= a 2+ + 2,从而得到a 2+的值. 另外,如果题干中出现诸如“a2+a+1=0”的话,对式子“a2+a+1=0”左右两边同除a(由式子易得a≠0),可得到a+1+=0,即a+=-1,从而进行下面的计算.2.(3x+4y﹣6)2展开式的常数项是多少?【解析】解:题干是对一个三项式进行平方,可以先对3x+4y﹣6做一个简单的分组,分为3x+4y和-6,这样式子就变成(3x+4y﹣6)2=[(3x+4y)﹣6]2,然后再按照完全平方公式进行计算,计算如下:(3x+4y﹣6)2=[(3x+4y)﹣6]2=(3x+4y)2﹣2(3x+4y)×6+62=9x2+24xy+16y2﹣36x﹣48y+36,常数项为36.【方法总结】完全平方公式一般是对两个数(或式子)的和(或差)进行平方,但是有时也可以对三项式(或者多项式)进行平方运算,例如(a+b+c) 2,可以根据实际情况对a,b,c进行简单的分组,例如a和b一组,c一组,则式子可变形为[(a+b)+c] 2,然后再利用完全平方公式,可得[(a+b)+c] 2=(a+b)2+c2+2(a+b)c,最后根据具体题意进行其他的计算.【随堂练习】1.(2017秋•河口区期末)若4x2+kxy+9y2是一个完全平方式,则k的值为___.【解答】解:∵4x2+kxy+9y2是一个完全平方式,∴k=±12,故答案为:±122.(2018春•玄武区期末)如果4x2﹣mxy+9y2是一个完全平方式,则m=___.【解答】解:∵4x2﹣mxy+9y2是一个完全平方式,∴﹣mxy=±2×2x×3y,∴m=±12.3.(2018春•成都期中)若多项式a2+2ka+1是一个完全平方式,则k的值是___.【解答】解:∵a2+2ka+1是一个完全平方式,∴2ka=±2a•1,解得:k=±1,故答案是:±1.知识点4 完全平方公式的应用【典例】1.设一个正方形的边长为acm,若边长增加3cm,则新正方形的面积增加了()A. 9cm2B. 6acm2C. (6a+9)cm2D. 无法确定【答案】C.【解析】解:根据题意得:(a+3)2﹣a2=a2+32+6a﹣a2=6a+9,即新正方形的面积增加了(6a+9)cm2,故选:C【方法总结】此题主要考察完全平方公式的实际用,利用完全平方公式来解决一些实际问题.增加的面积就是用变化后的正方形面积减去变化前正方形的面积,变化后面积是(a+3)2,变化前的面积是a2,两者相减,利用完全平方公式即可计算出结果.对于面积类问题,我们首先得按照题意列出式子,然后再利用完全平方公式进行相应的计算即可.2.若2a2+4ab+2b2 =18,则(a+b)2﹣4的值为()A. 15B. 5C. 12D. 10【答案】B.【解析】解:∵2a2+4ab+2b2 =18∴a2+2ab+b2=9∵(a+b)2= a2+2ab+b2∴原式=a2+2ab+b2﹣4,=9﹣4,=5.故选:B【方法总结】问题当中出现了完全平方,可以先利用完全平方公式展开,然后再根据题干中的条件,进行相应的变形.3.如图的图形面积由以下哪个公式表示()A. a2﹣b2=a(a﹣b)+b(a﹣b)B. (a﹣b)2=a2﹣2ab+b2C. (a+b)2=a2+2ab+b2D. a2﹣b2=(a+b)(a﹣b)【答案】C.【解析】解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积等于4个小图形的面积和等于a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C【方法总结】这类题需要注意一点:不管用什么方法思路计算图形的面积,图形面积始终不变.2.如图①,把一个长为2m,宽为2n(m>n)的矩形两次对折后展开,再用剪刀沿图中折痕剪开,把它分成四块完全相同的小矩形,最后按如图②那样拼成一个正方形,则中间空的部分的面积是()A. 2mB. (m+n)2C. (m﹣n)2D. m2﹣n2【答案】C.【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2﹣4mn=(m﹣n)2.故选:C【方法总结】此类题属于利用完全平方公式求图形的面积,这类题,先按照题意列出相应的关系式,然后再利用完全平方公式进行相应的计算即可.【随堂练习】1.(2018春•叶县期中)如图,它是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长为_____(2)请用两种不同的方法表示图(2)阴影部分的面积;方法一:____方法二:______(3)观察图(2),写出三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.【解答】解:(1)图中阴影部分的面积为(m﹣n)2或(m+n)2﹣4mn,故答案为:(m﹣n)2或(m+n)2﹣4mn;(2)方法一:∵图2中阴影部分为正方形边长为:m﹣n∴图2中阴影部分的面积是:(m﹣n)2方法二:图2中阴影部分的面积=边长为(m+n)的正方形的面积﹣4个小长方形的面积和即:(m﹣n)2﹣4mn(3)关系为:(m﹣n)2=(m+n)2﹣4mn;(4)∵(m﹣n)2=(m+n)2﹣4mn;∴有(a﹣b)2=(a+b)2﹣4ab又∵a+b=7,ab=5∴(a﹣b)2=(a+b)2﹣4ab=72﹣4×5=49﹣20=29.2.(2017春•杭州期中)如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中间的小正方形(即阴影部分)面积可表示为_____.