高三数学第一轮复习:函数的定义域值域.ppt
高中数学高考2022届高考数学一轮复习(新高考版) 第2章 §2 1 第2课时 函数的定义域与值域
大一轮复习讲义
题型一 函数的定义域
1.函数f(x)=ln(4x-x2)+x-1 2 的定义域为
A.(0,4)
B.[0,2)∪(2,4]
√C.(0,2)∪(2,4)
D.(-∞,0)∪(4,+∞)
解析 要使函数有意义, 4x-x2>0,
则x-2≠0, 解得0<x<4且x≠2.
师生共研
(2)y=2xx-+31;
解 (分离常数法)y=2xx-+31=2x-x-33+7=2+x-7 3, 显然x-7 3≠0,∴y≠2. 故函数的值域为(-∞,2)∪(2,+∞).
(3)y=2x- x-1;
解 (换元法)设 t= x-1,则 x=t2+1,且 t≥0, ∴y=2(t2+1)-t=2t-142+185, 由 t≥0,再结合函数的图象(如图②所示),可得函数 的值域为185,+∞.
3.若函数f(x)的定义域为[0,8],则函数g(x)= f2x 的定义域为_[_0_,_3_) _. 8-2x
解析 依题意有08≤-22xx>≤0,8, 解得0≤x<3, ∴g(x)的定义域为[0,3).
思维升华
(1)根据具体的函数解析式求定义域的策略 已知解析式的函数,其定义域是使解析式有意义的自变量的取值集合, 求解时只要根据函数解析式列出自变量满足的不等式(组),得出不等式 (组)的解集即可. (2)求抽象函数的定义域的策略 ①若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不等 式a≤g(x)≤b求出; ②若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b] 上的值域.
2
∴xx- -11>≤02,, 解得1<x≤3.
【优化方案】高考数学一轮复习 第2章第二节 函数的定义域、值域和最值课件 文 苏教
(5)令 x= 5sinθ(-π2≤θ≤π2),
得 y= 5sinθ+ 5- 5sinθ2 = 5sinθ+ 5cosθ= 10sin(θ+π4). ∵-π2≤θ≤π2,∴-π4≤θ+π4≤34π.
于是- 22≤sin(θ+π4)≤1, 则- 5≤ 10sin(θ+π4)≤ 10, 即- 5≤y≤ 10. ∴所求值域为[- 5, 10].
解析:分别画出三个函数 y=-x+3,y=32x+12, y=x2-4x+3 的图象(如图),得到三个交点 A(0,3),B(1,2),C(5,8).
从图象观察可得函数 f(x)的表达式:
x2-4x+3x≤0, -x+30<x≤1,
f(x)=
32x+211<x≤5, x2-4x+3x>5.
f(x)的 图 象 是
∴f(x)的值域为[-52,-2]∪[-32,32].
【名师点评】 求某个函数的最值或值域时,首 先要仔细、认真地观察其解析式的特征,然后再 选择恰当的方法,一般优先考虑直接法、函数的 单调性法.
互动探究4 例4条件不变,设函数g(x)=ax-2, x∈[-2,2],若对于任意的x1∈[-2,2],总存 在x0∈[-2,2],使得g(x0)=f(x1)成立,求实数a 的取值范围.
3.函数值域的主要求法 (1)利用函数的单调性 若y=f(x)是[a,b]上的单调增(减)函数,则f(a)、 f(b)分别是f(x)在区间[a,b]上的最_小__(_大__)值, 最_大__(_小__) 值. (2)利用配方法
将函数配成一个完全平方式与一个常量和形式, 用此种方法,特别要注意对于x在定义域内的 值是否能使完全平方式取得__零__.__
第二节 函数的定义域、值域和最值
第
二
节
高考数学(文科,大纲)一轮复习配套课件:2.2函数的定义域、值域
§2.2函数的定义域、值域本节目录知能演练轻松闯关考向瞭望把脉高考考点探究讲练互动教材回顾夯实双基基础梳理1.函数的定义域函数的定义域是指使函数有意义的变里的取值范围.2.函数的值域⑴定义在函数y=/(Q中,与自变量r的值对应的y的值叫函数值,函数值的集合叫函数的值域・(2)基本初等函数的值域思考探究函数为整式、分式、根式、指数或对数函数时,定义域有什么特点?提示:⑴整式的定义域是实数集R;分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1.2.函数的最值与值域有何联系?提示:函数的最值与函数的值域是关联的,求出了函数的值域也就能确定函数的最值情况,但有了函数的最大(小)值,未必能求出函数的值域.课前热身1.(教材改编)函数尸伍二+占的定义域为()A.(—8, —2]B.(一8, 2]C.(一8, -1)U(-1,2]D.[2, +8)答案:C解析:选A.要使加:)有意义,需1 ogl(2x+l)>0=logll,2 2・・.0V2x+lVl, .\-|<x<0.2・若/(兀)=,则/(兀)的定义域为(log ;(2x+l)D. (0, +8)3. (2012-高考江西卷)下列函数中,与函数y=/~定义域相同的\[x 函数为()A・y=.smx B. j-lnXXC. y=xe x sinxX解析:选D•函数丿=7-的定义域为仪IxHO},选项A中由sinxHOFH乃r, kj故A不对;选项B中x>0,故B不对; 选项C中xGR,故C不对;选项D中由正弦函数及分式型函数的定义域确定方法可知定义域为{xlx^O},故选D.4.函数f(x)=Y^p(x^R)的值域为答案:(0,1]X2—x+1 (x<l)5-函数他+ (5)的值域是答案:(0, 4-00)考点1求具体函数的定义域求函数定义域的问题类型(1)若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需解不等式(组)即可.(2)实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义•求下列函数的定义域:2⑵尸玄丙+0-4)。
2012届高考数学(文)一轮复习课件5函数的定义域与值域(人教A版)
答案:B
2019/4/12
5.函数y=f(x)的值域是[-2,2],定义域是R,则函数y=f(x-2)的值域是( )
A.[-2,2]
C.[0,4]
B.[-4,0]
D.[-1,1]
答案:A
2019/4/12
类型一
函数的定义域
解题准备:(1)已知解析式求定义域的问题,应根据解析式中各部分
的要求,首先列出自变量应满足的不等式或不等式组,然后解这
2019/4/12
③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其
对应关系唯一确定; ④当函数由实际问题给出时,函数的值域由问题的实际意义确定.
