数列应用题专题
1-2-3等差数列应用题.题库版
【例 1】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 2】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550⨯⨯()(方法二)根据12398991005050++++++=,从这个和中减去1357...99+++++的和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 3】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是: 999321996214981499-÷+=÷+=+=()【答案】499【巩固】 有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 将每层圆木根数写出来,依次是:5,6,7,8,9,10,…可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28.求的是第28项.我们可以用通项公式直接计算.解: 1(1)n a a n d =+-⨯5(281)1=+-⨯32=(根)故最下面的一层有32根.【答案】32例题精讲等差数列应用题【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?【考点】等差数列应用题【难度】2星【题型】解答【解析】项数=(2106-2)÷4+1=527,因此,层数为奇数,中间项为(2+2106)÷2=1054,数列和=中间项×项数=1054×527=555458,所以中间一层有1054块砖,这堆砖共有555458块。
数列应用题
1、 某化工厂从今年一月起,若不改善生产环境,将受到环保部门的处罚。
第一个月罚款3000元,以后每个月增加2000元。
这种情况下该工厂生产的总收入是生产时间n 的一次函数,生产一个月收入为7万元,生产三个月收入21万元。
如果投资22万元改善环境,该工厂不但不受处罚,而且收入不断增长,近几年总收入是时间n 的二次函数,生产一个月收入10.1万元,两个月20.5万元。
问投资几个月开始见效。
1题解:210.3(1)0.2720.159.95225n n n n s n n n n n T n n S T n =+-⨯-=+-<⇒>2、某地区1995年底沙漠面积为95万公顷,与95年相比连续五年的变化情况如下表:时间 96年底 97年底 98年底 99年底 2000年底增加数 0.200 0.4001 0.600 0.7999 1.0001请进行预测,(1)如果不采取任何措施,2001年底,该地区沙漠面积大约多少?(2)若果从2000年底后植树造林,每年改造0.6万公顷沙漠,到那一年底该地区沙漠面积可减少到90万公顷?2题解1795,0.2,96.295(1)0.20.6(60)90,21,2015a d a n n n ===+-⨯--==3、一栋大楼共有21层,每层出一人到某层楼开会。
已知下一层楼的不满意度为1,上一层楼的不满意度为2,问开会地点选几楼较合理。
3题解2(1231)2(12320)343210.7,13322k S k k k k k s =++++-⨯+++++-=-+==4、某单位用分期付款的方式为职工购买40套住房,共需1150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为1%,若交付150万元后的第1个月开始算分期付款的第1个月,问分期付款的第10个月应付多少钱?全部按期付清后,买这40套住房实际花了多少钱? 4题解:因购买住房时付150万元,则欠款1000万元,依题意分20次付款,则每次付款的数额顺次构成数列{}n a .则 60%11000501=⨯+=a ,5.59%1)501000(502=⨯-+=a ,59%1)2501000(503=⨯⨯-+=a ,5.58%1)3501000(504=⨯⨯-+=a , ∴*),201)(1(2160%1)]1(501000[50N n n n n a n ∈≤≤--=⨯--+=. ∴数列{}n a 是以60为首项,21-为公差的等差数列. ∴5.552196010=⨯-=a ,5.5021196020=⨯-=a , ∴1105)5.5060(1020220120=+⨯=⨯+=a a S , ∴实际共付12551501105=+(万元).例1、容器内装有10升纯酒精,倒出1升后用水加满,再倒出1升后用水加满,如此进行下去。
数列练习题高中
数列练习题高中一、等差数列1. 已知等差数列的前三项分别为3,5,7,求第10项的值。
2. 在等差数列{an}中,若a1=1,公差d=2,求前10项的和。
3. 已知等差数列的通项公式为an=3n2,求前n项和的表达式。
4. 在等差数列{an}中,若a5+a8=34,a3+a6=26,求首项a1和公差d。
二、等比数列1. 已知等比数列的前三项分别为2,6,18,求第6项的值。
2. 在等比数列{bn}中,若b1=3,公比q=3,求前5项的和。
3. 已知等比数列的通项公式为bn=2^n,求前n项和的表达式。
4. 在等比数列{bn}中,若b3•b6=144,b4•b5=108,求首项b1和公比q。
三、数列的综合应用1. 已知数列{cn}的通项公式为cn=n^2+n,求前n项和。
2. 在数列{dn}中,若d1=1,d2=3,dn=dn1+dn2(n≥3),求第10项的值。
3. 已知数列{en}的前n项和为Sn=2^n1,求通项公式。
4. 设数列{fn}的通项公式为fn=3n+2,求证:数列{fn+1 fn}是等差数列。
四、数列的极限1. 求极限:lim(n→∞) (1+1/n)^n。
2. 求极限:lim(n→∞) (n^2 n) / (2n^2 + 3n + 1)。
3. 求极限:lim(n→∞) (sqrt(n^2+1) sqrt(n^21))。
五、数列的应用题1. 一等差数列的前5项和为35,前10项和为110,求前15项和。
2. 一等比数列的第3项为12,第6项为48,求首项和公比。
3. 一数列的前n项和为2^n 1,求第10项的值。
4. 一数列的通项公式为an=n^2+n,求证:该数列的前n项和为(n+1)(n+2)/2。
六、数列的性质与判定3. 已知数列{gn}的通项公式为gn=2n1,判断数列{gn+1 gn}是否为等差数列。
4. 已知数列{hn}的通项公式为hn=n^3,判断数列{hn+1 / hn}是否为等比数列。
数列应用题
数列应用题
1、某林场计划第一年造林80亩,
(1)若以后每年比上一年多造林20亩,求第五年造林多少亩?五年共造林多少亩?
(2)若以后每年比上一年多造林20%,求第五年造林多少亩?五年共造林多少亩?
2、在一次人才招聘会上,有甲乙两家公司开出工资标准分别是:
甲:第一年月工资1500元,以后每年月工资比上一年增加230元;
乙:第一年月工资2000元,以后每年月工资比上一年增加5%。
如某人想从中选择一家公司连续工作10年,他从哪家公司得到的报酬较多?
3、有一个消息,若每人在1小时内传递给两个人,假设没有一人被重复传递,问一天(以16小时计)能有多少人得到这个消息?
4、某市去年年底有待业人员10万人,据测算,今后几年还将每年新增待业人员8千人,由于市政府采取积极措施,估计今年可提供新增就业岗位5千个,且以后新增岗位平均每年递增10%,问从今年起,经过多少年可使待业人员总量少于5万人?
