2018-2019学年七年级(下)期中数学试卷

合集下载

福建省厦门一中2018-2019学年第二学期七年级期中考试数学试卷【含答案】

福建省厦门一中2018-2019学年第二学期七年级期中考试数学试卷【含答案】

2018-2019福建省厦门一中初一下学期期中考试数学试卷(试卷满分:150 分考试时间:120 分钟)一、选择题( 本大题共 10 小题,每小题 3 分,共 30 分.每小题有且只有一个选项正确) 1.如果将汽车向东行驶 3 千米记为+3 千米,那么记为-3 千米表示的是()A .向西行驶 3 千米B .向南行驶 3 千米C .向北行驶 3 千米D .向东南方向行驶 3 千米2.生产厂家检测 4 个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数, 其中最接近标准质量的篮球是()A .+2.5B .-0.6C .+0.7D .-3.53.(-1)4 可表示为()A . (-1)×4B . (-1)+(-1)+(-1)+(-1)C .-1×1×1×1D . (-1)×(-1)×(-1)×(-1)4. 下列各组是同类项的是() A .a 3和 a2B .12a 2和 2a 2 C .2xy 和 2x D .3 与 a5. a 表示有理数,则下列说法正确的是()A . a 表示正数B . -a 表示负数C . |a |表示正数D .-a 表示 a 的相反数6. 下列变形不正确的是()A. 若 x =y ,则 x +c =y +c B . 若 x =y ,则 x -c =y -c C . 若 a =b ,则 ac =bcD . 若 a =b ,则 a =bc c7. 长方形的周长为 10,它的长是 a ,那么它的宽是()A .10-2aB . 10-aC .5-aD . 5-2a8.有理数 a ,b 在数轴上表示如图,下列判断正确的是()A . -a <-bB . -a >bC . a >-bD . a <-b( )9. 设 n 是自然数,则 (-1)n +(-1)n +12的值为 ()A .0B .1C .-1D .1 或-110. 若 ab >0,且 a +b <0,那么下列选项正确的是()A . a >0,b >0B . a >0,b <0C . a <0,b <0D . a <0,b >0二、填空题( 本大题共 9 小题,每空 2 分,共 46 分) 11.(1) 3 的相反数是 ; (2) -2 的绝对值是 ; (3) -1的倒数是;5(4) 比较大小:-1-3 用“>”、“<”或“=”填空). 3412.(1) 光年是天文学中的距离单位.1 光年大约是 9500000000000km ,用科学记数法表示为 km.(2) 用四舍五入法取近似值:3.145≈ (精确到百分位).13.在-1,0,-1.5,-8,11,20%中,整数有.2 4 14.直接写出结果: (1) -1+1= ; (2) 3-7= ; (3) 4÷(-2=;3 (4) -7×0.5= ; (5) (-2)3=; (6) (-1)2n =(n 为正整数);(7) 4x =0 的解是;(8) -1x =4 的解是.515.(1)单项式-3x 2y 的系数是 ;(2)多项式 a 2-2a +1 的一次项系数是.16.(1)已知 x =5 是关于 x 的方程 3x -2a =1 的解,则 a 的值是 .(2)当 x =时,代数式 x -2 与 2x 的值互为相反数.17. 如图 1 是一个圆环,外圆与内圆的半径分别是 R 和 r .当 R =5cm ,r =3cm 时,则圆环(阴影部分)的面积为cm 2.(结果保留π)图 1图 218. 若 A 是一个单项式,B 是一个多项式,且 A +B =1,请写出一组符合条件的 A 、B ,A =,B =.19. 用同样大小的黑色棋子按图 2 所示的方式摆图形,按照这样的规律摆下去,则第 n 个图形需要棋子枚(用含 n 的代数式表示).÷三、解答题( 本大题共 10 小题,共 72 分)20.(本题满分 4 分) 画出数轴并把下列各数标在数轴上:-4, 21, -1.5, 0.221.(每小题 3 分,共 12 分)计算下列各题:(1) (-4)-(+8)-(-7)(2) 4×(-5)-12÷(-6)(3) (1+5- 7)×(-24)(4) -14-(1+0.5)×14 2 6 12322.(每小题 3 分,共 12 分)化简下列各题:(1) 2a -5b -3a +b (2) 3(a -b )-4(a -b )-5(a -b )(3) 4(x 2+xy -1)-2(2x 2-xy )(4) a 2-3[a 2-2(a 2-a )+1]23.(每小题 3 分,共 6 分)解下列方程:(1) 4x =5+3x ; (2) 2x -19=7x +624.(本题满分 5 分)先化简,再求值:5a 2+3b 2+2(a 2-b 2)-(5a 2-3b 2),其中 a =-1,b =1225.(本题满分 6 分) 小明家中买了一辆小轿车,他连续记录了 7 天中每天行驶的路程为下表,以 50km 为标准,超过50km 记为“+”,不足 50km 的记为“-”.问:(1)小明家的轿车在这 7 天中共行驶多少千米?(2)小明家的轿车这 7 天中平均每天行驶约多少千米?(精确到 0.1).26.(本题满分6 分) 如图2,是由两个正方形组成的图形.(1)用图中所给的数字和字母列代数式表示出阴影部分的面积S.(结果要求化简)(2)当a=4 时,求阴影部分的面积.图 227.(本题满分6 分) 定义:若两个有理数a,b 满足a+b=ab,则称a,b 互为特征数.(1)3 与互为特征数;(2)正整数n (n>1)的特征数为;(用含n 的式子表示)(3)若m,n 互为特征数,且m+mn=-2,n+mn=3,求m+n 的值.28.(本题满分9 分) 某班将举行知识竞赛活动,班长安排小明购买奖品.小明去文化用品店买了两种大小不同的笔记本一共a 本,其中大笔记本单价8 元,小笔记本单价5 元.若设买单价5 元小笔记本买了x 本.(1)填写下表:(2 分)(2)列式表示:小明买大小笔记本共花元.(3)若小明从班长那里拿了300 元,买了40 本大小不同的两种笔记本(a=40),还找回55 元给班长,那么小明买了大小笔记本各多少本?(4)若这个班下次活动中,让小明刚好花400 元购买这两种大小笔记本,并且购买的小笔记本数量x 要小于60 本,但还要超过30 本(30<x<60),请列举小明有可能购买的方案,并说明理由.29.(本题满分8 分)(1)设a、b 为有理数,比较|a+b|与|a|+|b|(a、b 为有理数)的大小关系,并用文字语言叙述此关系;(2) 根据(1)中的结论,当|x|+2018=|x-2018|时,则x 的取值范围为.(3) 已知a、b、c、d 是有理数,|a-b|≤6,|c-d|≤16,|a-b-c+d|=22,求|b-a|-|d-c|的值.× × 答案一、选择题(每小题 4 分,共 40 分)二、填空题(每空 2 分,共 46 分)11.-3;2;-5;>12. 9.5×1012 ;3.15 13.0、-8 14.0;-4;-6;-3.5;-8;1;x =0;x =-20 15.-3、-216.7、23 19.3n +1三、解答题(共 10 题,共 72 分) 20.解:如图:17.16π18.-x 、x +1 (答案不唯一,符合题意即可得分)21.(1) 解:原式=-4-8+7(2)解:原式=-20+2=-12+7=-18=-5(3) 解:原式= 1 2 ×(-24)+5 6 ×(-24)- 712×(-24)(4) 解:原式=-1-3 ×1 12 3 4 =-12-20+14 =-1-1 12 4 =-32+14 =-1-18 =-18=-9822.(1) 解:原式=2a -3a -5b +b(2)解:原式=(3-4-5)(a -b )=-a -4b=-6(a -b )=-6a +6b(3) 解:原式=4x 2+4xy -4-4x 2+2xy(4) 解:原式=a 2-3(a 2-2a 2+2a +1)=4x 2-4x 2+4xy +2xy -4 =a 2-3a 2+6a 2-6a -3 =6xy -4=4a 2-6a -323.(1) 解:4x -3x =5(2)解:2x -7x =6+19x =5-5x =2524.解:原式=5a 2+3b 2+2a 2-2b 2-5a 2+3b 2=5a 2+2a 2-5a 2+3b 2-2b 2+3b 2 =2a 2+4b 2当 a =-1,b =1时,原式=2×(-1)2+4×( 2=2+1=31)22 x =-525.解:(1) 50×7-8-21-14+0-16+41+28=360 千米答:7 天共行驶 360 千米 (2) 360÷7≈51.4 千米答:平均每天行驶约 51.4 千米26.解:(1) S =a 2+62-1a 2-1(a +6)×62 2=a 2+36-1a 2-3a -182 =1a 2-3a +18 2(2) 当 a =4 时, S =1a 2-3a +18=142-3×4+18=142 227.解:(1) 32 (2) nn -1(3) ∵ m ,n 互为特征数∴ m +n =mn又 m +mn =-2 ①, n +mn =3 ②①+②得:m +n +2mn =1∴ m +n +2(m +n )=1 ∴ m +n =1328.解:(1) a -x ,8(-x )(2) 8a -3x(3) 根据题意得:8×40-3x =300-55 解得:x =2540-25=15 (本)答:小明买了小笔记本 25 本,大笔记本 15 本(4) 根据题意得:400=8a -3x 解得:a =50+3x8 ∵ 30<x <60且 a 、x 为正整数,a >x∴ x =32,a =62,a -x =30 x =40,a =65,a -x =25 x =48,a =68,a -x =20 x =56,a =71,a -x =15∴ 方案①是小笔记本 32 本,大笔记本 30 本;方案②是小笔记本 40 本,大笔记本 25 本;方案③是小笔记本 48 本,大笔记本 20 本;方案④是小笔记本 56 本,大笔记本 15 本;29.解:(1) |a |+|b |≥|a +b | (当 a 、b 同号或者有一个等于 0 时取等号)文字表述:两数绝对值的和大于等于这两个数和的绝对值 (2) ∵ |-2018|=2018∴ |x |+2018=|x |+|-2018|=|x -2018|∴x ≤0即:当|x |+2018=|x -2018|时,x ≤0(3) ∵ |a-b|≤6,|c-d|≤16,|a-b-c+d|=22∴ |a-b-c+d|=|(a-b)-(c-d)|=22∴ (a-b)与(c-d) 异号,且|a-b|=6,|c-d|=16 ∴ |b-a|-|d-c|=6-16=-10。

2018-2019学年江苏省连云港市海州区七年级(下)期中数学试卷( 解析版)

2018-2019学年江苏省连云港市海州区七年级(下)期中数学试卷( 解析版)

2018-2019学年江苏省连云港市海州区七年级(下)期中数学试卷一、选择题(每小题3分,满分24分)1.(3分)下列图形中,不能通过其中一个四边形平移得到的是( )A.B.C.D.2.(3分)用下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.2cm、4cm、3cm B.6cm、12cm、5cmC.4cm、5cm、3cm D.4cm、5cm、8cm3.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为( )A.0.7×10﹣3B.7×10﹣3C.7×10﹣5D.7×10﹣4 4.(3分)若一个多边形的每个内角都为135°,则它的边数为( )A.8B.9C.10D.125.(3分)下列式子是完全平方式的是( )A.a2+2ab﹣b2B.a2+2a+1C.a2+ab+b2D.a2+2a﹣1 6.(3分)如图,△ABC中的边BC上的高是( )A.AF B.DB C.CF D.BE7.(3分)如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为( )A.①②B.①③C.②③D.以上都错8.(3分)如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm,则正方形的面积与长方形的面积的差为( )A.2a2B.a2C.a2D.4a2二、填空题(每小题3分,共30分)9.(3分)计算:2x(x﹣3)= .10.(3分)分解因式:x2﹣2xy+y2= .11.(3分)若a m=16,a n=2,则a m﹣2n的值为 .12.(3分)某多边形的内角和与外角和相等,这个多边形的边数是 .13.(3分)如图,l∥m,∠1=120°,∠A=55°,则∠ACB的大小是 .14.(3分)一个长、宽分别为m、n的长方形的周长为14,面积为8,则m2n+mn2的值为 .15.(3分)已知等腰三角形的两边长分别为2、5,则三角形的周长为 .16.(3分)如图,小明从点A向北偏东70°方向走到B点,又从B点向北偏西30°方向走到点C,则∠ABC的度数为 °.17.(3分)若x2﹣mx﹣12=(x+3)(x+n),则mn= .18.(3分)如图,在△ABC中,E点是AC边上的一个点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=74°,∠AEB=128°,则原三角形的∠B= °.三.解答题(本大题共96分)19.(20分)计算:(1)2a3•(a2)3÷a;(2)π0+(﹣)﹣3+(﹣3)2;(3)2m(m﹣n)﹣(m﹣n)2;(4)(2a﹣b﹣c)(2a+b﹣c).20.(15分)因式分解:(1)3x(a﹣b)﹣6y(b﹣a);(2)2ax2﹣2ay2;(3)(x2+9)2﹣36x2.21.(7分)先化简,再求值:(x﹣1)(3x+1)﹣(x+2)2+5,其中x2﹣3x﹣1=0.22.(7分)如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出中线CD;(3)画出BC边上的高线AE;(4)在平移过程中,线段BC扫过的面积为 .23.(7分)(1)如图,试用x的代数式表示图形中阴影部分的面积;(2)当x=5时,计算图中阴影部分的面积.24.(8分)如图,已知∠1=∠2,∠3=∠4,试说明AB∥CD.25.(8分)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.26.(10分)发现与探索如图,根据小军的方法,将下列各式因式分解:(1)a2+5a+6;(2)a2+2ab﹣3b2.小丽发现通过用两种不同的方法计算同一几何体体积,就可以得到一个恒等式.如图是边长为(a+b)的正方体,被如图所示的分割线分成8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式为: ;(4)已知a+b=4,ab=2,利用上面的规律求a3+b3的值.27.(14分)如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB= °;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,求∠ACB的度数;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求∠E 的度数;如果会,请说明理由.2018-2019学年江苏省连云港市海州区七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,满分24分)1.(3分)下列图形中,不能通过其中一个四边形平移得到的是( )A.B.C.D.【分析】根据平移与旋转的性质得出.【解答】解:A、能通过其中一个四边形平移得到,错误;B、能通过其中一个四边形平移得到,错误;C、能通过其中一个四边形平移得到,错误;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,正确.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选.2.(3分)用下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.2cm、4cm、3cm B.6cm、12cm、5cmC.4cm、5cm、3cm D.4cm、5cm、8cm【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A、2+3>4,能组成三角形,故本选项错误;B、6+5=11<12,不能组成三角形,故本选项正确;C、3+4>5,能组成三角形,故本选项错误;D、5+4>8,能组成三角形,故本选项错误.故选:B.【点评】考查了三角形的三边关系,一定注意构成三角形的三边关系:两边之和大于第三边,两边之差小于第三边.3.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为( )A.0.7×10﹣3B.7×10﹣3C.7×10﹣5D.7×10﹣4【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=9.07×10﹣4,故选:D.【点评】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)若一个多边形的每个内角都为135°,则它的边数为( )A.8B.9C.10D.12【分析】由一个正多边形的每个内角都为135°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.【解答】解:∵一个正多边形的每个内角都为135°,∴这个正多边形的每个外角都为:180°﹣135°=45°,∴这个多边形的边数为:360°÷45°=8,故选:A.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的内角和与外角和定理是关键.5.(3分)下列式子是完全平方式的是( )A.a2+2ab﹣b2B.a2+2a+1C.a2+ab+b2D.a2+2a﹣1【分析】利用完全平方公式的结构特征判断即可.【解答】解:下列式子是完全平方式的是a2+2a+1=(a+1)2,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.(3分)如图,△ABC中的边BC上的高是( )A.AF B.DB C.CF D.BE【分析】根据三角形高的定义即可解答.【解答】解:△ABC中的边BC上的高是AF,故选:A.【点评】本题考查了三角形的角平分线、中线和高:过三角形的一个顶点引对边的垂线,这个点与垂足的连线段叫三角形的高.7.(3分)如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为( )A.①②B.①③C.②③D.以上都错【分析】利用内错角相等两直线平行,以及等量代换及同旁内角互补两直线平行即可得到结果.【解答】解:①∠1=∠2,可判定AD∥BC,不能判定AB∥CD;②∠3=∠4,可判定AB∥CD;③AD∥BE可得∠1=∠2,再由∠D=∠B,可得∠3=∠4,可判定AB∥CD;④∠BAD+∠BCD=180°,不能判定AB∥CD;故选:C.【点评】此题主要考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.8.(3分)如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm,则正方形的面积与长方形的面积的差为( )A.2a2B.a2C.a2D.4a2【分析】设长方形的宽为xcm,则长为(x+a)cm,则正方形的边长为(x+x+a)=(2x+a);求出二者面积表达式相减即可.【解答】解:设长方形的宽为xcm,则长为(x+a)cm,则正方形的边长为(x+x+a)=(2x+a);正方形的面积为[(2x+a)]2,长方形的面积为x(x+a),二者面积之差为[(2x+a)]2﹣x(x+a)=a2.故选:C.【点评】本题考查了列代数式与整式的混合运算,设出长方形的宽,据此表示出正方形和长方形的面积表达式是解题的关键.二、填空题(每小题3分,共30分)9.(3分)计算:2x(x﹣3)= 2x2﹣6x .【分析】根据单项式乘多项式法则计算可得.【解答】解:2x(x﹣3)=2x2﹣6x,故答案为:2x2﹣6x.【点评】本题主要考查单项式乘多项式,解题的关键是掌握单项式乘多项式法则.10.(3分)分解因式:x2﹣2xy+y2= (x﹣y)2 .【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣y)2,故答案为:(x﹣y)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.11.(3分)若a m=16,a n=2,则a m﹣2n的值为 4 .【分析】首先根据幂的乘方的运算方法,求出a2n的值是多少;然后根据同底数幂的除法的运算方法,求出a m﹣2n的值为多少即可.【解答】解:∵a m=16,a n=2,∴a2n=4,∴a m﹣2n===4.故答案为:4.【点评】此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.12.(3分)某多边形的内角和与外角和相等,这个多边形的边数是 四 .【分析】根据多边形的内角和公式与外角和定理列式进行计算即可求解.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=360°,解得n=4.故答案为:四.【点评】本题考查了多边形的内角和公式与外角和定理,熟记内角和公式,外角和与多边形的边数无关,任何多边形的外角和都是360°是解题的关键.13.(3分)如图,l∥m,∠1=120°,∠A=55°,则∠ACB的大小是 65° .【分析】先根据平行线的性质得∠2=∠1=120°,然后根据三角形外角性质计算∠ACB的大小.【解答】解:∵l∥m,∴∠2=∠1=120°,∵∠2=∠ACB+∠A,∴∠ACB=120°﹣55°=65°.故答案为65°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.(3分)一个长、宽分别为m、n的长方形的周长为14,面积为8,则m2n+mn2的值为 56 .【分析】根据题意可知m+n=7,mn=8,然后根据因式分解法将多项式进行分解后即可求出答案.【解答】解:由题意可知:m+n=7,mn=8,原式=mn(m+n)=8×7=56,故答案为:56.【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.15.(3分)已知等腰三角形的两边长分别为2、5,则三角形的周长为 12 .【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故答案为:12.【点评】本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据2,5,分别作为腰,由三边关系定理,分类讨论.16.(3分)如图,小明从点A向北偏东70°方向走到B点,又从B点向北偏西30°方向走到点C,则∠ABC的度数为 80 °.【分析】根据题意画出方位角,利用平行线的性质解答.【解答】解:如图:∵∠1=70°,∠3=30°,∴∠2=70°,∴∠ABC=180°﹣30°﹣70°=80°,故答案为:80【点评】此题考查方向角问题,解答此类题需要从运动的角度,正确画出方位角,根据平行线的性质解答即可.17.(3分)若x2﹣mx﹣12=(x+3)(x+n),则mn= ﹣4 .【分析】利用十字相乘的方法得当3n=﹣12,3+n=﹣m.【解答】解:∵x2﹣mx﹣12=(x+3)(x+n),∴3n=﹣12,3+n=﹣m.∴n=﹣4,m=1.∴mn=﹣4×1=﹣4.故答案是:﹣4.【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.18.(3分)如图,在△ABC中,E点是AC边上的一个点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=74°,∠AEB=128°,则原三角形的∠B= 66 °.【分析】由三角形内角和定理可得出关于∠A,∠B,∠C的方程,联立后即可求出∠B 的度数.【解答】解:在△ABC中,∠A+∠B+∠C=180°①,在△BCD中,∠CDB+∠BCD+∠CBD=180°,即74°+∠C+∠B=180°②,在△ABE中,∠AEB+∠ABE+∠A=180°,即128°+∠B+∠A=180°③.由①得:∠A+∠C=180°﹣∠B④,由②+③,得:202°+∠B+(∠A+∠C)=360°⑤.将④代入⑤,整理得:382°﹣∠B=360°,∴∠B=66°.故答案为:66.【点评】本题考查了三角形内角和定理以及折叠的性质,牢记“三角形内角和是180°”是解题的关键.三.解答题(本大题共96分)19.(20分)计算:(1)2a3•(a2)3÷a;(2)π0+(﹣)﹣3+(﹣3)2;(3)2m(m﹣n)﹣(m﹣n)2;(4)(2a﹣b﹣c)(2a+b﹣c).【分析】(1)原式利用幂的乘方运算法则,以及同底数幂的乘除法则计算即可求出值;(2)原式利用零指数幂、负整数指数幂法则计算即可求出值;(3)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=2a9÷a=2a8;(2)原式=1﹣8+9=2;(3)原式=2m2﹣2mn﹣m2+2mn﹣n2=m2﹣n2;(4)原式=(2a﹣c)2﹣b2=4a2﹣4ac+c2﹣b2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(15分)因式分解:(1)3x(a﹣b)﹣6y(b﹣a);(2)2ax2﹣2ay2;(3)(x2+9)2﹣36x2.【分析】(1)原式变形后,提取公因式即可;(2)原式提取公因式,再利用平方差公式分解即可;(3)原式利用平方差公式,以及完全平方公式分解即可.【解答】解:(1)原式=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y);(2)原式=2a(x2﹣y2)=2a(x+y)(x﹣y);(3)原式=(x2+9+6x)(x2+9﹣6x)=(x+3)2(x﹣3)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.(7分)先化简,再求值:(x﹣1)(3x+1)﹣(x+2)2+5,其中x2﹣3x﹣1=0.【分析】根据多项式乘多项式、完全平方公式可以化简题目中的式子,然后根据x2﹣3x﹣1=0,即可解答本题.【解答】解:(x﹣1)(3x+1)﹣(x+2)2+5=3x2+x﹣3x﹣1﹣x2﹣4x﹣4+5=2x2﹣6x,由x2﹣3x﹣1=0,得x2﹣3x=1,∴原式=2(x2﹣3x)=2×1=2.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.22.(7分)如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出中线CD;(3)画出BC边上的高线AE;(4)在平移过程中,线段BC扫过的面积为 16 .【分析】(1)直接利用B点平移规律得出各对应点位置即可;(2)利用中线的定义得出答案;(3)利用高线的定义得出垂足的位置;(4)理由平行四边形面积求法得出答案.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,中线CD即为所求;(3)如图所示,高线AE即为所求;(4)线段BC扫过的面积为:4×4=16.故答案为:16.【点评】此题主要考查了平移变换以及基本作图,正确得出平移规律是解题关键.23.(7分)(1)如图,试用x的代数式表示图形中阴影部分的面积;(2)当x=5时,计算图中阴影部分的面积.【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x的值代入计算即可求出值.【解答】解:(1)根据题意得:阴影部分的面积=x(2x+1)+x(2x+1﹣x)=3x2+2x;(2)当x=5时,原式=3×52+2×5=56.答:图中阴影部分的面积是85.【点评】此题考查了列代数式,以及代数式求值,熟练掌握运算法则是解本题的关键.24.(8分)如图,已知∠1=∠2,∠3=∠4,试说明AB∥CD.【分析】先根据∠1=∠2,得出CE∥BF,进而得到∠4=∠AEC,再根据∠3=∠4,进而得到∠3=∠AEC,据此可得AB∥CD.【解答】解:∵∠1=∠2,∴CE∥BF,∴∠4=∠AEC,又∵∠3=∠4,∴∠3=∠AEC,∴AB∥CD.【点评】本题主要考查了平行线的性质与判定,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.25.(8分)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.【分析】(1)根据平行线的性质和判定证明即可;(2)根据角平分线的定义和平行线的性质解答即可.【解答】证明:(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.【点评】本题考查了平行线的判定与性质,熟记性质与判定方法并判断出EF∥AD是解题的关键.26.(10分)发现与探索如图,根据小军的方法,将下列各式因式分解:(1)a2+5a+6;(2)a2+2ab﹣3b2.小丽发现通过用两种不同的方法计算同一几何体体积,就可以得到一个恒等式.如图是边长为(a+b)的正方体,被如图所示的分割线分成8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式为: (a+b)3=a3+3a2b+3ab2+b3 ;(4)已知a+b=4,ab=2,利用上面的规律求a3+b3的值.【分析】(1)(2)先在等式的左边加上一次项系数一半的平方,把式子配成完全平方的形式,再根据平方差公式进行解答即可;(3)根据正方体的体积公式和给出的条件即可得出答案;(4)根据(3)得出的式子再进行转化,然后把a+b=4,ab=2代入计算即可得出答案.【解答】解:(1)a2+5a+6=a2+5a+()2﹣()2+6=(a+)2﹣=(a++)(a+﹣)=(a+3)(a+2);(2)a2+2ab﹣3b2=a2+2ab+b2﹣b2﹣3b2=(a+b)2﹣4b2=(a+b+2b)(a+b﹣2b)=(a+3b)(a﹣b);(3)(a+b)3=a3+3a2b+3ab2+b3;故答案为:(a+b)3=a3+3a2b+3ab2+b3;(4)由(a+b)3=a3+3a2b+3ab2+b3得:(a+b)3=a3+3ab(a+b)+b3,将a+b=4,ab=2代入a3+3ab(a+b)+b3得,43=a3+3×2×4+b3,解得:a3+b3=64﹣24=40.【点评】本题考查了因式分解法的应用,用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.27.(14分)如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB= 135 °;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,求∠ACB的度数;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求∠E的度数;如果会,请说明理由.【分析】(1)由三角形内角和定理得出∠OBA+∠OAB=90°,由角平分线的也得出∠ABC+∠BAC=×90°=45°,再由三角形内角和定理即可得出结果;(2)由三角形内角和定理和角平分线的也得出∠ABC+∠BAC=90°﹣n°,再由三角形内角和定理得出∠ACB的度数;(3)求出∠CBD=90°,同理∠CAD=90°,由四边形内角和求出∠ACB+∠ADB=180°,由(1)知:∠ACB=90°+n°,即可得出结果;(4)由三角形外角性质得出∠OAB=∠NBA﹣∠AOB,由角平分线定义得出∠NBA=∠E+∠OAB,∠NBA=∠E+(∠NBA﹣80°),∠NBA=∠E+∠NBA﹣40°,即可得出结果.【解答】解:(1)∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:135;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°;(3)∵BC、BD分别是∠OBA和∠NBA的角平分线,∴∠ABC=∠OBA,∠ABD=∠NBA,∠ABC+∠ABD=∠OBA+∠NBA,∠ABC+∠ABD=(∠OBA+∠NBA)=90°,即∠CBD=90°,同理:∠CAD=90°,∵四边形内角和等于360°,∴∠ACB+∠ADB=360°﹣90°﹣90°=180°,由(1)知:∠ACB=90°+n°,∴∠ADB=180°﹣(90°+n°)=90°﹣n°,∴∠ACB+∠ADB=180°,∠ADB=90°﹣n°;(4)∠E的度数不变,∠E=40°;理由如下:∵∠NBA=∠AOB+∠OAB,∴∠OAB=∠NBA﹣∠AOB,∵AE、BC分别是∠OAB和∠NBA的角平分线,∴∠BAE=∠OAB,∠CBA=∠NBA,∠CBA=∠E+∠BAE,即∠NBA=∠E+∠OAB,∠NBA=∠E+(∠NBA﹣80°),∠NBA=∠E+∠NBA﹣40°,∴∠E=40°.【点评】本题考查了三角形内角和定理、角平分线的也、三角形的外角性质等知识;熟练掌握三角形内角和定理和角平分线的也是解题的关键.。

