《机械优化设计》复习题-答案

合集下载

《机械优化设计》试卷及答案 新 全

《机械优化设计》试卷及答案  新 全

《机械优化设计》复习题及答案一、选择题1、下面 方法需要求海赛矩阵。

A 、最速下降法B 、共轭梯度法C 、牛顿型法D 、DFP 法2、对于约束问题()()()()2212221122132min 44g 10g 30g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。

A .内点;内点B. 外点;外点C. 内点;外点D. 外点;内点3、内点惩罚函数法可用于求解__________优化问题。

A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为___________。

A [a 1,b 1]B [ b 1,b]C [a1,b]D [a,b1]5、_________不是优化设计问题数学模型的基本要素。

A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是________。

A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的。

A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。

A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)f在R上为凸函数的(X(Xf为定义在凸集R上且具有连续二阶导数的函数,则)充分必要条件是海塞矩阵G(X)在R上处处。

A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,。

~机械优化设计总结复习习题及答案

~机械优化设计总结复习习题及答案

欢迎阅读机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X * 附近偏导数连续,则该点位极小值点的充要条件为( )A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定 C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.34.其6.F(X) A.x 17. A.8. A.9.多元函数F(X)在点X *附近的偏导数连续,∇F(X *)=0且H(X *)正定,则该点为F(X)的( )。

A.极小值点B.极大值点C.鞍点D.不连续点10.F(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的( )。

A.凸函数B.凹函数C.严格凸函数D.严格凹函数1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 11.在单峰搜索区间[x 1 x 3] (x 1<x 3)内,取一点x 2,用二次插值法计算得x 4(在[x 1 x 3]内),若x 2>x 4,并且其函数值F (x 4)<F(x 2),则取新区间为( )。

A. [x 1 x 4]B. [x 2 x 3]C. [x 1 x 2]D. [x 4 x 3]12.用变尺度法求一n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为( ) A. n 次 B. 2n 次 C. n+1次 D. 2次 13.在下列特性中,梯度法不具有的是( )。

A.二次收剑性 B.要计算一阶偏导数C.对初始点的要求不高D.只利用目标函数的一阶偏导数值构成搜索方向 14. A.15. A C.16.和λi≥0 A. D.17 A.18.( A. Ф C. Ф19. A. 梯度法 B. Powell 法 C. 共轭梯度法 D. 变尺度法1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 20. 利用0.618法在搜索区间[a,b ]内确定两点a 1=0.382,b 1=0.618,由此可知区间[a,b ]的值是( )A. [0,0.382]B. [0.382,1]C. [0.618,1]D. [0,1] 21. 已知函数F(X)=x 12+x 22-3x 1x 2+x 1-2x 2+1,则其Hessian 矩阵是( ) A. ⎥⎦⎤⎢⎣⎡--2332 B. ⎥⎦⎤⎢⎣⎡2332 C. ⎥⎦⎤⎢⎣⎡2112 D. ⎥⎦⎤⎢⎣⎡--3223 22. 对于求minF(X)受约束于g i (x)≤0(i=1,2,…,m)的约束优化设计问题,当取λi ≥0时,则约束极值点的库恩—塔克条件为( )A. ∇F(X)=∑=∇λm1 iii(X)g,其中λi为拉格朗日乘子B. -∇F (X)= ∑=∇λm1 iii(X)g,其中λi为拉格朗日乘子C. ∇F(X)= ∑=∇λq1 iii(X)g,其中λi为拉格朗日乘子,q为该设计点X处的约束面数D. -∇F(X)= ∑∇λq i i(X)g,其中λi为拉格朗日乘子,q为该设计点X处的约束面数23.A. SB. SC. SD. S24.25.26.A.C.27. 优化设计的维数是指( )A. 设计变量的个数B. 可选优化方法数C. 所提目标函数数D. 所提约束条件数28.在matlab软件使用中,如已知x=0:10,则x有______个元素。

《机械优化设计》试卷及答案

《机械优化设计》试卷及答案

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50] 。

2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。

3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数 C X B HX X T T ++21的梯度为 HX+B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。

8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 梯度为零 ,充分条件是 海塞矩阵正定 。

10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。

12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。

15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。

《机械优化设计》复习题 答案

《机械优化设计》复习题 答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是?f(x 10,x 20)=0 ,充分条件是 ?2f (x 10,x 20)=0正定 。