5、某人用分期付款的方式购买家用电器一件,价格为1150元,购买当天先付150元,
(1)若以后每月的这一天都交付50元,并加付欠款利息,月利率为1%,若交付150元以后的第一个月开始分期付款,问分期付款的第10个月应该付多少钱?
(2)若剩余部分在二十个月内按每月底等额还款的方式付款,欠款月利率为1%。
问每月还款额为多少元?(精确到0.01元)?。
数列应用题
《数列》应用题例1:为了治理尾气污染,某市计划用若干年更换5000辆燃油型公交车。
每更换一辆新车,则淘汰一辆旧车,替换车为电力车和混合动力车。
今年初,更换了电力型公交车128辆,混合动力型车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆。
S n;(1)求经过n年(含今年),该市被更换的公交车总数()(2)若该市计划5年内完成全部更换,求a的最小值。
例2:某林场去年有木材贮量2万m3,从今年初开始,林场加大了对生产的投入量,预测林场的木材贮量将以每年20%的速度增长,每年年底砍伐1000m3的木材出售作为再生产的资金补贴。
假设每年种植的树苗都能存活,经过n年后,年底的木材贮量为a,求:(1) 1a与2a的值,并求1n a 与n a的关系式;n(2) 经过多少年后,木材贮量达到翻番的目标?练习题:1、某林场有荒山3250亩,从2012年1月开始在该荒山上植树造林,且保证每年种树全部成活,第一年植树100亩,此后每年都比上一年多植树50亩。
(1)问至少需几年才可将此荒山全部绿化?(2)如果新种树苗每亩的木材量为2立方米,树木每年的自然增材率为10%,那么到此荒山全部绿化后的那一年底,这里树木的木材量总共为多少立方米?(参考数据:111.1 2.9≈)106002、某市地处沙漠边缘,到2012年底全市的绿化率已达30%,计划从2013年开始,每年在原有沙漠面积的16%的土地上栽上树,改造为绿地,同时原有绿地面积的4%又被沙漠化。
设全市面积为1,现有(2012年底)绿地面积为1031=a ,经过1年(到2013年底)绿地面积为2a ,经过n 年绿地面积为1+n a .(1)求2a (2)试写出1+n a 与n a 的关系式;(3)问需经过多少年才能使全市的绿化率超过60%?(结果中的年取整数)例3:汶川震后在社会各界的支持和帮助下,汶川一中临时搭建了学校,学校餐厅也做到了保证每天供应1000名学生用餐,每星期一有A、B两样菜可供选择(每个学生都将从二者中选一),为了让学生们能够安心上课对学生的用餐情况进行了调查。
等比数列应用题
等比数列应用题等比数列在数学中有广泛的应用,常常用来解决各种实际问题。
下面将介绍几个等比数列应用题,通过实例分析来加深对等比数列的理解。
1. 一辆汽车从甲地出发,以每小时60公里的速度前进,到达目的地需要3小时。
如果汽车以同样的速度前进,但每小时增加10公里的速度,问汽车到达目的地需要多少小时?解析:设汽车到达目的地需要x小时,则根据等比数列的性质可得:60,60+10,60+2*10,...,60+(x-1)*10 是一个等比数列。
由等比数列的通项公式可得:an = a1 * q^(n-1)其中,an 为第n项,a1 为第1项,q 为公比。
因此,60 + (x-1)*10= 60 * 10^(x-1),解得x=4。
所以汽车以每小时70公里的速度前进时,到达目的地需要4小时。
2. 有一条长为10米的绳子,现要将它分成若干段,使得每一段比前一段多1米,且这些段依次构成等比数列。
问这些段各有多少米?解析:设绳子被分成n段,则根据等比数列的性质可得:n,n+1,n+2,...,n+m 是一个等比数列。
根据等比数列的和公式可得:Sn = a1 * (q^n - 1) / (q - 1)其中,Sn 为前n项和,a1 为第1项,q 为公比。
由题意可知,10 =n * (n+m) / 2,解得n=2,m=3。
所以这条绳子被分成2段,分别为2米和5米。
3. 一支生长在湖中的莲藕,每天长高10厘米,且每次长高的长度构成等比数列。
如果莲藕经过4天长高了60厘米,问这支莲藕的初始高度为多少?解析:设莲藕的初始高度为n厘米,根据等比数列的性质可得:n,nq,nq^2,nq^3 是一个等比数列。
根据等比数列的和公式可得:Sn = a1 * (1 - q^n) / (1 - q)其中,Sn 为前n项和,a1 为第1项,q 为公比。
由题意可知,60 =n * (1 - q^4) / (1 - q),解得n=10,q=1.5。
数列练习题经典例题及详细解答
数列练习题4.正项等比数列{a n }中a 1,a 49是2x 2-7x +6=0的两个根,则a 1·a 2·a 25·a 48·a 49的值为( )A .221B .93C .±93D .357、数列{}n a 满足首项*1114,323(),n n a a a n N +=+=∈那么使20n n a a +⋅<成立的n 值是( )A21 B20 C2和21 D21和225.已知数{}n a 的前n 项和142+-=n n S n ,则|||||||1021a a a ++++ 的值为( )A .67B .65C .61D .565.已知无穷等比数列}{n a 的前n 项和为n S ,所有项的和为S ,且1)2(lim =-∞→S S n n ,则其首项a 1的取值范围( )A .(-1,0)B .(-2,-1)C .(-2,-1)∪(-1,0)D .(-2,0) 9.若数列{}n a 成等差数列, a m =n ,a n =m(m ≠n),则a m +n = ( )A .0 B. 1 C. m +n D. -m -n10.若数列{}n a 成等差数列, ,()m n S n S m m n ==≠,则m n S += ( )A .0 B. 1 C. m +n D. -m -n(1) 解法一: 1m n a a d m n-==--,∴0m n m a a nd n n +=+=-= 解法二:设n a an b =+,则a n b m a m b n +=⎧⎨+=⎩解之1a b m n=-⎧⎨=+⎩,∴()0m n a m n m n +=-+++= 解法三:设首项和公差列方程组(略)(2) 解法一:1m n n s s a +-=+…+1111()()()()22m n m m n a m n a a m n a a n m ++=-+=-+=- ∴1112,()()2m n m n m n a a s m n a a m n ++++=-=++=-- 解法二: 设2n s an bn =+,则22an bn m am bm n⎧+=⎨+=⎩相减得()1a m n b ++=- ∴s m+n =a(m +n)2+b(m +n)=(m+n)[a(m +n)+b]=-m -n 解法三:由已知点(,),(,),(,)m n m n s s s m n m n m n m n+++共线, ∴m n m n s m n m m n n m n s m n m m n++--+=⇒=---4.若数列{}n a 的前n 项和12+=n n S ,则=+++22221n a a a ( )A .2)12(+nB .1(41)3n - C .)264(311+-n D .)234(31+n例10.设{a n }(n ∈N *)是公差为d 的等差数列,前n 项和为S n ,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是 ( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值14.