2018-2019学年成都市成都外国语学校七年级(下)期中数学试卷(含解析)

2018-2019学年成都市成都外国语学校七年级(下)期中数学试卷(含解析)

2018-2019学年成都市成都外国语学校七年级(下)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.下列运算正确的是()A.a2•a3=a6B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c22.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠3 B.∠2=∠4C.∠C=∠CBE D.∠C+∠ABC=180°3.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分剪下,拼成右边的矩形,由图形①到图形②的变化过程能够验证的一个等式是()A.a(a+b)=a2+ab B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a(a﹣b)=a2﹣ab4.如果(x﹣4)(x+8)=x2+mx+n,那么m+n的值为()A.36 B.﹣28 C.28 D.﹣365.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.306.如图,△ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,F为AB上一点,且CF⊥AD于H,下列判断,其中正确的个数是()①BG是△ABD中边AD上的中线;②AD既是△ABC中∠BAC的角平分线,也是△ABE中∠BAE的角平分线;③CH既是△ACD中AD边上的高线,也是△ACH中AH边上的高线.A.0 B.1 C.2 D.37.如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE上的中点,且S△BEF=1,则S△ABC是()A.3 B.4 C.5 D.68.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°9.已知a,b,c是△ABC的三边长,b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC 的周长为()A.4 B.5 C.7或11 D.710.任意给定一个非零数,按如图程序计算,最后输出的结果()A.m B.m2C.m+1 D.m﹣1二、填空题:(每小题4分,共16分)11.若a m=3,a n=2,则a m﹣2n的值为.12.若x2+2(m﹣3)x+16是完全平方式,则m的值等于.13.将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为.14.如图,∠A+∠B+∠C+∠D+∠E的度数为度.三、解答题:(共54分)15.(16分)计算下列各式(1)()﹣1+(π﹣3)0+(﹣2)﹣2+|(﹣2)3| (2)(﹣4x2y3)(﹣xyz)÷(xy2)2(3)9(x+2)(x﹣2)﹣(3x﹣2)2 (4)(2a﹣3b)2(2a+3b)216.(6分)已知(x+y)2=18,(x﹣y)2=6,分别求下列代数式的值:(1)x2+y2;(2)x2+3xy+y2;(3)x4+y4.17.(7分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥CD,若∠BOE=2∠BOD,求∠AOF的度数.18.(7分)如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:DG∥BA.19.(8分)在△ABC中,AD⊥BC于点D,AE平分∠BAC.(1)如图,点D在线段BC上.①若∠B=70°,∠C=30°,则∠DAE=;②若∠B=α,∠C=β,则∠DAE=.(用含α、β的代数式表示)(2)如图2,若点D在边CB的延长线上时,若∠ABC=α,∠C=β,写出∠DAE与α、β满足的数量关系式,并说明理由.20.(10分)观察下列各式,寻找规律:已知x≠1,计算:(x﹣1)(1+x)=x2﹣1(x﹣1)(1+x+x2)=x3﹣1(x﹣1)(1+x+x2+x3)=x4﹣1(x﹣1)(1+x+x2+x3+x4)=x5﹣1…(1)根据上面各式可得规律:(x﹣1)(1+x+x2+x3+…+x n)=(2)根据(1)中规律计算1+2+22+23+24+…+22018的值.(3)求314+315+…+3100的个位数字.B卷(50分)一、填空题:(每小题4分,共20分)21.若(2x﹣1)x+3=1,则x的值为.22.a,b,c分别是三角形的三边,化简:|a﹣b﹣c|+|b﹣c﹣a|﹣|c﹣a+b|=.23.已知(2019﹣a)2+(a﹣2017)2=3,则(2019﹣a)•(2017﹣a)=.24.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ 于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是.25.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=°.二、解答题:(共30分)26.(8分)若(x3+mx+n)(x2﹣3x+4)的积中不含x2项,并且x3项的系数为2.(1)求m、n的值;(2)先化简,再求值:[(2m+n)2+(2m+n)(n﹣2m)﹣6n]÷(﹣2n)27.(10分)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项“分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+9三种不同形式的配方;(2)已知x2+y2+4x﹣6y+13=0,求(﹣y)x的值(3)当x,y为何值时,代数式5x2﹣4xy+y2+6x+25取得最小值,最小值为多少?28.(12分)已知如图①,BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,BQ、CQ分别是∠PBC、∠PCB的角平分线,BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α.(1)当α=40°时,∠BPC=°,∠BQC=°;(2)当α=°时,BM∥CN;(3)如图②,当α=120°时,BM、CN所在直线交于点O,求∠BOC的度数;(4)在α>60°的条件下,直接写出∠BPC、∠BQC、∠BOC三角之间的数量关系:.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、a2•a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选:C.2.【解答】解:由∠2=∠4,可得AD∥CB;由∠1=∠3或∠C=∠CBE或∠C+∠ABC=180°,可得AB∥DC;故选:B.3.【解答】解:由图形①可知剪掉后剩下的图形面积是:a2﹣b2,图形②的长为(a+b),宽为(a﹣b),所以面积是:(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b)故选:B.4.【解答】解:∵(x﹣4)(x+8)=x2+4x﹣32,(x﹣4)(x+8)=x2+mx+n,∴m=4,n=﹣32,∴m+n的值为﹣28,故选:B.5.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选:B.6.【解答】解:①G为AD中点,所以BG是△ABD边AD上的中线,故正确;②因为∠1=∠2,所以AD是△ABC中∠BAC的角平分线,AG是△ABE中∠BAE的角平分线,故错误;③因为CF⊥AD于H,所以CH既是△ACD中AD边上的高线,也是△ACH中AH边上的高线,故正确.故选:C.7.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC,∴S△BCE=S△ABC,∵点F是CE的中点,∴S△BEF=S△BCE=S△ABC,∴S△ABC=4S△BEF=4.故选:B.8.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣92°=23°,故选:D.9.【解答】解:∵(b﹣2)2+|c﹣3|=0,∴b﹣2=0且c﹣3=0,∴b=2、c=3,∵a为方程|x﹣4|=2的解,∴a=2或a=6,又c﹣b<a<c+b,即1<a<5,∴a=2,则△ABC的周长为2+2+3=7,故选:D.10.【解答】解:由题意得(m2﹣m)÷m+2=m﹣1+2=m+1.故选:C.二、填空题:(每小题4分,共16分)11.【解答】解:a m﹣2n=3÷4=.故答案为:.12.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴2(m﹣3)x=±2•x•4,解得:m=7或﹣1,故答案为:7或﹣1.13.【解答】解:∵BC∥DE,△ABC为等腰直角三角形,∴∠FBC=∠EAB=(180°﹣90°)=45°,∵∠AFC是△AEF的外角,∴∠AFC=∠FAE+∠E=45°+30°=75°.故答案为:75°.14.【解答】解:如图连接CE,根据三角形的外角性质得∠1=∠A+∠B=∠2+∠3,在△DCE中有,∠D+∠2+∠DCB+∠3+∠AED=180°,∴∠D+∠A+∠DCB+∠B+∠AED=180°.三、解答题:(共54分)15.【解答】解:(1)原式=+1++8=10;(2)原式=x3y4z÷x2y4=2xz;(3)原式=9(x2﹣4)﹣(9x2﹣12x+4)=12x﹣40;(4)原式=(4a2﹣9b2)2=16a4﹣72a2b2+81b4.16.【解答】解:(1)∵(x+y)2=18,(x﹣y)2=6 ∴x2+y2+2xy=18,x2+y2﹣2xy=6,∴x2+y2=12,xy=3,则原式=12;(2)原式=12+3×3=21;(3)原式=(x2+y2)2﹣2x2y2=122﹣2×32=126.17.【解答】解:设∠BOD=x,∠BOE=2x;∵OE平分∠BOC,∴∠COE=∠EOB=2x,则2x+2x+x=180°,解得:x=36°,∴∠BOD=36°,∴∠AOC=∠BOD=36°,∵FO⊥CD,∴∠AOF=90°﹣∠AOC=90°﹣36°=54°.18.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴AB∥DG.19.【解答】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴,∴∠AED=∠C+∠EAC=70°,∴∠DAE=90°﹣∠AED=20°.②∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵AE平分∠BAC,∴∠EAC=90°﹣α﹣β,∴∠DAE=90°﹣∠AED=90°﹣(∠C+∠EAC)==.故答案为:①20°,②;(2)∠DAE=.理由:∵∠DAB+∠D=∠ABC,∴∠DAB=∠ABC﹣∠D=α﹣90°,∵AE平分∠BAC,∴===,∵∠DAE=∠DAB+∠BAE,∴=.20.【解答】解:(1)由规律可知:(x﹣1)(1+x+x2+x3+…+x n)=x n+1﹣1,故答案为x n+1﹣1;(2)原式=(2﹣1)(1+2+22+23+24+…+22018)=22019﹣1;(3)∵31=3,32=9,33=27,34=81,35=243,…∴个位数按3,9,7,1进行循环,∴314的个位数是9,3100的个位数是1,∴314+315+…+3100的个位数字(9+7+1+3)+…+9+7+1,即314+315+…+3100的个位数字为7.一、填空题:(每小题4分,共20分)21.【解答】解:∵(2x﹣1)x+3=1,∴当x+3=0时,则x=﹣3,∴(2x﹣1)x+3=(﹣7)0=1,当2x﹣1=1时,解得:x=1,则(2x﹣1)x+3=14=1,综上所述:x的值为:1或﹣3.故答案为:1或﹣3.22.【解答】解:根据三角形的三边关系,得:a﹣b﹣c<0,b﹣c﹣a<0,c﹣a+b>0,则|a﹣b﹣c|+|b﹣c﹣a|﹣|c﹣a+b|=﹣a+b+c﹣b+c+a﹣c+a﹣b=a﹣b+c.故答案为:a﹣b+c.23.【解答】解:∵(2019﹣a)2+(a﹣2017)2=3,∴(2019﹣a+a﹣2017)2=(2019﹣a)2+(a﹣2017)2﹣2(2019﹣a)(a﹣2017)=3﹣2(2019﹣a)(a﹣2017),∴22=3﹣2(2019﹣a)(a﹣2017),∴(2019﹣a)(a﹣2017)=,∴(2019﹣a)(2017﹣a)=﹣,故答案为:﹣.24.【解答】解:设∠DAE=α,则∠EAF=α,∠ACB=α,∵AD⊥PQ,AF⊥AB,∴∠BAF=∠ADE=90°,∴∠BAE=∠BAF+∠EAF=90°+α,∠CEA=∠ADE+∠DAE=90°+α,∴∠BAE=∠CEA,∵MN∥PQ,BC平分∠ABM,∴∠BCE=∠CBM=∠CBA,又∵∠ABC+∠BCE+∠CEA+∠BAE=360°,∴∠BCE+∠CEA=180°,∴AE∥BC,∴∠ACB=∠CAE,即α=45°,∴α=18°,∴∠DAE=18°,∴Rt△ACD中,∠ACD=90°﹣∠CAD=90°﹣(45°+18°)=27°,故答案为:27°.25.【解答】解:∵A1A2⊥AO,∠AOB=7°,∴∠1=∠2=90°﹣7°=83°,∴∠A=∠1﹣∠AOB=76°,如图:当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°﹣7°=83°,∴∠6=∠5=∠4﹣∠AOB=83°﹣7°=76°=90°﹣2×7°,∴∠8=∠7=∠6﹣∠AOB=76°﹣7°=90°﹣3×7°,∴∠9=∠8﹣∠AOB=69°﹣7°=62°=90°﹣4×7°,由以上规律可知,∠A=90°﹣2n•7°,当n=6时,∠A取得最小值,最小度数为6°,故答案为:76,6.二、解答题:(共30分)26.【解答】解:(1)原式=x5﹣3x4+(m+4)x3+(﹣3m+n)x2+(4m﹣3n)x+4n,由已知得:,解得:;(2)原式=(4m2+4mn+n2+n2﹣4m2﹣6n)÷(﹣2n)=(2n2+4mn﹣6n)÷(﹣2n)=﹣n﹣2m+3,当m=﹣2,n=﹣6时,原式=6+4+3=13.27.【解答】解:(1)第一种:x2﹣4x+9=x2﹣4x+4+5=(x﹣2)2+5;第二种:x2﹣4x+9=x2﹣6x+9+2x=(x﹣3)2+2x;第三种:x2﹣4x+9=x2﹣4x+9+=(x﹣3)2+;(2)x2+y2+4x﹣6y+13=0,(x2+4x+4)+(y2﹣6y+9)=0,(x+2)2+(y﹣3)2=0,x=﹣2,y=3,∴(﹣y)x=(﹣3)﹣2=;(3)5x2﹣4xy+y2+6x+25,=4x2﹣4xy+y2+x2+6x+9+16,=(2x﹣y)2+(x+3)2+16,而(2x﹣y)2+(x+3)2≥0,,解得,∴当x=﹣3,y=6时,代数式5x2﹣4xy+y2+6x+25的最小值是16.28.【解答】解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=180°+∠A=220°,∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,∴∠CBP+∠BCP=(∠DBC+∠BCE)=110°,∴∠BPC=180°﹣110°=70°,∵BQ、CQ分别是∠PBC、∠PCB的角平分线,∴∠QBC=∠PBC,∠QCB=∠PCB,∴∠QBC+∠QCB=55°,∴∠BQC=180°﹣55°=125°;(2)∵BM∥CN,∴∠MBC+∠NCB=180°,∵BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α,∴(∠DBC+∠BCE)=180°,即(180°+α)=180°,解得α=60°;(3)∵α=120°,∴∠MBC+∠NCB=(∠DBC+∠BCE)=(180°+α)=225°,∴∠BOC=225°﹣180°=45°;(4)∵α>60°,∠BPC=90°﹣α、∠BQC=135°﹣α、∠BOC=α﹣45°.∠BPC、∠BQC、∠BOC三角之间的数量关系:∠BPC+∠BQC+∠BOC=(90°﹣α)+(135°﹣α)+(α﹣45°)=180°.故答案为:70,125;60;∠BPC+∠BQC+∠BOC=180°。

2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。

山西省太原市2018-2019学年七年级(下)期中考试数学试卷(含解析)

山西省太原市2018-2019学年七年级(下)期中考试数学试卷(含解析)