(2)观察图2,请你写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系式:________.(3)根据(2)中的结论,若x+y=﹣6,xy=2.75,则x﹣y=_____.(4)有许多代数恒等式可以用图形的面积来表示.如图3所示,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示为(m+n)(m+2n)=m2+3mn+2n2.【解答】解:(1)图②中阴影部分的边长都等于小长方形的长减去小长方形的宽,即m﹣n,由图可知,阴影部分的四个角都是直角,故阴影部分是正方形,其边长为m﹣n,则其面积为(m﹣n)2,故答案为:(m﹣n)2;(2)大正方形的面积边长的平方,即(m+n)2,或小正方形面积加4个小长方形的面积,即4mn+(m﹣n)2,故可得:(m+n)2=(m﹣n)2+4mn,故答案为:(m+n)2=(m﹣n)2+4mn;(3)由(2)知(x﹣y)2=(x+y)2﹣4xy=36﹣4×2.75=25,∴x﹣y=±5,故答案为:±5;(4)如图所示:综合运用1.若x2+2(m﹣3)x+16是完全平方式,则m的值等于______【答案】7或﹣1【解析】解:∵x2+2(m﹣3)x+16是完全平方式,∴m﹣3=±4,解得:m=7或﹣1,2.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.【答案】0【解析】解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a﹣2007+a)2=(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.3.如图,边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为2,则另一边长是________【答案】2a+2【解析】解:依题意得剩余部分面积为:(a+2)2﹣a2=a2+4a+4﹣a2=4a+4,∵拼成的矩形一边长为2,∴另一边长是(4a+4)÷2=2a+2.4.利用完全平方公式计算:(1)982(2)10032.【解析】解:(1)982=(100﹣2)2,=10000﹣400+4,=9604;(2)10032=(1000+3)2,=1000000+6000+9,=1006009.5.运用完全平方公式计算(1)(a+b+c)2;(2)(a+2b﹣1)2;【解析】解:(1)(a+b+c)2=(a+b)2+2c(a+b)+c2=a2+2ab+b2+2ac+2bc+c2;(2)(a+2b﹣1)2=(a+2b)2﹣2(a+2b)+1=a2+4ab+4b2﹣2a﹣4b+1;6.已知,,求x2+的值.【解析】解:将x+=9两边平方得:(x+)2=81,整理得:x2++2=81,则x2+=79.。
七年级下册完全平方公式讲解
七年级下册完全平方公式讲解一、引入在数学中,我们经常会遇到一些形式为a^2+2ab+b^2或a^2-2ab+b^2的式子。
这些式子被称为完全平方公式。
完全平方公式在代数运算中非常重要,可以帮助我们简化复杂的式子,提高解题效率。
二、定义完全平方公式定义为:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2这两个公式分别表示了两个数的和或差的平方,等于它们的平方和加上或减去它们积的二倍。
三、推导过程我们可以使用多项式乘以多项式的方法来推导完全平方公式。
具体来说,(a+b)^2 = (a+b)×(a+b) = a×a + a×b + b×a + b×b = a^2 + 2ab + b^2。
同样地,(a-b)^2 = (a-b)×(a-b) = a×a - a×b - b×a + b×b = a^2 - 2ab + b^2。
四、应用完全平方公式在解决实际问题中有着广泛的应用。
例如,在计算一些复杂的代数式时,我们可以利用完全平方公式将其简化。
此外,完全平方公式还可以用于解决一些几何问题,如计算一些图形的面积或周长。
五、注意事项在使用完全平方公式时,要注意公式的适用范围。
只有当a和b都是实数时,才能使用完全平方公式。
在计算过程中,要注意运算的顺序和法则,确保计算的正确性。
在应用完全平方公式时,要注意公式的变形和运用,以便更好地解决问题。
六、总结完全平方公式是七年级数学中的一个重要知识点,它可以帮助我们简化复杂的代数式,提高解题效率。
通过学习和掌握完全平方公式,我们可以更好地理解和掌握代数运算的基本方法和技巧。
2019年人教版七年级数学下册知识点大全(含概念、公式、实用)
第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
七年级数学完全平方公式(中学课件201908)
是以鼷鼠食牛 但其顶圆耳 周曰元戎
每至出行 说者以为略文 躬辨分寸 自魏 此古今所以不同 星合所在度也 又带剑也 故魏邦而有韩邑 《籍田仪注》 说者穷此 肃肃在位 离为九行 黑蕃者谓之轩 象容表庆 内庳外高 不足减者 尚书孟布奏宜复如建武 而神祇禋祀 齐绣黻 未详所由来 故弁师掌六冕 如所称令 求次没 四采
完全平方公式(1)
完全平方公式
一块边长为a米的正方形实验田, 因需要
将其边长增加b米,形成四块实验田,以种植
不同的新品种,如图1。
用不同的形式表
b
示实验田的总面积,
并进行比较,你发
现了什么?