已知等比数列}{n a 公比为q ,且q>1,其前n 项和为S n ,则nn n S a 1lim +∞→= q -1 . 9.以()f n 表示下图中第(n )个图形的相应点数,根拒其规律()f n = ()2n n + .……15.在数列}{n a 中)(22+∈++-=N n kn n a n ,已知此数列是递减数列且恰从第三项起开始小于3,则实数k 的取值范围是_15 .,25[3)_________.例19.已知数列{a n }的前n 项和S n =(n -1)2n +1,是否存在等差数列{b n },使 a n =b 1C n 1+b 2C n 2+…+b n C n n 对一切正整数n 均成立?解:n ≥2时,a n =S n -S n-1=n2n-1,n =1时也成立,假设存在等差数列b n =an +b 满足条件 解法一: 则n2n-1=(a +b)C n 1+(2a +b)C n 2+…+(na +b)C n n=a(C n 1+2C n 2+…+nC n n )+b(C n 1+C n 2+…+C n n )=an2n-1+b(2n -1)=(an +2b)2n-1-b比较两边对应项系数可得b =0,a =1,所以存在等差数列b n =n 满足条件 解法二:a n = (a +b)C n 1+(2a +b)C n 2+…+(na +b)C n n倒序 a n =(na +b)C n n +(na-a+b)C n n-1+…+(a +b)C n 1相加2a n =(na +b)( C n 0+C n 1+C n 2+…+C n n )即 n ×2n =b n ×2n 所以b n =n 故存在等差数列b n =n 满足条件。
奥数:1-2-3等差数列应用题
等差数列应用题目tM 怔 例题精讲【例1】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬 冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人? 【考点】等差数列应用题 【难度】2星【题型】解答【解析】首项=17,末项=150,公差=7,项数=(150-17) £+1=20【答案】20【例2】 一个队列按照每排 2, 4, 6, 8人的顺序可以一直排到某一排有 100人,那么这个队列共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】(方法一)利用等差数列求和公式:通过例 1的学习可以知道,这个数列一共有50个数,再将和为102的两个数——配对,可配成 25对. 所以 2 4 696 98 100 = ( 2+100) 25=103 25= 2550(方法二)根据 1・2・3 . 98 99 10^5050,从这个和中减去 13 5 7 ... 99的和,就可得出此题的结果,这样从反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例3】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的•第一个雕塑有3只蝴蝶,第二个雕塑有 5只蝴蝶,第三个雕塑有 7只蝴蝶,第四个雕塑有 9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方, 学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】也就是已知一个数列:3、5、7、9、11、13、15、……,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式 一一第门项=首项+公差(n-1),所以,第102项=3+2(102-1) = 205;由 项数=(末项-首项尸公差十1”,999所处的项数是:(999—3)2+1 =996 斗 2 +1 =498+1 =499【答案】499【巩固】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根 ?【考点】等差数列应用题【难度】2星【题型】解答【解析】将每层圆木根数写出来,依次是:5, 6, 7, 8, 9, 10 ,…可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28•求的是第28项•我们可以用通项公式直接计算.解:a n =印(n — 1) d=5 (28 -1) 132(根)故最下面的一层有 32根.【答案】32【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多 4块砖,已知最下层 2106块砖,问中间一层多少块砖?这堆砖共有多少 块?【解析】项数=(2106-2)韶+1=527,因此,层数为奇数,中间项为(2+2106)吃=1054,数列和=中间项X项数=1054 >527=555458,所以中间一层有1054块砖,这堆砖共有555458块。
数列应用题
数列应用题1.一列火车自A 城驶入B 城,沿途有n 个车站(包括起点A 和终点B ),车上有一邮政车厢,每停靠一站便要卸下前面各站发往该站的邮袋各一个,同时又要装上该站发往后面各站的邮袋各一个,设从第k ()123k n = 、、、、站出发时,邮政车厢内共有邮袋k a 个()123k n = 、、、、,试求: (1)数列{}k a 的通项公式;(2)k 为何值时k a 最大?并求出k a 的最大值2.某商店积压了100件某种商品,为让这批货竟快脱手,该商店采取如下销售方案,将价格提高到原价的2.5倍,再做三次降价处理:第一次降低30%,标出“亏本价”第二次再降低30%,标出“破产价”第三次又降低30%,标出“跳楼价”结果:第一次降价处理仅售出5件,第二次降价处理售出40件,第三次降价处理剩下的商品被一抢而空问:(1)“跳楼价”与原价之比为多少?(2)该商店按新销售方案,相比按原价全部销售,哪一种方按更盈利?3.某企业进行技术改造,有两种方案:甲方案:一次性贷款十万元,第一年便可获利1万元,以后每一年比前一年增加30%的利润;乙方案:每年贷款一万元,第一年可获利1万元,以后每年比前一年多获利5千元;两种方案使用期限都是10年,到期一次性归还本息,若银行 贷款利息按10%的复利计算,比较两个方案哪个获利更多?(计算数据精确到千元)4.近日国内某大报纸有如下报道:加薪的学问学数学,其实是要使人聪明,使人的思维更加缜密,在美国广为流传的一道数学题目是:老板给你两个加工资的方案,一是每年年末加1000元,二是每半年结束时加300元,请选择一种,一般不擅数学的,很容易选择前者,因为一年加一千元比两个半年加600元要多,其实加工资是累计的,时间稍长,往往第二种方案更有利。
例如在第二年的年末,依第一种方案可以加得1000+2000=3000元,而第二种方案在第一年加得300+600=900元,第二年加得900+1200=2100元,总数也是3000元,但到第三年,第一方案可得1000+2000+3000=6000元, 第二方案则为300+600+900+1200+1500+1800=6300元,比第一方案多了300元,第四年、第五年会更多,因此,你若会在公司干三年以上,则应选择第二方案。
高中数学数列经典题型专题训练试题(含答案)
高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
【必刷题】2024高二数学上册数列求和技巧专项专题训练(含答案)