2018-2019学年七年级(下)期中数学试卷一.选择题(共10小题)1.计算3﹣2的结果是()A.﹣9 B.9 C.D.2.在数学课上,老师让同学们画对顶角∠1与∠2,其中正确的是()A.B.C.D.3.如图是画平行线时,采用推三角尺的方法从图1到图2得到平行线,在平移三角尺画平行线的过程中,使用的数学原理是()A.同位角相等,两直线平行B.两直线平行,内错角相等C.两直线平行,同位角相等D.内错角相等,两直线平行4.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×1085.下列图形中,由∠1=∠2,能推出AB∥CD的是()A.B.C.D.6.从边长为a的正方形中去掉一个边长为b的小正方形,如图,然后将剩余部分剪后拼成一个矩形,上述操作所能验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)7.在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s0 10 20 30 40油温y/℃10 30 50 70 90 王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是10℃B.加热50s,油的温度是110℃C.估计这种食用油的沸点温度约是230℃D.每加热10s,油的温度升高30℃8.为了给居民创造舒适的居住环境,某物业请绿化队对小区的部分场所进行绿化,在绿化的过程中体息了一段时间,已知绿化面积S(m2)与工作时间t(h)的关系图象如图所示,则绿化队平均每小时绿化的面积为()A.100m2B.80m2C.50m2D.40m29.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b210.如图,已知AB∥CD,若按图中规律继续下去,则∠1+∠2+…+∠n=()A.n•180°B.2n•180°C.(n﹣1)•180°D.(n﹣1)2•180°二.填空题(共5小题)11.已知∠a=35°,则∠a的余角是.12.骆驼被称为“沙漠之舟”,它的体温随时间的变化,而变化在这一变量关系中,因变量是.13.如图,直线AB,CD相交于点O,∠AOC=40°,过点O作EO⊥AB,则∠DOE的度数为.14.已知m+n=mn,则(m﹣1)(n﹣1)=.15.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.三.解答题(共8小题)16.计算:(1)﹣(π+3.14)0﹣5÷(﹣1)2019(2)(x+2y)(x﹣2y)+4(y2﹣4)17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.18.一个角补角比它的余角的2倍多30°,求这个角的度数.19.如图,已知点D在∠AOB的边OA上,过点D作射线DE,点E在∠AOB的内部.(1)若∠ADE=∠AOB,请利用尺规作出射线DE;(不写作法,保留作图痕迹)(2)根据上面的作图判断直线DE与OB是否平行,并说明理由.20.王师傅非常喜欢自驾游,为了解他新买轿车的耗油情况,将油箱加满后进行了耗油实验,得到下表中的数据:行驶的路程s(km)0 100 200 300 400 …油箱剩余油量Q(L)50 42 34 26 18 …(1)在这个问题中,自变量是,因变量是;(2)该轿车油箱的容量为L,行驶150km时,估计油箱中的剩余油量为L;(3)王师傅将油箱加满后驾驶该轿车从A地前往B地,到达B地时油箱中的剩余油量为22L,请直接写出A,B两地之间的距离是km.21.周末,小明乘坐家门口的公交车到和平公园游玩,他先乘坐公交车0.8小时后达到书城,逗留一段时间后继续坐公交车到和平公园,小明出发一段时间后,小明的妈妈不放心,于是驾车沿相同的路线前往和平公园,如图是他们离家的路程y(km)与离家时间x (h)的关系图,请根据图回答下列问题:(1)小明家到和平公园的路程为km,他在书城逗留的时间为h;(2)图中A点表示的意义是;(3)求小明的妈妈驾车的平均速度(平均速度=).22.在《几何原本》中记载着这样的题目:如果同一条线段被两个分点先后分成相等和不相等的线段,以得到的各线段为边作正方形,那么不相等的两个正方形的面积之和等于原线段一半上的正方形与两个分点之间一段上正方形的面积之和的两倍.王老师带领学生在阅读的基础上画出的部分图形如图,已知线段AB,点C为线段AB的中点,点D为线段AB上任意一点(D不与C重合),分别以AD和BD为边在AB的下方作正方形ADEF 和正方形BDGH,以AC和CD为边在线段下方作正方形ACMJ和正方形CDPQ,则正方形ADEF 与正方形BDGH的面积之和等于正方形ACMJ和正方形CDPQ面积之和的两倍.(1)请你画出正方形ACMJ和正方形CDPQ(不必尺规作图);(2)设AD=a,BD=b,根据题意写出关于a,b的等式并证明.23.问题情境在综合与实践课上,同学们以“一个含30°的直角三角尺和两条平行线”为背景开展数学活动如图1,已知两直线a,b且a∥b和直角三角形ABC,∠BCA=90°,∠BAC=30°,∠ABC=60°.操作发现:(1)在图1中,∠1=46°,求∠2的度数;(2)如图2,创新小组的同学把直线a向上平移,并把∠2的位置改变,发现∠2﹣∠1=120°,说明理由;实践探究(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC 平分∠BAM,此时发现∠1与∠2又存在新的数量关系,请直接写出∠1与∠2的数量关系.参考答案与试题解析一.选择题(共10小题)1.计算3﹣2的结果是()A.﹣9 B.9 C.D.【分析】直接利用负指数幂的性质进而得出答案.【解答】解:3﹣2=.故选:C.2.在数学课上,老师让同学们画对顶角∠1与∠2,其中正确的是()A.B.C.D.【分析】有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.依此即可求解.【解答】解:由对顶角的定义可知,画对顶角∠1与∠2,其中正确的是选项C.故选:C.3.如图是画平行线时,采用推三角尺的方法从图1到图2得到平行线,在平移三角尺画平行线的过程中,使用的数学原理是()A.同位角相等,两直线平行B.两直线平行,内错角相等C.两直线平行,同位角相等D.内错角相等,两直线平行【分析】根据平行线的判定方法即可解决问题.【解答】解:如图,∵∠1=∠2,∴a∥b(同位角相等两直线平行),故选:A.4.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000 000 04=4×10﹣8,故选:B.5.下列图形中,由∠1=∠2,能推出AB∥CD的是()A.B.C.D.【分析】直接利用平行线的判定方法进而分别判断得出答案.【解答】解:A、由∠1=∠2,不能推出AB∥CD,故此选项错误;B、由∠1=∠2,能推出AB∥CD,故此选项正确;C、由∠1=∠2,不能推出AB∥CD,故此选项错误;D、由∠1=∠2,不能推出AB∥CD,故此选项错误;故选:B.6.从边长为a的正方形中去掉一个边长为b的小正方形,如图,然后将剩余部分剪后拼成一个矩形,上述操作所能验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)【分析】由大正方形的面积﹣小正方形的面积=矩形的面积,进而可以证明平方差公式.【解答】解:大正方形的面积﹣小正方形的面积=a2﹣b2,矩形的面积=(a+b)(a﹣b),故a2﹣b2=(a+b)(a﹣b).故选:A.7.在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s0 10 20 30 40油温y/℃10 30 50 70 90 王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是10℃B.加热50s,油的温度是110℃C.估计这种食用油的沸点温度约是230℃D.每加热10s,油的温度升高30℃【分析】从表格可知:t=0时,y=10,即没有加热时,油的温度为10℃;每增加10秒,温度上升20℃,则t=50时,油温度y=110;t=110秒时,温度y=230.【解答】解:从表格可知:t=0时,y=10,即没有加热时,油的温度为10℃;每增加10秒,温度上升20℃,则50秒时,油温度110℃;110秒时,温度230℃;故选:D.8.为了给居民创造舒适的居住环境,某物业请绿化队对小区的部分场所进行绿化,在绿化的过程中体息了一段时间,已知绿化面积S(m2)与工作时间t(h)的关系图象如图所示,则绿化队平均每小时绿化的面积为()A.100m2B.80m2C.50m2D.40m2【分析】绿化的总面积÷总的用时,即可求解.【解答】解:绿化的总面积为200m2,总的用时为5h,故每小时绿化的面积为200÷5=40(m2),故选:D.9.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b2【分析】利用完全平方公式的结构特征判断即可.【解答】解:根据题意得:9a2+12ab+(),其中被染黑的这一项应是4b2,故选:C.10.如图,已知AB∥CD,若按图中规律继续下去,则∠1+∠2+…+∠n=()A.n•180°B.2n•180°C.(n﹣1)•180°D.(n﹣1)2•180°【分析】根据第1个图形∠1+∠2=180°,第2个图形∠1+∠2+∠3=2×180°,第,3个图形∠1+∠2+∠3+∠4=3×180°…,进而得出答案.【解答】解:由题意可得:∠1+∠2+…+∠n=(n﹣1)•180°.故选:C.二.填空题(共5小题)11.已知∠a=35°,则∠a的余角是55°.【分析】根据余角的概念计算,得到答案.【解答】解:90°﹣∠a=90°﹣35°=55°,则∠a的余角是55°,故答案为:55°.12.骆驼被称为“沙漠之舟”,它的体温随时间的变化,而变化在这一变量关系中,因变量是体温.【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x 和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间,因变量是体温.【解答】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温,故答案为:体温13.如图,直线AB,CD相交于点O,∠AOC=40°,过点O作EO⊥AB,则∠DOE的度数为50°.【分析】根据对顶角相等求∠BOD,由垂直的性质求∠BOE,根据∠DOE=∠BOE﹣∠BOD 求解.【解答】解:∵直线AB与直线CD相交,∠AOC=40°,∴∠BOD=∠AOC=40°.∵EO⊥AB,∴∠BOE=90°,∴∠DOE=∠BOE﹣∠BOD=90°﹣40°=50°.故答案为:50°.14.已知m+n=mn,则(m﹣1)(n﹣1)= 1 .【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.15.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是37.2 min.【分析】首先小亮早晨从家骑车到学校,先上坡后下坡,回家也是先上坡后下坡,而据图象知道上坡路程是3600米,下坡路程是6000米,由此先求出上坡和下坡的速度,再根据返回时原来上坡变为下坡,下坡变为上坡,利用时间=路程÷速度即可求出小亮从学校骑车回家用的时间.【解答】解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.2三.解答题(共8小题)16.计算:(1)﹣(π+3.14)0﹣5÷(﹣1)2019(2)(x+2y)(x﹣2y)+4(y2﹣4)【分析】(1)分别根据负整数指数幂,任何非0数的0次幂等于1,﹣1的奇数次幂等于﹣1化简计算即可;(2)根据平方差公式,去括号以及合并同类项的法则计算即可.【解答】解:(1)原式=9﹣1+5=13;(2)原式=x2﹣4y2+4y2﹣16=x2﹣16.17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.【分析】(1)设多项式为A,则A=(3x2y﹣xy2+xy)÷(﹣xy)计算即可.(2)把x=,y=代入多项式求值即可.【解答】解:(1)设多项式为A,则A=(3x2y﹣xy2+xy)÷(﹣xy)=﹣6x+2y﹣1.(2)∵x=,y=,∴原式=﹣6×+2×﹣1=﹣4+1﹣1=﹣4.18.一个角补角比它的余角的2倍多30°,求这个角的度数.【分析】设这个角为x,根据余角和补角的概念列出方程,解方程即可.【解答】解:设这个角为x,由题意得,180°﹣x=2(90°﹣x)+30°,解得x=30°.答:这个角的度数是30°.19.如图,已知点D在∠AOB的边OA上,过点D作射线DE,点E在∠AOB的内部.(1)若∠ADE=∠AOB,请利用尺规作出射线DE;(不写作法,保留作图痕迹)(2)根据上面的作图判断直线DE与OB是否平行,并说明理由.【分析】(1)利用尺规作∠ADE=∠AOB即可.(2)根据同位角相等两直线平行判断即可.【解答】解:(1)直线DE即为所求.(2)结论:DE∥OB.理由:∵∠ADE=∠AOB,∴DE∥OB.20.王师傅非常喜欢自驾游,为了解他新买轿车的耗油情况,将油箱加满后进行了耗油实验,得到下表中的数据:行驶的路程s(km)0 100 200 300 400 …油箱剩余油量Q(L)50 42 34 26 18 …(1)在这个问题中,自变量是行驶的路程,因变量是油箱剩余油量;(2)该轿车油箱的容量为50 L,行驶150km时,估计油箱中的剩余油量为38 L;(3)王师傅将油箱加满后驾驶该轿车从A地前往B地,到达B地时油箱中的剩余油量为22L,请直接写出A,B两地之间的距离是350 km.【分析】(1)通过观察统计表可知:轿车行驶的路程s(km)是自变量,油箱剩余油量Q (L)是因变量;(2)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得答案;(3)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得Q与s的关系式,把Q=22代入函数关系式求得相应的s值即可.【解答】解:(1)上表反映了轿车行驶的路程s(km)和油箱剩余油量Q(L)之间的关系,其中轿车行驶的路程s(km)是自变量,油箱剩余油量Q(L)是因变量;故答案是:行驶的路程;油箱剩余油量;(2)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得Q与s的关系式为Q=50﹣0.08s,当s=150时,Q=50﹣0.08×150=38(L);故答案是:50,38;(3)由(2)得Q=50﹣0.08s,当Q=22时,22=50﹣0.08s解得s=350.答:A,B两地之间的距离为350km.故答案是:350.21.周末,小明乘坐家门口的公交车到和平公园游玩,他先乘坐公交车0.8小时后达到书城,逗留一段时间后继续坐公交车到和平公园,小明出发一段时间后,小明的妈妈不放心,于是驾车沿相同的路线前往和平公园,如图是他们离家的路程y(km)与离家时间x (h)的关系图,请根据图回答下列问题:(1)小明家到和平公园的路程为30 km,他在书城逗留的时间为 1.7 h;(2)图中A点表示的意义是小明离开书城,继续坐公交到公园;(3)求小明的妈妈驾车的平均速度(平均速度=).【分析】(1)、(2)看图象即可求解;(3)用平均速度=,即可求解.【解答】解:(1)从图象可以看出,小明距离公园的路程为30千米,小明逗留的时间为:2.5﹣0.8=1.7,故答案为30,1.7;(2)表示小明离开书城,继续坐公交到公园,故答案为:小明离开书城,继续坐公交到公园;(3)30÷(3.5﹣2.5)=30(km/h),即:小明的妈妈驾车的平均速度为30km/h.22.在《几何原本》中记载着这样的题目:如果同一条线段被两个分点先后分成相等和不相等的线段,以得到的各线段为边作正方形,那么不相等的两个正方形的面积之和等于原线段一半上的正方形与两个分点之间一段上正方形的面积之和的两倍.王老师带领学生在阅读的基础上画出的部分图形如图,已知线段AB,点C为线段AB的中点,点D为线段AB上任意一点(D不与C重合),分别以AD和BD为边在AB的下方作正方形ADEF 和正方形BDGH,以AC和CD为边在线段下方作正方形ACMJ和正方形CDPQ,则正方形ADEF 与正方形BDGH的面积之和等于正方形ACMJ和正方形CDPQ面积之和的两倍.(1)请你画出正方形ACMJ和正方形CDPQ(不必尺规作图);(2)设AD=a,BD=b,根据题意写出关于a,b的等式并证明.【分析】(1)根据要求画出图形即可.(2)根据正方形ADEF与正方形BDGH的面积之和等于正方形ACMJ和正方形CDPQ面积之和的两倍,构建关系式即可.【解答】解:(1)如图正方形ACMJ和正方形CDPQ即为所求.(2)关于a,b的等式:a2+b2=.理由:右边==a2+b2=左边,∴a2+b2=.23.问题情境在综合与实践课上,同学们以“一个含30°的直角三角尺和两条平行线”为背景开展数学活动如图1,已知两直线a,b且a∥b和直角三角形ABC,∠BCA=90°,∠BAC=30°,∠ABC=60°.操作发现:(1)在图1中,∠1=46°,求∠2的度数;(2)如图2,创新小组的同学把直线a向上平移,并把∠2的位置改变,发现∠2﹣∠1=120°,说明理由;实践探究(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC 平分∠BAM,此时发现∠1与∠2又存在新的数量关系,请直接写出∠1与∠2的数量关系.【分析】(1)根据直角三角形的性质求出∠3,根据平行线的性质解答;(2)过点B作BD∥a,根据平行线的性质得到∠ABD=180°﹣∠2,∠DBC=∠1,结合图形计算,证明结论;(3)过点C作CE∥a,根据角平分线的定义、平行线的性质计算即可.【解答】解:(1)∵∠BCA=90°,∴∠3=90°﹣∠1=44°,∵a∥b,∴∠2=∠3=44°;(2)理由如下:过点B作BD∥a,则∠ABD=180°﹣∠2,∵a∥b,BD∥a,∴BD∥b,∴∠DBC=∠1,∵∠ABC=60°,∴180°﹣∠2+∠1=60°,∴∠2﹣∠1=120°;(3)∠1=∠2,理由如下:∵AC平分∠BAM,∴∠BAM=2∠BAC=60°,过点C作CE∥a,∴∠2=∠BCE,∵a∥b,CE∥a,∴CE∥b,∠1=∠BAM=60°,∴∠ECA=∠CAM=30°,∴∠2=∠BCE=60°,∴∠1=∠2.。

2018-2019学年江苏省徐州市邳州市七年级(下)期中数学试卷

2018-2019学年江苏省徐州市邳州市七年级(下)期中数学试卷

2018-2019学年江苏省徐州市邳州市七年级(下)期中数学试卷2018-201年江苏省徐州市邳州市七年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置。

1.(3分)下列运算正确的是()A。

x+x=xB。

x•x=xC。

(x)=xD。

x÷x=x2.(3分)生物学家发现:生物具有遗传多样性,遗传密码大多储存在DNA分子上。

一个DNA分子的直径约为0.xxxxxxxcm,这个数用科学记数法可以表示为()A。

0.2×10⁻⁶B。

2×10⁻⁷C。

0.2×10⁻⁷D。

2×10⁻⁸3.(3分)下列各式由左到右的变形,是因式分解且分解正确的是()A。

ab+ac+d=a(b+c)+dB。

(a+1)(a-1)=a-1C。

x²-5x+6=(x-1)(x-6)D。

a²-1=(a+1)(a-1)4.(3分)下列各式能用平方差公式计算的是()A。

(-a+b)(a-b)B。

(a+b)(a-2b)C。

(-x+1)(x+1)D。

(-m-n)(m+n)5.(3分)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A。

160°B。

140°C。

60°D。

50°6.(3分)若一个三角形三个内角度数的比为1:2:3,那么这个三角形是()A。

直角三角形B。

锐角三角形C。

钝角三角形D。

等边三角形7.(3分)下列角度中,不能成为多边形内角和的是()A。

600°B。

720°C。

900°D。

1080°8.(3分)规定:一个数的平方等于-1,记作i=-1,于是可知i²=i×i=(-1)×i,i³=(i²)×i=(-1)×i,i⁴=(i²)²=1……,按照这样的规律,i²⁰¹⁹等于()A。

2018-2019学年七年级下册期中数学试卷(有答案及解析)

2018-2019学年七年级下册期中数学试卷(有答案及解析)

2018-2019学年七年级(下)期中数学试卷一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.如图:直线a、b被直线c所截,则∠1,∠2,∠3,∠4中,∠1的同位角是()A.∠3B.∠2C.∠4D.不确定2.如图:若∠1=∠2,则()A.AD∥BC B.AB∥CD C.∠A=∠C D.AB⊥BC3.如图:a∥b,若∠1=∠2,则∠2的度数为()A.30°B.90°C.120°D.150°4.已知:等腰三角形有两条边分别为2,4,则等腰三角形的周长为()A.6B.8C.10D.8或105.已知:等腰△ABC中,∠B=∠C,若该三角形有一个内角80°,则顶角为()A.80°B.20°C.80°或20°D.100°6.已知:x m=3,则x2m=()A.6B.9C.12D.187.把0.00091科学记数表示为()A.91×10﹣5B.0.91×10﹣3C.9.1×104D.9.1×10﹣48.下列多项式因式分解能用平方差公式的是()A.﹣x2+1B.﹣x2﹣1C.49﹣x3D.49+x9.在二元一次方程x+3y=10中,若x、y均为正数,则该方程的正整数解的个数为()A.1个B.2个C.3个D.4个10.从长度分别为3cm、4cm、5cm、6cm、9cm的小木棒中任取三根,能搭成三角形的组数有()A.4B.5C.6D.7二、填空题(共8小题,每小题3分,满分24分)11.已知:∠α的两条边分别平行∠β的两条边,若∠α=40°,则∠β=.12.如图AB∥CD,AE,CE分别平分∠BAC,∠ACD,那么∠AEC=度.13.已知多边形的内角和为540°,则该多边形的边数为.14.已知:a m=10,a n=2,则a2m﹣n=.15.若关于x的代数式x2+(m﹣3)x+16 是一个完全平方式,则m=.16.已知:实数a、b满足a2+b2+2a+4b+5=0,则b=.17.若是二元一次方程3x+by=5的一个解,则b=.18.已知:a2+b2+c2﹣ab﹣ac﹣ca=0,则a、b、c的大小关系为.三、解答题(56分)19.(8分)如图:点D、E在AB上,点F在BC上,点G在AC上,若∠1=∠B,∠2=∠3,∠4=70°.(1)请说明EF∥DC(2)求∠ADC的度数(要求书写完整步骤)20.(8分)已知:△ABC中,AB<AC,AH是高,AD是∠BAC的平分线.(1)若∠B=60°,∠C=40°,求∠HAD的度数;(2)若∠B=m°,∠C=n°,(m>n).求∠HAD(用mn的代数式表示)21.(8分)计算:22.(8分)先化简,后求值:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2,其中x=,y=﹣1 23.(8分)把下列各式因式分解:(1)4x2﹣64(2)4(m+n)2﹣9(m﹣n)224.(8分)解下列方程组(1)(代入法)(2)25.(8分)观察并计算(1)①1×2×3×4+1=2②3×4×5×6+1=2限填正整数(2)猜想:写出一个反应上述等量关系的等式.(3)说明你猜想的理由.(4)应用:计算:10×11×12×13+1七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.【分析】根据同位角的定义即可求出答案.【解答】解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角.故选:B.【点评】本题考查同位角的定义,解题的关键是熟练理解同位角的定义,本题属于基础题型.2.【分析】∠1与∠2是直线AB、直线CD被直线BD所截形成的内错角,即∠1=∠2,所以AB ∥CD.【解答】解:∵∠1=∠2,∴AB∥CD,故选:B.【点评】此题考查平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3.【分析】根据平行线的性质解答即可.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=∠2,解得:∠2=120°,故选:C.【点评】考查了平行线的判定和性质,平行线的性质有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;平行线的性质有:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.4.【分析】因为已知长度为2和4两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:当2为底时,其它两边都为4,2、4、4可以构成三角形,周长为10;当2为腰时,其它两边为2和4,∵2+2=4=4,所以不能构成三角形,故舍去,∴答案只有10.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【分析】若80°是顶角,则可直接得出答案;若80°是底角,则设顶角是y,根据三角形内角和为180°即可求解;【解答】解:若80°是顶角,则顶角为80°;若80°是底角,则设顶角是y,∴2×80°+y=180°,解得:y=20°.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,关键是注意分类讨论.6.【分析】将x m=3代入x2m=(x m)2,计算可得.【解答】解:当x m=3时,x2m=(x m)2=32=9,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00091=9.1×10﹣4.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【分析】根据平方差公式的特点,两平方项符号相反,对各选项分析判断后利用排除法求解.【解答】解:A、﹣x2与1符号相反,能运用平方差公式,故本选项正确;B、﹣x2与﹣1符号相同,不能运用平方差公式,故本选项错误;C、49﹣x3,不能运用平方差公式,故本选项错误;D、49+x,不能运用平方差公式,故本选项错误.故选:A.【点评】本题主要考查了平方差公式分解因式,熟记公式结构是解题的关键.9.【分析】将方程变形为x=10﹣3y,再分别求出y=1、2、3时x的值即可得.【解答】解:∵x+3y=10,∴x=10﹣3y,当y=1时,x=7;当y=2时,y=4;当y=3时,x=1;∴该方程的正整数解有3组,故选:C.【点评】本题主要考查二元一次方程的解,解题的关键是熟练将方程变形为用含一个未知数的代数式表示另一个未知数及方程的解的定义.10.【分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:其中的任意三条组合有:3cm、4cm、5cm;3cm、4cm、6cm;3cm、4cm、9cm;3cm、5cm、6cm;3cm、5cm、9cm;3cm、6cm、9cm;4cm、5cm、6cm;4cm、5cm、9cm;4cm、6cm、9cm;5cm、6cm、9cm十种情况.根据三角形的三边关系,其中的3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm;4cm、6cm、9cm;5cm、6cm、9cm能搭成三角形.故选:C.【点评】此题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题(共8小题,每小题3分,满分24分)11.【分析】根据当两角的两边分别平行时,两角的关系可能可能相等也可能互补,即可得出答案.【解答】解:∵∠α=40°,∠α的两边分别和∠β的两边平行,∴∠β和∠α可能相等也可能互补,即∠β的度数是40°或140°,故答案为:40°或140°.【点评】本题考查了对平行线的性质的应用,注意:运用了分类思想.12.【分析】根据平行线的性质得∠BAC+∠DCA=180°,再根据角平分线的定义得∠EAC=∠BAC,∠ECA=∠DCA,则∠EAC+∠ECA=90°,然后根据三角形内角和定理可计算出∠AEC.【解答】解:∵AB∥CD,∴∠BAC+∠DCA=180°,∵AE,CE分别平分∠BAC,∠ACD,∴∠EAC=∠BAC,∠ECA=∠DCA,∴∠EAC+∠ECA=(∠BAC+∠DCA)=90°,∴∠AEC=90°.故答案为90.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.也考查了角平分线的定义.13.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为已知多边形的内角和为540°,所以可列方程求解.【解答】解:设所求多边形边数为n,则(n﹣2)•180°=540°,解得n=5.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.14.【分析】根据同底数幂的除法法则和幂的乘方与积的乘方法则解答.【解答】解:∵a m=10,a n=2,∴a2m﹣n===50.故答案是:50.【点评】考查了同底数幂的除法和幂的乘方与积的乘方,属于基础计算题.15.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+(m﹣3)x+16 是一个完全平方式,∴m﹣3=±8,解得:m=11或﹣5,故答案为:11或﹣5【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.【分析】将已知等式左边的5变为1+4,利用加法运算律变形后,再利用完全平方公式变形,根据两非负数之和为0,两非负数分别为0,即可求出a与b的值.【解答】解:∵a2+b2+2a+4b+5=0,∴a2+2a+1+b2+4b+4=0,即(a+1)2+(b+2)2=0,∴a+1=0且b+2=0,解得:a=﹣1,b=﹣2.故答案为:﹣2.【点评】此题考查了配方法的应用,以及非负数的性质:偶次方,灵活运用完全平方公式是解本题的关键.17.【分析】将x=3、y=4代入方程3x+by=5得到关于b的方程,解之可得.【解答】解:根据题意将x=3、y=4代入方程3x+by=5,得:9+4b=5,解得:b=﹣1,故答案为:﹣1.【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握方程的解的定义.18.【分析】对a2+b2+c2﹣ab﹣bc﹣ca=0进行因式分解可得(a﹣b)2+(b﹣c)2+(c﹣a)2=0,进而解答即可.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故答案为a=b=c【点评】本题主要考查因式分解的应用,解题的关键是把所给式子进行因式分解.三、解答题(56分)19.【分析】(1)根据平行线的判定和性质得出DG∥BC,进而得出∠2=∠DCB,利用等量代换得出∠3=∠DCB,进而证明平行即可;(2)利用平行线的性质解答即可.【解答】解:(1)∵∠1=∠B,∴DG∥BC,∴∠2=∠DCB,∵∠2=∠3,∴∠3=∠DCB,∴EF∥DC;(2)∵EF∥DC,∴∠4=∠ADC═70°.【点评】此题考查平行线的判定和性质,关键是根据平行线的判定和性质得出DG∥BC.20.【分析】(1)先利用△ABC的内角和为180°,求出∠BAC的度数,再根据AD是∠BAC的平分线,求出∠BAD的度数,在△ABH中,求出∠BAH=180°﹣∠B﹣∠AHB=30°,根据∠HAD =∠BAD﹣∠BAH,即可解答;(2)根据(1)的解题过程,即可解答.【解答】解:(1)∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=40°,∵△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=60°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=30°,∴∠HAD=∠BAD﹣∠BAH=40°﹣30°=10°,(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣∠B﹣∠C═(180﹣m﹣n)°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=(180﹣m﹣n)°,∵:△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=m°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=(90﹣m)°,∴∠HAD=∠BAD﹣∠BAH=(180﹣m﹣n)°﹣(90﹣m)°=(m﹣n)°,【点评】本题考查了三角形的内角和定理和角平分线的性质,解决本题的关键是熟记三角形内角和定理.21.【分析】首先进行积的乘方运算,再利用单项式乘以多项式得出答案.【解答】解:原式=a2b2(﹣a2b﹣12ab+b2)=﹣8a4b3﹣a3b3+a2b4.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.22.【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2=25y2﹣x2﹣x2+10xy﹣25y2=﹣2x2+10xy,当x=,y=﹣1,原式==﹣﹣5=﹣5.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.23.【分析】(1)首先提取公因式4,再利用平方差公式分解因式得出答案;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+8)(x﹣8);(2)4(m+n)2﹣9(m﹣n)2=[2(m+n)+3(m﹣n)][2(m+n)﹣3(m﹣n)]=(5m﹣n)(﹣m+5n).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.24.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),由②得:y=﹣2x+8③,把③代入①得:3x+8x﹣32=1,解得:x=3,把x=3代入②得:y=2,则方程组的解为;(2)方程组整理得:,①+②得:4x=32,解得:x=8,把x=8代入②得:y=﹣6,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.【分析】(1)各式计算得到结果即可;(2)归纳总结得到一般性结论,写出即可;(3)验证得到的等式即可;(4)利用得出的规律计算即可求出值.【解答】解:(1)①1×2×3×4+1=52;②3×4×5×6+1=192;故答案为:①5;②19;(2)猜想得到:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2;(3)等式左边=(n2+n)(n2+5n+6)+1=n4+6n3+11n2+6n+1,等式右边=(n2+3n)2+2(n2+3n)+1=n4+6n3+11n2+6n+1,左边=右边,等式成立;(4)根据题意得:原式=1312=17161.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.。

2018-2019学年第二学期福建省厦门市第十中学七年级(下)期中数学试卷(解析版)

2018-2019学年第二学期福建省厦门市第十中学七年级(下)期中数学试卷(解析版)