2019/4/12
考点陪练
2019/4/12
2019/4/12
考点陪练
1.(2010 湖北)函数 3 A. ,1 4 C.(1, )
2019/4/12
⑨抽象函数f(2x+1)的定义域为(0,1),是指x∈(0,1)而非0<2x+1<1;已
知函数f(x)的定义域为(0,1),求f(2x+1)的定义域时,应由0<2x+1<1 得出x的范围即为所求.
2019/4/12
【典例 1】求函数f x
lg ( x 2 2 x) 9 x
∴要使f(x2)有意义,则必有0≤x2≤1,
解得-1≤x≤1.
∴f(x2)的定义域为[-1,1].
2019/4/12
②由0≤ x 1≤1得1≤ x≤2.1≤x≤4(x≥0时, x才有意义) 函数f ( x 1)的定义域为1, 4 2 f lg x 1 的定义域为 0,9 , 0≤x≤9,1≤x 1≤10, 0≤lg x 1 ≤1 f x 的定义域为 0,1.由0≤2 x ≤1, 解得x≤0. f 2 x 的定义域为 , 0 .
高考数学一轮复习函数性质的综合应用-教学课件
时,f(x)=2x2-x,则 f(1)等于( )
(A)-3 (B)-1 (C)1 (D)3 (2)设函数 f(x)=x(ex+ae-x)(x∈R)是偶函数,则实数 a 的值
为
.
(3)已知函数 y=f(x)是 R 上的偶函数,且在(-∞,0]上是减
函数,若 f(a)≥f(2),3;1=2-x 得 x= 1 . 2
由图象可以看出,
当 x= 1 时,f(x)取到最小值 3 .
2
2
答案:(1) 1 +2 1 + 1 (2)1 (3) 3
a a2
2
反思归纳 (1)求函数值域与最值的常用方法:
①先确定函数的单调性,再由单调性求值域或最值.
②图象法:先作出函数在给定区间上的图象,再观察其最高、最低 点,求出最值. ③配方法:对于二次函数或可化为二次函数形式的函数,可用配方 法求解. ④换元法:对较复杂的函数可通过换元法转化为熟悉的函数,再用 相应的方法求值域或最值. ⑤基本不等式法:先对解析式变形,使之具备“一正二定三相等” 的条件后,再用基本不等式求出最值. ⑥导数法:先求导,然后求在给定区间上的极值,最后结合端点值,
2
4
4
(D) 1 2
(2)(2013 年高考天津卷)已知函数 f(x)是定义在 R 上的偶函数,且在区间[0,+∞)上单调递增.若
实数 a 满足 f(log2a)+f( log 1 a)≤2f(1),则 a 的
2
取值范围是( )
(A)[1,2] (B)(0, 1 ](C)[ 1 ,2](D)(0,2]
3.函数 f(x)= 1 的最大值是( D )
1 x 1 x
(A) 4 5
高三数学一轮复习第二章函数第二节函数的单调性与最值课件理
条件 (1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M
(1)对于任意x∈I,都有f(x)≥M; (2)存在x0∈I,使得f(x0)=M
结论 M为函数y=f(x)的⑦ 最大值
M为函数y=f(x)的⑧ 最小值
判断下面结论是否正确(请在括号中打“√”或“×”)
(1)函数y= 1x 的单调递减区间是(-∞,0)∪(0,+∞). (×)
1.下列函数中,在区间(0,1)上是增函数的是 ( )
A.y=|x|
B.y=3-x
C.y= 1
x
D.y=-x2+4
答案 A y=3-x在R上递减,y= 1 在(0,+∞)上递减,y=-x2+4在(0,+∞)上递
x
减,故选A.
2.函数y=(2m-1)x+b在R上是减函数,则 ( )
A.m> 1
2
C.m>- 1
a
2即 0
,
a
2,
f ( 1 ) 0 , a 2 1 0 ,
解得2<a≤3,
即实数a的取值范围是(2,3].
方法技巧 函数单调性的应用比较广泛,可用来比较函数值的大小、解函数不等 式、求参数的范围等. (1)利用函数单调性比较两个函数值的大小 若f(x)在给定的区间A上是递增的,任取x1,x2∈A,则x1<x2⇔f(x1)<f(x2);若f(x) 在给定的区间A上是递减的,任取x1,x2∈A,则x1<x2⇔f(x1)>f(x2).若给定 的两个自变量在同一单调区间上,可直接比较其函数值的大小,否则,要 先根据奇偶性或周期性把它们转化到同一单调区间上,再利用单调性比 较其函数值的大小. (2)利用函数单调性解函数不等式 解函数不等式的关键是利用函数的单调性脱去函数符号“f ”,变函数 不等式为一般不等式.去掉“f ”时,要注意f(x)的定义域的限制.
高考数学一轮复习第二章基本初等函数导数的应用第2讲函数的定义域与值域课件文
(1)求函数的定义域,其实质就是以函数解析式所含运算有意 义为准则,列出不等式或不等式组,然后求出它们的解集. (2)已知 f(x)的定义域是[a,b],求 f[g(x)]的定义域,是指满足 a≤g(x)≤b 的 x 的取值范围,而已知 f[g(x)]的定义域是 [a,b],指的是 x∈[a,b].