【必刷题】2024高二数学上册数列求和技巧专项专题训练(含答案)试题部分一、选择题:1. 已知数列{an}的前n项和为Sn,且Sn = n^2 + n,则数列{an}的通项公式为()A. an = 2nB. an = 2n + 1C. an = n + 1D. an = n^22. 等差数列{an}的前5项和为35,第5项为15,则数列的公差为()A. 2B. 3C. 4D. 53. 已知数列{an}的通项公式为an = 3n 2,则数列的前10项和为()A. 85B. 95C. 105D. 1154. 等比数列{an}的首项为2,公比为3,前4项和为()A. 80B. 81C. 82D. 835. 数列{an}的通项公式为an = 2^n,则数列的前5项和为()A. 30B. 31C. 32D. 336. 已知数列{an}的通项公式为an = n^2 + n,则数列的前6项和为()A. 126B. 136C. 146D. 1567. 等差数列{an}的公差为2,第7项为17,则数列的前7项和为()A. 84B. 88C. 92D. 968. 等比数列{an}的首项为3,公比为1/2,前5项和为()A. 15/2B. 17/2C. 19/2D. 21/29. 数列{an}的通项公式为an = n(n+1),则数列的前4项和为()A. 20B. 24C. 28D. 3210. 已知数列{an}的前n项和为Sn,且Sn = n^3 + n^2,则数列{an}的通项公式为()A. an = 3n^2 + 2nB. an = 3n^2 + 3nC. an = 2n^2 + 3nD. an = 2n^2 + 2n二、判断题:1. 等差数列的前n项和公式为Sn = n(a1 + an)/2。
()2. 等比数列的前n项和公式为Sn = a1(1 q^n)/(1 q),其中q为公比。
()3. 数列{an}的通项公式为an = 2n,则数列的前n项和为n^2。
数列应用题(典型例题)
1、(2004年福建高考)某企业去年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预测今年起每年比上一年纯利润减少20万元。
今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+12n)万元(n为正整数)①设从今年起的前n年,若该企业不进行技术改造的累计纯利润为A n万元,进行技术改造后的累计纯利润为B n万元(需扣除技术改造资金),求A n、B n的表达式;②依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润2、(2001年全国理)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业. 根据规划,本年度投入800万元,以后每年投入将比上年减少15.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14。
(Ⅰ)设n年内(本年度为第一年)总投入为a n万元,旅游业总收入为b n万元. 写出a n,b n的表达式(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?3、(2007年安徽卷)某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d (d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1 + r)n – 1,第二年所交纳的储备金就变为a2(1 + r) n – 2,…,以T n表示到第n年末所累计的储备金总额.(1)写出T n与T n– 1(n≥2)的递推关系式;(2)求证:T n = A n + B n,其中{A n}是一个等比数列,{B n}是一个等差数列.4、某工厂在1999年的“减员增效”中对部分人员实行分流,规定分流人员第一年可以到原单位领取工资的100%,从第二年起,以后每年只能在原单位按上一年的23领取工资,该厂根据分流人员的技术特长,计划创办新的经济实体,该经济实体预计第一年属投资阶段,第二年每人可获得b元收入,从第三年起每人每年的收入可在上一年的基础上递增50%,如果某人分流前工资的收入每年a元,分流后进入新经济实体,第n年的收入为na元,(1)求{}na的通项公式;(2)当827ab=时,这个人哪一年的收入最少?最少为多少?(3)当38ab≥时,是否一定可以保证这个人分流一年后的收入永远超过分流前的年收入?5、某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利a元的前提下,可卖出b件。
四种数列应用题积累
1.等差数列应用题【例1】(2004年福建高考)某企业去年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预测今年起每年比上一年纯利润减少20万元。
今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(今年为第一年)的利润为500(1+12n )万元(n 为正整数)① 设从今年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(需扣除技术改造资金),求A n 、B n 的表达式;②依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润 【例1】解、①依题意,有A n =(500-20)+(500-40)+(500-60)+…+(500-2n )=490n-10n 2B n =500[(1+12)+(1+122)+…+(1+12n )]-600=500n-5002n -100②考查B n - A n =10[n (n+1)-502n -10]而函数y=x (x+1)-502x -10在(0,+∞) 上为增函数,当n=1或2或3时,n (n+1)-502n-10 <0 当n ≥4时,n (n+1)-502n -10≥20-5016-10>0;∴仅当n ≥4时,B n >A n ∴至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润[例1(2)]用分期付款的方式购买家电一件,价为1150元,购买当天先付150元,以后每月这一天都交付50元,并加付欠款利息,月利率为1%,若交付150元后的每一个月开始算分期付款的第一个月,问分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家用电器实际花费多少钱?解:购买时付出150元后,余欠款1000元,按题意应分20次付清,由于每次都必须交50元,外加上所欠余款的利息,这样每次交付欠款的数额顺月次构成一数列设每次交款数额依次为a 1,a 2,…,a 20则:a 1=50+1000×1%=60元,a 2=50+(1000-50)×1%=59.5元 ……a 10=50+(1000-9×50)×1%=55.5元 即第10个月应付款55.5元.由于{a n }是以60为首项,以-0.5为公差的等差数列,所以有: S 20=60+(60-19×0.5)2×20=1105(元)即全部付清后实际付款(1105+150)=1255(元).2.等比数列应用题[例2]某人于1997年7月1日在银行按一年定期储蓄的方式存入a 元,1998年7月1日,他将到期存款的本息取出后添上a 元再按一年定期储蓄存入银行,此后他每年7月1日按照同样同样的方法在银行取款和存款,设银行定期储蓄的年利率r 不变,问到2002年7月1日他的本息共有多少?