2018-2019学年福建省厦门十中七年级(下)期中数学试卷一、选择题(本题共10个小题,每小题4分,共40分)1.(4分)在平面直角坐标系中,点P(﹣5,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)下列实数中,是无理数的是()A.0B.2C.﹣D.3.(4分)下列命题是真命题的是()A.同位角相等B.将20190000用科学记数法表示为2.019×108C.对顶角相等D.若2x=﹣1,则x=﹣24.(4分)如图,∠1=65°,CD∥EB,则∠B的度数为()A.115°B.110°C.105°D.65°5.(4分)一个正方形的面积是7,估计它的边长大小()A.在2~3之间B.在3~4之间C.在4~5之间D.在5~6之间6.(4分)方程组的解是()A.B.C.D.7.(4分)线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则AB 可以通过以下方式平移到CD()A.先向上平移3个单位,再向左平移5个单位B.先向左平移5个单位,再下平移3个单位C.先向上平移3个单位,再右平移5个单位D.先向右平移5个单位,再向下平移3个单位8.(4分)如图,下列条件不能判定AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠B+BCD=180°D.∠B=∠59.(4分)若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)10.(4分)同一平面内,∠A与∠B的两边互相垂直,∠B比∠A的2倍少30°,则∠A是()A.30°B.70°C.20°或110°D.30°或70°二、填空题(本大题共6个小题;每小题4分,共24分)11.(4分)如图,直线a、b相交于点O,若∠1=50°,则∠2=°.12.(4分)命题“两直线平行,内错角相等”的题设是.13.(4分)把方程2x﹣3y=5用含x的式子表示y的形式,则y=.14.(4分)如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=度.15.(4分)若方程组的解适合方程2x﹣5y=﹣1,那么m=.16.(4分)如图是一组密码的一部分,请你运用所学知识找到破译的“钥匙”.目前,已破译出“努力发挥”的真实意思是“今天考试”.若“努”所处的位置为(x,y),根据你找到的密码钥匙,破译“祝你成功”真实意思是.三、解答题17.(10分)计算:(1)﹣﹣(﹣2)2(2)|﹣3|+|π+3|18.(12分)用适当的方法解下列二元一次方程组:(1)(2)19.(7分)已知△A′B′C′是△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,0)B(3,0)C(5,5)△A′B′C′A′(4,2)B′(7,b)C′(c,7)(1)观察表中各对应点坐标的变化;(2)确定a=b=c=并在平面直角坐标系中画出△ABC;求出△ABC的面积.20.(7分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.21.(7分)养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?22.(8分)如图,线段AC与线段AB相交于A点,与射线CE相交于点C.(1)请按以下要求,完成作图:过点B作射线CE的垂线段BD,垂足为D,与线段AC 交于点O;(2)在(1)条件下,若∠A与∠COD互余,请证明:AB∥CE.23.(10分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,1<<2,于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(3)已知:90+=x+y,其中x是整数,且0<y<1,求x++59﹣y的平方根.24.(12分)已知二元一次方程x+y=3,通过列举将方程的解写成下列表格的形式,x﹣3﹣1n备用备用备用y6m﹣如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是(2,1).(1)①表格中的m=,n=;②根据以上确定对应点坐标的方法,将表格中给出的三个解依次转化为对应点A、B、C的坐标,并在所给的直角坐标系中画出这三个点.(2)试着再多列举几组不同的x+y=3的解,并在直角坐标系中画出对应点,根据结果猜想x+y=3的解对应的点所组成的图形,写出它的两个特征.(3)若点P(b,a﹣3),G(﹣a,b+3)恰好都落在x+y=3的解对应的点组成的图象上,求a,b的值.25.(13分)已知AB∥CD,点O不在直线AB、CD上,且AO⊥OC于点O.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点O作OE⊥AB于点E,求证:∠AOE=∠C;(3)如图3,在(2)的条件下,点F、G在BE上,OF平分∠AOE,OG平分∠COE,若∠GCD+∠GOC=180°,试判断∠OGC与∠EOF之间的数量关系,并说明理由.2018-2019学年福建省厦门十中七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共40分)1.(4分)在平面直角坐标系中,点P(﹣5,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限的坐标特点即可得到正确答案.【解答】解:点P(﹣5,3)在第二象限.故选:B.2.(4分)下列实数中,是无理数的是()A.0B.2C.﹣D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,2,是有理数,是无理数.故选:D.3.(4分)下列命题是真命题的是()A.同位角相等B.将20190000用科学记数法表示为2.019×108C.对顶角相等D.若2x=﹣1,则x=﹣2【分析】利用平行线的性质、科学记数法、对顶角的性质及方程的解的知识分别判断即可确定正确的选项.【解答】解:A、两直线平行,同位角相等,错误,是假命题;B、将20190000用科学记数法表示为2.019×107,故错误,是假命题;C、对顶角相等,正确,是真命题;D、若2x=﹣1,则x=﹣,故错误,是假命题,故选:C.4.(4分)如图,∠1=65°,CD∥EB,则∠B的度数为()A.115°B.110°C.105°D.65°【分析】根据对顶角相等求出∠2=65°,然后根据CD∥EB,判断出∠B=115°.【解答】解:如图,∵∠1=65°,∴∠2=65°,∵CD∥EB,∴∠B=180°﹣65°=115°,故选:A.5.(4分)一个正方形的面积是7,估计它的边长大小()A.在2~3之间B.在3~4之间C.在4~5之间D.在5~6之间【分析】先求出边长,然后在估计无理数的大小.【解答】解:一个正方形的面积是7,它的边长为:.∵,∴2,故边长在2~3之间.故选:A.6.(4分)方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,则方程组的解为,故选:B.7.(4分)线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则AB 可以通过以下方式平移到CD()A.先向上平移3个单位,再向左平移5个单位B.先向左平移5个单位,再下平移3个单位C.先向上平移3个单位,再右平移5个单位D.先向右平移5个单位,再向下平移3个单位【分析】根据向左平移,横坐标减,纵坐标不变,求解即可.【解答】解:由点A(﹣1,4)的对应点为C(4,7)知,平移的方式为先向上平移3个单位,再右平移5个单位,故选:C.8.(4分)如图,下列条件不能判定AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠B+BCD=180°D.∠B=∠5【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴AD∥BC,故本选项正确;B、∵∠3=∠4,∴AB∥CD,故本选项错误;C∵∠B+∠BCD=180°,∴AB∥CD,故本选项错误;D、∵∠B=∠5,∴AB∥CD,故本选项错误.故选:A.9.(4分)若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.10.(4分)同一平面内,∠A与∠B的两边互相垂直,∠B比∠A的2倍少30°,则∠A是()A.30°B.70°C.20°或110°D.30°或70°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠B比∠A的2倍少30°,所以它们互补,可设∠A是x度,利用方程即可解决问题.【解答】解:设∠A是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=2x﹣30解得,x=30,故∠A=30°,②两个角互补时,如图2:x+2x﹣30=180,所以x=70,故∠A=70°.故选:D.二、填空题(本大题共6个小题;每小题4分,共24分)11.(4分)如图,直线a、b相交于点O,若∠1=50°,则∠2=130°.【分析】由直线a、b相交于点O,可知∠1、∠2是邻补角,所以,∠1+∠2=180°,代入∠1=50°,可求出∠2的度数;【解答】解:∵直线a、b相交于点O,∴∠1+∠2=180°,∵∠1=50°,∴∠2=180°﹣50°=130°,故答案为130°.12.(4分)命题“两直线平行,内错角相等”的题设是两直线平行.【分析】根据命题的结构填空即可.【解答】解:题设是条件,结论是结果,故:“两直线平行,内错角相等”的题设是两直线平行.故答案为:两直线平行.13.(4分)把方程2x﹣3y=5用含x的式子表示y的形式,则y=.【分析】把x看做已知数求出y即可.【解答】解:∵2x﹣3y=5,∴﹣3y=5﹣2x,y=﹣,则y=,故答案为:.14.(4分)如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=65度.【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【解答】解:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65.15.(4分)若方程组的解适合方程2x﹣5y=﹣1,那么m=.【分析】用含m的代数式表示x,y,即解关于x,y的方程组,再代入2x﹣5y=﹣1可求出m的值.【解答】解:①+②得2x=10m,∴x=5m,①﹣②得2y=6m,∴y=3m,代入2x﹣5y=﹣1可得10m﹣15m=﹣1,∴m=.故本题答案为:.16.(4分)如图是一组密码的一部分,请你运用所学知识找到破译的“钥匙”.目前,已破译出“努力发挥”的真实意思是“今天考试”.若“努”所处的位置为(x,y),根据你找到的密码钥匙,破译“祝你成功”真实意思是正做数学.【分析】根据已破译出“努力发挥”的真实意思是“今天考试”,“努”所处的位置为(x,y),则对应文字“今”的位置是:(x﹣1,y﹣2),所以找到的密码钥匙是:对应文字横坐标减1,纵坐标减2,据此判断出“祝你成功”的真实意思即可.【解答】解:∵“努”所处的位置为(x,y),对应文字“今”的位置是:(x﹣1,y﹣2),∴找到的密码钥匙是:对应文字横坐标减1,纵坐标减2,∴“祝你成功”真实意思是“正做数学”.故答案为:正做数学.三、解答题17.(10分)计算:(1)﹣﹣(﹣2)2(2)|﹣3|+|π+3|【分析】(1)直接利用算术平方根以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质化简得出答案.【解答】解:(1)原式=6﹣3﹣4=﹣1;(2)原式=3﹣+π+3=6﹣+π.18.(12分)用适当的方法解下列二元一次方程组:(1)(2)【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把②代入①得:x+4x=5,解得:x=1,把x=1代入②得:y=2,则方程组的解为;(2)方程组整理得:,②×3﹣①得:5x=5,解得:x=1,把x=1代入①得:y=﹣0.5,则方程组的解为.19.(7分)已知△A′B′C′是△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,0)B(3,0)C(5,5)△A′B′C′A′(4,2)B′(7,b)C′(c,7)(1)观察表中各对应点坐标的变化;(2)确定a=0b=2c=9并在平面直角坐标系中画出△ABC;求出△ABC 的面积.【分析】(1)利用已知点坐标进而分析得出对应点平移规律得出答案;利用平移的性质结合对应点坐标得出答案;(2)直接利用三角形面积求法得出答案.【解答】解:(1)∵B(3,0),B′(7,b)∴对应点向右平移了4个单位长度,∵A(0,0),A′(4,2),∴对应点向上平移了2个单位长度,所以点A、B、C分别向右平移了4个单位长度,然后向上平移了2个单位长度后分别得到了点A′、B′、C′;(2)∵B(3,0),B′(7,b)∴对应点向右平移了4个单位长度,∴a=0,∵A(0,0),A′(4,2),∴对应点向上平移了2个单位长度,∴b=2,∴c=9.如图所示:△ABC即为所求;S△形A′B′C′=S△ABC=×3×5=.故答案为:029.20.(7分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,计算∠EAD、∠DAC、∠C的度数.【分析】由AD∥BC,∠B=30°,根据两直线平行,同位角相等,即可求得∠EAD的度数,又由AD是∠EAC的平分线,根据角平分线的定义,即可求得∠DAC的度数,然后由两直线平行,内错角相等,求得∠C的度数.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=30°,∵AD∥BC,∴∠C=∠DAC=30°.∴∠EAD=∠DAC=∠C=30°.21.(7分)养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?【分析】根据一头大牛一天的饮料乘以大牛数量+一头小牛一天的饮料乘以小牛数量=大牛和小牛一天的总用饮料数量列出方程组即可.【解答】解:设原来大牛x头,小牛y头,根据题意,得解得x=20,y=13.答:养牛场原有大牛和小牛数量各是20头,13头.22.(8分)如图,线段AC与线段AB相交于A点,与射线CE相交于点C.(1)请按以下要求,完成作图:过点B作射线CE的垂线段BD,垂足为D,与线段AC 交于点O;(2)在(1)条件下,若∠A与∠COD互余,请证明:AB∥CE.【分析】(1)利用基本作图,过B点作BD⊥CE于D;(2)先根据∠A与∠COD互余,∠COD=∠AOB得到∠A+∠AOB=90°,利用三角形内角和得到∠ABO=90°,所以OB⊥AB,然后根据平行线的判定方法得到结论.【解答】(1)解:如图,BD为所作;(2)证明:∵∠A与∠COD互余,∴∠A+∠COD=90°,∵∠COD=∠AOB,∴∠A+∠AOB=90°,∴∠ABO=90°,∴OB⊥AB,∵BD⊥EC,∴∠ODC=∠ABO=90°∴AB∥CE.23.(10分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,1<<2,于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是5,小数部分是﹣5.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(3)已知:90+=x+y,其中x是整数,且0<y<1,求x++59﹣y的平方根.【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可.【解答】解:(1)∵5<<6,∴的整数部分是5,小数部分是﹣5,(2)3<<4,由题意可知:a=﹣3,b=5,所以原式=﹣3+5﹣=2;(3)10<<11,有题意可知:x=100,y=﹣10,所以原式=169,所以平方根为﹣13,13.故答案为:5,﹣5.24.(12分)已知二元一次方程x+y=3,通过列举将方程的解写成下列表格的形式,x﹣3﹣1n备用备用备用y6m﹣如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是(2,1).(1)①表格中的m=4,n=;②根据以上确定对应点坐标的方法,将表格中给出的三个解依次转化为对应点A、B、C 的坐标,并在所给的直角坐标系中画出这三个点.(2)试着再多列举几组不同的x+y=3的解,并在直角坐标系中画出对应点,根据结果猜想x+y=3的解对应的点所组成的图形,写出它的两个特征.(3)若点P(b,a﹣3),G(﹣a,b+3)恰好都落在x+y=3的解对应的点组成的图象上,求a,b的值.【分析】(1)①将x=﹣1,y=m代入x+y=3得m的值;将x=n,y=代入x+y=3得n的值;②由①及原题表格可得A、B、C的坐标,在坐标系中标出即可;(2)易得x=﹣2,y=5;x=0,y=3;x=1,y=2;x=2,y=1;x=3,y=0都是方程x+y=0的解,在直角坐标系中画出对应点D、E、F、G、H,由图象易得x+y=3的解对应的点所组成的图形及其特征;(3)将点P(b,a﹣3),G(﹣a,b+3)代入x+y=3解方程组即可得a与b的值.【解答】解:(1)①将x=﹣1,y=m代入x+y=3得﹣1+m=3∴m=4将x=n,y=代入x+y=3得n﹣=3∴n=故答案为:4,;②由①及原题表格可知A、B、C的坐标分别为:A(﹣3,6)、B(﹣1,4)、C(,)画图如下:(2)易得x=﹣2,y=5;x=0,y=3;x=1,y=2;x=2,y=1;x=3,y=0都是方程x+y=0的解,在直角坐标系中画出对应点D、E、F、G、H猜想x+y=3的解对应的点所组成的图形为直线它有这样两个特征:①图象经过一、二、四象限;②图象从左向右呈下降趋势.(3)由题意得:解得:∴a的值为3,b的值为3.25.(13分)已知AB∥CD,点O不在直线AB、CD上,且AO⊥OC于点O.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点O作OE⊥AB于点E,求证:∠AOE=∠C;(3)如图3,在(2)的条件下,点F、G在BE上,OF平分∠AOE,OG平分∠COE,若∠GCD+∠GOC=180°,试判断∠OGC与∠EOF之间的数量关系,并说明理由.【分析】(1)利用平行线的性质以及三角形内角和定理即可解决问题.(2)利用等角的余角相等证明即可.(3)结论:∠OGC=2∠EOF.如图3中,设∠EOF=∠AOF=y,∠COG=∠GOE=x.利用三角形内角和定理构建关系式解决问题即可.【解答】(1)解:如图1中,∵AB∥CD,∴∠1=∠C,∵AO⊥OC,∴∠A+∠1=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°.(2)证明:如图2中,∵AB∥CD∴∠OAE+∠C=∠AOC=90°,∵OE⊥AB,∴∠AEO=90°,∴∠AOE+∠OAE=90°,∴∠AOE=∠C.(3)解:结论:∠OGC=2∠EOF.理由:如图3中,设∠EOF=∠AOF=y,∠COG=∠GOE=x.∵AB∥CD,∴∠DCG+∠CGA=180°,∵∠DCG+∠GOC=180°,∴∠EGC=∠GOC=x,∵OE⊥AB,OA⊥OC,∴∠E=∠AOC=90°,∴∠OGC=∠CGE﹣∠EGO=x﹣[90°﹣2y﹣(90°﹣x)]=2y=2∠EOF.。

福建省福州市福清市2018-2019学年第二学期七年级(下)期中考试数学试卷 解析版

福建省福州市福清市2018-2019学年第二学期七年级(下)期中考试数学试卷  解析版

2018-2019学年福建省福州市福清市七年级(下)期中数学试卷一.选择题(共10小题)1.下列实数是无理数的是()A.B.﹣1 C.D.3.142.下图中能判断∠1与∠2一定互为补角的是()A.B.C.D.3.在平面直角坐标系中,点(﹣1,﹣3)位于()A.第一象限B.第二象限C.第三象限D.第四象限4.下列各组数中,是方程2x+3y=10的解为()A.B.C.D.5.估计+1的结果在哪两个整数之间()A.2和3 B.3和4 C.4和5 D.5和66.如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2C.∠C=∠CDE D.∠C+∠ADC=180°7.下列语句正确的是()A.a的平方根是(a≥0)B.在同一平面内,垂直于同一条直线的两直线平行C.同旁内角互补D.若ab=0,则点P(a,b)在坐标原点8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,其中一个三角板的斜边与纸条一边重合,则∠1的度数是()A.30°B.40°C.45°D.50°9.已知=a,=b,点A的坐标为(a,b),则点A的坐标不可能是()A.(0,1)B.(1,﹣1)C.(0,0)D.(﹣1,0)10.关于x、y的方程组的解为整数,则满足这个条件的整数m的个数有()A.2个B.3个C.4个D.无数个二.填空题(共6小题)11.25的算术平方根是.12.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于.13.把命题“对顶角相等”改写成“如果…那么…”的形式:.14.如图,已知∠AOB=62°,将∠AOB沿着射线OC折叠,使OA和OB重合,过OB边上任意一点P作OA的平行线交OC于D,则∠ODP的度数为.15.如图,将直径为1个单位长度的圆沿着数轴向右滚动一周,圆上一点由表示﹣2的点A 到达点A',则点A'对应的数是.16.平面直角坐标系中,点A(a,),B(﹣3,﹣),则线段AB的最小值为.三.解答题(共9小题)17.计算题:(1)(2)18.解方程(组):(1)(2)(x﹣3)3=819.已知三角形A1B1C1是由三角形ABC经过平移得到的,其中A、B、C三点的对应点分别是A1、B1、C1,它们在平面直角坐标系中的坐标如表所示:三角形ABC A(0,0)B(﹣1,2) C(2,5)三角形A1B1C1 A1(a,2)B1(4,b)C1(7,7)(1)观察表中各对应点坐标的变化,填空a=,b=;(2)在图中的平面直角坐标系中画出三角形ABC及三角形A1B1C1;(3)P(m,n)为三角形ABC中任意一点,则平移后对应点P′的坐标为.20.阅读并填空完善下列证明过程:如图,已知BC⊥AC于C,DF⊥AC于D,∠1+∠2=180°,求证:∠GFB=∠DEF﹒证明:∵BC⊥AC于C,DF⊥AC于D(已知)∴∠C=∠=90°()∴CB∥FD(同位角相等,两直线平行)∴∠1+∠3=180°()又∵∠1+∠2=180°(已知)∴∠2=∠3()∴∥()∴∠GFB=∠DEF()21.如图,已知直线AD∥BC,且都被直线BE所截,交点分别为A、B,AC⊥BE于点A,交直线BC于点C,∠1=44°,求∠2的度数.22.已知关于x、y的方程组,甲由于看错了方程①中的a,得到方程组的解为;乙由于看错了方程②中的b,得到方程组的解为.求原方程组的正确解.23.某校七年级为了开展球类兴趣小组,需要购买一批足球和篮球﹒若购买3个足球和5个篮球需580元;若购买4个足球和3个篮球需480元.(1)求出足球和篮球的的单价分别是多少?(2)已知该年级决定用800元购进这两种球,若两种球都要有,请问有几种购买方案,并请加以说明﹒24.我们知道:零与任何实数的积为零,任意一个有理数与无理数的和为无理数.现定义一种新运算“⊕”:对于任意有理数a,b,都有a⊕b=a+b,例如:3⊕b=3+b.运用上述知识,解决下列问题:(1)如果a⊕(b﹣1)=0,那么a=,b=;(2)如果(a+b)⊕(2a+b)=2,求﹣ab的平方根.25.如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足(a+8)2+=0,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B的坐标,AO和BC位置关系是;(2)当P、Q分别是线段AO,OC上时,连接PB,QB,使S△PAB=2S△QBC,求出点P的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.参考答案与试题解析一.选择题(共10小题)1.下列实数是无理数的是()A.B.﹣1 C.D.3.14【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;﹣1是整数,属于有理数;是分数,属于有理数;3.14是有限小数,属于有理数.故选:A.2.下图中能判断∠1与∠2一定互为补角的是()A.B.C.D.【分析】根据图形和补角的定义得出即可.【解答】解:选项B中的∠1+∠2=180°,其余选项中∠1+∠2≠180°,故选:B.3.在平面直角坐标系中,点(﹣1,﹣3)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点的横纵坐标特点,判断其所在象限,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).【解答】解:∵点(﹣1,﹣3)的横纵坐标都为:﹣,∴位于第三象限.故选:C.4.下列各组数中,是方程2x+3y=10的解为()A.B.C.D.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把代入方程得:左边=2+3=5,右边=10,∵左边≠右边,∴不是2x+3y=10的解;B、把代入方程得:左边=4+3=7,右边=10,∵左边≠右边,∴不是2x+3y=10的解;C、把代入方程得:左边=2+6=8,右边=10,∵左边≠右边,∴不是2x+3y=10的解;D、把代入方程得:左边=4+6=10,右边=10,∵左边=右边,∴是2x+3y=10的解,故选:D.5.估计+1的结果在哪两个整数之间()A.2和3 B.3和4 C.4和5 D.5和6【分析】利用”夹逼法“得出的范围,继而也可得出+1的范围.【解答】解:∵<<,∴3<<4,∴4<+1<5.故选:C.6.如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2C.∠C=∠CDE D.∠C+∠ADC=180°【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.【解答】解:根据∠3=∠4,可得BC∥AD;根据∠1=∠2,可得AB∥CD;根据∠C=∠CDE,可得BC∥AD;根据∠C+∠ADC=180°,可得BC∥AD;故选:B.7.下列语句正确的是()A.a的平方根是(a≥0)B.在同一平面内,垂直于同一条直线的两直线平行C.同旁内角互补D.若ab=0,则点P(a,b)在坐标原点【分析】分别根据平方根的定义、平行线的性质、直角坐标系知识进行判定.【解答】解:A.a的平方根是(a≥0),故本项错误;B.在同一平面内,垂直于同一条直线的两直线平行,正确;C.两直线平行,同旁内角互补,故本项错误;D.若ab=0,则点P(a,b)在坐标轴上,故本项错误.故选:B.8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,其中一个三角板的斜边与纸条一边重合,则∠1的度数是()A.30°B.40°C.45°D.50°【分析】根据平行线的性质,即可得到∠2的度数,再根据角的和差关系即可得到∠1的度数.【解答】解:∵a∥b,∴∠2=∠3=45°,∴∠1=90°﹣∠2=45°.故选:C.9.已知=a,=b,点A的坐标为(a,b),则点A的坐标不可能是()A.(0,1)B.(1,﹣1)C.(0,0)D.(﹣1,0)【分析】根据算术平方根、立方根的定义求出a,b,从而得出点A对应的坐标.【解答】解:因为=a,=b,所以a=0或1,b=0或±1,所以点A(a,b)的坐标可能是(0,1)或(1,﹣1)或(0,0),点A的坐标不可能是(﹣1,0),故选:D.10.关于x、y的方程组的解为整数,则满足这个条件的整数m的个数有()A.2个B.3个C.4个D.无数个【分析】首先应用加减消元法,求出方程组的解是多少;然后根据方程组的解为整数,判断出满足这个条件的整数m的个数有多少即可.【解答】解:①﹣②,可得(2﹣m)x=﹣m,解得x=,把x=代入①,解得y=,∴原方程组的解是,∵方程组的解为整数,∴m﹣2=±1,±2或±4.(1)m﹣2=﹣1时,m=1,原方程组的解是,符合题意;(2)m﹣2=1时,m=3,原方程组的解是,符合题意;(3)m﹣2=﹣2时,m=0,原方程组的解是,符合题意;(4)m﹣2=2时,m=4,原方程组的解是,符合题意;(5)m﹣2=﹣4时,m=﹣2,原方程组的解是,不符合题意;(6)m﹣2=4时,m=6,原方程组的解是,不符合题意;∴满足这个条件的整数m的个数有4个:m=0,1,3,4.故选:C.二.填空题(共6小题)11.25的算术平方根是5.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.12.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于(3,3).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:结合图形以“将”(0,0)作为基准点,则“马”位于(0+3,0+3),即(3,3).故答案为:(3,3).13.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,已知∠AOB=62°,将∠AOB沿着射线OC折叠,使OA和OB重合,过OB边上任意一点P作OA的平行线交OC于D,则∠ODP的度数为31°.【分析】由折叠的性质可得∠AOC=∠BOC=31°,由平行线的性质可求解.【解答】解:如图,∵将∠AOB沿着射线OC折叠,使OA和OB重合,∴∠AOC=∠BOC=31°,∵PD∥OA,∴∠ODP=∠AOD=31°,故答案为:31°.15.如图,将直径为1个单位长度的圆沿着数轴向右滚动一周,圆上一点由表示﹣2的点A 到达点A',则点A'对应的数是﹣2+π.【分析】直径为1个单位长度的圆沿着数轴向右滚动一周,圆上一点A运动到了A'的位置,说明AA'之间的距离为圆的周长,再根据数轴的基础知识即可求解出A'所表示的数.【解答】解:由题AA'之间的距离为直径为1个单位长度的圆的周长∴AA'=πd=π∵A所表示的数为﹣2∴A'所表示的数为π﹣2答:点A'对应的数是π﹣2.16.平面直角坐标系中,点A(a,),B(﹣3,﹣),则线段AB的最小值为.【分析】先确定点A在与x轴平行,且在x轴上方的直线l上,直线l与x轴的距离为,当AB⊥l时,线段AB最小,其最小值是A、B两点纵坐标绝对值的和.【解答】解:∵点A(a,),∴点A在与x轴上方,与x轴平行且与x轴距离为的直线l上,∵B(﹣3,﹣),当AB⊥l时,线段AB最小,此时最小值是+,故答案为:+.三.解答题(共9小题)17.计算题:(1)(2)【分析】(1)原式利用算术平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=0﹣4+(﹣2)=﹣4﹣2=﹣6;(2)原式=+2﹣=2.18.解方程(组):(1)(2)(x﹣3)3=8【分析】(1)方程组利用代入消元法求出解即可;(2)方程利用立方根定义开立方即可求出解.【解答】解:(1)由①得y=2x﹣5③,把③代入②得:3x+4(2x﹣5)=2,解得:x=2,把x=2代入③得:y=﹣1,∴原方程组的解为;(2)(x﹣3)3=8,开立方得:x﹣3=2,解得:x=5.19.已知三角形A1B1C1是由三角形ABC经过平移得到的,其中A、B、C三点的对应点分别是A1、B1、C1,它们在平面直角坐标系中的坐标如表所示:三角形ABC A(0,0)B(﹣1,2) C(2,5)三角形A1B1C1 A1(a,2)B1(4,b)C1(7,7)(1)观察表中各对应点坐标的变化,填空a=5,b=4;(2)在图中的平面直角坐标系中画出三角形ABC及三角形A1B1C1;(3)P(m,n)为三角形ABC中任意一点,则平移后对应点P′的坐标为(m+5,n+2).【分析】(1)由点C及其对应点的坐标知,△ABC向右平移5个单位、向上平移2个单位可得△A1B1C1,据此可得答案;(2)根据以上所得点的坐标,描点、连线即可得;(3)根据平面直角坐标系中点的坐标的平移得出答案.【解答】解:(1)由点C及其对应点的坐标知,△ABC向右平移5个单位、向上平移2个单位可得△A1B1C1,∴a=0+5=5,b=2+2=4,故答案为:5、4;(2)如图所示,△A1B1C1即为所求.(3)平移后对应点P′的坐标为(m+5,n+2),故答案为:(m+5,n+2).20.阅读并填空完善下列证明过程:如图,已知BC⊥AC于C,DF⊥AC于D,∠1+∠2=180°,求证:∠GFB=∠DEF﹒证明:∵BC⊥AC于C,DF⊥AC于D(已知)∴∠C=∠ADF=90°(垂直的定义)∴CB∥FD(同位角相等,两直线平行)∴∠1+∠3=180°(两直线平行,同旁内角互补)又∵∠1+∠2=180°(已知)∴∠2=∠3(同角的补角相等)∴DE∥FG(内错角相等,两直线平行)∴∠GFB=∠DEF(两直线平行,同位角相等)【分析】根据垂直的定义、平行线的判定、平行线的性质、补角的性质求解可得.【解答】证明:∵BC⊥AC于C,DF⊥AC于D(已知)∴∠C=∠ADF=90°(垂直的定义)∴CB∥FD (同位角相等,两直线平行)∴∠1+∠3=180°(两直线平行,同旁内角互补)又∵∠1+∠2=180°(已知)∴∠2=∠3(同角的补角相等)∴DE∥FG (内错角相等,两直线平行)∴∠GFB=∠DEF (两直线平行,同位角相等),故答案为:ADF;垂直的定义;两直线平行,同旁内角互补;同角的补角相等;DE;FG;内错角相等,两直线平行;两直线平行,同位角相等.21.如图,已知直线AD∥BC,且都被直线BE所截,交点分别为A、B,AC⊥BE于点A,交直线BC于点C,∠1=44°,求∠2的度数.【分析】根据垂直的定义可求∠4=90°,根据平行线的性质和对顶角的定义可求∠5,再根据平角的定义可求∠2的度数.【解答】解:∵AC⊥BE,∴∠4=90°,∵AD∥BC,∴∠5=∠3,又∵∠3=∠1=44°,∴∠5=∠3=44°,∴∠2=180°﹣∠4﹣∠5=180°﹣90°﹣44°=46°.22.已知关于x、y的方程组,甲由于看错了方程①中的a,得到方程组的解为;乙由于看错了方程②中的b,得到方程组的解为.求原方程组的正确解.【分析】直接把x,y的值代入进而得出b的值,进而求出a的值,再解方程组得出答案.【解答】解:把代入②得4×3﹣5b=7,解得:b=1,把代入①得﹣a+7=5,解得:a=2,∴原方程组为,解这个方程组得:.23.某校七年级为了开展球类兴趣小组,需要购买一批足球和篮球﹒若购买3个足球和5个篮球需580元;若购买4个足球和3个篮球需480元.(1)求出足球和篮球的的单价分别是多少?(2)已知该年级决定用800元购进这两种球,若两种球都要有,请问有几种购买方案,并请加以说明﹒【分析】(1)设足球的单价为x元,篮球的单价为y元,根据“若购买3个足球和5个篮球需580元;若购买4个足球和3个篮球需480元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个足球,n个篮球,根据总价=单价×数量,即可得出关于m,n的二元一次方程,再结合m,n均为正整数,即可得出各购买方案.【解答】解:(1)设足球的单价为x元,篮球的单价为y元,依题意,得:,解得:.答:足球的单价为60元,篮球的单价为80元.(2)设购买m个足球,n个篮球,依题意,得:60m+80n=800,∴n=10﹣m.∵m,n均为正整数,∴当m=4时,n=7;当m=8时,n=4;当m=12时,n=1.∴有三种购买方案,方案1:购进4个足球,7个篮球;方案2:购进8个足球,4个篮球;方案3:购进12个足球,1个篮球.24.我们知道:零与任何实数的积为零,任意一个有理数与无理数的和为无理数.现定义一种新运算“⊕”:对于任意有理数a,b,都有a⊕b=a+b,例如:3⊕b=3+b.运用上述知识,解决下列问题:(1)如果a⊕(b﹣1)=0,那么a=0,b=1;(2)如果(a+b)⊕(2a+b)=2,求﹣ab的平方根.【分析】(1)已知等式利用题中的新定义化简,计算即可求出a与b的值;(2)已知等式利用题中的新定义化简,计算求出a与b的值,即可求出所求.【解答】解:(1)根据题中的新定义化简得:a+b﹣1=0,可得a=0,b﹣1=0,解得:a=0,b=1;故答案为:0,1;(2)依题意得:(a+b)+(2a+b)=2,∴(a+b)+(2a+b﹣2)=0,∴,解得:,∴﹣ab=4,∵4的平方根是±2,∴﹣ab的平方根是±2.25.如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足(a+8)2+=0,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B的坐标(﹣4,﹣4),AO和BC位置关系是BC∥AO;(2)当P、Q分别是线段AO,OC上时,连接PB,QB,使S△PAB=2S△QBC,求出点P的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.【分析】(1)根据非负数的性质分别求出a、c,得到点B的坐标,根据坐标与图形性质判断AO和BC位置关系;(2)过B点作BE⊥AO于E,根据三角形的面积公式求出AP,得到点P的坐标;(3)分点Q在点C的上方、点Q在点C的下方两种情况,根据平行线的性质解答即可.【解答】解:(1)∵(a+8)2+=0,∴a+8=0,c+4=0,解得,a=﹣8,c=﹣4,则点B的坐标为(﹣4,﹣4),∵点B的坐标为(﹣4,﹣4),点C的坐标为(0,﹣4),∴BC∥AO,故答案为:(﹣4,﹣4),BC∥AO;(2)过B点作BE⊥AO于E,设时间经过t秒,S△PAB=2S△QBC,则AP=2t,OQ=t,∴CQ=4﹣t,∵BE=4,BC=4,∴,,∵S△APB=2S△BCQ,∴4t=2(8﹣2t)解得,t=2,∴AP=2t=4,∴OP=OA﹣AP=4,∴点P的坐标为(﹣4,0);(3)∠PQB=∠OPQ+30°或∠BQP+∠OPQ=150°.理由如下:①当点Q在点C的上方时,过Q点作QH∥AO,如图2所示,∴∠OPQ=∠PQH,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ=30°,∴∠OPQ+∠CBQ=∠PQH+∠BQH,∴∠PQB=∠OPQ+∠CBQ,即∠PQB=∠OPQ+30°;②当点Q在点C的下方时;过Q点作HJ∥AO 如图3所示,∴∠OPQ=∠PQJ,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ=30°,∴∠HQB+∠BQP+∠PQJ=180°,∴30°+∠BQP+∠OPQ=180°,即∠BQP+∠OPQ=150°,综上所述,∠PQB=∠OPQ+30°或∠BQP+∠OPQ=150°.。