2.已知函数 f(x)的定义域是[0,2],则函数 g(x)=fx+12+ fx-12的定义域是__12_,__32___.
[解析] 因为函数 f(x)的定义域是[0,2],
所以函数 g(x)=fx+12+fx-12中的自变量 x 需要满足
0≤x+12≤2, 0≤x-12≤2,
F(x)=f(x)+f(1x)的
[解析] 令 t=f(x),则12≤t≤3.
易知函数 g(t)=t+1t 在区间12,1上是减函数,在(1,3]上是
增函数.
又因为 g12=52,g(1)=2,g(3)=130.
可知函数 F(x)=f(x)+f(1x)的值域为2,130.
3.已知函数 f( x+2)=x+ 2 x,则函数 f(x)的值域为 _[0_,__+__∞__)__. [解析] 令 2+ x=t,则 x=(t-2)2(t≥2). 所以 f(t)=(t-2)2+2(t-2)=t2-2t(t≥2). 所以 f(x)=x2-2x(x≥2). 所以 f(x)=(x-1)2-1≥(2-1)2-1=0, 即 f(x)的值域为[0,+∞).
2.已知等腰△ABC 的周长为 10,底边长 y 关于腰长 x 的函 数关系为 y=10-2x,则函数的定义域为___x_|_52_<_x_<_5_______.
[解析] 由题意知x21>x0- >0,120x->20, x,即52<x<5.
高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件
结合具体函数,了解函数奇偶性的含义. 奇偶性
知识点
指数与指 数函 数
对数与对 数函 数
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运
算.
3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 过的特殊点.
4.知道指数函数是一类重要的函数模型.
• 4.函数的表示法: 解析法 、
图象法 、 列表法 .
• 5.分段函数 • 若函数在其定义域的不同子集上,因 对应关系不 同 而 分 别 用 几 个 不
同的式子来表示.这种函数称为分段函数.分段函数虽由几个部分组 成,但它表示的是 一个 函数.
1.函数y= x-1+ln(2-x)的定义域是( )
• 1.求函数定义域的步骤
• 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式有
意义的自变量x取值的集合,求解时一般是先寻找解析式中的限制条 件,建立不等式,再解不等式求得函数定义域,当函数y=f(x)由实际 问题给出时,注意自变量x的实际意义.
• 2.求抽象函数的定义域时:
• (1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出.
(3)在f(x)=2f1x x-1中,用1x代替x, 得f1x=2f(x) 1x-1, 将f1x=2fxx-1代入f(x)=2f1x x-1中, 可求得f(x)=23 x+13.
• 【变式训练】 2.(1)已知f(1-cos x)=sin2x,求f(x); • (2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的
知识点
考纲下载
1.了解构成函数的要素;了解映射的概念.
函数概念及其表示课件-2025届高三数学一轮复习
四、教材升华:
例6、(多选)如图,∆0是边长为2的正三角形,记∆0位于直线
= (t > 0)左侧的图形的面积(), 则下列说法正确的是(C D)
、 = 1时,()的值最大.
、 ≥ 2时,()的值最大为 3.
3
、当1 < ≤ 2时() = −
( − 2)2 + 3
和给定锐角A的Rt∆ABC的面积s是角A的邻边长的函数s =
= tanA)
1
1
2
分析:E= mv , v > 0, s = m 2 , > 0,
2
2
1
1
2
E= mv , v > 0, 与s = m 2 , > 0, 定义域和对应关系都相同,
2
2
所以是同一个函数。
三、回归教材:
练习1、下列各组中的函数是否是同一个函数?
∈ , = ()是否为函数?
分析: 2 = −, �� ∈ (−∞, 0], 当 = −1时,
2 = 1, = ±1. ∴ = ()不是函数.
(2)∀
∈ , = ()是否为函数?
分析: = − 2 , ∈ (−∞, +∞), 任意的都有唯一的与之对应
2.3.1 函数的概念
及其表示
第三章 函数的概念与性质
一、知识框图:(课前自主学习)
函数的概念
函数
的概
念及
其表
示
函数的定义域
函数的值域
函数的表示法
二、概念解读:
1.函数:
一般地,设A,B是非空实数集,如果对于集合A中的任意一个数,按照
某种确定的对应关系,在集合B中都有唯一确定的数和它对应,那么就称
高三数学第一轮复习第二章《函数》课件
解析 (1)∵y=11- +xx=-1+1+2 x ∴当 1+x>0 或 1+x<0 时,此函数均为减函数, 故减区间为(-1,+∞)、(-∞,-1) (2)由11- +xx≥0 得 x∈(-1,1],此即为递减区间.
2.下列函数中,在区间(-∞,0)上是减函数的是( )
• (2)复合函数的单调性判断,要注意掌握“同增异减”.
• 2.根据定义证明函数单调性的一般步骤:设值(x1,x2且 x1<x2)→作差(f(x1)-f(x2))→变形→定号→结论.
• 3.对于函数f(x)的单调性,也可直接求f′(x),当f′(x)>0时 为增函数,当f′(x)<0时为减函数.
• 4.单调性法是求最值(或值域)的常用方法.
• 题型一 判断或证明函数的单调性
例 1 判断函数 f(x)=x2a-x 1(a≠0)在区间(-1,11<x2<1, 则 f(x1)-f(x2)=axx121x-2+11x22x-2-1x 1. ∵x1xx212-+11xx222--1x1>0, ∴a>0 时,函数 f(x)在(-1,1)上为减函数; a<0 时,函数 f(x)在(-1,1)上为增函数.