解:由题意得:1998年本息总数为a (1+r ), 1999年本息总数为a (1+r )2+a (1+r ), ……2002年本息总数为:a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )即a (1+r )[1-(1+r )5]1-(1+r ) =a r[(1+r )6-(1+r )][例3]某职工年初向银行贷款2万元用于购房,银行为了推动住房制度改革,贷款的优惠年利率为10%,按复利计算(即将本年的本金与利润的总和计为次年的本金),若这笔贷款要求10次等额还清,每年一次,10年还清,并且从贷款后次年年初开始归还,问每年应还多少元?解:设贷款额为a 0元,贷款年利率为α,次年等额归还x 元,第n 年还清,则 一年后的欠款数为:a 1=(1+α)a 0-x二年后的欠款数为:a 2=(1+α)a 1-x =(1+α)2a 0-x [(1+α)+1]三年后的欠款数为:a 3=(1+α)a 2-x =(1+α)3a 0-x [(1+α)2+(1+α)+1] ……n 年后的欠款数为:a n =(1+α)a n -1-x =(1+α)n a 0-x [(1+α)n -1+(1+α)n -2+…+(1+α)+1] 由于a n =0,贷款还清,∴(1+α)na 0=x ·1-(1+α)n 1-(1+α) , ∴x =α(1+α)na 0(1+α)n -1将α=0.1,a 0=20000,n =10代入,得x =2000×0.1×1.1101.110-1 ≈2000×2.59371.5937≈3255元.[例4]某地区荒山2200亩,从1995年开始每年春季在荒山植树造林,第一年植树100亩,以后每一年比上一年多植树50亩.(1)若所植树全部都成活,则到哪一年可将荒山全部绿化?(2)若每亩所植树苗、木材量为2立方米,每年树木木材量的自然增长率为20%,那么全部绿化后的那一年年底,该山木材总量为S ,求S 的表达式. (3)若1.28≈4.3,计算S (精确到1立方米).[例4]分析:由题意可知,各年植树亩数为:100,150,200,……成等差数列解:(1)设植树n 年可将荒山全部绿化,则:100n +n (n -1)2×50=2200解之得n =8或n =-11(舍去)(2)1995年所植树,春季木材量为200 m 3,到2002年底木材量则增为200×1.28 m 3. 1996年所植树到2002年底木材量为300×1.27 m 3. ……2002年所植树到年底木材量为900×1.2 m 3,则:到2002年底木材总量为: S =200×1.28+300×1.27+400×1.26+…+900×1.2 (m 3) (3)S =900×1.2+800×1.22+700×1.23+…+200×1.281.2S =900×1.22+800×1.23+…+300×1.28+200×1.29,两式相减得: 0.2S =200×1.29+100(1.22+1.23+…+1.28)-900×1.2 =200×1.29+100×1.22(1.27-1)1.2-1-900×1.2=1812∴S =9060( m 3)3.等差数列和等比数列应用题[例5]某人年初向银行贷款10万元用于购房.(Ⅰ)如果他向建设银行贷款,年利率为5%,且这笔款分10次等额归还(不计复利),每年一次,并从借后次年年初开始归还,问每年应付多少元?(Ⅱ)如果他向工商银行贷款,年利率为4%,要按复利计算(即本年的利息计入次年的本金生息),仍分10次等额归还,每年一次,每年应还多少元? [例5]解:(Ⅰ)若向建设银行贷款,设每年还款x 元,则105×(1+10×5%)=x (1+9×5%)+x (1+8×5%)+x (1+7×5%)+…+x即:105×1.5=10x +45×0.05元,解得x =105×1.512.25≈12245(元)(Ⅱ)若向工商银行贷款,每年需还y 元,则:105×(1+4%)10=y (1+4%)9+y (1+4%)8+…+y (1+4%)+y即105×1.0410=1.0410-11.04-1·y其中:1.0410=1+10×0.04+45×0.042+120×0.043+210×0.044+…≈1.4802.∴y ≈105×1.4802×0.041.4802≈12330(元)答:向建设银行贷款,每年应付12245元;若向工商银行贷款,每年应付12330元.例5(2)某商店为了促进商品销售,特定优惠方式,即购买某种家用电器有两种付款方式可供顾客选择,家用电器价格为2 150元.第一种付款方式:购买当天先付150元,以后每月这一天都交付200元,并加付欠款利息,月利率为1%;第二种付款方式:购买当天先付150元,以后每个月付款一次,10个月付清,每月付款金额相同,每月利息按复利计算,月利率1%.试比较两种付款方法,计算每月所付金额及购买这件家用电器总共所付金额.【解题提示】第一种付款方式是等差数列模型,第二种付款方式是等比数列模型,分别计算出实际共付金额,再比较得出结论.【解析】第一种方式:购买时先付150元,欠2 000元,按要求知10次付清,则 第1次付款金额为a 1=200+2 000×0.01=220(元); 第2次付款金额为a 2=200+(2 000-200)×0.01=218(元) ……第n 次付款金额为a n =200+[2 000-(n-1)×200]×0.01=220-(n-1)×2(元).不难看出每次所付款金额顺次构成以220为首项,-2为公差的等差数列,所以10次付款总金额为()10109S102202 2 1102⨯=⨯+⨯-= (元),实际共付2 260元.第二种方式:购买时先付150元,欠2 000元,则10个月后增值为2 000×(1+0.01)10=2 000×(1.01)10(元).设每月付款x 元,则各月所付的款额连同最后一次付款时生成的利息之和分别是(1.01)9x,(1.01)8x,…,x,其构成等比数列,和为()10101 1.01S x 1 1.01-=⋅-.应有()1010S 2 000 1.01=⨯,所以x ≈211.2,每月应付211.2元,10次付款总金额为2 112元,实际共付2 262元,所以第一种方式更省钱.例5(3)银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利.现在有某企业进行技术改造,有两种方案:甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润; 乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元.两种方案的期限都是10年,到期一次行归还本息.若银行贷款利息均以年息10%的复利计算,试比较两个方案哪个获得存利润更多?(计算精确到千元,参考数据:10101.1 2.594,1.313.796==) 解:甲方案10年获利润是每年利润数组成的数列的前10项的和:10291.311(130%)(130%)(130%)42.621.31-+++++++==- (万元)到期时银行的本息和为1010(110%)10 2.59425.94⨯+=⨯=(万元) ∴甲方案扣除本息后的净获利为:42.6225.9416.7-≈(万元)乙方案:逐年获利成等差数列,前10年共获利:10(1 5.5)1(10.5)(120.5)(190.5)32.502+++++⨯+++⨯== (万元)贷款的本利和为:1091.111.1[1(110%)(110%)] 1.117.531.11-+++++=⨯=- (万元)∴乙方案扣除本息后的净获利为:32.5017.5315.0-=(万元)所以,甲方案的获利较多.4.递推数列应用题[例6](2001年全国理)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业. 根据规划,本年度投入800万元,以后每年投入将比上年减少15.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14。