2018-2019学年福建省泉州市惠安县七年级(下)期中数学试卷(附答案详解)

2018-2019学年福建省泉州市惠安县七年级(下)期中数学试卷(附答案详解)

2018-2019学年福建省泉州市惠安县七年级(下)期中数学试卷一、选择题(本大题共5小题,共25.0分) 1.123−4.5−12×1.3⋅−(1−2)2|−523|=( )A. −720B. −12245C. −17720D. −292452. 已知x 和y 满足2x +3y =5,则当x =4时,代数式3x 2+12xy +y 2的值是( )A. 4B. 3C. 2D. 13. 图中的大,小正方形的边长均为整数,它们面积之和等于74cm 2,则阴影三角形的面积是( )A. 6cm 2B. 7cm 2C. 8cm 2D. 9cm 24. 有理数a 、b 、c 的大小关系如图所示,则下列式子中一定成立的是( )A. a +b +c >0B. |a +b|<cC. |a −c|=|a|+cD. |b −c|>|c −a|5. “希望杯”四校足球邀请赛规定:(1)比赛将采用单循环赛形式;(2)有胜负时,胜队得3分,负队得0分; (3)踢平时每队各得1分.比赛结束后,四个队各自的总得分中不能出现( )A. 8分B. 7分C. 6分D. 5分二、填空题(本大题共5小题,共25.0分)6. 2002年8月,在北京召开了国际数学家大会,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,则两条直角三角形的两条边的立方和等于______.7. 关于x ,y 的方程组{3x +4y =32mx +3y =2的解x ,y 的和等于1.则m 的值是______.8. 若k45k9−是能被3整除的五位数,则k 的可能取值有______个;这样的五位数中能被9整除的是______.9. 如图,甲乙两车分别自A 、B 两城同时相向行驶,在C地相遇继续行驶分别达到B 、A 两城后,立即返回,在D处再次相遇.已知AC =30千米,AD =40千米,则AB =______千米,甲的速度:乙的速度=______. 10. For real number a ,let[a]denote tℎe maximum integer wℎicℎ does not exceed a.For example ,[3.1]=3,[−1.5]=−2,[0.7]=0 Now let f(x)=(x +1)/(x −1),tℎen[f(2)]+[f(3)]+⋯+[f(100)]=______.(英汉小词典real number :实数;tℎe maximum integer wℎicℎ does not exceed a :不超过a 的最大整数) 三、解答题(本大题共4小题,共50.0分)11. 1只猴子摘了一堆桃子,第一天吃了这堆桃子的17,第二天吃了余下桃子的16,第三天吃了余下桃子的15,第四天吃了余下桃子的14,第五天吃了余下桃子的13,第六天吃了余下桃子的12,这时还剩下桃子12个,那么第一天和第二天所吃桃子的总数是多少?12. 观察下面的等式:2×2=4,2+2=4,32×3=412,32+3=412,43×4=513,43+4=513,54×5=614,54+5=614,小明归纳上面各式得出一个猜想:“两个有理数的积等于这两个有理数的和”,小明的猜想正确吗?为什么?请你观察上面各式的结构特点,归纳出一个猜想,并证明你的猜想.13. 平时在顺风情况下,一帆船由甲地经3小时到达乙地.今天这艘帆船照例在顺风情况下从甲地出发,行驶了全程的13;由于风向骤变,船因而以顺风时速度的25行驶8千米,接着风向又变得顺起来,且风力加大了,这时船以顺风时速度的2倍行驶,到达乙地时比往常迟36分钟.求甲、乙两地相距多少千米.14. 规定:正整数n 的“H 运算”是①当n 为奇数时,H =3n +13;②当n 为偶数时,H =n ×12×12×…(其中H 为奇数).如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果是11,经过3次“H 运算”的结果是46.请解答:(1)数257经过257次“H 运算”得到的结果. (2)若“H 运算”②的结果总是常数a ,求a 的值.答案和解析1.【答案】A【解析】解:原式=(53−92)÷(−12×43)−1÷(523),=−176×(−32)−1×235,=174−235,=−720.故选:A.把小数转化为分数通分,计算乘方和绝对值,再把分数按照除法计算.本题考查的是有理数的混合运算的能力,要注意运算顺序及符号的处理.2.【答案】D【解析】解:把x=4代入2x+3y=5得:y=−1,把x=4,y=1代入3x2+12xy+y2得:3×16+12×4×(−1)+1=1,故选:D.根据题意先把x=4代入2x+3y=5求出y的值,然后把x、y的值代入代数式3x2+ 12xy+y2即可求得.本题考查了二元一次方程的解法,主要运用了代入法,难度适中.3.【答案】B【解析】解:∵大、小正方形的边长均为整数(cm),它们面积之和等于74cm2,∴大正方形的边长是7cm,小正方形的边长是5cm,∴阴影部分的面积=12×(7−5)×7=7(cm2).故选:B.根据大、小正方形的边长均为整数,它们面积之和等于74cm2,则可以分析求得两个正方形的边长分别是5cm和7cm,再进一步求得阴影部分的面积即可.此题考查三角形的面积计算,关键是能够根据已知条件把74分成两个完全平方数,即74=25+49.4.【答案】C【解析】解:根据数轴可知,A、a+b+c<0,本选项错误;B、|a+b|>c,本选项错误;C、|a−c|表示数a的点与数c的点之间的距离,可以用|a|+c表示,本选项正确;D、|b−c|<|c−a|,本选项错误.故选:C.由数轴可知a、b为负数,c为正数,根据绝对值的意义,逐一判断.本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【答案】A【解析】解:因为四校进行单循环赛,则每队能赛3场,则每队比赛结果可能有:3胜,2胜1负,2胜1平,1胜2负,1胜1负1平,1胜2平,3负,2负1平,1负2平,3平,则每队比赛得分可能有:9分,7分,6分,5分,4分,3分,2分,1分,0分.故选:A.四校足球邀请赛采用单循环赛形式,四个队中每队将比赛3场,则每队比赛结果可能有:3胜,2胜1负,2胜1平,1胜2负,1胜1负1平,1胜2平,3负,2负1平,1负2平,3平,计算即可得出得分出现的情况,从而作答.本题考查了比赛积分问题,了解单循环赛的规则及积分规定,是此题的关键.6.【答案】35【解析】解:设每个直角三角形的两条直角边分别是a、b(a>b),小正方形面积为1,大正方形面积为13,即a2+b2=13,a−b=1,解得a=3,b=2,∴a 3+b 3=35,故两条直角三角形的两条边的立方和=a 3+b 3=35 故答案为35.设每个直角三角形的两条直角边分别是a 、b(a >b),则根据小正方形、大正方形的面积可以列出方程组,解方程组即可求得a 、b ,求a 3+b 3即可.本题考查了勾股定理在直角三角形中的灵活运用,考查了正方形面积的计算,本题中列出方程组并求解是解题的关键.7.【答案】1【解析】解:解方程组{3x +4y =3x +y =1,得{x =1y =0. 把x =1,y =0代入2mx +3y =2, 得2m +0=2, ∴m =1. 故答案为1.先解二元一次方程组{3x +4y =3x +y =1,把x 、y 的值代入2mx +3y =2,即可求出m 的值.本题考查了一次方程组的解法.先求解二元一次方程组{3x +4y =3x +y =1,可使问题比较简便.本题还可以将x +y =1加入已知方程组中,解二元一次方程组.8.【答案】3 94599【解析】解:已知,五位数k 45k 9能被3整除, 所以(k +4+5+k +9)是3的倍数, 即2k +18是3的倍数, 18是3的倍数, 则2k 是3的倍数,3,6,9,12,15,18…是3的倍数,又K 是1、2、3、4、5、6、7、8、9,其中的数, 如果k =1,2,4,5,7,8时,2k 不是3的倍数, 当k =3,6,9时,2k 是3的倍数, 所以k =3或6或9,得到3个五位数即34539,64569,94599,而这三个五位数中只有94599的5个数的和是9的倍数. 所以这样的五位数中能被9整除的是94599. 故答案分别为:3,94599.由已知,若k 45k 9能被3整除,则(k +4+5+k +9)是3的倍数,即2k +18是3的倍数,由此可求出k ,然后用求得k 的数组成的五位数的5个数的和那个是9的倍数即得答案.此题是考查数的整除性问题,解答的关键是这个五位数能被3或9整除,则有它们5个数的和是3或9的倍数.9.【答案】65 67【解析】解:设甲速度为a ,乙速度为b ,BD 为x 千米,根据题意得:{30a=x+10b40+2xa=2×40+x b, 解方程得x =25,ab =67. 则AB =AD +BD =65(千米). 故答案两空分别填:65、67.设甲速度为a ,乙速度为b ,BD 为x 千米,根据到C 点时甲乙用时相同可列一个方程,再根据到达D 时两人用时也相同可得第二个方程,求方程组的解即可.本题考查了二元一次方程组的应用,解题关键是要读懂题意,看懂图意,根据题目给出的条件找出等量关系,列出方程组再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.10.【答案】102【解析】解:∵f(x)=x+1x−1, ∴f(2)=2+12−1=3,f(3)=3+13−1=2,f(4)=4+14−1=53,f(5)=5+15−1=32,…f(100)=100+1100−1=10199,∴[f(2)]=3,[f(3)]=2,[f(4)]=[f(5)]=⋯[f(100)]=1,∴[f(2)]+[f(3)]+⋯+[f(100)],=3+2+1+⋯+1,=5+1×97,=102.故答案为:102.利用函数f(x)=x+1x−1,可得出f(2)…f(100)代表的数据,从而得出[f(2)]=3,[f(3)]=2,[f(4)]=[f(5)]=⋯[f(100)]=1,的值,进而求出结果.此题主要考查了取整函数的性质,以及由已知得出[f(2)]…[f(100)]代表的数据,这是解决问题的关键.11.【答案】解:设这堆桃子共有x个,则第一天吃了17x个,第二天吃了(1−17)×16x=17x个,第三天吃了(1−17−17)×15x=17x个,第四天吃了(1−17−17−17)×14x=17x,第五天吃了(1−17−17−17−17)×13x=17x个,第六天吃了(1−17−17−17−17−17)×12x=17x个,依题意得:x−17x−17x−17x−17x−17x−17x=12,解得:x=84,∴17x+17x=17×84+17×84=12+12=24.答:第一天和第二天所吃桃子的总数是24个.【解析】设这堆桃子共有x个,则第一天吃了17x个,第二天吃了17x个,第三天吃了17x个,第四天吃了17x,第五天吃了17x个,第六天吃了17x个,根据最后剩下桃子12个,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入(17x+17x)中即可求出第一天和第二天所吃桃子的总数.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.【答案】解:(1)小明的猜想显然是不正确的,易举出反例;如1×3≠1+3;(2)将第一组等式变形为:21×2=4,21+2=4, 得出如下猜想:“若n 是正整数,则n+1n×(n +1)=n+1n+(n +1)”,证法1:左边=(1+1n )(n +1)=(n +1)+n+1n=右边,所以猜想是正确的, 证法2:右边=n+1n+n(n+1)n=(n+1)2n=左边,所以猜想是正确的.【解析】(1)可通过实际例子来验证小明的猜想是否正确;(2)通过观察各个算式,归纳出规律,然后用字母表示数并进行进一步的验证. 本题考查了有理数的混合运算,更重要的是考查同学们阅读信息、加工信息、应用信息的能力,是一道综合考查学生学习能力的题目.13.【答案】解:设平时在顺风情况下帆船的速度为v 千米/时,则甲、乙两地相距3v千米,风向骤变后帆船的速度为25v 千米/时,风向又变得顺起来时帆船的速度为2v 千米/时, 依题意得:13×3v v+825v+(1−13)×3v−82v−3=3660,即16v =85, 解得:v =10,经检验,v =10是原方程的解,且符合题意, ∴3v =3×10=30. 答:甲、乙两地相距30千米.【解析】设平时在顺风情况下帆船的速度为v 千米/时,则甲、乙两地相距3v 千米,风向骤变后帆船的速度为25v 千米/时,风向又变得顺起来时帆船的速度为2v 千米/时,利用时间=路程÷速度,结合到达乙地时比往常迟36分钟,即可得出关于v 的分式方程,解之经检验后即可得出v 的值,再将其代入3v 中即可求出甲、乙两地间的距离. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.14.【答案】解:(1)1次=3×257+13=7842次=784×0.5×0.5×0.5×0.5=493次=3×49+13=1604次=160×0.5×0.5×0.5×0.5×0.5=55次=3×5+13=286次=28×0.5×0.5=77次=3×7+13=348次=34×0.5=179次=3×17+13=6410次=64×0.5×0.5×0.5×0.5×0.5×0.5=111次=3×1+13=1612次=16×0.5×0.5×0.5×0.5=1=第10次所以从第10次开始偶数次等于1奇数次等于16257是奇数所以第257次是16.(2)若对一个正整数进行若干次“H操作”后出现循环,此时‘H’运算的结果总是a,则a一定是个奇数.那么,对a进行H运算的结果a×3+13是偶数,再对a×3+13进行“H运算”,即:a×3+13乘以1的结果仍是a2k=A于是(a×3+13)×12k也即a×3+13=A×2k即a(2k−3)=13=1×13因为a是正整数所以2k−3=1或2k−3=13解得k=2或k=4当k=2时,a=13;当k=4时,a=1,所以a为1或13.【解析】(1)按照①②运算一次一次的输入,得出它们的结果,从中发现规律,从第10次开始偶数次等于1,奇数次等于16.从而求数257经过257次“H运算”得到的结果.(2)对a的值分析可得a一定是个奇数,然后按照运算①计算,并变成幂的形式即可得a的值.本题难度较大,考出了学生的水平,学生一定要仔细应对.第11页,共11页。