A.y=1-x2
B.y=x2+x
C.y=- -x
D.y=x-x 1
• 答案 D
• 3.函数y=x2+bx+c(x∈[0,+∞))是单调函数, 则b的取值范围是( )
• A.b≥0
B.b≤0
• C.b>0
D.b<0
• 答案 A
解析 由-b2≤0,得 b≥0.
• 4.函数f(x)=log0.5(x2-2x-8)的增区间________;减区 间________.
高三数学第一轮复习 第二章《函数》课件26
【解析】 (1)∵2x-1≠0,∴x≠0,∴定义域是(-
∞,0)∪(0,+∞).
(2)
∵
f(x)
=
2x+1x 22x-1
,
∴
f(
-
x)
=
2-x+1-x 22-x-1
=
12+12-x2-xx=222x+x-11x=f(x),
∵定义域关于原点对称,∴f(x)是偶函数.
(3)当 x>0 时,2x>1, ∴f(x)=(2x-1 1+12)x>0. 又 f(x)在定义域上是偶函数,由偶函数图象关于 y 轴对称知,当 x<0 时,-x>0,f(x)=f(-x)>0,∴在定 义域上恒有 f(x)>0.
又∵y=(13)u 为减函数
∴y=(31)x2-2x-3 的减区间为[1,+∞) 增区间为(-∞,1] ∵x∈(-∞,1]时,u 为减函数 x∈[1,+∞)时,u 为增函数
• 探究2 ①研究函数的值域、单调区间应先求定义域.
• ②求复合函数y=f[g(x)]的值域应先求内层u=g(x)的取值 范围,再根据u的取值范围去求y=f(u)的取值范围,即为 所求.第①题求值域时应注意y>0.
• 探究1 化简或计算指数式,要注意以下几 点:
• (1)化负指数为正指数,化根式为分数指数 幂,化小数为分数运算,同时要注意运算 顺序问题.
• (2)计算结果的形式:如果题目以根式形式 给出,则结果用根式的形式表示;如果题 目以分数指数幂形式给出,则结号和分数指数,也 不能既有分母又含有负指数.
A.(0,2]
B.(-∞,2]
C.(2,+∞)
D.[1,+∞)
• 答案 B • 解析 由4-2x≥0,得x≤2.
人教A版高中数学必修第一册第三章函数的定义域和值域课件
/人A数学/ 必修 第一册
返回导航 上页 下页
求函数的函数值、值域 1.求函数的函数值问题,首先要确定函数的对应关系f的具体含义,再 _代__入___求值. 2.求函数值域时应先确定相应的_定__义__域__,再根据函数的具体形式及 其运算确定其值域.
/人A数学/ 必修 第一册
返回导航 上页 下页
f(2x+1)中 x 的取值范围(定义域)可由 2x+1∈(-1,2)求得.
/人A数学/ 必修 第一册
[解] (1)要使函数有意义,即 x2-2x-3>0,
解不等式得 x<-1 或 x>3, 函数的定义域为(-∞,-1)∪(3,+∞).
(2)由题意得x2+x-1≠3≠00,,
x≠-1, 即x≠32.
/人A数学/ 必修 第一册
返回导航 上页 下页
1.集合{x|2≤x<5}用区间表示为__[_2_,__5_) _;集合{x|x≤-1, 或3<x<4}用区间表示为_(_-__∞_,__-__1_]_∪__(3_,__4_)_.
/人A数学/ 必修 第一册
返回导航 上页 下页
函数的定义域 函数的定义域是使 函数有意义 的所有 自变量 的集合;若函数的解析
/人A数学/ 必修 第一册
(3)求函数 y=x+ 2x+1的值域; 解:(3)(换元法)令 2x+1=t,t≥0,
t2-1 ∴x= 2 ,
返回导航 上页 下页
/人A数学/ 必修 第一册
∴y=t2-2 1+t=12t2+t-12=12(t+1)2-1. ∵t≥0,∴y≥-12, ∴函数的值域为[-12,+∞).
式是由两个或两个以上式子的和、差、积、商构成的,则其定义域是 使每个式子有意义的自变量取值的 公共部分 的集合.
2019版高考数学(理)一轮总复习课件:2-2函数的定义域与值域
(2)由2co5s-x>x02≥,0,得- 2k5π≤-x≤ π2 5<,x<2kπ+π2 .(k∈Z)
所以函数的定义域为[-5,-32π)∪(-π2 ,π2 )∪(3π 2 ,5].
【答案】
(1){x|x<-12}
(2)[-5,-3π2
)∪(-π2
π ,2
)∪(3π2
,5]
微专题 2:抽象函数的定义域
(2)函数f(x)定义域为[0,4],则函数y=
f(2x) x-1
定义域为
________.
【解析】 由题意0x≤ -21x>≤0,4, ∴1<x≤2,∴函数定义域为(1,2].
【答案】 (1,2]
题型二 函数的值域
求下列函数的值域:
(1)y=11+-
x; x
(2)y=3x2+x22x+1,x∈[-2,-12]; (3)y=x2-xx+1;
(2)若已知y=f[g(x)]的定义域为[a,b],则y=f(x)的定义域 即为g(x)的值域.
思考题2 (1)已知函数f(x)=ln(-x-x2),则函数f(2x+1) 的定义域为________.
【解析】 由题意知,-x-x2>0,∴-1<x<0,即f(x)定义域 为(-1,0).
∴-1<2x+1<0,则-1<x<-12. 【答案】 (-1,-12)
答案 [1,+∞);34,+∞
6.函数 y=x2+x+x+1 1的值域为________. 答案 (-∞,-3]∪[1,+∞) 解析 方法一:判别式法 由 y=x2+x+x+1 1,得 x2+(1-y)x+1-y=0. ∵x∈R,x≠-1,∴Δ=(1-y)2-4(1-y)≥0. 解得 y≤-3 或 y≥1. 当 y=-3 时,x=-2;当 y=1 时,x=0. 所以,函数的值域为(-∞,-3]∪[1,+∞).