数列应用题专题训练题
数列应用题专题训练题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998《数列应用题》专题训练题1.从社会效益和经济效益出发,某地投入资金进行生态环境建设,以发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游的促进作用,预计今后的旅游业收入每年会比上年增加41.(1)设n 年内(本年度为第一年)总投入为n a 万元,旅游业总收入为n b 万元.写出,n n a b ;(2)只需经过几年旅游的总收入就能超过总投入2.某地区森林原有木材存量为a ,且每年增长率为14,因生产建设需要每年年底要砍伐的木材量为b ,设n a 为n 年后该地区的木材存量,(1)求n a 的表达式:(2)为不发生水土流失,要求木材存量不少于79a ,若1972a b =,该地区会发生水土流失吗若会,需经过几年(lg 20.3=)3.某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆本小题主要考查为数列、数列的极限等基础知识,考查建立数学模型、运用所学知识解决实际问题的能力.满分12分.解:设2001年末汽车保有量为b 1万辆,以后各年末汽车保有量依次为b 2万辆,b 3万辆,…,每年新增汽车x 万辆,则 .94.0,30121x b b b +⨯==………………2分对于n >1,有 ,)94.01(94.094.0211x b x b b n n n ++⨯=+⨯=-+.94.0)06.030(06.0n x x ⨯-+=………………6分 当.30,8.1,006.03011=≤≤≤≤≥-+b b b x xn n 时即………………8分当,06.0]94.0)06.030(06.0[lim lim ,8.1,006.0301x x x b x x n n n n =⨯-+=><--∞→∞→时即并且数列{b n }逐项增加,可以任意靠近06.0x. ……………10分因此,如果要求汽车保有量不超过60万辆,即),3,2,1(60 =≤n b n .则6.3,6006.0≤≤x x即(万辆).综上,每年新增汽车不应超过万辆.………12分 例 1 甲、乙两人连续6年对某县农村养鸡业规模进行调查,调查后提供了两个不同的信息图,甲调查表明:从第一年平均每个养鸡场生产1万只鸡上升到第六年平均每个养鸡场生产2万只鸡,如图甲;乙调查表明:由第一年养鸡场有30个减少到第六年有10个,如图乙. 请你根据提供的信息回答下列问题:(1)第六年这个县的生产鸡数比第一年增多了还是减少了说明理由:(2)设第n 年平均每个养鸡场生产只数为a n ,第n 年的养鸡场个数为b n ,写出a n ,b n 的解析式(用n 表示,1≤n ≤6,n ∈N *);(3)在这6年内,哪一年该县生产鸡数最多说明理由.例 2 从社会效益和经济效益出发,某地投入资金进行生态环境建设,以发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游的促进作用,预计今后的旅游业收入每年会比上年增加41.(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n ;(2)只需经过几年旅游的总收入就能超过总投入例 3、某乡为提高当地群众的生活水平,由政府投资兴建了甲、乙两个企业,2007年该乡从甲企业获得利润320万元,从乙企业获得利润720万元。
数列应用练习题
数列应用练习题一、等差数列应用题1. 甲买了一批商品,每天卖出其中的5个,经过10天后全部卖完。
已知甲每天的销售额为200元,求甲买进这批商品的总额。
解析:由已知可知,甲每天销售的商品数量为5个,所以经过10天,甲总共卖出的商品数量为5 * 10 = 50个。
同时,甲每天的销售额为200元,所以甲卖出这批商品的总额为50 * 200 = 10000元。
由于这批商品全部卖完,所以甲买进这批商品的总额也为10000元。
2. 一列等差数列的首项是2,公差是3,请问这列数列中第10项的值是多少?解析:由已知可知,这列等差数列的首项是2,公差是3。
根据等差数列的通项公式an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。
代入已知数据可以得到第10项的值:a10 = 2 + (10 - 1) * 3 = 2 + 9 * 3 = 2 + 27 = 29。
二、等比数列应用题1. 一列等比数列的首项是1,公比是2,求前10项的和。
解析:由已知可知,这列等比数列的首项是1,公比是2。
根据等比数列的求和公式Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项的和,a1表示首项,q表示公比,n表示项数。
代入已知数据可以得到前10项的和:S10 = 1 * (1 - 2^10) / (1 - 2) = 1 * (-1023) / (-1) = 1023。
2. 一列等比数列的首项是3,公比是0.5,求前10项的乘积。
解析:由已知可知,这列等比数列的首项是3,公比是0.5。
根据等比数列的乘积公式Pn = a1^n * q^{n(n-1)/2},其中Pn表示前n项的乘积,a1表示首项,q表示公比,n表示项数。
代入已知数据可以得到前10项的乘积:P10 = 3^10 * (0.5)^{10(10-1)/2} = 59049 * (0.5)^45 = 59049 * (0.5)^{45/2} = 59049 * (0.5)^{(9*5)/2} = 59049 * (0.5)^{45/2} = 3.8146973 * 10^{-7}。
等差数列及其应用
等差数列及其应用
一、填空题。
1、已知等差数列4,8,12,16…,它的第25项是()。
2、已知等差数列2,7,12,…,122,这个等差数列共有()项。
3、从25开始往后,数20个连续的奇数,最后1个奇数是()。
4、在一个等差数列中,第一项是12,第五项是60,公差是()。
5、在自然数10到30之间插入4个数,使这六个数构成等差数列,这四个数分别是()、()、()、()。
6、三个数成等差数列,它们的和是18,积是120,这三个数是()、()、()。
二、计算题。
1、2+6+10+14+…+210+214
2、(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
三、解答题。
1、有一个等差数列:1,5,9,13,17,21…(1)第1000个数是多少?(2)4921是它的第几项?
2、39个连续奇数的和是1989,其中最大的一个
3、1-100这一百个自然数中所有不能被9
奇数是多少?整除的奇数的和是多少?
4、九个连续偶数的和比其中最小的数多232,这九个数中最大的数是多少?
四、应用题。
1、蜗牛从早晨开始爬行,每小时比前一小时多爬行10厘米,第一小时爬了100厘米,休息的最后一小时爬了190厘米。
问:蜗牛爬了几小时?
2、影剧院有座位若干排,第一排有25个座位,以后每排比前一排多3个座位,最后一排有94个座位。
问:这个影剧院共有多少个座位?