2018-2019学年人教新版北京市海淀区七年级第二学期期中数学试卷 含解析

2018-2019学年人教新版北京市海淀区七年级第二学期期中数学试卷 含解析

2018-2019学年七年级第二学期期中数学试卷一、选择题(共10小题) 1.4的算术平方根是( ) A .16B .2±C .2D .22.在平面直角坐标系中,点(3,2)P -在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.过点B 画线段AC 所在直线的垂线段,其中正确的是( )A .B .C .D .4.如图所示,//AB CD ,若1144∠=︒,则2∠的度数是( )A .30︒B .32︒C .34︒D .36︒5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是( )A .内错角相等,两直线平行B .同位角相等,两直线平行C .两直线平行,内错角相等D .两直线平行,同位角相等6.如图,平移折线AEB ,得到折线CFD ,则平移过程中扫过的面积是( )A .4B .5C .6D .77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x 轴、y 轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是( )A .(3.2,1.3)B .( 1.9,0.7)-C .(0.7, 1.9)-D .(3.8, 2.6)-8.我们知道“对于实数m ,n ,k ,若m n =,n k =,则m k =”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a ,b ,c 是直线,若//a b ,//b c ,则//a c . ②a ,b ,c 是直线,若a b ⊥,b c ⊥,则a c ⊥. ③若α∠与β∠互余,β∠与γ∠互余,则α∠与γ∠互余. 其中正确的命题是( ) A .①B .①②C .②③D .①②③9.如图所示是一个数值转换器,若输入某个正整数值x 后,输出的y 值为4,则输入的x 值可能为( )A.1 B.6 C.9 D.1010.根据表中的信息判断,下列语句中正确的是x15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 2x225 228.01 231.04 234.09 237.16 240.25 243.36 246.49 249.64 252.81 256 ()A.25.281 1.59=B.235的算术平方根比15.3小C.只有3个正整数n满足15.515.6<<nD.根据表中数据的变化趋势,可以推断出216.1将比256增大3.19二、填空题(本大题共16分,每小题2分)11.将点(1,4)A-向上平移三个单位,得到点A',则A'的坐标为.12.如图,数轴上点A,B对应的数分别为1-,2,点C在线段AB上运动.请你写出点C 可能对应的一个无理数.13.如图,直线a,b相交,若1∠互余,则3∠与2∠=.14.依据图中呈现的运算关系,可知a=,b=.15.平面直角坐标系xOy中,已知线段AB与x轴平行,且5AB=,若点A的坐标为(3,2),则点B的坐标是.16.一副直角三角板如图放置,其中90E∠=︒,点D在斜∠=︒,60C DFE∠=∠=︒,45A边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,BDE∠的度数是.17.如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线PA,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有 种连线方案.三、解答题 19.计算: (1)2231(4)()83-+-; (2)2(32)52--. 20.求出下列等式中x 的值: (1)21236x =;(2)33388x -=.21.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(3,2)-.(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标: ; (2)若中国人民大学的坐标为(3,4)--,请在坐标系中标出中国人民大学的位置.22.有一张面积为2100cm 的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为2150cm ,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.如图,点D ,点E 分别在BAC ∠的边AB ,AC 上,点F 在BAC ∠内,若//EF AB , BDF CEF ∠=∠.求证://DF AC .24.已知正实数x 的平方根是m 和m b +. (1)当8b =时,求m ;(2)若22()4m x m b x ++=,求x 的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.在平面直角坐标系xOy 中,已知点(,)A a a ,(,3)B a a -,其中a 为整数.点C 在线段AB 上,且点C 的横纵坐标均为整数. (1)当1a =时,画出线段AB ;(2)若点C 在x 轴上,求出点C 的坐标;(3)若点C 纵坐标满足15y <<,直接写出a 的所有可能取值: .26.如图,已知//AB CD ,点E 是直线AB 上一个定点,点F 在直线CD 上运动,设CFE α∠=,在线段EF 上取一点M ,射线EA 上取一点N ,使得160ANM ∠=︒.(1)当2aAEF ∠=时,α= ; (2)当MN EF ⊥时,求α;(3)作CFE ∠的角平分线FQ ,若//FQ MN ,直接写出α的值: .27.对于平面直角坐标系xOy 中的不同两点1(A x ,1)y ,2(B x ,2)y ,给出如下定义:若121x x =,121y y =,则称点A ,B 互为“倒数点”.例如,点1(2A ,1),(2,1)B 互为“倒数点”. (1)已知点(1,3)A ,则点A 的倒数点B 的坐标为 ;将线段AB 水平向左平移2个单位得到线段A B '',请判断线段A B ''上是否存在“倒数点”. (填“是”或“否” ); (2)如图所示,正方形CDEF 中,点C 坐标为11(,)22,点D 坐标为31(,)22,请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x 轴或y 轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值: .参考答案一、选择题(共10小题)1.4的算术平方根是()A.16 B.2±C.2 D.2【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.解:2的平方为4,∴的算术平方根为2.4故选:C.2.在平面直角坐标系中,点(3,2)P-在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.解:点(3,2)P-在第二象限,故选:B.3.过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.【分析】垂线段满足两个条件:①经过点B.②垂直于AC;由此即可判断.解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D .4.如图所示,//AB CD ,若1144∠=︒,则2∠的度数是( )A .30︒B .32︒C .34︒D .36︒【分析】根据平行线的性质即可得到结论. 解://AB CD ,1144CAB ∴∠=∠=︒, 2180CAB ∠+∠=︒, 218036CAB ∴∠=︒-∠=︒,故选:D .5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是( )A .内错角相等,两直线平行B .同位角相等,两直线平行C .两直线平行,内错角相等D .两直线平行,同位角相等【分析】根据平行线的判定定理即可得到结论.解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行. ∴同位角相等两直线平行.故选:B .6.如图,平移折线AEB ,得到折线CFD ,则平移过程中扫过的面积是( )A .4B .5C .6D .7【分析】根据平移的性质确定平移过程中扫过的图形的形状,从而确定面积;解:根据题意得:平移折线AEB ,得到折线CFD ,则平移过程中扫过的图形为矩形ABCD , 所以其面积为236⨯=,故选:C .7.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x 轴、y 轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是( )A .(3.2,1.3)B .( 1.9,0.7)-C .(0.7, 1.9)-D .(3.8, 2.6)-【分析】根据平面直角坐标系的定义建立平面直角坐标系,然后根据象限特点解答即可. 解:由图可知,( 1.9,0.7)-距离原点最近,故选:B .8.我们知道“对于实数m ,n ,k ,若m n =,n k =,则m k =”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a ,b ,c 是直线,若//a b ,//b c ,则//a c .②a ,b ,c 是直线,若a b ⊥,b c ⊥,则a c ⊥.③若α∠与β∠互余,β∠与γ∠互余,则α∠与γ∠互余.其中正确的命题是( )A .①B .①②C .②③D .①②③【分析】根据平行线的判定、垂直和互余进行判断即可.解:①a ,b ,c 是直线,若//a b ,//b c ,则//a c ,是真命题.②a ,b ,c 是直线,若a b ⊥,b c ⊥,则//a c ,是假命题.③若α∠与β∠互余,β∠与γ∠互余,则αγ∠=∠,是假命题;故选:A .9.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1 B.6 C.9 D.10【分析】将各个选项的x的值代入程序框图得输出的y值,依次进行判断即可.解:A.将1x=代入程序框图得:输出的y值为1,不符合题意;B.将6x=代入程序框图得:输出的y值为3,不符合题意;C.将9x=代入程序框图得:输出的y值为3,不符合题意;D.将10x=代入程序框图得:输出的y值为4,符合题意;故选:D.10.根据表中的信息判断,下列语句中正确的是x15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 2x225 228.01 231.04 234.09 237.16 240.25 243.36 246.49 249.64 252.81 256 ()A25.281 1.59=B.235的算术平方根比15.3小C.只有3个正整数n满足15.515.6<<n16.1将比256增大3.19D.根据表中数据的变化趋势,可以推断出2【分析】根据表格中的信息可知2x和其对应的算术平方根的值,然后依次判断各选项即可.解:A252.8115.9=,=,故选项不正确;∴ 2.5281 1.59B234.0915.3235=235∴的算术平方根比15.3大,故选项不正确;C .根据表格中的信息知:2215.5240.2515.6243.36n =<<=,∴正整数241n =或242或243,∴只有3个正整数n 满足15.515.6n <<,故选项正确; D .根据表格中的信息无法得知216.1的值,∴不能推断出216.1将比256增大3.19,故选项不正确.故选:C .二、填空题(本大题共16分,每小题2分)11.将点(1,4)A -向上平移三个单位,得到点A ',则A '的坐标为 (1,7)- .【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解:将点(1,4)A -向上平移三个单位,得到点A ',则A '的坐标为(1,7)-,故答案为:(1,7)-,12.如图,数轴上点A ,B 对应的数分别为1-,2,点C 在线段AB 上运动.请你写出点C 可能对应的一个无理数 3(答案不唯一,无理数在1-与2之间即可) .【分析】根据无理数的估计解答即可.解:由C 点可得此无理数应该在1-与2之间,故可以是3,故答案为:3(答案不唯一,无理数在1-与2之间即可),13.如图,直线a ,b 相交,若1∠与2∠互余,则3∠= 135︒ .【分析】依据1∠与2∠互余,12∠=∠,即可得到1245∠=∠=︒,进而得出3∠的度数. 解:1∠与2∠互余,12∠=∠,1245∴∠=∠=︒,318045135∴∠=︒-︒=︒,故答案为:135︒.14.依据图中呈现的运算关系,可知a = 2019- ,b = .【分析】利用立方根和平方根的定义及性质即可解决问题.解:依据图中呈现的运算关系,可知2019的立方根是m ,a 的立方根是m -, 32019m ∴=,3()m a -=,2019a ∴=-;又n 的平方根是2019和b ,2019b ∴=-.故答案为:2019-,2019-.15.平面直角坐标系xOy 中,已知线段AB 与x 轴平行,且5AB =,若点A 的坐标为(3,2),则点B 的坐标是 (2,2)-或(8,2) .【分析】根据平行于x 轴的直线上的点的纵坐标相等,再分点B 在点A 的左边与右边两种情况讨论求解.解:线段AB 与x 轴平行,∴点B 的纵坐标为2,点B 在点A 的左边时,352-=-,点B 在点A 的右边时,358+=,∴点B 的坐标为(2,2)-或(8,2).故答案为:(2,2)-或(8,2).16.一副直角三角板如图放置,其中90C DFE ∠=∠=︒,45A ∠=︒,60E ∠=︒,点D 在斜边AB 上.现将三角板DEF 绕着点D 顺时针旋转,当DF 第一次与BC 平行时,BDE ∠的度数是 15︒ .【分析】利用平行线的性质即可解决问题.解://DF BC,FDB ABC∴∠=∠=︒,45∴∠=∠-∠=︒-︒=︒,EDB DFB EDF453015故答案为15︒.17.如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中①号点的位置时,接收到的信号最强(填序号①,②,③或④).【分析】根据垂线段最短得出即可.解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线PA,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域②时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.【分析】(1)由相交线的定义可以找到点Q 所在的区域;(2)因为要求所有连线不能相交,所以可按图示7种方法连接.解:(1)当点Q 落在区域②时,线段PQ 与AB 相交;(2)点A 沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B 沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C 只有一种连接方法,所以共7种方法.故答案为:②,7.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.计算:(12231(4)()83-+-; (22(32)52-.【分析】(1)根据实数的混合计算解答即可;(2)根据实数的混合计算解答即可.解:(1)原式1423=+- 73= (2)原式32252=-222=--20.求出下列等式中x 的值:(1)21236x =;(2)33388x -=. 【分析】(1)根据等式的性质方程两同时除以12,再由平方根的定义问题可解.(2)方程可先去分母,得3243x-=,再移项合并同类项,最后根据立方根定义可求解.解:(1)23x=∴=±x3(2)3243x-=327x=∴=x321.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(3,2)-.(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:(3,1);(2)若中国人民大学的坐标为(3,4)--,请在坐标系中标出中国人民大学的位置.【分析】(1)利用清华大学的坐标为(0,3),北京大学的坐标为(3,2)-画出直角坐标系;(2)根据点的坐标的意义描出中国人民大学所表示的坐标.解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.有一张面积为2100cm的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为2150cm,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.【分析】设长方形信封的长为5xcm,宽为3xcm.根据长方形的面积列出关于x的方程,解之求得x的值,再由其宽和长与10的大小可得答案.解:设长方形信封的长为5xcm,宽为3xcm.由题意得:53150x x=,解得:10x=所以长方形信封的宽为:3310x=,10010=,∴正方形贺卡的边长为10cm.2=,而90100(310)90<,∴<,31010答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.如图,点D ,点E 分别在BAC ∠的边AB ,AC 上,点F 在BAC ∠内,若//EF AB , BDF CEF ∠=∠.求证://DF AC .【分析】想办法证明BDF A ∠=∠即可解决问题.【解答】证明://EF AB ,CEF A ∴∠=∠,BDF CEF ∠=∠,BDF A ∴∠=∠,//DF AC ∴.24.已知正实数x 的平方根是m 和m b +.(1)当8b =时,求m ;(2)若22()4m x m b x ++=,求x 的值.【分析】(1)利用正实数平方根互为相反数即可求出m 的值;(2)利用平方根的定义得到2()m b x +=,2m x =,代入式子22()4m x m b x ++=即可求出x 值.解:(1)正实数x 的平方根是m 和m b +0m m b ∴++=,8b =,280m ∴+=4m ∴=-;(2)正实数x 的平方根是m 和m b +,2()m b x ∴+=,2m x =,22++=,m x m b x()4224∴+=,x x22∴=,xx>,x∴=.2五、解答题(本大题共19分,25~26每题6分,27题7分)25.在平面直角坐标系xOy中,已知点(,)B a a-,其中a为整数.点C在线段ABA a a,(,3)上,且点C的横纵坐标均为整数.(1)当1a=时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足15<<,直接写出a的所有可能取值:2,3,4,5 .y【分析】(1)根据坐标与图形的特点解答即可;(2)根据x轴的点的特点解答即可;(3)根据无理数的估计和坐标特点解答即可.解:(1)(2)由题意可知,点C 的坐标为(,)a a ,(,1)a a -,(,2)a a -或(,3)a a -, 点C 在x 轴上, ∴点C 的纵坐标为0.由此可得a 的取值为0,1,2或3,因此点C 的坐标是(0,0),(1,0),(2,0),(3,0) (3)a 的所有可能取值是2,3,4,5. 故答案为:2,3,4,5.26.如图,已知//AB CD ,点E 是直线AB 上一个定点,点F 在直线CD 上运动,设CFE α∠=,在线段EF 上取一点M ,射线EA 上取一点N ,使得160ANM ∠=︒.(1)当2aAEF ∠=时,α= 120︒ ; (2)当MN EF ⊥时,求α;(3)作CFE ∠的角平分线FQ ,若//FQ MN ,直接写出α的值: .【分析】(1)根据平行线的性质即可得到结论;(2)如图1所示,过点M 作直线//PM AB ,由平行公理推论可知:////AB PM CD .根据平行线的性质即可得到结论;(3)如图2,根据角平分线的定义和平行线的性质即可得到结论. 解:(1)//AB CD ,180AEF CFE ∴∠+∠=︒, CFE α∠=,2aAEF ∠=, 1802αα∴+=︒,120α∴=︒;(2)如,1所示,过点M 作直线//PM AB ,由平行公理推论可知:////AB PM CD . 160ANM ∠=︒,18016020NMP ∴∠=︒-︒=︒,又NM EF ⊥,90NMF ∴∠=︒,902070PMF NMF NMP ∠=∠-∠=︒-︒=︒. 180********PMF α∴=︒-∠=︒-︒=︒;(3)如图2,FQ 平分CFE ∠, 2QFM α∴∠=,//AB CD , 180NEM α∴∠=︒-,//MN FQ , 2NME α∴∠=,18020ENM ANM ∠=︒-∠=︒,201801802αα∴︒++︒-=︒,40α∴=︒.故答案为:120︒,40︒.27.对于平面直角坐标系xOy 中的不同两点1(A x ,1)y ,2(B x ,2)y ,给出如下定义:若121x x =,121y y =,则称点A ,B 互为“倒数点”.例如,点1(2A ,1),(2,1)B 互为“倒数点”. (1)已知点(1,3)A ,则点A 的倒数点B 的坐标为 1(1,)3;将线段AB 水平向左平移2个单位得到线段A B '',请判断线段A B ''上是否存在“倒数点”. (填“是”或“否” ); (2)如图所示,正方形CDEF 中,点C 坐标为11(,)22,点D 坐标为31(,)22,请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x 轴或y 轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值: .【分析】(1)设1(A x ,1)y ,2(B x ,2)y ,由题意得出21x =,213y =,点B 的坐标为1(1,)3,由平移的性质得出(1,3)A '-,1(1,)3B '-,即可得出结论;(2)①若点1(M x ,1)y 在线段CF 上,则112x =,点2(N x ,2)y 应当满足22x =,可知点N 不在正方形边上,不符题意; ②若点1(M x ,1)y 在线段CD 上,则112y =,点2(N x ,2)y 应当满足22y =,可知点N 不在正方形边上,不符题意;③若点1(M x ,1)y 在线段EF 上,则132y =,点2(N x ,2)y 应当满足223y =,得出3(2N ,2)3,此时点2(3M ,3)2在线段EF 上,满足题意;(3)由题意得出各边上点的横坐标和纵坐标的绝对值都1,得出正方形面积的最大值为1即可.解:(1)设1(A x ,1)y ,2(B x ,2)y , 121x x =,121y y =,(1,3)A , 21x ∴=,213y =,点B 的坐标为1(1,)3, 将线段AB 水平向左平移2个单位得到线段A B '', 则(1,3)A '-,1(1,)3B '-,1(1)1-⨯-=,1313⨯=,∴线段A B ''上存在“倒数点”, 故答案为:1(1,)3;是;(2)正方形的边上存在“倒数点” M 、N ,理由如下: ①若点1(M x ,1)y 在线段CF 上, 则112x =,点2(N x ,2)y 应当满足22x =, 可知点N 不在正方形边上,不符题意; ②若点1(M x ,1)y 在线段CD 上, 则112y =,点2(N x ,2)y 应当满足22y =, 可知点N 不在正方形边上,不符题意; ③若点1(M x ,1)y 在线段EF 上, 则132y =,点2(N x ,2)y 应当满足223y =, ∴点N 只可能在线段DE 上,3(2N ,2)3,此时点2(3M ,3)2在线段EF 上,满足题意;∴该正方形各边上存在“倒数点” 2(3M ,3)2,3(2N ,2)3;(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都1,即正方形面积的最大值为1;故答案为:1.。

2018-2019学年江苏省南京市鼓楼区七年级(下)期中数学试卷及答案 含解析

2018-2019学年江苏省南京市鼓楼区七年级(下)期中数学试卷及答案 含解析

2018-2019学年江苏省南京市鼓楼区七年级下学期期中数学试卷一、选择题1.计算(a2)3,结果正确的是()A.a6 B.a5 C.2a3 D.a92.下列多项式中能用平方差公式分解因式的是()A.x2+4B.x2﹣xy C.x2﹣9D.﹣x2﹣y23.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠B=∠2D.∠D=∠DCE 4.下列命题是真命题的是()A.相等的角是对顶角B.若x2=y2,则x=yC.同角的余角相等D.两直线平行,同旁内角相等5.如图,一个人从A点出发沿北偏东30°方向走到B点,若这个人再从B点沿南偏东15°方向走到C点则∠ABC等于()A.15°B.30°C.45°D.165°6.若x、y、a满足方程组,则22x•4y的值为()A.1B.2C.﹣D.二、填空题(共10小题,每小题2分,共20分不需写出解答过程,请把答案直接填写在答题卡相应位量)7.据报道,我国中芯国际公司突破欧美技术封锁,计划2019年年内量产世界领先水平的14nm芯片,14mm即0.000 000 014m,0.000 000 014用科学记数法表示为.8.命题“同位角相等,两直线平行”的逆命题是:.9.(+2a)2=4a2+4a+1.10.已知a+b=2,a﹣b=﹣1,则a2﹣b2=.11.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.12.某农户饲养了白鸡、黑鸡共200只,白鸡的只数是黑鸡的三倍,设白鸡有x只,黑鸡有y只,根据题意可列二元一次方程组:.13.计算:=.14.如图,直线EF分别交直线AB、CD于点G、H,AB∥CD,MG⊥EF,垂足为G,HN 平分∠CHE,∠NHC=32°,则∠AGM=.15.我们学过的“幂的运算”有:①同底数幂的乘法,②幂的乘方,③积的乘方,④同底数幂的除法.在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的(按运算顺序填序号).16.将长为2、宽为a(a大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作:再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作:如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则操作终止当n=3时,a的值为.三、解答題(共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)3a•(﹣a2)+a4÷a(2)(2x﹣y)(x+3y)(3)(a﹣b+1)(a﹣b﹣1)18.先化简,再求值:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2,其中x=19.把下列各式分解因式:(1)2a(m+n)﹣b(m+n)(2)2x2y﹣8xy+8y20.解方程组:(1)(2)若(1)中方程组的解也是关于x,y的方程ax+by=5的解,且a,b为正整数,则a b=21.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是.数量关系是(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为A.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°22.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?23.填写下列空格已知:如图,点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D、F,点M、G在AB 上,∠AMD=∠AGF,∠1=∠2.求证:DM∥BC证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴(同位角相等,两直线平行)∠2=∠CBD()∠1=∠2(已知)∠1=∠CBD()∴()∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC()24.解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组小曹同学的部分解答过程如下:解:+,得3x+4y=10,④+,得5x+y=11,⑤与联立,得方程组(1)请你在方框中补全小曹同学的解答过程:(2)若m、n、p、q满足方程组,则m+n﹣2p+q=.25.如图,点B在线段AC上,分别以线段AC、AB、BC为直径画圆,圆心分别是点O、O1、O2.已知半径O1A=acm,半径O2C比半径O1A大bcm.(1)O2C=cm(用含a、b的代数式表示)OA=cm(用含a、b的代数式表示);(2)求图中阴影部分的面积(π取3).26.借助图形直观,感受数与形之间的关系,我们常常可以发现一些重要结论.初步应用(1)①如图1,大长方形的面积可以看成4个小长方形的面积之和,由此得到多项式乘多项式的运算法,则(用图中字母表示)②如图2,借助①,写出一个我们学过的公式:(用图中字母表示)深入探究(2)仿照图2,构造图形并计算(a+b+c)2拓展延伸借助以上探究经验,解决下列问题:(3)①代数式(a1+a2+a3+a4+a5)2展开、合并同类项后,得到的多项式的项数一共有项②若正数x、y、z和正数m、n、p,满足x+m=y+n=z+p=t,请通过构造图形比较px+my+nz 与t2的大小(画出图形,并说明理由)③已知x、y、z满足x+y+z=2m,x2+y2+z2=2n,xyz=p,求x2y2+y2z2+x2z2的值(用含m、n、P的式子表示)参考答案一、选择题(共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的序号填涂在答题卡的相应位置上)1.计算(a2)3,结果正确的是()A.a6 B.a5 C.2a3 D.a9【分析】根据幂的乘方的运算方法,求出(a2)3的结果是多少即可.解:(a2)3=a6.故选:A.2.下列多项式中能用平方差公式分解因式的是()A.x2+4B.x2﹣xy C.x2﹣9D.﹣x2﹣y2【分析】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,根据平方差公式分解因式的特点进行分析即可.解:A、x2+4,不能利用平方差进行分解,故此选项错误;B、x2﹣xy=x(x﹣y),不能利用平方差进行分解,故此选项错误;C、x2﹣9=(x+3)(x﹣3),能利用平方差进行分解,故此选项正确;D、﹣x2﹣y2,不能利用平方差进行分解,故此选项错误;故选:C.3.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠B=∠2D.∠D=∠DCE 【分析】根据平行线的判定方法即可解决问题.解:∵∠1=∠2,∴AB∥CD(内错角相等两直线平行),故选:B.4.下列命题是真命题的是()A.相等的角是对顶角B.若x2=y2,则x=yC.同角的余角相等D.两直线平行,同旁内角相等【分析】根据对顶角、偶次幂、平行线的性质以及互余进行判断即可.解:A、相等的角不一定是对顶角,是假命题;B、若x2=y2,则x=y或x=﹣y,是假命题;C、同角的余角相等,是真命题;D、两直线平行,同旁内角互补,是假命题;故选:C.5.如图,一个人从A点出发沿北偏东30°方向走到B点,若这个人再从B点沿南偏东15°方向走到C点则∠ABC等于()A.15°B.30°C.45°D.165°【分析】根据方位角的概念,画图正确表示出方位角,即可求解.解:由题意可知∠ABC=30°+15°=45°故选:C.6.若x、y、a满足方程组,则22x•4y的值为()A.1B.2C.﹣D.【分析】解二元一次方程组求出x、y,得到x+y=﹣1,根据幂的乘方法则、同底数幂的乘法法则计算即可.解:,解得,,∴x+y=﹣1,则22x•4y=22x•22y=22(x+y)=2﹣2=,故选:D.二、填空题(共10小题,每小题2分,共20分不需写出解答过程,请把答案直接填写在答题卡相应位量)7.据报道,我国中芯国际公司突破欧美技术封锁,计划2019年年内量产世界领先水平的14nm芯片,14mm即0.000 000 014m,0.000 000 014用科学记数法表示为 1.4×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 000 014=1.4×10﹣8,故答案为1.4×10﹣8.8.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【分析】把一个命题的题设和结论互换就得到它的逆命题.解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.9.(1+2a)2=4a2+4a+1.【分析】根据因式分解的完全平方公式:a2+2ab+b2=(a+b)2可知1+4a+4a2=12+2×1×2a+(2a)2=(1+2a)2,再由整式乘法与因式分解的关系,问题得解.解:∵1+4a+4a2=12+2×1×2a+(2a)2=(1+2a)2,∴(1+2a)2=1+4a+4a2,故答案为:1.10.已知a+b=2,a﹣b=﹣1,则a2﹣b2=﹣2.【分析】根据平方差公式计算即可.解:因为a+b=2,a﹣b=﹣1,则a2﹣b2=(a+b)(a﹣b)=2×(﹣1)=﹣2,故答案为:﹣2.11.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为20cm2.【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2012.某农户饲养了白鸡、黑鸡共200只,白鸡的只数是黑鸡的三倍,设白鸡有x只,黑鸡有y只,根据题意可列二元一次方程组:.【分析】设白鸡有x只,黑鸡有y只,根据“黑鸡+白鸡=200只、白鸡=3黑鸡”列出方程组.解:设白鸡有x只,黑鸡有y只,依题意得:.故答案是:.13.计算:=.【分析】根据积的乘方的运算方法,求出算式的值是多少即可.解:=[×]××1=1×=故答案为:.14.如图,直线EF分别交直线AB、CD于点G、H,AB∥CD,MG⊥EF,垂足为G,HN 平分∠CHE,∠NHC=32°,则∠AGM=26°.【分析】利用平行线的性质,角平分线的定义求出∠AGH即可解决问题.解:∵HN平分∠CHG,∴∠CHG=2∠CHN=64°,∵AB∥CD,∴∠AGH+∠CHG=180°,∴∠AGH=116°,∵MG⊥GH,∴∠MGH=90°,∴∠AGM=116°﹣90°=26°,故答案为26°.15.我们学过的“幂的运算”有:①同底数幂的乘法,②幂的乘方,③积的乘方,④同底数幂的除法.在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的③②①(按运算顺序填序号).【分析】在(a4•a5)2=(a4)2•(a5)2=a8•a10=a18的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,第三步用到了同底数幂的乘法,据此判断即可.解:在“(a4•a5)2=(a4)2•(a5)2=a8•a10=a18”的运算过程中,运用了上述幂的运算中的③②①(按运算顺序填序号).故答案为:③②①.16.将长为2、宽为a(a大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作:再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作:如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则操作终止当n=3时,a的值为或.【分析】(1)经过第一次操作可知剩下的长方形一边长为a,另一边长为2﹣a;(2)若第二次操作后,剩下的长方形恰好是正方形,则所以剩下的长方形的两边分别为2﹣a、a﹣(2﹣a)=2a﹣2,(3)根据第2次剩下的长方形分两种情况讨论,若第三次操作后,剩下的长方形恰好是正方形,由此可得出关于a的一元一次方程,解之即可得出结论.解:第1次操作,剪下的正方形边长为a,剩下的长方形的长宽分别为a、2﹣a,由1<a<2,得a>2﹣a第2次操作,剪下的正方形边长为2﹣a,所以剩下的长方形的两边分别为2﹣a、a﹣(2﹣a)=2a﹣2,①当2a﹣2<2﹣a,即a<时,则第3次操作时,剪下的正方形边长为2a﹣2,剩下的长方形的两边分别为2a﹣2、(2﹣a)﹣(2a﹣2)=4﹣3a,则2a﹣2=4﹣3a,解得a=;②2a﹣2>2﹣a,即a>时则第3次操作时,剪下的正方形边长为2﹣a,剩下的长方形的两边分别为2﹣a、(2a ﹣2)﹣(2﹣a)=3a﹣4,则2﹣a=3a﹣4,解得a=;故答案为或.三、解答題(共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)3a•(﹣a2)+a4÷a(2)(2x﹣y)(x+3y)(3)(a﹣b+1)(a﹣b﹣1)【分析】(1)先计算乘除,再合并即可得;(2)根据多项式乘多项式的运算法则计算可得;(3)先利用平方差公式计算,再利用完全平方公式计算可得.解:(1)原式=﹣3a3+a3=﹣2a3;(2)原式=2x2+6xy﹣xy﹣3y2=2x2+5xy﹣3y2;(3)原式=(a﹣b)2﹣1=a2﹣2ab+b2﹣1.18.先化简,再求值:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2,其中x=【分析】根据平方差公式、单项式乘多项式、完全平方公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:(x+3)(x﹣3)﹣2x(x+3)+(x﹣1)2=x2﹣9﹣2x2﹣6x+x2﹣2x+1=﹣8x﹣8,当x=﹣时,原式=﹣8×(﹣)﹣8=4﹣8=﹣4.19.把下列各式分解因式:(1)2a(m+n)﹣b(m+n)(2)2x2y﹣8xy+8y【分析】(1)利用提公因式法因式分解;(2)先提公因式,再利用完全平方公式进行因式分解.解:(1)2a(m+n)﹣b(m+n)=(m+n)(2a﹣b);(2)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.20.解方程组:(1)(2)若(1)中方程组的解也是关于x,y的方程ax+by=5的解,且a,b为正整数,则a b=1或3【分析】(1)利用加减消元法解出方程组;(2)根据把x、y的值代入二元一次方程,得到a、b的关系,根据题意求出a、b,计算即可.解:(1)①+②,得4x=4,解得,x=1,把x=1代入①,得,y=2,所以原方程组的解为;(2)由题意得,a+2b=5,则,,∴a b=1或3,故答案为:1或3.21.如图,三角形ABC的顶点A,B,C都在格点(正方形网格线的交点)上,将三角形ABC向左平移2格,再向上平移3格,得到三角形A'BC“(设点A、B、C分别平移到A′、B′、C′)(1)请在图中画出平移后的三角形A'B′C′;(2)若连接BB′、CC′,则这两条线段的位置关系是BB′∥CC′.数量关系是BB′=CC′(3)若BB'与AC相交于点P,则∠A'B'P,∠B'PA与∠PAB三个角之间的数量关系为CA.∠A'B'P+∠B'PA+∠PAB=180°B.∠A'B'P+∠B'PA+∠PAB=360°C.∠A'B'P+∠B'PA﹣∠PAB=180°D.∠A'B'P+∠B'PA﹣∠PAB=360°【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)根据平行线的性质和三角形外角性质解答.解:(1)如图所示:△A'B'C'即为所求:(2)根据平移的性质可得:BB′∥CC′,BB′=CC′;故答案为:BB′∥CC′;BB′=CC′;(3)由图可知:∠A'B'P+∠B'PA﹣∠PAB=180°故答案为:C22.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?【分析】结论:AB∥CD,只要证明∠BAF=∠ACG即可.解:结论:AB∥CD.理由:∵CE⊥DG,∴∠ECG=90°,∵∠ACE=140°,∴∠ACG=50°,∵∠BAF=50°,∴∠BAF=∠ACG,∴AB∥DG.23.填写下列空格已知:如图,点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D、F,点M、G在AB 上,∠AMD=∠AGF,∠1=∠2.求证:DM∥BC证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴BD∥EF(同位角相等,两直线平行)∠2=∠CBD(两直线平行,同位角相等)∠1=∠2(已知)∠1=∠CBD(等量代换)∴GF∥BC(内错角相等,两直线平行)∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC(平行于同一直线的两直线平行)【分析】根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.【解答】证明:∵BD⊥AC,EF⊥AC,垂足分别为D、F(已知)∴∠BDC=90°,∠EFC=90°(垂直的定义)∴∠BDC=∠EFC(等量代换)∴BD∥EF(同位角相等,两直线平行)∠2=∠CBD(两直线平行,同位角相等)∠1=∠2(已知)∠1=∠CBD(等量代换)∴GF∥BC(内错角相等,两直线平行)∴∠AMD=∠AGF(已知)∴DM∥GF(同位角相等,两直线平行)∴DM∥BC(平行于同一直线的两直线平行)故答案为:BD∥EF;两直线平行,同位角相等;等量代换;GF∥BC;内错角相等,两直线平行;平行于同一直线的两直线平行.24.解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组小曹同学的部分解答过程如下:解:①+②,得3x+4y=10,④②+③,得5x+y=11,⑤⑤与④联立,得方程组(1)请你在方框中补全小曹同学的解答过程:(2)若m、n、p、q满足方程组,则m+n﹣2p+q=﹣2.【分析】(1)根据每一步得到的方程反推其计算的由来,得到二元一次方程组后用代入消元或加减消元法解出x和y,再代回原方程组求z.(2)把(m+n)看作整体,解关于(m+n)、p、q的三元一次方程组.解:(1)方程组小曹同学的部分解答过程如下:解:①+②,得3x+4y=10,④②+③,得5x+y=11,⑤⑤与④联立,得方程组解得:把代入①得:2+1+z=2,解得:z=﹣1,∴原方程组的解是故答案为:①,②,②,③,⑤,④.(2)②﹣①×2得:p﹣3q=8④,③﹣①×3得:﹣5p﹣2q=﹣6⑤,由④与⑤组成方程组解得:,代入①得:m+n=4∴m+n﹣2p+q=﹣2故答案为:﹣2.25.如图,点B在线段AC上,分别以线段AC、AB、BC为直径画圆,圆心分别是点O、O1、O2.已知半径O1A=acm,半径O2C比半径O1A大bcm.(1)O2C=(a+b)cm(用含a、b的代数式表示)OA=(2a+b)cm(用含a、b的代数式表示);(2)求图中阴影部分的面积(π取3).【分析】(1)根据题意可以用代数式表示出O2C和OA,本题得以解决;(2)根据(1)中的结果和图形,可以用代数式表示出阴影部分的面积.解:(1)∵半径O1A=acm,半径O2C比半径O1A大bcm,∴O2C=(a+b)cm,∴OA==(2a+b)cm,故答案为:(a+b),(2a+b);(2)π•(2a+b)2﹣π•a2﹣π•(a+b)2=π•(2a2+2ab)=3×(2a2+2ab)=(6a2+6ab)cm2,即阴影部分的面积是(6a2+6ab)cm2.26.借助图形直观,感受数与形之间的关系,我们常常可以发现一些重要结论.初步应用(1)①如图1,大长方形的面积可以看成4个小长方形的面积之和,由此得到多项式乘多项式的运算法,则(a+b)(c+d)=ac+ad+bc+bd(用图中字母表示)②如图2,借助①,写出一个我们学过的公式:(a+b)2=a2+2ab+b2(用图中字母表示)深入探究(2)仿照图2,构造图形并计算(a+b+c)2拓展延伸借助以上探究经验,解决下列问题:(3)①代数式(a1+a2+a3+a4+a5)2展开、合并同类项后,得到的多项式的项数一共有15项②若正数x、y、z和正数m、n、p,满足x+m=y+n=z+p=t,请通过构造图形比较px+my+nz 与t2的大小(画出图形,并说明理由)③已知x、y、z满足x+y+z=2m,x2+y2+z2=2n,xyz=p,求x2y2+y2z2+x2z2的值(用含m、n、P的式子表示)【分析】(1)①根据长方形的面积可得结论;②图中大正方形的面积可以用正方形的面积公式来求,也可把正方形分成四个小图形分别求出面积再相加,从而得出(a+b)2=a2+2ab+b2;(2)直接作图即可得出(a+b+c)2=a2+b2+c2+2ab+2bc+2ac成立;(3)①分别计算两个数的平方,三个数的平方,…,得出规律即可求出答案;②画图4可得结论;③先将x+y+z=2m两边同时平方得:xz+xy+yz=2m2﹣n,继续平方后化简可得结论.解:(1)①如图1,得(a+b)(c+d)=ac+ad+bc+bd,②如图2,由②得:(a+b)2=a2+2ab+b2,故答案为:①(a+b)(c+d)=ac+ad+bc+bd,②(a+b)2=a2+2ab+b2;(2)已知大正方形的边长为a+b+c,利用图形3的面积关系可得:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(3)①(a1+a2)2=a12+a22…2项+2a1a2….1项所以一共有2+1=3项;(a1+a2+a3)2=a12+a22+a32…3项+2a1a2+2a1a3…2项+2a2a3…1项所以一共有3+2+1=6项;(a1+a2+a3+a4)2=a12+a22+a32+a42…4项+2a1a2+2a1a3+2a1a4…3项+2a2a3+2a2a4…2项+2a3a4…1项所以一共有4+3+2+1=10项;(a1+a2+a3+a4+a5)2=a12+a22+a32+a42+a52…5项+2a1a2+2a1a3+2a1a4+2a1a5…4项+2a2a3+2a2a4+2a2a5…3项+2a3a4+2a3a5…2项+2a4a5…1项所以一共有5+4+3+2+1=15项;故答案为:15;②如图4,由图形得:px+my+nz<t2;③∵x+y+z=2m,∴x2+y2+z2+2xz+2xy+2yz=4m2,∵x2+y2+z2=2n,∴2xz+2xy+2yz=4m2﹣2n,∵xz+xy+yz=2m2﹣n,∴(xz+xy+yz)2=x2y2+y2z2+x2z2+2x2yz+2y2xz+2z2xy=(2m2﹣n)2,∴x2y2+y2z2+x2z2=4m4﹣4m2n+n2﹣2xyz(x+y+z)=4m4﹣4m2n+n2﹣2p•2m=4m4﹣4m2n+n2﹣4pm.。