2023届高考人教A版数学一轮复习课件:函数的概念及其表示
A.0
)
B.2
C.3
D.-3
2 ()
(2)(2021广东珠海高三期中)若一次函数f(x)满足f(f(x))=x+1,则g(x)=
(x>0)的值域为
.
答案 (1)D
(2)[2,+∞)
解析 (1)由 f(x)-2f
1
f(x)=3
2
+
1
=x+2,可得
1
1
-2f(x)= +2,联立两式可得
(2)(2021湖南长沙长郡中学高三二模)已知函数f(x)= ( + 2), ≤ 0, 则
f(-5)=
.
答案 (1)B (2)e
解析 (1)当a≤0时,f(a)=a2+1=5,解得a=-2;当a>0时,f(a)=2a+3=5,解得a=1.
故选B.
e , > 0,
(2)由f(x)= ( + 2), ≤ 0, 得f(-5)=f(-5+2)=f(-3)=f(-3+2)=f(-1)=f(1+2)=f(1)=e.
的定义域是[1,+∞),则
2
+ -1
函数y=f(x)的定义域是
.
答案 (1)D
解析
(2)(1,2]
(1)因为函数 f(x)的定义域为[-2,1],所以对于函数
(3-2)
y=
,有
lg(1-)
-2 ≤ 3-2 ≤ 1,
(3-2)
解得 0<x<1,因此函数 y=
的定义域为(0,1).
1- > 0,
-2,代入 x=2 可得 f(2)=-3,故选 D.
高考一轮复习第2章函数导数及其应用第2讲函数的定义域值域
第二讲 函数的定义域、值域知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点一 函数的定义域 函数y =f(x)的定义域1.求定义域的步骤:(1)写出使函数式有意义的不等式(组); (2)解不等式(组);(3)写出函数定义域.(注意用区间或集合的形式写出) 2.求函数定义域的主要依据 (1)整式函数的定义域为R. (2)分式函数中分母不等于0.(3)偶次根式函数被开方式大于或等于0. (4)一次函数、二次函数的定义域均为R . (5)函数f(x)=x 0的定义域为{x|x≠0}. (6)指数函数的定义域为R . (7)对数函数的定义域为(0,+∞). 知识点二 函数的值域 基本初等函数的值域:1.y =kx +b(k≠0)的值域是R .2.y =ax 2+bx +c(a≠0)的值域是:当a>0时,值域为⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≥4ac -b 24a ;当a<0时,值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≤4ac -b 24a . 3.y =kx (k≠0)的值域是{y|y≠0}.4.y =a x(a>0且a≠1)的值域是(0,+∞). 5.y =log a x(a>0且a≠1)的值域是R .重要结论1.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集. 3.函数f(x)与f(x +a)(a 为常数a≠0)的值域相同.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (2)函数y =xx -1定义域为x>1.( × ) (3)函数y =f(x)定义域为[-1,2],则y =f(x)+f(-x)定义域为[-1,1].( √ ) (4)函数y =log 2(x 2+x +a)的值域为R ,则a 的取值范围为⎝ ⎛⎦⎥⎤-∞,14.( √ ) (5)求函数y =x 2+3x 2+2的值域时有以下四种解法.判断哪种解法是正确的.[解法一](不等式法):y =x 2+3x 2+2=x 2+2+1x 2+2≥2,∴值域为[2,+∞).( × ) [解法二](判别式法):设x 2+2=t(t≥2),则y =t +1t ,即t 2-ty +1=0,∵t∈R,∴Δ=y 2-4≥0,∴y≥2或y ≤-2(舍去).( × )[解法三](配方法):令x 2+2=t(t≥2),则y =t +1t =⎝ ⎛⎭⎪⎫t -1t 2+2≥2.( × )[解法四](单调性法):易证y =t +1t 在t≥2时是增函数,所以t =2时,y min =322,故y∈⎣⎢⎡⎭⎪⎫322,+∞.( √ ) [解析] (4)y =log 2(x 2+x +a)值域为R 应满足Δ≥0,即1-4a≥0,∴a≤14.题组二 走进教材2.(必修1P 17例1改编)函数f(x)=2x-1+1x -2的定义域为( C )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)[解析] 使函数有意义满足⎩⎪⎨⎪⎧2x-1≥0x -2≠0,解得x≥0且x≠2,故选C .3.(必修1P 32T5改编)函数f(x)的图象如图,则其最大值、最小值分别为( B )A .f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫-32B .f(0),f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫-32,f(0) D .f(0),f(3)4.(必修1P 39BT1改编)已知函数f(x)=x +9x ,x∈[2,4]的值域为⎣⎢⎡⎦⎥⎤6,132.[解析] 当x =3时取得最小值6,当x =2取得最大值132,值域为⎣⎢⎡⎦⎥⎤6,132.题组三 走向高考5.(2020·北京,11,5分)函数f(x)=1x +1+ln x 的定义域是(0,+∞).[解析] 要使函数f(x)有意义,则⎩⎪⎨⎪⎧x +1≠0,x>0,故x>0,因此函数f(x)的定义域为(0,+∞).6.(2016·北京,5分)函数f(x)=xx -1(x≥2)的最大值为2.[解析] 解法一:(分离常数法)f(x)=x x -1=x -1+1x -1=1+1x -1,∴x≥2,∴x-1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f(x)=xx -1取得最大值2.解法二:(反解法)令y =x x -1,∴xy-y =x ,∴x=y y -1.∵x ≥2,∴y y -1≥2,∴y y -1-2=2-yy -1≥0,解得1<y≤2,故函数f(x)的最大值为2.解法三:(导数法)∵f(x)=x x -1,∴f′(x)=x -1-x (x -1)2=-1(x -1)2<0,∴函数f(x)在[2,+∞)上单调递减,故当x =2时,函数f(x)=xx -1取得最大值2.