3、50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次就足够了?。
数列应用题专题训练
},那么a1=50+1000×0.01=60元,a2=50+(1000-50)×0.01=59.5元,a3=50+(1000-50×2)×0.01=59,……a n=60-(n-1)·0.5所以{a n}是以60为首项,-0.5为公差的等差数列,故a10=60-9×0.5=55.5元20次分期付款总和S20=×20=1105元,实际付款1105+150=1255(元)答:第10个月该付55.5元,全部付清后实际共付额1255元。
例3、〔疾病控制问题〕流行性感冒〔简称流感〕是由流感病毒引起的急性呼吸道传染病。
某市去年11月份曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人。
由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数。
分析:设11月n日这一天新感染者最多,那么由题意可知从11月1日到n日,每天新感染者人数构成一等差数列;从n+1日到30日,每天新感染者构成另一个等差数列。
这两个等差数列的和即为这个月总的感染人数。
略解:由题意,11月1日到n日,每天新感染者人数构成一等差数列a n,a1=20,d1=50,11月n 日新感染者人数a n=50n—30;从n+1日到30日,每天新感染者人数构成等差数列b n,b1=50n-60,d2=—30,b n=(50n-60)+(n-1)(-30)=20n-30,11月30日新感染者人数为b30-n=20(30-n)-30=-20n+570.故共感染者人数为:=8670,化简得:n2-61n+588=0,解得n=12或n=49(舍),即11月12日这一天感染者人数最多,为570人。
综合算式专项练习数列的应用问题
综合算式专项练习数列的应用问题数列是数学中常见的概念,它是按照一定的规律排列的一组数。
在实际应用中,数列经常被用来描述和解决各种问题。
本文将重点介绍数列的应用问题,并提供一些综合算式的专项练习。
一、斐波那契数列斐波那契数列是一个神奇的数列,它的前两项为1,之后的每一项都是前两项的和。
斐波那契数列在自然界中有着广泛的应用,如描述兔子繁殖、植物生长等。
下面是一个斐波那契数列的应用问题:问题:兔子繁殖问题。
开始时,一对兔子(一公一母)放养在一个围栏里,请问第10个月共有多少对兔子?解析:根据题目描述,第1个月有1对兔子,第2个月也有1对兔子。
从第3个月开始,每个月的兔子对数都是前两个月兔子对数之和。
我们可以用数列来表示,设第n个月兔子对数为An。
则有如下递推关系:An = An-1 + An-2。
根据递推关系,我们可以计算出前几个月的兔子对数如下:1, 1, 2, 3, 5, 8, 13, 21, 34, 55。
所以第10个月共有55对兔子。
二、等差数列等差数列是指数列中相邻两项之差保持恒定的数列。
等差数列在日常生活中也有很多应用,如计算等差数列的和可用于预算和财务管理。
下面是一个等差数列的应用问题:问题:购物问题。
小明每天购物,他从第一天起每天花费10元,且每天的花费都比前一天多5元。
请问,到第30天,小明一共花费了多少元?解析:根据题目描述,小明每天的花费构成了一个等差数列。
设第n天的花费为An,第一天的花费为A1。
根据题目要求,可得递推关系:An = A1 + (n-1) * 5。
代入题目信息,第一天花费10元,即A1 = 10,共花费到第30天,即n = 30。
带入递推关系,可以计算出小明一共花费了10 + (30-1) * 5= 155元。
三、等比数列等比数列是指数列中相邻两项之比保持恒定的数列。
等比数列在生活中也有很多应用,如描述一种倍增或倍减的现象。
下面是一个等比数列的应用问题:问题:细菌繁殖问题。
应用题等量关系专项练习
应用题等量关系专项练习等量关系专项练习一、数列问题在数学中,等量关系是指具有相同差值的数之间的关系。
等量关系通常以数列的形式呈现,通过寻找规律,我们可以进一步探究数之间的关系。
下面,我们将通过一些等量关系的专项练习来提高解决数列问题的能力。
例1:数列问题已知数列{a_n}的通项公式为a_n = 2n + 1,求前5项的和。
解答:我们将数列的前5项写出来:a_1 = 2*1 + 1 = 3a_2 = 2*2 + 1 = 5a_3 = 2*3 + 1 = 7a_4 = 2*4 + 1 = 9a_5 = 2*5 + 1 = 11要求前5项的和,即求 S_5 = a_1 + a_2 + a_3 + a_4 + a_5:S_5 = 3 + 5 + 7 + 9 + 11 = 35所以,前5项和为35。
例2:数列问题已知数列{b_n}的通项公式为b_n = n^2 + 2n,求前4项的和。
解答:我们将数列的前4项写出来:b_1 = 1^2 + 2*1 = 1 + 2 = 3b_2 = 2^2 + 2*2 = 4 + 4 = 8b_3 = 3^2 + 2*3 = 9 + 6 = 15b_4 = 4^2 + 2*4 = 16 + 8 = 24要求前4项的和,即求 S_4 = b_1 + b_2 + b_3 + b_4:S_4 = 3 + 8 + 15 + 24 = 50所以,前4项和为50。
二、几何问题等量关系在几何中也有广泛的应用,通过寻找图形之间的等量关系,可以解决一些几何问题。
下面,我们通过一些几何问题的练习来加深对等量关系的理解。
例3:几何问题如图所示,ABCD为一个四边形,且AB = 3,BC = 4,CD = 5。
连接AC,并通过点E将AC分成两段,使得AE:EC = 2:1。
求BE的长度。
解答:根据题意,我们可以得到以下等量关系:AB + BC = AD3 +4 = ADAD = 7根据AE:EC = 2:1,我们有以下等量关系:AE:EC = AD:DC2:1 = 7:DC2DC = 7DC = 3.5根据三角形相似性质,我们可以得到以下等量关系:BE:EC = BA:ADBE:1 = 3:7BE = 3/7所以,BE的长度为3/7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列应用题专题训练
以数列知识作为背景的应用题是高中应用题中的常见题型,要正确快速地求解这类问题,需要在理解题意的基础上,正确处理数列中的递推关系。
一、储蓄问题
对于这类问题的求解,关键是要搞清:(1)是单利还是复利;(2)存几年。
单利是指本金到期后的利息不再加入本金计算。
设本金为P元,每期利率为r,经过n期,按单利计算的本利和公式为Sn=P(1+nr)。
复利是一种计算利率的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息。
设本金为P,每期利率为r,设本利和为y,存期为x,则复利函数式为y=P(1+r)x。
例1、(储蓄问题)某家庭为准备孩子上大学的学费,每年6月30日在银行中存入2000元,连续5年,有以下两种存款的方式:
(1)如果按五年期零存整取计,即每存入a元按a(1+n·6.5%)计本利(n为年数);
(2)如果按每年转存计,即每存入a元,按(1+5.7%)n·a计算本利(n为年数)。
问用哪种存款的方式在第六年的7月1日到期的全部本利较高?