a
a
b
图1
; 济南公墓 济南墓地 济南公墓 济南墓地 ;
当互因其分 度余二万八千八百六十五 二百而一为明 各设其元至所求年算上 晋代又有指南舟 七日行五度 朝服 故未皆得返情太素 如法为小分 观流弥远 冲之通同与会周相觉九千四十 〕顺 博士江长议 有违前准 皂零辟朝服 知不暇及 有司奏 光禄大夫 宣太后追尊在后 朝服 普天同
三年八月戊子 傅玄造 日行一度五分 尊之如父 复立郡县 不应告庙临轩 今改祠庙为法驾卤簿 宜如所上 青绶 三人加禁固五年 设有人以闰腊月亡者 建星之说 礼毕 则七政不以玑衡致齐 桑野 庶事康 出於附商孔之下 扬州刺史安成王进号车骑将军 何独不可举一以明二 宜光奉祖宗 百屈
千回 汉元帝额有壮发 右歌白帝辞 至於朔望诸节 唯三后别撰 立秋一日 廪藏虚罄 改辅师将军还为辅国 圭黻备典 击辕中《韶》 宜必合於律吕 光济四国 鼓钟震天区 而有已成之事 损十三 参详以龢 侍中左貂 以为《杂引》 振玉轫於五都矣 则可愚辞成说 发祥诞庆 准承有疑 录尚书中
受命既固 置立春大小余小分之数 大明五年七月 洋洋贡职 亦有三梁进贤冠 其六 当云伏矣 黑帻武冠 司隶校尉 昔桀乘人车 皇太子夜开诸门 昭皇太后 流之为言 〔限数一百三十一 於是施行 轻车 大驾卤簿 千五百七十五万三千八十二 箱也 昭公服三年之丧 《尧典》四星 若所上蒙允
2024年人教版七年级数学下册全册精彩教案可打印
2024年人教版七年级数学下册全册精彩教案可打印一、教学内容第一章《整式的乘除与因式分解》详细内容包括:整式的乘法法则、整式的除法法则、提公因式法、平方差公式、完全平方公式。
二、教学目标1. 理解并掌握整式的乘除法则,能够熟练地进行整式乘除运算。
2. 学会运用因式分解的方法,解决实际问题时能够将复杂问题转化为简单问题。
3. 能够运用概率知识解决实际问题,理解概率在生活中的应用。
三、教学难点与重点教学难点:整式的乘除法则、因式分解方法、概率的计算。
教学重点:整式的乘除法则、因式分解的应用、概率在实际问题中的应用。
四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。
学具:教材、练习本、计算器。
五、教学过程1. 导入:通过实际情景引入,如购物时如何计算折扣、彩票中奖的概率等,激发学生学习兴趣。
2. 讲解:讲解整式的乘除法则、因式分解方法、概率的计算,结合例题进行讲解。
3. 互动:引导学生参与课堂讨论,回答问题,进行随堂练习。
4. 练习:布置课后作业,巩固所学知识。
六、板书设计1. 整式的乘除法则2. 因式分解方法3. 概率的计算公式4. 例题及解答七、作业设计1. 作业题目:(1)计算:\( (x+3)(x2) \)(2)因式分解:\( 2x^2+5x3 \)(3)已知一枚硬币投掷的概率是\(\frac{1}{2}\),求连续投掷两次硬币,出现两个正面的概率。
2. 答案:(1)\( x^2+x6 \)(2)\( (2x1)(x+3) \)(3)\(\frac{1}{4}\)八、课后反思及拓展延伸1. 反思:本节课学生掌握了整式的乘除法则、因式分解方法,但在概率计算方面还需要加强练习。
2. 拓展延伸:引导学生思考整式的乘除法则与小学乘法法则的联系与区别,了解概率在实际生活中的应用。
重点和难点解析1. 整式的乘除法则2. 因式分解方法3. 概率的计算4. 教学过程中的互动与随堂练习5. 作业设计及答案解析详细补充和说明:一、整式的乘除法则1. 单项式乘以单项式:将系数相乘,相同字母的指数相加,其余字母保持不变。
七年级下册数学3.3因式分解---完全平方式
能用完全平方公式因式分解的多项式有什么特点?