10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式12[x 1x 2][2−1−12][x 1x 2]+[−10−4][x 1x 2]+60 。

《机械优化设计》试卷与答案

《机械优化设计》试卷与答案

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f<X>=100<x 2- x 12> 2+<1- x 1> 2的最优解时,设X 〔0=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50]。

2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子。

3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高趋势。

5、包含n 个设计变量的优化问题,称为n 维优化问题。

6、函数C X B HX X T T++21的梯度为HX+B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足<d 0>T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。

8、设计变量、约束条件、目标函数是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是梯度为零,充分条件是海塞矩阵正定。

10、库恩-塔克条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为[-2.36,2.36]。

12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、 13、牛顿法的搜索方向d k =,其计算量大,且要求初始点在极小点逼近位置。

14、将函数f<X>=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式。

15、存在矩阵H,向量 d 1,向量 d 2,当满足<d1>TGd2=0,向量 d 1和向量 d 2是关于H 共轭。

《机械优化设计》复习题 答案

《机械优化设计》复习题 答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X )=100(x 2- x 12) 2+(1- x1) 2的最优解时,设X (0)=[-0.5,0.5]T,第一步迭代的搜索方向为 [-47,-50]T。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d0,d 1,满足(d0)T G d1=0,则d 0、d1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。

10、 K -T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近位置。

14、将函数f(X )=x12+x22-x1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。

15、存在矩阵H,向量 d 1,向量 d 2,当满足d1T Hd 2=0,向量 d 1和向量 d2是关于H共轭。

16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点。

《机械优化设计》试题及答案解析

《机械优化设计》试题及答案解析

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(X2- X12) 2+(1- x i) 2的最优解时,设X(°)=[-0.5,0.5]T,第一步迭代的搜索方向为卜47;-50] ______________ 。

2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子 ________ 。

3、当优化问题是—凸规划______ 的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高___________ 趋势。

5、包含n个设计变量的优化问题,称为__n _______ 维优化问题。

16、函数—X T HX B T X C的梯度为HX+B 。

27、设G为n>n对称正定矩阵,若n维空间中有两个非零向量d°, d1,满足(d°)T Gd—=0, 则d0、d1之间存在—共轭 ______ ■关系。

8、设计变量、约束条件______________ 、目标函数________________ 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数f(X1,X2),若在X°(X10,X20)点处取得极小值,其必要条件是_梯度为零,充分条件是海塞矩阵正定 ______________ 。

10、 ________________ 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数f (xHx2 -10x 36的极小点,初始搜索区间[a,b] =[-10,10],经第一次区间消去后得到的新区间为[-2.36236] 。

12、优化设计问题的数学模型的基本要素有设_________ 、13、牛顿法的搜索方向d k= ______ ,其计算量大,且要求初始点在极小点逼近位置。

14、将函数f(X)=x 12+X22-X1X2-10X1-4X2+60表示成-X T HX - B T X C 的形2式 ________________________ 。

《机械优化设计》复习题 答案

《机械优化设计》复习题 答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。

10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。

15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。

《机械优化设计》复习题-答案

《机械优化设计》复习题-答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f (X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d0、d1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(x x f ,若在),(x 0x x 点处取得极小值,其必要条件是,充分条件是(正定 。

10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x2+60表示成C X B HX X T T++21的形式 。

15、存在矩阵H,向量 d 1,向量 d2,当满足d1THd 2=0,向量 d1和向量 d2是关于H共轭。

16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点。

《机械优化设计》复习题答案

《机械优化设计》复习题答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0、5,0、5]T ,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一就是寻找搜索方向,二就是计算最优步长。

3、当优化问题就是凸规划的情况下,任何局部最优解就就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点与终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为HX+B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 就是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件就是,充分条件就是(正定 。

10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2、36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。

15、存在矩阵H,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1与向量 d 2就是关于H 共轭。

《机械优化设计》试卷及问题详解

《机械优化设计》试卷及问题详解

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50] 。

2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。

3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为 HX+B 。

7、设G 为n ×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。

8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 梯度为零 ,充分条件是 海塞矩阵正定 。

10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。

12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、 13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。

15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。

《机械优化设计》试卷及答案

《机械优化设计》试卷及答案

,其计算量 大 ,且要求初始点在极小点 逼近 位
14 、 将 函 数 f(X)=x12+x22-x1x2-10x1-4x2+60 表 示 成 1 X T HX BT X C 的 形 2