【郑外】2018-2019学年第二学期7年级数学期中试卷答及案

【郑外】2018-2019学年第二学期7年级数学期中试卷答及案

3. 若 1 x 13x 1 ,则 x 的取值有( )
A.1 个
B.2 个
C.3 个
D.4 个
4. 若 A 为一数,且 A 25 76 114 ,则 A 的因数可以是( )
A. 24 5
B. 77 113
C. 24 74 114
D. 26 76 116
5.下列给出 4 个命题:
铁皮的周长.
m
n nn
m
26.(6 分)先阅读下面的内容,再解决问题:
问题:对于形如 x2 2ax a2 ,这样的二次三项式,可以用公式法将它分解成 x a2
的形式,但对于二次三项式 x2 2ax 3a2 ,就不能直接运用公式了,此时,我们可以 在二次三项式 x2 2ax 3a2 中先加上一项 a2 ,使它与 x2 2xa 的和成为一个完全平方 式,再减去 a2 ,整个式子的值不变,于是有:
证法 1: ∵_________________________________.
B2 F
∴∠BAE ∠1 ∠CBF ∠2 ∠ACD ∠3 180° 3 540° .
∴∠BAE ∠CBF ∠ACD 540° ∠1∠2 ∠3 .
∵ _________________________________.
2018-2019学年郑外初一(下)数学期中试卷
一、选择题(本大题共 8 小题,每小题 2 分,共 16 分,在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1. 下列运算正确的是( )
A. a2 2a 3a3
B. 2a3 2 4a5
2
2
D. 2
8.如图,直线 l1 、 l2 被直线 l3 所截,且 l1∥l2 ,过 l1 上的点 A 作 AB⊥l3 交于点 B,其中 ∠1 30° ,则下列选项一定正确的是( )

2018-2019学年第二学期期中质量检测七年级数学试题及答案

2018-2019学年第二学期期中质量检测七年级数学试题及答案

2018-2019学年第二学期期中质量检测七年级数学试题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只一个选项是正确的.1.下列代数运算正确的是( )A.66x x x ⋅=B.()3322x x =C.()2224x x +=+D.()326x x =2.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( )A.8410⨯B.8410-⨯C.80.410⨯D.8410-⨯3.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144m m -=;④()3236xy x y =。

他做对的个数是( )A.1B.2C.3D.44.下列各式中,计算结果正确的是( )A.()()22x y x y x y +--=-B.()()232346x y x y x y -+=-C.()()22339x y x y x y ---+=--D.()()2242222x y x y x y -+=-5.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A.23bB.26bC.29bD.236b6.如图,通过计算大正方形的面积,可以验证的公式是( )A.()222a b c a b c ++=++B.()2222a b c a b c ab bc ac ++=+++++C.()2222222a b c a b c ab bc ac ++=+++++D.()2222234a b c a b c ab bc ac ++=+++++7.如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形。

(a>0)剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙)则长方形的面积为( )A.()2225cm a a +B.()2315cm a +C.()269cm a +D.()2615cm a +8.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上. 如果∠1=20°,么∠2的度数是( )A.15°B.20°C.25°D.30°第8题图 第9题图9.如图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.∠B=∠CB.AD//BCC.∠2+∠B=180°D.AB//CD10.下列正确说法的个数是( )①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直.A.1B.2C.3D.411.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂重物的质量x (kg )有下面的关系,那么弹簧总长y (cm )与所挂重物x (kg )之间的关系式为( )A.y=0.5x+12B.y=x+10.5C.y=0.5x+1D.y=x+1212.如图,在△ABC 中,AC=BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动,则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A B C D二、填空题:本题共6小题,每小题填对得4分,共24分. 只要求在答题纸上填写最后结果.13.若长方形的面积是2323a ab a ++,长为3a ,则它的宽为________.14.已知()2893n =,则n=________.15.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则 ∠1=________度.16. 三角形ABC 的底边BC 上的高为8cm ,当它的底边BC 从16cm 变化到5cm 时,三角形ABC 的面积从________变化到________.17.如图所示,根据平行线的性质,完成下列问题:如果AB//CD ,那么∠1=________,∠2+________=180°; 如果AD//BC ,那么∠1=________,∠2+________=180°.18.一个圆柱的底面半径为R cm ,高为8cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192πcm.则R=________.三、解答题:本题共7小题,满分60分.在答题纸上写出必要的文字说明或演算步骤.19.(本小题满分13分)解下列各题:(1)计算:()()2201801133π-⎛⎫---+- ⎪⎝⎭.(4分)(2)计算:()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦.(4分)(3)用乘法公式计算:2199199201-⨯.(5分)20.(本小题满分7分)先化简,再求值:()()()()()222222m n m n m n m n m n +--+--+,其中12m =-,n=2.已知()25-=,求下列式子的值:a ba b+=,()23(1)22+;(2)6ab.a b22.(本小题满分7分)小安的一张地图上有A,B,C3三个城市,地图上的C城市被墨污染了(如图),但知道∠ABC=∠α,∠ABC=∠β,你能用尺规作图帮他在下图中确定C城市的具体位置吗?(不作法,保留作图痕迹)23.(本小题满分8分)如图,直线AB//CD,BC平分∠ABD,∠1=65°,求∠2的度数.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥1AB ,垂足为F.(1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,试判断DG 与BC 的位置关系,并说明理由.25.(本小题满分10分)周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园. 如图是他们离家路程s (km )与小明离家时间t (h )的关系图,请根据图回答下列问题:(1)图中自变量是____,因变量是______;(2)小明家到滨海公园的路程为____ km ,小明在中心书城逗留的时间为____ h ;(3)小明出发______小时后爸爸驾车出发;(4)图中A 点表示___________________________________;(5)小明从中心书城到滨海公园的平均速度为______km/h,小明爸爸驾车的平均速度为______km/h;(补充;爸爸驾车经过______追上小明);(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.第25题图2017—2018学年度第二学期期中质量检测七年级数学参考答案与评分标准一、选择题:本大题共12小题,每小题3分,共36分.二、填空题:本题共6小题,每小题填对得4分,共24分. 13. 213a b ++ 14. 14 15. 30 16. 264cm ,220cm 17. ∠1,∠,4,∠2,∠BAD 18. 5cm三、解答题:本题共7小题,满分60分.19.解:(1)()()2201801133π-⎛⎫---+- ⎪⎝⎭=1-1+9 ………………………3分=9; ………………………4分(2)原式=()32223223x y x y x y x y x y --+÷ ……………………2分 ()3222223x y x y x y =-÷ …………………………………3分2233xy =- …………………………………………4分 (3)2199198201-⨯()()()2200120012001=---⨯+ …………………………………2分2220040012001=-+-+ (4)分=-400+2=-398 ………………………………………5分20.解:()()()()()222+n 222m n m n m m n m n +----+()()()222222442224m mn n m mn mn n m n =++-+---- …………………2分222222442228m mn n m mn mn n m n =++--++-+ (4)分 239mn n =+. …………………………5分 当12m =-,n=2时, 原式213292336332⎛⎫=⨯-⨯+⨯=-+= ⎪⎝⎭. ………………………7分 21.解:(1)因为()25a b +=,()23a b -=,所以2225a ab b ++=,2223a ab b -+=, ……………………2分 所以()2228a b +=,所以224a b +=; …………………………4分(2)因为224a b +=,所以425ab +=, …………………………6分 所以12ab =,所以63ab =. …………………………7分 22.解:画对一个角得2分,标出C 点得3分.点C 为所求的点.23.解:因为AB//CD ,根据“两直线平行,同位角相等”、“两直线平行,同旁内角互补”所以∠ABC=∠1=65°,∠ABD+∠BDC=180°. ……………………4分因为BC平分∠ABD,根据“角平分线定义”,所以∠ABD=2∠ABC=130°.所以∠BDC=180°-∠ABD=50°. …………………………6分根据“对顶角相等”,所以∠2=∠BDC=50°. …………………………8分24.解:(1)CD//EF. …………………………1分理由:因为CD⊥AB,EF⊥AB,所以∠CDF=∠EFB=90°,…………………………2分根据“同位角相等,两直线平行”所以CD//EF. …………………………4分(2)DG//BC,…………………………5分理由:因为CD//EF,根据“两直线平行,同位角相等”…………………………6分所以∠2=∠BCD,因为∠1=∠2,所以∠1=∠BCD,…………………………7分根据“内错角相等,两直线平行”所以DG//BC. …………………………8分25.解:(1)t,s;(2分)(2)30,1.7;(2分)(3)2.5;(1分)(4)2.5小时后小明继续坐公交车到滨海公园;(1分)(5)小明从中心书城到滨海公园的平均速度为301212km /h 4 2.5-=-, 小明爸爸驾车的平均速度为30=30km /h 3.5 2.5-; 爸爸驾车经过12h 3012-追上小明;(2分)(6)小明从家到中心书城时,他的速度为12=15km /h 0.8,∴他离家路程s 与坐车时间t 之间的关系式为s=15t (0≤t ≤0.8)(2分)第25题图。

2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)

2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)

2018-2019学年度下学期七年级(下册)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.化简()0的结果为()A.2B.0C.1D.2.下列运算正确的是()A.3x﹣x=3B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2 3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.4、6、9D.3、1、15.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.6.五边形的内角和是()A.180°B.360°C.540°D.600°7.如图,下面判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠A=∠3.则AD∥BCC.若∠1=∠2,则AB∥CDD.若∠A+∠ADC=180°,则AD∥BC8.如图,将一张长方形纸片折叠后再展开,如果∠1=62°,那么∠2等于()A.56°B.68°C.62°D.66°二、填空题(本大题共10小题,每小题3分,共30分)9.化简:(x+2)2=.10.若3m=5,3n=6,则3m﹣n的值是.11.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.12.若x2+mx+9是一个完全平方式,则m的值是.13.计算:4﹣2=.14.计算:(﹣0.125)2017×82018=.15.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.16.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1=°.17.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.18.如图,△ABC的面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,△A3B3C3的面积为.三、解答题(本大题共9小题,共计96分)19.(20分)计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.(10分)分解因式(1)x2﹣25(2)2x2y﹣8xy+8y21.(10分)用简便方法计算(1)101×99;(2)9.92+9.9×0.2+0.01.22.(10分)如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)线段AA′与BB′的数量关系是,位置关系是.(3)△A′B′C′的面积为.23.(10分)已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2(2)x2+y224.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?25.(8分)如图,BD平分∠ABC,ED∥BC,∠1=30°,求∠2,∠3的度数.26.(10分)如图AD⊥BC,EG⊥BC,垂足分别为D,G,EG与AB相交于点F,且∠1=∠2,∠BAD=∠CAD相等吗?为什么?27.(10分)实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC度数.②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C =71°,则∠A的度数为.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选:C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据积的乘方,可判断D.【解答】解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选:C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【分析】根据三角形的高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.【点评】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.6.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.7.【分析】根据平行线的判定判断即可.【解答】解:A、若∠1=∠2,则DC∥AB,错误;B、若∠A+∠3+∠1=180°.则DC∥AB,错误;C、若∠1=∠2,则AB∥CD,正确;D、若∠A+∠ADC=180°,则CD∥AB,错误;故选:C.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.8.【分析】根据翻折的性质可得∠3=∠1,然后根据平角等于180°列式求出∠4,再根据两直线平行,内错角相等解答即可.【解答】解:根据翻折的性质,∠3=∠1=62°,∴∠4=180°﹣∠1﹣∠2=180°﹣62°﹣62°=56°,∵长方形纸条的对边平行,∴∠2=∠4=56°.故选:A.【点评】本题考查了两直线平行,内错角相等的性质,翻折变换的性质,熟记性质是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.【分析】(a+b)2=a2+2ab+b2,根据以上公式求出即可.【解答】解:(x+2)2=x2+4x+4,故答案为:x2+4x+4.【点评】本题考查了对完全平方公式的应用,能熟记完全平方公式是解此题的关键,注意:完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.10.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法的法则计算.11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0036=3.6×10﹣6.故答案为:3.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】根据负整数指数幂的法则计算.【解答】解:4﹣2=.故答案为.【点评】负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.14.【分析】首先把82018化为82017×8,然后再计算(﹣0.125)2017×82017,进而可得答案.【解答】解:原式=(﹣0.125)2017×82017×8=(﹣0.125×8)2017×8=﹣1×8=﹣8,故答案为:﹣8.【点评】此题主要考查了积的乘方和同底数幂的乘法,关键是掌握(ab)n=a n b n(n是正整数).15.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.16.【分析】由直角三角板的性质可知∠3=180°﹣∠2﹣90°,再根据平行线的性质即可得出结论.【解答】解:如图所示,∵∠2=34°,∴∠3=180°﹣∠2﹣90°=180°﹣34°﹣90°=56°,∵a∥b,∴∠1=∠3=56°.故答案为:56.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,推出∠A +∠ABC =2∠D +∠ABC ,得出∠A =2∠D ,即可求出答案.【解答】解:∵BD 平分∠ABC ,CD 平分∠ACE ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,∴∠A +∠ABC =2∠D +∠ABC ,∴∠A =2∠D ,∵∠A =45°,∴∠D =22.5°,故答案为:22.5.【点评】本题考查了三角形外角性质,角平分线定义的应用,关键是推出∠A =2∠D . 18.【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再解答即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343;故答案为:343【点评】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题(本大题共9小题,共计96分)19.【分析】(1)先计算乘方,再计算乘法;(2)先计算乘法、乘方、除法,再合并同类项即可得;(3)先计算完全平方式、单项式乘多项式,再合并同类项即可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=x 4y 2•x 6y 3=x 10y 5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式混合运算顺序和运算法则.20.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式、完全平方公式,可得答案.【解答】解:(1)原式=(x+5)(x﹣5);(2)原式=2y(x2﹣4x+4)=2y(y﹣2)2.【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.21.【分析】(1)根据101=100+1、99=100﹣1结合平方差公式,即可求出结论;(2)由0.2=2×0.1、0.01=0.12结合结合完全平方公式,即可求出结论.【解答】解:(1)原式=(100+1)×(100﹣1),=10000﹣1=9999;(2)原式=9.92+2×9.9×0.1+0.12,=(9.9+0.1)2,=102,=100.【点评】本题考查了平方差公式以及完全平方公式,牢记平方差公式、完全平方公式是解题的关键.22.【分析】(1)根据点B的对应点B′的位置知,需将三角形向下平移2个单位、再向左平移4个单位,据此可得画出△A′B′C′即可;(2)利用平移变换的性质可得;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)线段AA′与BB′的数量关系是相等,位置关系是平行,故答案为:相等、平行;(3)△A′B′C′的面积为×4×4=8,故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【分析】(1)将x+y、xy的值代入原式=xy(x+y),计算可得;(2)将x+y、xy的值代入原式=(x+y)2﹣2xy,计算可得.【解答】解:(1)当x+y=6、xy=4时,原式=xy(x+y)=4×6=24;(2)当x+y=6、xy=4时,原式=(x+y)2﹣2xy=62﹣2×4=36﹣8=28.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握因式分解和完全平方公式及整体代入思想的运用.24.【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形是关键.25.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:∵BD平分∠ABC,∴∠4=∠1=30°,∵ED∥BC,∴∠2=∠4=30°,∴∠3=∠1+∠2=30°+30°=60°【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.26.【分析】由条件可证明AD∥BG,结合平行线的性质可得∠1=∠CAD,∠2=∠BAD,结合条件可得∠BAD=∠CAD.【解答】解:相等.理由如下:∵AD⊥BC,EG⊥BC,∴AD∥EG,∴∠1=∠CAD,∠2=∠BAD,∵∠1=∠2,∴∠BAD=∠CAD.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.27.【分析】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,(3)应用(2)的结论即可解决问题①②.【解答】解:(1)动手操作:①如图1中,∵BC∥EF,∴∠DBC=∠E=∠F=∠DCB=45°,∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,∴∠ABD+∠ACD=60°;②如图2中,在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠A=60°.故答案为60°;60°;(2)猜想:∠A+∠B+∠C=∠BDC;证明:如图3中,连接BC,在△DBC中,∵∠DBC+∠DCB+∠D=180°,∴∠DBC+∠DCB=180°﹣∠BDC;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=180°﹣∠BDC,∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,即:∠A+∠B+∠C=∠BDC.(3)灵活应用:①如图4中,由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,∵∠BAC=40°,∠BDC=120°,∴∠ABD+∠ACD=120°﹣40°=80°∵BE平分∠ABD,CE平分∠ACB,∴∠ABE+∠ACE=40°,∴∠BEC=40°+40°=80°;②如图5中,由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠A+∠ABF3+∠ACF3=∠BF3C=71°,∵∠ABF3=∠ABD,∠ACF3=∠ACD,∴ABD+∠ACD=120°﹣∠A,∠A+(∠ABD+∠ACD)=71°,∴∠A+(120°﹣∠A)=71°,∴∠A=50°,故答案为50°.【点评】本题考查了三角形内角和定理:三角形内角和是180°,准确识别图性是解题的关键,学会添加常用辅助线,构造三角形解决问题,学会利用新的结论解决问题.。