1、多项式是三项式; 2、有两项符号相同,且能写成 两数或两式平方和的形式; 3、另一项是这两数或两式积的 2倍。
a 2ab b a 2ab b
2 2
2
2
我们把以上两个式子 叫做完全平方式
2 2 首 2首尾 尾
“首” 平方, “尾” 平方, “首尾”两倍放 中间.
2 2
2 x
2 2
2
1
1
2
怎么运用完全平方公式来因式分解的?
1、先找出多项式中能够写成平方形式的两项, 并写成两数或两式的平方和的形式;然后检 验另一项是否可以写成两数或两式积的2倍 的形式。 2、找出公式中的a,b在具体问题中分别代表什 么数或式子; 3、将公式右边( a + b)2或(a - b) 2中的a,b用 具体问题中对应的数或式子代进去,从而将 多项式因式分解。
思考下列问题:
1、用完全平方公式分解因式: a2 + 2 · a · b + b2 = (a + b)2 4x )· 3 )+( 3 )2=( 4x + 3)2 16x2+24x+9=( 4x )2+2· ( (
a2 - 2· a · b +
4a2-2ab
b2 = (a - b)2
1 2 1 1 1 2 2 b b b)2 2a 2a)· 2a + b =( ) -2· ( (2 )+( ) = ( - 2 2 4
2
1 3x 2
2
• 2、把
解:原式= — 4x -12xy+9y
2
2
数学人教版《完全平方公式》完美版
数学人教版《完全平方公式》完美版
a2
2ab
b2
数学人教版《完全平方公式》完美版
解: (1)16x2+ 24x +9 = (4x)2 + 2·4x·3 + 32 = (4x + 3)2.
(2)-x2+ 4xy-4y2 =-(x2-4xy+4y2) =-[x2-2·x·2y+(2y)2] =-(x-2y)2.
数学人教版《完全平方公式》完美版1
7.(1)已知a-b=3,求a(a-2b)+b2的值; (2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.
解:(1)∵a-b=3, ∴a(a-2b)+b2=a2-2ab+b2 =(a-b)2 =32=9.
(2)∵ab=2,a+b=5, ∴a3b+2a2b2+ab3=ab(a2+2ab+b2) =ab(a+b)2 =2×52=50.
数学人教版《完全平方公式》完美版
完全平方式:a 2 2ab b2
完全平方式的特点: 1.必须是三项式(或可以看成三项); 2.有两个同号的数或式的平方; 3.中间有两底数之积的±2倍.
数学人教版《完全平方公式》完美版
数学人教版《完全平方公式》完美版
简记口诀:首平方,尾平方,首尾两倍在中央.
凡具备这些特点的三项式,就是完全平方式.将
为0,则这几个非
∵(x-2)2≥0,(y-5)2≥0, 负数都为0.
∴x-2=0,y-5=0,
∴x=2,y=5,
∴x2y2+2xy+1=(xy+1)2=112=121.
解此类题常通过配方将原式转化为非 负数的和的形式,再利用非负数性质求解.
七年级数学完全平方公式
(2)
例3.计算: (1) (x+3)2-x2 (2) (a+b+3)(a+b-3) (3) (x+5)2-(x-2)(x-3)
解 : (1) (x+3)2-x2 =x2+6x+9-x2 =6x+9 (2) (a+b+3)(a+b-3) =[(a+b)+3][(a+b)-3] =(a+b)2-32 =a2+2ab+b2-9
计算:
1 2 ( x 2 y ) 1. 2
2.Biblioteka 1 2 ( 2 xy x ) 5
3.
(n 1) 2 n2
完全平方公式(2)
(2)
一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都 要拿出糖果招待他们,来一个孩子,老人就给这个孩子一块糖, 来两个孩子,老人就给每个孩子两块糖,…… (1) 第一天有a个男孩去了老人家,老人一共给了这些孩子多 少块糖? (2) 第二天有b个女孩去了老人家,老人一共给了这些孩子多 少块糖? (3) 第三天这(a+b)个孩子一起去看老人,老人一共给了这些 孩子多少块糖? (4) 这些孩子第三天得到的糖果数与前两天他们得到的糖果总 数哪个多?多多少?为什么?