15、存在矩阵 H,向量 d1,向量 d2,当满足 (d1)TGd2=0 是关于 H 共轭。
,向量 d1 和向量 d2
四、解答题 1、试用梯度法求目标函数 f(X)=1.5x12+0.5x22- x1x2-2x1 的最优解,设初始点 x(0)=[-2,4]T, 选代精度ε=0.02(迭代一步)。
2、试用牛顿法求 f( X )=(x1-2)2+(x1-2x2)2 的最优解,设初始点 x(0)=[2,1]T。 3、设有函数 f(X)=x12+2x22-2x1x2-4x1,试利用极值条件求其极值点和极值。 4、求目标函数 f( X )=x12+x1x2+2x22 +4x1+6x2+10 的极值和极值点。
min f X x12 x22 4x2 4 g1 X x1 x22 1 0 g2 X 3 x1 0 g3 X x2 0
根 据 目 标 函 数 等 值 线 和 约 束 曲 线 , 判 断 X 1 [1,1]T 为


, X 2 [ 5 , 1 ]T 22
A.内点;内点
11 、 用 黄 金 分 割 法 求 一 元 函 数 f (x) x 2 10x 36 的 极 小 点 , 初 始 搜 索 区 间
[a,b] [10,10] ,经第一次区间消去后得到的新区间为 [-2.36,2.36]

12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数

《机械优化设计》试卷及答案

《机械优化设计》试卷及答案

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x2- x12) 2+(1- x1) 2的最优解时,设X(0)=[-0.5,0.5]T,第一步迭代的搜索方向为[-47;-50]。

2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子。

3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高趋势。

5、包含n个设计变量的优化问题,称为n维优化问题。

6、函数的梯度为HX+B。

7、设G为n×n对称正定矩阵,若n维空间中有两个非零向量d0,d1,满足(d0)T Gd1=0,则d0、d1之间存在_共轭_____关系。

8、设计变量、约束条件、目标函数是优化设计问题数学模型的基本要素。

9、对于无约束二元函数,若在点处取得极小值,其必要条件是梯度为零,充分条件是海塞矩阵正定。

10、库恩-塔克条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数的极小点,初始搜索区间,经第一次区间消去后得到的新区间为[-2.36,2.36]。

12、优化设计问题的数学模型的基本要素有设计变量、约束条件目标函数、13、牛顿法的搜索方向d k=,其计算量大,且要求初始点在极小点逼近位置。

14、将函数f(X)=x12+x22-x1x2-10x1-4x2+60表示成的形式。

15、存在矩阵H,向量d1,向量d2,当满足(d1)TGd2=0,向量d1和向量d2是关于H共轭。

16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有由小到大趋于无穷特点。

17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求。

二、选择题1、下面方法需要求海赛矩阵。

A、最速下降法B、共轭梯度法C、牛顿型法D、DFP法2、对于约束问题根据目标函数等值线和约束曲线,判断为,为。

《机械优化设计》复习题答案精修订

《机械优化设计》复习题答案精修订

《机械优化设计》复习题答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[,]T ,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 f (x 10,x 20)=0 ,充分条件是2f (x 10,x 20)=0正定 。

10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [ 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k=,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 12[x 1x 2][2−1−12][x 1x 2]+[−10−4][x 1x 2]+60 。

《机械优化设计》复习题答案

《机械优化设计》复习题答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为HX+B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。

10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k =,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。