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一 求函数的定义域——多维探究 角度1 求具体函数的定义域例1 (1)(2021·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( D )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)(2021·宣城八校联考期末)函数y =-x 2+2x +3lg (x +1)的定义域为( B )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3][解析] (1)由题意得⎩⎪⎨⎪⎧1-x>0,x +1>0,x≠0,解得-1<x<0或0<x<1.所以原函数的定义域为(-1,0)∪(0,1).(2)要使函数有意义,x 需满足⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x<0或0<x≤3,所以函数的定义域为(-1,0)∪(0,3]. 角度2 求抽象函数的定义域例2 已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( B ) A .(-1,1) B .⎝⎛⎭⎪⎫-1,-12C .(-1,0)D .⎝ ⎛⎭⎪⎫12,1[解析] 由函数f(x)的定义域为(-1,0),则使函数f(2x +1)有意义,需满足-1<2x +1<0,解得-1<x<-12,即所求函数的定义域为⎝⎛⎭⎪⎫-1,-12. [引申1]若将本例中f(x)与f(2x +1)互换,结果如何? [解析] f(2x +1)的定义域为(-1,0),即-1<x<0, ∴-1<2x +1<1,∴f(x)的定义域为(-1,1).[引申2]若将本例中f(x)改为f(2x -1)定义域改为[0,1],求y =f(2x +1)的定义域,又该怎么办? [解析] ∵y=f(2x -1)定义域为[0,1].∴-1≤2x-1≤1,要使y =f(2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x≤0, 因此y =f(2x +1)定义域为[-1,0]. 名师点拨 MING SHI DIAN BO函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f(x)的定义域为[a ,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 求出; ②若已知函数f[g(x)]的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域. 〔变式训练1〕(1)(角度1)函数f(x)=1ln (x +1)+4-x 2的定义域为( B )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)(角度1)(2021·安徽芜湖检测)如果函数f(x)=ln(-2x +a)的定义域为(-∞,1),那么实数a 的值为( D )A .-2B .-1C .1D .2(3)(角度2)已知函数y =f(x 2-1)的定义域为[-3,3],则函数y =f(x)的定义域为[-1,2]. [解析] (1)由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x≤2,且x≠0.故选B .(2)因为-2x +a>0,所以x<a 2,所以a2=1,得a =2.故选D .(3)因为y =f(x 2-1)的定义域为[-3,3],所以x∈[-3,3],x 2-1∈[-1,2],所以y =f(x)的定义域为[-1,2].考点二,求函数的值域——师生共研例3 求下列函数的值域. (1)y =1-|x|1+|x|;(2)y =-2x 2+x +3; (3)y =x 2+x +1x ;(4)y =x -1-2x ; (5)y =x +1-x 2;(6)y =|x +1|+|x -2|.[解析] (1)解法一:分离常数法: y =1-|x|1+|x|=-1+21+|x|, ∵|x|≥0,∴|x|+1≥1,∴0<2|x|+1≤2.∴-1<-1+21+|x|≤1.即函数值域为(-1,1].解法二:反解法:由y =1-|x|1+|x|,得|x|=1-y 1+y.∵|x|≥0,∴1-y 1+y ≥0,∴-1<y≤1,即函数值域(-1,1].(2)解法一:配方法:y =-2⎝ ⎛⎭⎪⎫x -142+258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.解法二:复合函数法: y =t ,t =-2x 2+x +3, 由t =-2x 2+x +3,解得t≤258,又∵y=t 有意义,∴0≤t≤258,∴0≤y ≤524,∴值域为⎣⎢⎡⎦⎥⎤0,524.(3)y =x 2+x +1x =x +1x +1解法一:基本不等式法由y =x +1x +1(x≠0),得y -1=x +1x.∵⎪⎪⎪⎪⎪⎪x +1x =|x|+⎪⎪⎪⎪⎪⎪1x ≥2|x|·⎪⎪⎪⎪⎪⎪1x =2,∴|y -1|≥2,即y≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞)解法二:判别式法由y =x 2+x +1x ,得x 2+(1-y)x +1=0.∵方程有实根,∴Δ=(1-y)2-4≥0.即(y -1)2≥4,∴y-1≤-2或y -1≥2.得y≤-1或y≥3.即函数的值域为(-∞,-1]∪[3,+∞). 解法三:导数法(单调性法)令y′=1-1x 2=(x +1)(x -1)x 2<0, 得-1<x<0或0<x<1.∴函数在(0,1)上递减,在(1,+∞)上递增,此时y≥3; 函数在(-1,0)上递减,在(-∞,-1)上递增,此时y≤-1. ∴y ≤-1或y≥3.即函数值域为(-∞,-1]∪[3,+∞). (4)解法一:换元法设1-2x =t(t≥0),得x =1-t22,∴y =1-t 22-t =-12(t +1)2+1≤12(t≥0),∴y ∈⎝ ⎛⎦⎥⎤-∞,12.即函数的值域为⎝ ⎛⎦⎥⎤-∞,12.解法二:单调性法∵1-2x≥0,∴x≤12,∴定义域为⎝ ⎛⎦⎥⎤-∞,12.