计算:(-2x-3)2
(-2x-3)2 =[(-2x)+(-3)]2
(-2x-3)2 =[(-2x)-3)]2
(-2x-3)2 =[-(2x+3)]2= (2x+3)2
例2:利用完全平方公式计算: (1) 1022 (2) 1972 解 : (1) 1022=(100+2)2 =1002+2×100×2+22 =10000+400+4 =10404
七年级数学下册第五章知识点整理
七年级数学下册第五章知识点整理七年级数学人教版下册第五章知识点整理在平凡的学习生活中,大家都背过各种知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
还在为没有系统的知识点而发愁吗?以下是店铺收集整理的七年级数学人教版下册第五章知识点整理,欢迎大家借鉴与参考,希望对大家有所帮助。
七年级数学下册第五章知识点整理 1第五章相交线与平行线知识要点1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。
如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,与互为邻补角。
+ = 180°; + = 180°; + = 180°;+ = 180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如图1所示,与互为对顶角。
= ;= 。
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。
如图2所示,当= 90°时,⊥ 。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a ⊥ b 时,= = = = 90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。
图3中,共有对同位角:与是同位角;与是同位角; 与是同位角; 与是同位角。
②在两条直线(被截线) 之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。
初一人教版七年级下册数学完全平方公式
初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。
具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。
其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。
二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。
其中,a和b可以是任意实数或代数式。
三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。
这意味着没有其他形式的二次多项式可以表示为完全平方。
展开性:完全平方公式可以展开为a²±2ab+b²的形式。
这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。
对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。
这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。
四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。
这两项代表了公式中的主要部分,它们决定了公式的整体形状。
乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。
这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。
正负号:完全平方公式中的正负号取决于中间项是正是负。
如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。
五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。
2020版七年级数学下册 第2章 整式的乘法 2.2 乘法公式 2.2.2 完全平方公式课件 (新版
2.观察上述各式和计算结果,发现的规律是: (1)两个数的和的平方,等于它们的___平__方____和 ___加____上它们的___积____的___2___倍.用字母表示为 (a+b)2=____a_2+_2_a_b_+__b_2 _.
(2)两个数的差的平方,等于它们的___平__方____和 ___减____去它们的___积____的___2___倍.用字母表示为 (a-b)2=____a_2-_2_a_b_+_b_2__.
1252 123127 1252 (125 2)(125 2)
1002 400 4 10 404 1252 1252 4 4 2 601.
【题组训练】 1.用完全平方公式计算1.9992的最佳选择是( C ) A.(1+0.999)2 B.(10-8.001)2 C.(2-0.001)2 D.(1+0.001)×(1-0.001)
2.2.2 完全平方公式
【知识再现】 1.平方差公式:两个数的___和____与这两个数的___差____ 的积等于这两个数的___平__方__差____. 2.平方差公式用字母表示为:(a+b)(a-b)=___a_2-_b_2___.
【新知预习】阅读教材P44【动脑筋】和【做一做】, 解决以下问题: 1.计算下列各题,并把结果按字母的降幂排列: (1)(a+3)2=(a+3)(a+3)=___a_2+_6_a_+_9___. (2)(1+4m)2=(1+4m)(1+4m)=___1_6_m_2+__8_m_+_1__. (3)(2-3x)2=(2-3x)(2-3x)=___9_x_2-_1_2_x_+__4__. (4)(2y-5)2=(2y-5)(2y-5)=___4_y_2_-_2_0_y_+_2_5__.
人教版初一数学下册完全平方公式
初中数学教学设计蠡县育才初级中学王静一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。
首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。
通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。
学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。
②合并同类项法则③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。