15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。

机械优化设计复习题答案

机械优化设计复习题答案

机械优化设计复习题答案一、选择题1. 在机械优化设计中,目标函数是()。

A. 需要优化的参数B. 需要优化的性能指标C. 需要优化的约束条件D. 需要优化的变量答案:B2. 机械优化设计中,约束条件的作用是()。

A. 确定设计变量的范围B. 确定目标函数的值C. 确定优化算法的选择D. 确定优化过程的复杂性答案:A3. 以下哪个不是机械优化设计中常用的优化算法()。

A. 遗传算法B. 模拟退火算法C. 牛顿迭代法D. 线性规划法答案:C二、填空题1. 在机械优化设计中,目标函数的最小化或最大化通常需要通过______来实现。

答案:优化算法2. 机械优化设计中的约束条件可以分为等式约束和______。

答案:不等式约束3. 机械优化设计中,设计变量的选择需要考虑______和______。

答案:物理意义;计算可行性三、简答题1. 简述机械优化设计中目标函数的作用。

答案:目标函数在机械优化设计中的作用是定义设计的目标性能指标,它是需要被优化的量,通常表现为最小化或最大化某个性能指标,以满足设计要求。

2. 描述机械优化设计中约束条件的分类及其意义。

答案:机械优化设计中的约束条件可以分为等式约束和不等式约束。

等式约束通常表示设计变量之间必须满足的精确关系,而不等式约束则表示设计变量必须满足的条件范围。

这些约束条件的意义在于确保设计方案在物理和工程上是可行的,并且满足所有的设计要求和限制。

3. 举例说明机械优化设计中设计变量的选择原则。

答案:在机械优化设计中,设计变量的选择原则包括但不限于以下几点:首先,设计变量应具有明确的物理意义,能够直接影响目标函数和约束条件;其次,设计变量的选择应考虑计算的可行性,确保在优化过程中可以有效地进行计算和迭代;最后,设计变量的数量和范围应适中,以避免过度复杂化优化问题,同时保证优化结果的实用性和经济性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 ∇f(x 10,x 20)=0 ,充分条件是 ∇2f (x 10,x 20)=0正定 。

10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 12[x 1x 2][2−1−12][x 1x 2]+[−10−4][x 1x 2]+60 。

15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。

16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点。

17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求最优步长。

1k k H g --二、选择题1、下面C 方法需要求海赛矩阵。

A 、最速下降法 B 、共轭梯度法 C 、牛顿型法 D 、DFP 法2、对于约束问题()()()()2212221122132min 44 g 10g 30 g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。

DA .点;点 B. 外点;外点 C. 点;外点 D. 外点;点3、点惩罚函数法可用于求解B 优化问题。

A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为D 。

A [a 1,b 1] B [ b 1,b] C [a 1,b] D [a ,b 1]5、D 不是优化设计问题数学模型的基本要素。

A 设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是C。

A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的A。

A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,D在构成搜索方向时没有使用到目标函数的一阶或二阶导数。

A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)f在R上为凸函数的(X(Xf为定义在凸集R上且具有连续二阶导数的函数,则)充分必要条件是海塞矩阵G(X)在R上处处B。

A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是D,假设要求在区间[a,b]插入两点α1、α2,且α1<α2。

A、其缩短率为0.618B、α1=b-λ(b-a)C、α1=a+λ(b-a)D、在该方法中缩短搜索区间采用的是外推法。

11、与梯度成锐角的方向为函数值A方向,与负梯度成锐角的方向为函数值B方向,与梯度成直角的方向为函数值C方向。

A、上升B、下降C、不变D、为零12、二维目标函数的无约束极小点就是B。

A、等值线族的一个共同中心B、梯度为0的点C、全局最优解D、海塞矩阵正定的点13、最速下降法相邻两搜索方向d k和d k+1必为B 向量。

A 相切B 正交C 成锐角D 共轭14、下列关于点惩罚函数法的叙述,错误的是A。

A 可用来求解含不等式约束和等式约束的最优化问题。

B 惩罚因子是不断递减的正值C初始点应选择一个离约束边界较远的点。

D 初始点必须在可行域三、问答题(看讲义)1、试述两种一维搜索方法的原理,它们之间有何区别?2、惩罚函数法求解约束优化问题的基本原理是什么?3、试述数值解法求最佳步长因子的基本思路。

4、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点。

5、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义。

6、什么是共轭方向?满足什么关系?共轭与正交是什么关系?四、解答题1、试用梯度法求目标函数f(X)=1.5x 12+0.5x 22- x 1x 2-2x 1的最优解,设初始点x (0)=[-2,4]T ,选代精度ε=0.02(迭代一步)。

解:首先计算目标函数的梯度函数 ∇f =[3∗x1−x2−2x2−x1],计算当前迭代点的 梯度向量值 ∇f(X (0))=[−3∗2−4−24+2]=[−126]梯度法的搜索方向为 S (k )=−∇f , 因此在迭代点x (0) 的搜索方向为[12,-6]T 在此方向上新的迭代点为:X (k+1)=X (k )+αS (k )=X (0)+αS (0)=[−24]+α[12−6]=[−2+12α4−6α]把新的迭代点带入目标函数,目标函数将成为一个关于单变量α的函数F(α) f(X (k+1))=f ([−2+12α4−6α])=1.5(−2+12α)2+0.5(4−6α)2−(−2+12α)(4−6α)− 2(−2+12α)=F(α) 令dF(α)dα=−180+612α=0,可以求出当前搜索方向上的最优步长α=517≈0.2941新的迭代点为X (0)+αS (0)= [1.52922.2354]当前梯度向量的长度‖∇f ‖=√12x12+6x6=13.4164>ε, 因此继续进行迭代。