又∵函数y =x ,y =-1-2x 在⎝ ⎛⎭⎪⎫-∞,12上均单调递增,∴y≤12-1-2×12=12,∴y∈⎝⎛⎦⎥⎤-∞,12. (5)三角换元法:设x =sin θ,θ∈⎣⎢⎡⎦⎥⎤-π2,π2,y =sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4, ∵θ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴θ+π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,∴sin ⎝ ⎛⎭⎪⎫θ+π4∈⎣⎢⎡⎦⎥⎤-22,1,∴y∈[-1,2].(6)解法一:绝对值不等式法:由于|x +1|+|x -2|≥|(x+1)-(x -2)|=3, 所以函数值域为[3,+∞).解法二:数形结合法: y =⎩⎪⎨⎪⎧-2x +1(x<-1),3(-1≤x≤2),2x -1(x>2).画出此分段函数的图象如图,可知值域为[3,+∞). 名师点拨 MING SHI DIAN BO求函数值域的一般方法(1)分离常数法:形如y =cx +d ax +b(a≠0)的函数;如例3(1).(2)反解法:形如y =cf (x )+daf (x )+b (a≠0,f(x)值域易求)的函数;如例3(1).(3)配方法:形如y =af 2(x)+bf(x)+c(a≠0)的函数;如例3(2). (4)不等式法;如例3(3).(5)单调性法:通过研究函数单调性,求出最值,进而确定值域.(6)换元法:形如y =ax +b±cx +d (c≠0)的函数;如例3(4);形如y =ax +b±c 2-x 2(c≠0)的函数采用三角换元,如例3(5).(7)数形结合法:借助函数图象确定函数的值域,如例3(6). (8)导数法. 〔变式训练2〕 求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x +41-x ;(3)y =2x 2-x +12x -1⎝ ⎛⎭⎪⎫x>12.[解析] (1)解法一:y =1-x 21+x 2=-1+21+x 2,因为x 2≥0,所以x 2+1≥1,所以0<21+x 2≤2.所以-1<-1+21+x 2≤1.即函数的值域为(-1,1].解法二:由y =1-x 21+x 2,得x 2=1-y 1+y . 因为x 2≥0,所以1-y 1+y≥0.所以-1<y≤1,即函数的值域为(-1,1]. (2)设t =1-x ,t≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t≥0), 所以y≤5,所以原函数的值域为(-∞,5]. (3)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12, 因为x>12,所以x -12>0,所以x -12+12x -12≥2⎝ ⎛⎭⎪⎫x -12·12⎝ ⎛⎭⎪⎫x -12=2, 当且仅当x -12=12x -12,即x =1+22时取等号.所以y≥2+12,即原函数的值域为⎣⎢⎡⎭⎪⎫2+12,+∞. 导数法:y′=4x 2-4x +1(2x -1)2,∴y 在⎝ ⎛⎦⎥⎤12,1+22递减,在⎝ ⎛⎭⎪⎫1+22,+∞递增,∴y ≥2+12.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG 已知函数的定义域或值域求参数的取值范围例4 已知函数f(x)=lg [(a 2-1)x 2+(a +1)x +1].(1)若f(x)的定义域为R ,求实数a 的取值范围; (2)若f(x)的值域为R ,求实数a 的取值范围.[分析] (1)由f(x)的定义域为R 知(a 2-1)x 2+(a +1)·x +1>0的解集为R ,即(a 2-1)x 2+(a +1)x +1>0恒成立;(2)由f(x)的值域为R 知(a 2-1)x 2+(a +1)x +1能取所有正数,即y =(a 2-1)x 2+(a +1)x +1图象的开口向上且与x 轴必有交点.[解析] (1)依题意(a 2-1)x 2+(a +1)x +1>0,对一切x∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a>1或a<-1,a>53或a<-1. ∴a<-1或a>53.又a =-1时,f(x)=1>0,满足题意.∴a ≤-1或a>53.(2)依题意,只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f(x)的值域为R ,故有a 2-1>0,Δ≥0,解得-1≤a≤53,又当a 2-1=0,即a =1时,t =2x +1符合题意;a =-1时不合题意,∴-1<a≤53.名师点拨 MING SHI DIAN BO已知函数的定义域,等于是知道了x 的范围,(1)当定义域不是R 时,往往转化为解集问题,进而转化为与之对应的方程解的问题,此时常利用代入法或待定系数法求解;(2)当定义域为R 时,往往转化为恒成立的问题,常常结合图形或利用最值求解.〔变式训练3〕(1)已知函数y =mx 2-6mx +m +8的定义域为R ,则实数m 的取值范围为[0,1].(2)(2021·甘肃天水三中阶段测试)若函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则实数m 的取值范围是( C )A .(0,4]B .⎣⎢⎡⎦⎥⎤32,4C .⎣⎢⎡⎦⎥⎤32,3D .⎣⎢⎡⎭⎪⎫32,+∞ [解析] (1)①当m =0时,y =8,其定义域为R. ②当m≠0时,由定义域为R 可知, mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m>0,Δ=(-6m )2-4m (m +8)≤0, 解得0<m≤1,∴m 的取值范围是[0,1].(2)由x 2-3x -4=-254得x =32;由x 2-3x -4=-4,得x =0或x =3,又函数y =x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,∴32≤m≤3. 另:由y =x 2-3x -4=⎝ ⎛⎭⎪⎫x -322-254,∴32≤m ≤3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 1 已知函数 f ?x?定义域为(0,2),求下列函数的定义域:
(1) f (x2 ) ? 23 ;
(2) y ?