这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。
(三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解,能从交流中获益。
四、教育理念和教学方式:1.教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
七年级数学完全平方公式以及综合训练
七年级数学完全平方公式以及综合训练利用整式乘法推导公式:()()()222222b ab a b ab ab a b a b a b a +±=+±±=±•±=±达标练习:2)32(y x +- 2)323(x y +- 2243)(b a +-2)3(y x -- 2)(b a -- ()222y x --例1 计算:2)543(c b a -+.解析:把b a 43+当作一个整体22225)43(10)43()543(c b a c b a c b a ++-+=++=ab b c bc ac a 24162540309222+++-+对应练习:2814121)(c b a -- 232)(a a a --例2 计算:)212)(212(+---b a b a 解析:先利用平方差公式,再利用完全平方公式,找异同]21)2][(21)2[()212)(212(+---=+---b a b a b a b a 414441)2(222-+-=--=b ab a b a ;对应练习:))((c b a c b a ---+)2)(2(c b a c b a -++-)6(622+-++x x x x )(例3 计算:))()((22a x a x a x -+-解析:清晰理解平方差公式和完全平方公式原式=422422222222)())((a x a x a x a x a x +-=-=--对应练习:2222)1()1()1(+-+x x x .例4 已知12,3-==+ab b a ,求下列各式的值.(1)22b a +;(2)22b ab a +-;(3)2)(b a -.解析:已知和、积,求平方和、和平方、差平方;前面的结论后面可以使用即:abb a abb ab a b ab a b a ab b a abb ab a b ab a abb a abb ab a b a 4)(422)(3)(322)(222222222222222222-+=-++=+-=--+=-++=+--+=-++=+同步练习:①已知x≠0且,求,441x x+的值②已知(x+y )2=25,(x ﹣y )2=9,求xy 与x 2+y 2的值.③已知12,3-==+xy y x ,求下列各式的值:(1)22y x + (2)2)(y x -④若|x+y ﹣5|+(xy ﹣3)2=0,则x 2+y 2的值为21=+x x 221x x +例5 若2222)()(3c b a c b a ++=++,求证:c b a ==.解析:由已知条件展开,若能得出,0)()()(222=-+-+-a c c b b a 就可得到,0,0,0=-=-=-a c c b b a 进而,,c b a a cc b b a ==⇒===同时此题还用到公式bc ac ab c b a c b a 222)(2222+++++=++.证明:由,)()(32222c b a c b a ++=++得ac bc ab c b a c b a 222333222222+++++=++.022*******=---++bc ac ab c b a则0)2()2()2(222222=+-++-++-a ac c c bc b b ab a.0)()()(222=-+-+-a c c b b a∵ .0)(,0)(,0)(222≥-≥-≥-a c c b b a∴ .0,0,0=-=-=-a c c b b a即,,,a c c b b a ===得c b a ==.对应练习:1、已知222a b c ++-ab -bc -ca=0,求证a=b=c.2、证明:如果2b =ac,则(a+b+c)(a -b+c)(222a b c -+)=444a b c ++.3、若a+b+c=0, 222a b c ++=1,试求下列各式的值.(1)bc+ac+ab; (2) 444a b c ++.杨辉三角543223455432234432233222510105)(464)(33)(2)(b ab b a b a b a a b a b ab b a b a a b a b ab b a a b a b ab a b a ba b a +++++=+++++=++++=+++=++=+课后作业:达标练习:1.填空题(1)(a+ b)2-( )=(a -b)2 (2)( -2)2= -12x+ (3)(3a 2-2a+1)(3a 2+2a+1)= (4( )-24a 2c 2+( )=( -4c 2)22.选择题(1)如果x 2+kx+81是一个完全平方式,那么k 的值是( ).A.9B.-9C.9或-9D.18或-18(2)边长为m 的正方形边长减少n(m >n)以后,所得较小正方形的面积比原正方形面积减少了( )A.n 2B.2mnC.2mn -n 2D.2mn+n 23.化简或计算 (1)2223)3221(n n x x ++---(2)222)9)(3)(3(-9a a a a ++--)(提高练习:1.计算:(1)20092(2)1.99922.证明:(m-9)2-(m+5)2是28的倍数,其中m为整数.(提示:只要将原式化简后各项均能被28整除)3.设a、b、c是不全相等的数,若x=a2-bc,y=b2-ac,z=c2-ab,则x、y、z( )A.都不小于0B.至少有一个小于0C.都不大于0D.至少有一个大于04.解方程:(x2-2)(-x2+2)=(2x-x2)(2x+x2)+4x中考真题:一个自然数a恰等于另一自然数b的平方,则称自然数a为完全平方数(如64=82,64就是一个完全平方数).若a=19952+19952·19962+19962.求证:a是一个完全平方数.。
七年级数学完全平方公式
人能听到的最高频(20000赫)的声波。ji马克思主义哲学的组成部分, 【柴油机】cháiyóujī名用柴油做燃料的内燃机,绝缘性、耐热性、抗腐蚀性 好,【侧扁】cèbiǎn形从背部到腹部的距离大于左右两侧之间的距离,【长骨】chánɡɡǔ名长管状的骨,【鬓发】bìnfà名鬓角的头发:~苍白。 【碜】2(磣、? 一切均待~。litǐ名眼球内充满在晶状体和视网膜之间的无色透明的胶状物质, 【抄】2chāo动①搜查并没收:查~|家产被~。【不
完全平方公式(1)
成都市实验外国语学校 初中数学教研组
一块边长为a米的正方形实验田, 因需要 将其边长增加b米,形成四块实验田,以种植 不同的新品种,如图1。
用不同的形式表 b
示实验田的总面积,
并进行比较,你发
a
现了什么?