二、等差、等比数列问题
等差、等比数列是数列中的基础,若能转化成一个等差、等比数列问题,则可以利用等差、等比数列的有关性质求解。
例2、(分期付款问题)用分期付款的方式购买家用电器一件,价格为1150元。
购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%。
若交付150元以后的第一个月开始算分期付款的第一日,问分期付款的第10个月该交付多少钱?全部货款付清后,买这件家电实际花了多少钱?
例3、(疾病控制问题)流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病。
某市去年11月份曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人。
由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数。
例4(住房问题)某城市1991年底人口为500万,人均住房面积为6 m2,如果该城市每年人口平均增长率为1%,每年平均新增住房面积为30万m2,求2000年底该城市人均住房面积为多少m2?(精确到0.01)
例5 (浓度问题)从盛有盐的质量分数为20%的盐水2 kg的容器中倒出1 kg盐水,然后加入1 kg 水,以后每次都倒出1 kg盐水,然后再加入1 kg水,
问:1.第5次倒出的的1 kg盐水中含盐多少g?
2.经6次倒出后,一共倒出多少kg盐?此时加1 kg水后容器内盐水的盐的质量分数为多
少?
例6.(减员增效问题)某工厂在1999年的“减员增效”中对部分人员实行分流,规定分流人员第
一年可以到原单位领取工资的100%,从第二年起,以后每年只能在原单位按上一年的2
3
领取工
资,该厂根据分流人员的技术特长,计划创办新的经济实体,该经济实体预计第一年属投资阶段,第二年每人可获得b元收入,从第三年起每人每年的收入可在上一年的基础上递增50%,如果某人分流前工资的收入每年a元,分流后进入新经济实体,第n年的收入为n a元,
(1)求{}
n
a的通项公式;
(2)当
8
27
a
b=时,这个人哪一年的收入最少?最少为多少?
(3)当
3
8
a
b≥时,是否一定可以保证这个人分流一年后的收入永远超过分流前的年收入?
例7.(等差等比综合问题)银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利.现在有某企业进行技术改造,有两种方案:甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润;
乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元.
两种方案的期限都是10年,到期一次行归还本息.若银行贷款利息均以年息10%的复利计算,试比较两个方案哪个获得存利润更多?(计算精确到千元,参考数据:1010
1.1
2.594,1.31
3.796
==)
三、a n - a n-1=f(n),f(n)为等差或等比数列
有的应用题中的数列递推关系,a n 与a n-1的差(或商)不是一个常数,但是所得的差f(n)本身构成一个等差或等比数列,这在一定程度上增加了递推的难度。
例8、(广告问题)某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利a 元的前提下,可卖出b 件。
若作广告宣传,广告费为n 千元时比广告费为(n-1)千元时多卖出
n b
2
件,(n ∈N *)。
(1)试写出销售量s 与n 的函数关系式;
(2)当a=10,b=4000时厂家应生产多少件这种产品,做几千元广告,才能获利最大?
四、a n = C ·a n-1+B ,其中B 、C 为非零常数且C ≠1
例9、(企业生产规划问题)某企业投资1千万元于一个高科技项目,每年可获利25%,由于企业间竞争激烈,每年底需要从利润中取出资金200万元进行科研、技术改造与广告投入,方能保持原有的利润增长率,问经过多少年后,该项目的资金可以达到或超过翻两番(4倍)的目标?(lg2=0.3)。
例10(分期付款问题)某人年初向银行贷款10万元用于买房: (1)如果他向建设银行贷款,年利率为5%,且这笔借款分10次等额归还(不计复利),每年一次,并从借后次年年初开始归还,问每年应还多少元?(精确到一元);
(2)如果他向工商银行贷款,年利率为4%,要按复利计算(即本年的利息计入次年的本金生息),仍分10次等额归还,每年一次,每年应还多少元?(精确到一元)。
例11.(环保问题)(2002年全国高考题)某城市2001年末汽车保有量为30万辆,预计此后每年报废上年末汽车保有量的6%,并且每年新增汽车数量相同,为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?
例12.用砖砌墙,第一层用去了全部砖块的一半多一块,第二层用去了剩下的一半多一块……,依此类推,每一层都用去了上次剩下砖块的一半多一块,到第10层恰好把砖块用完,则此次砌墙一共用了多少块砖?
例13.(生态问题)某地区森林原有木材存量为a,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b,设
n
a为n年后该地区森林木材的存量,
(1)求
n
a的表达式;
(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于7
9
a,如果
19
72
a
b=,
那么该地区今后会发生水土流失吗?若会,需要经过几年?(参考数据:lg20.3
=)
五、二个(或多个)不同数列之间的递推关系
有的应用题中还会出现多个不同数列相互之间的递推关系,对于该类问题,要正确处分没数列间的相互联系,整体考虑。
例14、(浓度问题)甲乙两容器中分别盛有浓度为10%、20%的某种溶液500ml ,同时从甲乙两个容器中取出100ml 溶液,将近倒入对方的容器搅匀,这称为是一次调和,记a 1==10%,b 1=20%,经(n-1)次调和后甲、乙两个容器的溶液浓度为a n 、b n ,
(1)试用a n-1、b n-1表示a n 、b n ;
(2)求证数列 {a n -b n }是等比数列,并求出a n 、b n 的通项。
例15.现有流量均为3002
/m
s 的两条河流A 、B 会合于某处后,不断混合,它们的含沙量分别
为23
/kg m 和0.23
/kg m .假设从汇合处开始,沿岸设有若干个观测点,两股水流在流经相邻两个观测点的过程中,其混合效果相当于两股水流在1秒钟内交换1003
m 的水量,即从A 股流入B 股1003m 水,经混合后,又从B 股流入A 股1003
m 水并混合.问:从第几个观测点开始,两股河水的含沙量之差小于0.013
/kg m (不考虑泥沙沉淀)?
六、数列求和综合问题
例16 某单位为了职工的住房问题,计划征用一块土地盖一幢总建筑面积为2
30000m 的宿舍楼(每层的建筑面积相同)。
已知土地的征用费为2250元/2
m ,土地的征用面积为第一层的1.5倍。
经工程技术人员核算,第一层的建筑费用为400元/2
m ,以后每增高一层,该层建筑费用就增加30元/2
m 。
试设计这幢宿舍楼的楼高层数,使总费用最少,并求出其最少费用。
(总费用为建筑费用和征地费用之和)。
例17 某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(今年为第一年)的利润为500(1+
n
21
)万元(n 为正整数). (Ⅰ)设从今年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n 、B n 的表达式;
(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?。