f (x2 ) ? 1
log 1 (2 ? x)
2
分析:x 的函数 f(x 2 )是由 u=x 2 与 f(u)这两个函数复合而成的复合函 数,其中 x 是自变量,u 是中间变量 由于 f(x),f(u)是同一个函数,故(1) 为已知 0<u<2,即 0<x 2 <2 求 x 的取值范围
又∵ ? ? ? x2 ? 6x ? 5 ? ? ( x ? 3)2 ? 4 ? 4 ,
∴ 0 ? ? ? 4 ,故 ? ? [0,2] ,
∴ y ? ? x2 ? 6x ? 5 的值域为 [0,2]
(3)(法一)反函数法:
y ? 3x ? 1 的反函数为 y ? 2x ? 1 ,其定义域为{x ? R | x ? 3},
x? 2
x? 3
∴原函数 y ? 3x ? 1 的值域为{y? R | y ? 3} x? 2
(法二)分离变量法: y ? 3x ? 1 ? 3(x ? 2) ? 7 ? 3 ? 7 ,
x? 2
x? 2
x? 2
∵ 7 ? 0 ,∴ 3 ? 7 ? 3 ,
x? 2
x? 2
∴函数 y ? 3x ? 1 的值域为{y? R | y ? 3} x? 2
1? sin x 2 ? cos x
解:(1)(配方法)Q y ? 3x2 ? x ? 2 ? 3(x ? 1 )2 ? 23 ? 23 , 6 12 12
∴ y ? 3x2 ? x ? 2 的值域为 [ 23 , ?? ) 12
改题: 求函数 y ? 3x2 ? x ? 2 , x? [1,3]的值域
新疆 源头学子小屋 特级教师
王新敞 新疆 源头学子小屋
特级教师
特级教师
王新敞
王新敞
例 2 已知函数
f (x) ? 1? x 的定义域为 A,函数 y ? 1? x
f ?? f ?x??? 的定义
域为 B ,则
( A) AU B ? B (B) A? B (C ) A? B (D) AI B ? B
解: A ? ?x | x ? 1?, y ? f [ f (x)] ? f (1? x) ? f (?1? 2 ) ? ? 1 ,
1? x
1? x x
令 ?1?
2
? 1且 x ? 1,故 B ? ?x | x ? 1?I ?x | x ? 0?新疆 源头学子小屋 特级教师 王新敞 新疆 源头学子小屋 特级教师
(5)三角换元法:
∵1 ? x2 ? 0 ? ? 1 ? x ? 1 ,∴设 x ? cos? ,? ? [0,? ] ,
则 y ? cos? ? sin ? ? 2 sin(? ? ? )
4
∵?
?
[0,? ] ,∴?
?
?
?
?
[
, 5?
] ,∴ sin(?
解:(1)由 0<x 2 <2, 得
说明:本例(1)是求函数定义域的第二种类型,即不给出 f(x)的解析式,
由 f(x)的定义域求函数 f[g(x)]的定义域 关键在于理解复合函数的意义, 新疆 源头学子小屋 特级教师 王新敞
新疆 源头学子小屋
特级教师 王新敞
用好换元法 (2)是二种类型的综合 新疆 源头学子小屋 特级教师 王新敞 新疆 源头学子小屋
∴y?1
即函数的值域是 { y| y? R 且 y? 1}(此法亦称 分离常数法 )王新敞
④当 x>0,∴ y ? x ? 1 = ( x ? 1 )2 ? 2 ? 2 ,
x
x
当 x<0 时, y ? ? (? x ? 1 ) =- ( ? x ?
1
) ? 2 ? ?2 2 新疆 王新敞 奎屯
?x
王新敞
1? x
∴ B? A?
AI
B?
B ,故选取
D
新疆 源头学子小屋
特级教师 王新敞 新疆 源头学子小屋 特级教师
王新敞
例 3 求下列函数的值域
① y=3x+2(-1 ? x ? 1)
② f (x) ? 2 ? 4 ? x
③y? x x?1
1 新疆
王新敞
④ y ? x ? 奎屯 x
解:①∵ -1 ? x ? 1,∴-3 ? 3x ? 3,
∴-1 ? 3x+2 ? 5,即-1 ? y ? 5,∴值域是 [-1,5]
②∵ 4 ? x ? [0,?? )
∴ f (x) ? [2,?? ) 王新敞
即函数 f (x) ? 2 ?
4 ? x 的值域是
{ y| y ? 2} 王新敞
③ y ? x ? x?1?1 ? 1? 1
x?1 x?1
x?1
∵ 1 ?0 x?1
(4)换元法(代数换元法):设 t ? 1 ? x ? 0 ,则 x ? 1 ? t 2 ,
∴原函数可化为 y ? 1 ? t 2 ? 4t ? ? (t ? 2)2 ? 5(t ? 0) ,∴ y ? 5 ,
∴原函数值域为 (?? ,5]
说明:总结 y ? ax ? b ? cx ? d 型值域,变形:y ? ax2 ? b ? cx2 ? d 或 y ? ax2 ? b ? cx ? d
解:(利用函数的单调性 )函数 y ? 3x2 ? x ? 2 在 x ? [1,3]上单调增,
∴当 x ? 1 时,原函数有最小值为 4 ;当 x ? 3 时,原函数有最大值为 26
∴函数 y ? 3x2 ? x ? 2 , x ? [1,3]的值域为 [4,26]
(2)求复合函数 的值域:
设 ? ? ? x2 ? 6x ? 5 ( ? ? 0 ),则原函数可化为 y ? ?
?x
∴值域是 (?? ,?2] ? [2,+ ? ) (此法也称为 配方法)
函数 y ? x ? 1 的图像为: x
∴值域是 (?? ,?2] ? [2,+ ? )
y
2 -1 o
1 f?x? = x+ x
1
x
-2
例 4 求下列函数的值域:
(1) y ? 3x2 ? x ? 2 ; (2)y ?
? x2 ? 6x ? 5 ;
(3Hale Waihona Puke y ? 3x ? 1 ; x? 2
(4)y ? x ? 4 1 ? x ; (5)y ? x ? 1? x2 ; (6)y ?| x ? 1| ? | x ? 4 |;
(7)y ?
2x2 ? x ? 2 ; x2 ? x ? 1
(8)y ?
2x2 ? x ? 1 (x ? 2x ? 1
1 ) ;(9)y ? 2