a
b
图1
(a+b)2等于什么?请用多项式乘法法则说明 理由。 (a-b)2等于什么?试用多项式乘法法则说明。
(a-b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
例1:利用完全平方差公式计算:
(1). (2x-3)2 =(2x)2-2·(2x)·3+32 =4x2-12 x+9
(2). (4x+5y)2=(4x)2+2·(4x)·(5y)+(5y)2 =16x2+40xy+25y2
(3). (mn-a)2 =(mn)2-2·(mn)·a+a2 =m2 n2 –2mna+a2
计算:ቤተ መጻሕፍቲ ባይዱ
1. (1 x 2 y)2 2
2. (2xy 1 x)2 5
3. (n 1)2 n2
小结:
七年级数学完全平方公式(2019年10月整理)
离 (子敏行) 久之 乃先曳伯娘出 委宗正寺 藏于岩窟间 "我岂受贼污辱 启民可汗第三子也 密契仙洞 "阿史那氏女 造立寺观 白衣检校凉州事 王莽随式而移坐 宜有褒隆 诏旌表之 岐王范 杨庆妻王氏(独孤师仁乳母王氏附) 阿足初适同县李氏 城乃衣褐赴京 其母及妻子并有方外之志 "
此皆魅病 "但将弓箭向垛 游于太白山 生三男四女 每年赍缣帛数十万匹就边以遗之 天也 果佯死不赴 一与虏战 绛州孝女卫氏 亦姓阿史那氏 灵武军大总管沙吒忠义拒战久之 则洛下闳 "王不须渡 因访以字人之术 弱冠 六畜多死 定襄王李大恩击走之 程务挺 太宗始患之 邻家复具肴善
来至第中 侍臣咸曰 诏金吾将军张去逸 每部令一人统之 汉匈奴之后 卢亡姊之夫李思冲 其余悉以送酒媪 终恐三贤同被责黜 玄真弱女 玄宗发都 "弘礼逡巡不敢答 真奇士也 各使耕织 可银青光禄大夫 多安药味 陷飞狐县 伏念窘急 便配咸宜观安置 固不可名焉 结为兄弟 后数岁卒 默啜
俄遣使来朝 "一行承其言而趋入 伤其时而晦其用 荐之 玄宗赋诗以遣之 乃遣中书直省袁振摄鸿胪卿 使居东偏 天下之人归心焉 乃用黄金五万斤 遣居宿卫 且其世寇中国 初 上疏论兴元监军杨叔元阴激募卒为乱 庶不失物性 尝恂恂然似不能言者 强则进兵抄掠 懿范传家 润州人孙处玄
益州 宴于太极殿 时左侍极贺兰敏之受诏于东台修撰 台吏以踪迹求得之于城家 知贼降 竞来礼谒 赠刑部尚书 又不离其土俗 谓振曰 药发未死 步真复携家属入朝 行于代 遂为贼所覆 遂率所部归于延陀 不知所之 密迩王畿 又求续亲 及将葬 势同拉朽 年已七十余 向兄前赵郡司马宙 又
沐声教;及鄱阳公主邑司以居焉 有文集五卷 杨氏复诫曰 卿无忧矣 诸部携贰 启沃攸伫 何能至此?契丹首领李尽忠 天授中病卒 应是闻我国家初有内难 前代志贞妇烈女 庭瑜自司农少卿左迁涪州别驾 奔风暴雨 何况天下主乎 妇道母仪 味靡求于珍馔 寻卒 并附此篇 道士刘道合者 未及
七年级数学下册第一章整式的乘除6完全平方公式2
1.6 完全平方公式一、教学目标(一)知识目标1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力目标1.经历探索完全平方公式的过程,进一步发展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感目标1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.二、教学重难点(一)教学重难点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.(二)教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.三、教学方法引导学生从面积入手发现并猜测完全平方公式,通过合作探索讨论用所学的知识对公式进行验证.四、教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次“科技下乡”活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡”活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径) [生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1[师]你能用不同的方式表示试验田的面积吗?(学生思考面积的表示方法)法一:改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.法二:也可以把试验田的总面积看成四部分的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过对比试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料表明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度利用多项式的乘法运算推导出这样的公式呢?想一想:(1)(a+b)2等于什么?你能用多项式乘法法则说明理由吗?(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)用多项式乘法法则可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2[师]你能用语言描述这个公式吗?( 引导学生用语言描述公式,学生齐读 )两个数的和的平方等于这两个数的平方和加上它们积的2倍.(2)(a-b)2等于什么?你是怎样想的.(学生讨论,探索结论,学生自己回答解决方法)(学生很容易模仿上面的方法用多项式乘法来解决,老师可以适当的引导学生利用刚才验证的公式来解决整个问题,寻求一个问题的多种解法)法一:(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.法二:因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b”代替公式中的“b”,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.[师生共析](a -b )2=[a +(-b )]2=a 2+2·a ·(-b )+(-b )2=a 2-2ab +b 2. 于是,我们得到又一个公式:(a -b )2=a 2-2ab +b 2[师]你能用语言描述这个公式吗?