第一迭代步完成。

2、试用牛顿法求f( X )=(x 1-2)2+(x 1-2x 2)2的最优解,设初始点x (0)=[2,1]T 。

解1:(注:题目出题不当,初始点已经是最优点,解2是修改题目后解法。

) 牛顿法的搜索方向为S (k)=−∇2(f )−1∇(f),因此首先求出当前迭代点x (0) 的梯度向量、海色矩阵及其逆矩阵∇(f)=[4∗x1 − 4∗x2 − 48∗x2 − 4∗x1]∇(f(x(0)))=[0 0 ]∇2(f)=[4−4−48]∇2(f)−1=14[21 11]S(k)=−∇2(f)−1∇(f)=[0 0 ]不用搜索,当前点就是最优点。

解2:上述解法不是典型的牛顿方法,原因在于题目的初始点选择不当。

以下修改求解题目的初始点,以体现牛顿方法的典型步骤。

以非最优点x(0)=[1,2]T作为初始点,重新采用牛顿法计算牛顿法的搜索方向为S(k)=−∇2(f)−1∇(f),因此首先求出当前迭代点x(0)的梯度向量、以及海色矩阵及其逆矩阵梯度函数:∇(f)=[4∗x1 − 4∗x2 − 48∗x2 − 4∗x1]初始点梯度向量:∇(f(x(0)))=[−8 12]海色矩阵:∇2(f)=[4−4−48]海色矩阵逆矩阵:∇2(f)−1=14[21 11]当前步的搜索方向为:S(k)=−∇2(f)−1∇(f)=− 14[2111][−812]=[−11]新的迭代点位于当前的搜索方向上:X (k+1)=X (k )+αS (k )=X (0)+αS (0) =[12]+α[−11]=[1−α2+α]把新的迭代点带入目标函数,目标函数将成为一个关于单变量α的函数F(α) f(X (k+1))=f ([1−α2+α])=(α + 1)2 + (3α + 3)2=F(α)令dF(α)dα=20α+ 20=0,可以求出当前搜索方向上的最优步长α=−1新的迭代点为 X (1)=X (0)+αS (0)= [12] –[−11]= [21]当前梯度向量的长度‖∇f ‖=√12x12+8x8=14.4222>ε, 因此继续进行迭代。

第二迭代步:∇(f )=[4∗x1 − 4∗x2 − 48∗x2 − 4∗x1]∇(f (x (1)))=[00]‖∇f ‖=0<ε因此不用继续计算,第一步迭代已经到达最优点。

这正是牛顿法的二次收敛性。

对正定二次函数,牛顿法一步即可求出最优点。

3、设有函数 f(X)=x 12+2x 22-2x 1x 2-4x 1,试利用极值条件求其极值点和极值。

解:首先利用极值必要条件∇(f )=[00]找出可能的极值点:令∇(f )=[2∗x1 − 2∗x2 − 44∗x2 − 2∗x1]=[00]求得[x1x2]=[42],是可能的极值点。

再利用充分条件∇2(f )正定(或负定)确认极值点。

∇2(f )=[2−2−24]|2|=2>0|2−2−24|=8−4=4>0 因此∇2(f )正定, X ∗=[x1x2]=[42]是极小点,极值为f(X *)=-84、求目标函数f( X )=x 12+x 1x 2+2x 22 +4x 1+6x 2+10的极值和极值点。

解法同上5、试证明函数 f( X )=2x 12+5x 22 +x 32+2x 3x 2+2x 3x 1-6x 2+3在点[1,1,-2]T 处具有极小值。

解: 必要条件:∇(f )=[ 4∗x1 + 2∗x310∗x2 + 2∗x3 − 62∗x1 + 2∗x2 + 2∗x3]将点[1,1,-2]T 带入上式,可得∇(f )=[ 000]充分条件∇2(f )=[4020102222] |4|=4>0|40010|=40>0|4020102222|=80−40−16=24>0 ∇2(f )正定。

相关文档
最新文档