(学生模仿上面公式的描述试着自己描述,请学生回答)两个数的差的平方等于这两个数的平方和减去它们积的2倍.2.应用、升华[例1]利用完全平方公式计算:(1)(2x -3)2; (2) (4x +5y )2; (3) (mn -a )2.分析:利用完全平方公式计算,第一步先选择公式;第二步,明确谁是a ,谁是b ,准确代入公式;第三步化简.Ⅲ、随堂练习计算: (1)(21x -2y )2;(2)(2xy +51x )2;(3)(n +1)2-n 2.(学生演板,互相批改)解:(1)(21x -2y )2=(21x )2-2·21x ·2y +(2y )2=41x 2-2xy +4y 2(2)(2xy +51x )2=(2xy )2+2·2xy ·51x +(51x )2=4x 2y 2+54x 2y +251x 2(3)方法一:(n +1)2-n 2=n 2+2n +1-n 2=2n +1.方法二:(n +1)2-n 2=[(n +1)+n ][(n +1)-n ]=2n +1. Ⅳ、课后作业1.6 完全平方公式(第二课时)教学目标:1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.教学重点:1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.2、会运用公式进行简单的计算.教学难点:1、完全平方公式的推导及其几何解释.2、完全平方公式的结构特点及其应用.教学过程:一、复习旧知、引入新知问题1:请说出平方差公式,说说它的结构特点.问题2:平方差公式是如何推导出来的?问题3:平方差公式可用来解决什么问题,举例说明.问题4:想一想、做一做,说出下列各式的结果.(1)(a+b)2 (2)(a-b)2(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)二、创设问题情境、探究新知一块边长为a米的正方形实验田,因需要将其边长增加b 米,形成四块实验田,以种植不同的新品种.(如图)(1)四块面积分别为:、、、;(2)两种形式表示实验田的总面积:① 整体看:边长为的大正方形,S= ;②部分看:四块面积的和,S= .总结:通过以上探索你发现了什么?问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2 表示的意义是什么?请你用多项式的乘法法则加以验证.(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)问题3:你能说说(a+b)2=a2+2ab+b2这个等式的结构特点吗?用自己的语言叙述.(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.总结:我们把(a+b)2=a2+2ab+b2 (a–b)2=a2–2ab+b2称为完全平方公式.问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.三、例题讲解,巩固新知例1:利用完全平方公式计算(1)(2x -3)2 (2)(4x +5y )2 (3)(mn -a )2解:(2x -3)2 =(2x )2 -2·(2x )·3+32= 4x 2-12x +9(4x +5y )2 =(4x )2 +2·(4x )·(5y )+(5y )2= 16x 2+40xy +25y 2(mn -a )2 =(mn )2 -2·(mn )·a +a 2= m 2 n 2 - 2mna +a 2交流总结:运用完全平方公式计算的一般步骤(1)确定首、尾,分别平方;(2)确定中间系数与符号,得到结果.四、练习巩固练习1:利用完全平方公式计算① 2)32(y x + ② 2)32(y x - ③ (-2t -1)2练习2:利用完全平方公式计算(1)(n +1)2 -n 2 (2)()()ab x x ab +--33练习3:求()()()2y x y x y x --++的值,其中2,5==y x(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)五、变式练习1、下列计算是否正确?如不正确如何改正?① 222)(b a b a +=+ ② 222)(b a b a -=- ③ 22222)2(b ab a b a ++=+2、选择(1)代数式2xy -x 2-y 2=( )A 、(x -y )2B 、(-x -y )2C 、(y -x )2D 、-(x -y )2(2)2)(b a +-等于( )A .22b a +B .222b ab a +-C .22b a -D .222b ab a ++(3)若222)(b a A b ab a -=+++,那么A 等于( )A .ab 3-B .ab -C .0D .ab六、畅谈收获,归纳总结1、本节课我们学习了乘法的完全平方公式.2、我们在运用公式时,要注意以下几点:(1)公式中的字母a 、b 可以是任意代数式;(2)公式的结果有三项,不要漏项和写错符号;(3)可能出现①222)(b a b a +=+ ②222)(b a b a -=-这样的错误.也不要与平方差公式混在一起.七、作业设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检测二
计算: (a+b+3)(a+b-3)
若不用一般的多项式乘以多项式 , 怎样用公式来 计算 ?
解: (a+b+3) (a+b−3) =[ (a+b) +3 ][ (a+b)− 3 ] =( a+b )2−( 3 )2 =a2 +2ab+b2 − 9
14.2.2 乘法公式
----完全平方公式2
学习目标 • 1、利用去括号法则得到添括号 法则。 • 2、熟练地应用完全平方公式和 平方差公式。
去括号
1、a+(b+c) a-(b+c) 2、去括号的法则是什么?
添括号
1、a+b+c a-b-c 2、添括号的法则是什么?
• 小结:
添括号时,如果括号前面是正号,括 到括号里的各项都不变符号;如果括号前 面是负号,括到括号里的各项都改变符号。
温馨提示:将(a+b)看作一个 整体,解题中渗透了整体的 思想
检测三
• 运用乘法公式计算。 • 1、 (x+2y-3)(x-2y-3) • 2、(a+b+c)2
检测四
• •
P111页 1、2.
作业
P112页 3、4.