北师大版2018-2019学年七年级数学下册期中测试题及答案答案

北师大版2018-2019学年七年级数学下册期中测试题及答案答案

2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个4.二元一次方程组的是()A.B.C.D.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣118.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.10.方程组的解是,则方程组的解为()A.B.C.D.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第象限.12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=,b=.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为.14.已知+|3x+2y﹣15|=0,则的算术平方根为.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=;(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=,b=.三、解答题(共66分19.解二元一次方程组:.20.21.25(x﹣1)2﹣9=0.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)26.(8分)河大附中初一年级有350名同学去春游,已知2辆A 型车和1辆B 型车可以载学生100人;1辆A 型车和2辆B 型车可以载学生110人. (1)A 、B 型车每辆可分别载学生多少人?(2)若租一辆A 需要100元,一辆B 需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m ≤100100<m ≤200m >200 收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD . (1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∠1=50°,∠2=65°,∴∠4=∠1=50°,∴∠2+∠4=65°+50°=115°,∴∠3=∠2+∠4=115°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)【分析】根据x轴上点的纵坐标为0列方程求出a,再求解即可.【解答】解:∵P点坐标为(2﹣a,3a+6),且点P在x轴上,∴3a+6=0,解得a=﹣2,2﹣a=2﹣(﹣2)=4,故点P的坐标为(4,0).故选:D.【点评】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有π,﹣,0.1010010001…,共3个,故选:B.【点评】本题考查了算术平方根、立方根、无理数等知识点,能熟记无理数的定义是解此题的关键.4.二元一次方程组的是()A.B.C.D.【分析】二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.依此即可求解.【解答】解:A、有3个未知数,不是二元一次方程组,故选项错误;B、是二次方程组,故选项错误;C、是二次方程组,故选项错误;D、是二元一次方程组,故选项正确.故选:D.【点评】考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.【点评】本题考查了点的位置判断方法及点的坐标几何意义.6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x【分析】直接利用x的取值范围,进而比较各数大小.【解答】解:∵﹣1<x<0,∴>﹣x2>x>2x,∴在x、2x、、﹣x2中最小的数是:2x.故选:B.【点评】此题主要考查了实数比较大小,正确掌握实数的比较大小的方法是解题关键.7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣11【分析】由x与y互为相反数,得到y=﹣x,代入方程组计算即可求出m的值.【解答】解:由题意得:y=﹣x,代入方程组得:,消去x得:=,即3m+9=4m﹣2,解得:m=11,故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个【分析】根据非负整数的定义分别代入求出答案.【解答】解:当x=0时,y=10;当x=1时,y=8.5(不合题意);当x=2时,y=7;当x=3时,y=5.5(不合题意);当x=4时,y=4;当x=5时,y=2.5(不合题意);当x=6时,y=1;当x=7时,y=﹣0.5(不合题意);故方程3x+2y=20的非负整数解的个数为4个.故选:D.【点评】此题主要考查了二元一次方程的解,正确把握非负整数的定义是解题关键.9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.【分析】根据题意和表格可以列出相应的方程组,从而可以的打哪个选项是正确的.【解答】解:由题意可得,,化简,得,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.10.方程组的解是,则方程组的解为()A.B.C.D.【分析】将方程组变形为,根据已知方程组的解得出,解之可得.【解答】解:由方程组,得:,由题意可得,解得:,故选:D.【点评】本题主要考察二元一次方程组的解,解题的关键是掌握整体思想的运用.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第二、四象限.【分析】根据有理数的乘法,可得横坐标与纵坐标异号,根据点的坐标特征,可得答案.【解答】解:由题意,得横坐标与纵坐标异号,点N在第二、四象限,故答案为:二、四.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=3,b=4.【分析】根据一元二次方程的定义,令未知数的次数为1,即可列方程解答.【解答】解:∵2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,∴,解得,,故答案为3,4.【点评】本题考查了二元一次方程的定义,根据题意列出方程是解题的关键.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为(4,2)或(﹣2,2).【分析】AB∥x轴,说明A,B的纵坐标相等为2,再根据两点之间的距离公式求解即可.【解答】解:∵AB∥x轴,点A坐标为(1,2),∴A,B的纵坐标相等为2,设点B的横坐标为x,则有AB=|x﹣1|=3,解得:x=4或﹣2,∴点B的坐标为(4,2)或(﹣2,2).故本题答案为:(4,2)或(﹣2,2).【点评】本题主要考查了平行于x轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.14.已知+|3x+2y﹣15|=0,则的算术平方根为.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【解答】解:由题意得,x+3=0,3x+2y﹣15=0,解得x=﹣3,y=12,所以,==3,所以,的算术平方根为.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是2﹣.【分析】设A点表示x,再根据数轴上两点间距离的定义即可得出结论.【解答】解:设A点表示x,∵B点表示的数是1,C点表示的数是,且AB=BC,∴1﹣x=﹣1.解得:x=2﹣故答案为:2﹣.【点评】本题考查的是数轴,熟知数轴上两点间距离公式是解答此题的关键.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为15°或115°.【分析】如果两个角的两边互相平行,那么这两个角相等或互补,由∠A比∠B的3倍小20°和∠A与∠B相等或互补,可列方程组求解.【解答】解:根据题意,得或解方程组得∠A=∠B=15°或∠A=115°,∠B=65°.故答案为:15°或115°.【点评】本题主要考查了平行线的性质,此类问题结合方程的思想解决更简单.注意结论:如果两个角的两边互相平行,那么这两个角相等或互补.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=(﹣1,2);(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=2,b=﹣2.【分析】(1)根据新定义运算法则解得;(2)根据新定义运算法则得到关于a、b的方程,通过解方程求得它们的值即可.【解答】解:(1)依题意得:f(﹣2,4)=(×(﹣2)+0,×4﹣0)=(﹣1,2).故答案是:(﹣1,2);(2)依题意得:f(4,﹣4)=(×4+a,×(﹣4)+b)=(4,﹣4).所以×4+a=4,×(﹣4)﹣b=﹣4所以a=2,b=2.故答案是:2;2.【点评】考查了坐标与图形性质.关键是掌握对有序数对(m,n)定义“f运算”法则.三、解答题(共66分19.解二元一次方程组:.【分析】直接利用加减消元法解方程得出答案.【解答】解:由①×6得:3x﹣2y=8,③由②+③得:x=3,将x=3代入到②得:y=,故原方程组的解为:.【点评】此题主要考查了二元一次方程组的解法,正确掌握解方程的是解题关键.20.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:原方程组化为∴3x+4y=4x+3y即x=y∴3x+4y=3x+4x=7x=84解得:x=12∴y=12∴方程组的解为【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.21.25(x﹣1)2﹣9=0.【分析】25(x﹣1)2﹣9=0中每个数同时除以25,得到(x﹣1)2﹣=0,利用平方差公式求出x的值.【解答】解:∵25(x﹣1)2﹣9=0∴(x﹣1)2﹣=0(x﹣1﹣)(x﹣1+)=0解得x1=x2=【点评】本题主要考查了利用平方差公式解一元二次方程,熟练掌握平方差公式是解题的关键.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.【分析】(1)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(2)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等)又∵∠A=∠C∴∠A=∠CBE∴AD∥BC(同位角相等,两直线平行)(2)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB∵AE∥CF,AD∥BC∴∠FDA=∠A=∠CBE,∠ADB=∠CBD∴∠EBC=∠CBD.∴BC平分∠DBE.【点评】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.【分析】(1)先根据点的坐标求出AB长和点C到AB的距离,根据三角形的面积公式求出即可;(2)设P点到直线AB的距离为h,根据三角形的面积公式求出h,即可得出P点的坐标.【解答】解:(1)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3),∴AB∥x轴,AB=4﹣(﹣2)=6,C到AB的距离是3﹣(﹣3)=6,∴△ABC的面积为:=18;(2)设P点到直线AB的距离为h,∵△ABP的面积为6,AB=6,∴=6,解得:h=2,∵3+2=5,3﹣2=1,∴P点的坐标为(0,5)或(0,﹣1).【点评】本题考查了三角形的面积、坐标与图形性质等知识点,能求出AB的长和分别求出点C、P到直线AB的距离是解此题的关键.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.【分析】首先估算出的范围,然后可求得m、n的值,最后即可求得(m+n)2018的值.【解答】解:∵1<3<4,∴1<<2.∴m=2+﹣3=﹣1,n=2﹣﹣0=2﹣,∴(m+n)2018=12018=1.【点评】本题主要考查的是估算无理数的大小、求得m、n的值是解题的关键.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)【分析】设小长方形的长为x厘米,宽为y厘米,根据题意和图示,列出关于x和y的二元一次方程组,解出x和y的值,即可求出矩形的AD的长度,从而求出矩形ABCD的面积,根据阴影部分的面积=矩形ABCD的面积﹣六个小长方形的面积,即可求得答案.【解答】解:设小长方形的长为x厘米,宽为y厘米,根据题意得:,解得:,即小长方形的长为8厘米,宽为2厘米,矩形ABCD的宽AD=6+2×2=10(厘米),矩形ABCD的面积为:14×10=140(平方厘米),阴影部分的面积为:140﹣6×8×2=44(平方厘米),答:图中阴影部分的总面积为44平方厘米.【点评】本题考查二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.26.(8分)河大附中初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.【分析】(1)根据载客量,可得方程组,根据解方程组,可得答案;(2)根据题意列出方程,可得答案.【解答】解:(1)设A、B型车每辆可分别载学生x,y人,可得:,解得:,答:A、B型车每辆可分别载学生30人,40人;(2)设租用A型a辆,B型b辆,可得:30a+40b=350,因为a,b为正整数,所以方程的解为:,方案一:A型1辆,B型8辆,费用:100×1+120×8=1060元;方案二:A型5辆,B型5辆,费用:100×5+120×5=1100元;方案三:A型9辆,B型2辆,费用:100×9+120×2=1140元;所以租用1辆A型8辆B型车花费最少为1060元.【点评】本题考查了二元一次方程组的应用,解(1)的关键是解方程组;解(2)的关键是解方程.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?【分析】(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案.【解答】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得解得(6分)②当x >200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.【点评】此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD .(1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.【分析】(1)根据非负数的性质求出a 、b 的值得出点A 、B 的坐标,再由平移可得点C 、D 的坐标,即可知答案;(2)分点M 在x 轴和y 轴上两种情况,设出坐标,根据S △ACM =S 四边形ABDC 列出方程求解可得;(3)作PE ∥AB ,则PE ∥CD ,可得∠DCP =∠CPE 、∠BOP =∠OPE ,继而知∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,即可得答案.【解答】解:(1)由a =.得:a =﹣1,b =3.所以A (﹣1,0),B (3,0),C (0,2),D (4,2),∵AB =4,CO =2,∴S=AB•CO=4×2=8;四边形ABDC(2)①M在y轴上,设M坐标为(0,m),∴,∴CM=16,∴m=2+16=18或m=2﹣16=﹣14,∴M点的坐标为(0,18)或(0,﹣14);②M在x轴上,设点m的坐标为(m,0),∴,∴AM=8,∴m=﹣1+8=7或m=﹣1﹣8=﹣9,所以点M的坐标为(7,0)或(﹣9,0).综上所述M点的坐标为(0,18)或(0,﹣14)或(7,0)或(﹣9,0);(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO;当点P在线段BD的延长线上时,如图2,∠BOP﹣∠DCP=∠CPO,同理可得当点P在线段DB的延长线上时,如图3:∠DCP﹣∠BOP=∠CPO,【点评】本题主要考查非负数的性质、平行四边形的性质及平行线的判定与性质,根据非负数性质求得四点的坐标是解题的根本,熟练掌握平行线的判定与性质是解题的关键.。

2018-2019学年七年级第二学期期中考试数学试卷及答案解析

2018-2019学年七年级第二学期期中考试数学试卷及答案解析

2018-2019学年七年级第二学期期中考试数学试卷班级:座号姓名:分数:一、选择题:(本题共10个小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的.)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是.B .C.D.2. 下列运算正确的是()A.B.C.D.3. 点P(m+3, m+1)在直角坐标系的x轴上,则点P坐标为()A.(0,-2) B.( 4,0) C.( 2,0) D.(0,-4)4.下列所示的四个图形中,∠1和∠2是同位角的是()5 .如图5能判定EB∥AC的条件是()A.∠A=∠EBD B.∠C=∠ABC C.∠A=∠ABE D.∠C=∠ABE6.如图6,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°7.图7,已知直线AB∥CD,BE平分∠ABC,∠CDE=140°,则∠C的度数为()A.150°B.130°C.120°D.100°8.将△ABC各顶点的横坐标分别加上3,纵坐标不变,得到的△DEF相应顶点的坐标,则△DEF可以看成△ABC()A.向左平移3个单位长度得到B.向右平移三个单位长度得到(图5)(图6)(图7)C .向上平移3个单位长度得到D .向下平移3个单位长度得到 2A (7,2)B (—1,2)C (3,6)D (7,2)或(—1,2)二、填空题:(本题共6个小题,每小题4分,共24分)11. 若电影院中的5排2号记为(5,2),则7排3号记为( , )12. 把命题“邻补角是互补的角”改写成“如果…那么…”的形式 .13. 求161-的相反数的平方根是14.已知032=++-b a ,则______)(2=-b a ; 15.已知点M (5,-6)到x 轴的距离是_______ . 16. 如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF= _________ °.三、解答题(一)(本大题3小题,每小题6分,共18分)17. 将下列各数填入相应的集合内.﹣,,﹣,0,﹣,,﹣,,3.14①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}18.2+3﹣5﹣3. 19.4(X+5)2 =16四、解答题(二)(本大题3小题,每小题7分,共21分)。

2018-2019学年江苏省常州市七年级(下)期中数学试卷

2018-2019学年江苏省常州市七年级(下)期中数学试卷

七年级期中质量调研数学参考答案及评分建议一、选择题(每小题2分,共16分)二、填空题(每小题2分,共20分)9. 3x 10.> 11.8 12.41 13.5 14.-5 15.110 16.116 17. 6518.9 三、解答题(共64分)19.计算:(每小题4分,共16分)⑴ 201903)1()2017()21(---+-π解:原式=8+1-(-1) ---------------- 2分=8+1+1 ----------------------- 3分=10 -------------------------- 4分⑵ ()()2543223a a a --⋅- 解:原式=1046427a a a -⋅- ------ 2分 =1010427a a -- ------------ 3分 =1031a - -------------------- 4分 ⑶ 2)3()23)(32(b a a b b a ---+解:原式=)96(492222b ab a a b +--- - 2分=22229649b ab a a b -+-- - 3分=256a ab - --------------------- 4分 ⑷ )32)(32(+--+y x y x 解:原式=[][])32()32(--⨯-+y x y x 1分 =22)32(--y x --------------- 2分 =)9124(22+--y y x -------- 3分=912422-+-y y x -------- 4分20.分解因式:(每小题4分,共16分)⑴ 2242x x -+解:原式=2(x 2﹣2x +1) ------------------------------------------------ 2分=2(x -1)2 ----------------------------------------------------- 4分⑵ 22()9()a x y b y x -+-解:原式= a 2(x ﹣y )- 9b 2(x ﹣y ) ------------------------------- 1分=(x ﹣y )(a 2- 9b 2) ----------------------------------------- 2分=(x ﹣y )(a +3b )(a -3b ) ------------------------------ 4分 ⑶ 22344ab a b b --= -(4a 2 b -4ab 2+b 3) ---------------------------------------------- 1分 =-b (4a 2 -4ab +b 2) -------------------------------------------------- 2分=-b (2a -b )2 ----------------------------------------------------------- 4分 ⑷222(1)6(1)9y y ---+=[]223)1(--y ------------------------------------------------------------ 1分=[]224-y ----------------------------------------------------------------- 2分=[]2)2)(2(-+y y ------------------------------------------------------- 3分 =22)2()2(-+y y --------------------------------------------------------- 4分21.解:⑴,⑵两问如图所示(第⑵问H 点不在格点上不给分) 4分⑶ 如图所示: 3 --------------------------------------------------- 5分22.解:∵∠B =30°,∠ACB =100° ∴∠BAC =50° ------------------------------------------------------- 1分∵AE 平分∠BAC ∴∠BAE =∠CAE =25° ------------------- 2分∴∠AEC =55° ------------------------------------------------------ 3分∵AD ⊥BC ∴∠D =90° --------------------------------------- 4分∴∠EAD =35° -------------------------------------------------------- 5分 23.答:AC ∥DE 理由:∵五边形ABCDE 的内角和=540°,且每个内角都相等.∴∠B =∠BAE =∠E =108°. ------------------------------------------- 1分∵∠1=∠2=∠3=∠4.∴∠1=∠2=∠3=∠4=2108180︒-︒=36° ----------------------------- 2分 ∴∠CAD =108°-36°×2=36° ------------------------------------------ 3分∴∠CAD =∠4 ------------------------------------------------------------- 4分∴AC ∥DE ------------------------------------------------------------------ 5分(说明方法不唯一,其它证法请根据实际情况评分)24.⑴ bc ac ab c b a c b a 222)(2222+++++=++; --------------- 2分⑵ 90 ----------------------------------------------------------------------- 4分⑶ 12 ------------------------------------------------------------------------- 6分⑷ )2)(2(43-+=-x x x x x . ------------------------------------- 8分 25.⑴ ① 22; ------------------------------------------------------------------ 2分② 57° -------------------------------------------------------------------- 4分⑵ ∵BA ⊥OM ,∴∠OAB =90°∵OE 平分∠MON∴∠MOE =∠NOE =22°∴∠ABD =68°∵∠OAC =x ° ∴∠BAD =(90-x )°,∠ADB =(x +22)°① 如图(1),当点D 在线段OB 上时,(Ⅰ)若∠BAD =∠ABD ,则90-x =68 可得 x =22 ------------------------------- 5分 (Ⅱ)若∠BAD =∠BDA ,则90-x =x +22 可得 x =34 ------------------------------ 6分 (Ⅲ)若∠ADB =∠ABD ,则x +22 =68 可得 x =46 --------------------------------- 7分 ② 如图(2),当点D 在射线BE 上时,因为∠ABE =112°,且三角形的内角和为180°,所以只有∠BAD =∠BDA ,此时2(x - 90)=68 x =124. ----------------------------------- 8分 AB C D E A B C DE 1234A O N E B M (1)A O N E B M (2)C D DC综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=22、34、46、124. ---------------------------------------------------------------------------------- 9分。

2018-2019学年安徽省滁州市全椒县七年级(下)期中数学试卷含答案

2018-2019学年安徽省滁州市全椒县七年级(下)期中数学试卷含答案

2018-2019学年安徽省滁州市全椒县七年级(下)期中数学试卷一、选择题(本大题共9小题,每小题4分,满分36分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)下列各数中是有理数的是()A.πB.0C.D.2.(4分)2018年2月18日清•袁枚的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5B.﹣6C.5D.63.(4分)下列计算正确的是()A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y÷=x2(y≠0)D.(﹣2x2)3=﹣8x65.(4分)计算:等于()A.﹣2B.2C.D.6.(4分)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2B.C.6m<6n D.﹣8m>﹣8n 7.(4分)若关于x的不等式的解集为x<2,则a的取值范围是()A.a>﹣2B.a≥﹣2C.a≤﹣2D.a<﹣28.(4分)设n为正整数,且n<<n+1,则n的值为()A.7B.8C.9D.109.(4分)如果(2a+2b﹣3)(2a+2b+3)=40,则a+b的值为()A.B.﹣C.D.±310.(4分)如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度AC=30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的范围为()A.0≤x≤5B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)一个正数a的两个平方根是3x﹣4与2x,则x=.12.(5分)不等式﹣≥1的最小整数解是.13.(5分)已知a m=3,a n=2,则a m+n=.14.(5分)计算:(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算+(π﹣3)0+|1﹣|+16.(8分)解不等式组,并把解集在数轴上表示出来.四、(本大题共2小题,每小题8分,满分16分)17.(8分)先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=.18.(8分)因式分解:(1)a3﹣2a2+a;(2)x2﹣4xy+4y2﹣1五、(本大题共2小题,每小题10分,满分20分)19.(10分)某小区有一块面积为196m2的正方形空地,开发商计划在此空地上建一个面积为100m2的长方形花坛,使长方形的长是宽的2倍.请你通过计算说明开发商能否实现这个愿望?(参考数据:≈1.414,≈7.070)20.(10分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元(1)求购买1个篮球和1个足球各需多少元?(2)若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?六、(本题满分12分)21.(12分)如图所示的是一个运算程序.例如:根据所给的运算程序可知,当x=5时,5×5+2=27<37,再把x=27代入,得5×27+2=137>37,则输出的值为137.(1)填空:当x=10时,输出的值为;当x=2时,输出的值为.(2)若需要经过两次运算才能输出结果,求x的取值范围.七、(本题满分12分)22.(12分)解不等式|x﹣2|≤1时,我们可以采用下面的解法:①.当x﹣2≥0时,|x﹣2|=x﹣2∴原不等式可以化为x﹣2≤1可得不等式组解得2≤x≤3②.当x﹣2<0时,|x﹣2|=2﹣x∴原不等式可以化为2﹣x≤1可得不等式组解得1≤x≤2综上可得原不等式的解集为1≤x≤3.请你仿照上面的解法,尝试解不等式|x﹣1|≤2.八、(本题满分18分)4.(4分)下列多项式中,能用公式法分解因式的是()A.﹣m2+n2B.a2﹣2ab﹣b2C.m2+n2D.﹣a2﹣b2 23.(14分)图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图②形状拼成一个正方形.(1)请用两种不同方法,求②中阴影部分的面积(不用化简)方法1:;方法2:(2)观察图②,写出(m+n)2,(m﹣n)2,mn之间的等量关系,并验证;(3)根据(2)题中的等量关系,解决如下问题:①若a+b=7,ab=5,求(a﹣b)2的值;②若2a+b=5,ab=2,求2a﹣b的值.2018-2019学年安徽省滁州市全椒县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题4分,满分36分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)下列各数中是有理数的是()A.πB.0C.D.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.2.(4分)2018年2月18日清•袁枚的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5B.﹣6C.5D.6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000084=8.4×10﹣6,则n为﹣6.故选:B.3.(4分)下列计算正确的是()A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y÷=x2(y≠0)D.(﹣2x2)3=﹣8x6【分析】根据相关的运算法则即可求出答案.【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)原式=3a2,故B错误;(C)原式=x2y2,故C错误;故选:D.5.(4分)计算:等于()A.﹣2B.2C.D.【分析】根据积的乘方法则计算即可.【解答】解:原式=(﹣2)2019•()2019•=(﹣2×)2019•=﹣故选:C.6.(4分)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2B.C.6m<6n D.﹣8m>﹣8n 【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【解答】解:A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误;故选:B.7.(4分)若关于x的不等式的解集为x<2,则a的取值范围是()A.a>﹣2B.a≥﹣2C.a≤﹣2D.a<﹣2【分析】先把a当作已知条件,分别求出各不等式的解集,再与已知不等式组的解集为x <2相比较即可得出a的取值范围.【解答】解:,由①得x<2,由②得x<﹣a,∵不等式组的解集为x<2,∴﹣a≥2,即a≤﹣2.故选:C.8.(4分)设n为正整数,且n<<n+1,则n的值为()A.7B.8C.9D.10【分析】先估算出的范围,再求出答案即可.【解答】解:∵9<<10,∴n=9,故选:C.9.(4分)如果(2a+2b﹣3)(2a+2b+3)=40,则a+b的值为()A.B.﹣C.D.±3【分析】先根据平方差公式进行计算,再求出(a+b)2的值,最后求出答案即可.【解答】解:∵(2a+2b﹣3)(2a+2b+3)=40,∴(2a+2b)2﹣32=40,∴4(a+b)2=49,∴(a+b)2=,∴a+b=±,故选:C.10.(4分)如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度AC=30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的范围为()A.0≤x≤5B.C.D.【分析】先设与墙垂直的一边的长为x米,根据铁丝长40米,墙的长度AC=30米,靠墙的一边不小于25米,列出不等式组,求出x的取值范围即可.【解答】解:设与墙垂直的一边的长为x米,根据题意得:,解得:≤x≤5;故选:D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)一个正数a的两个平方根是3x﹣4与2x,则x=.【分析】根据一个正数有两个平方根,这两个平方根互为相反数,列出方程,求出x的值.【解答】解:由题意得,3x﹣4+2x=0,解得x=.故答案为.12.(5分)不等式﹣≥1的最小整数解是7.【分析】先求出不等式的解集,即可得出答案.【解答】解:6x﹣2﹣5x+5≥10x≥7∴不等式﹣≥1的最小整数解是7,故答案为:7.13.(5分)已知a m=3,a n=2,则a m+n=6.【分析】根据同底数幂的乘法,可得答案.【解答】解:a m+n=a m•a n=3×2=6,故答案为:6.14.(5分)计算:(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=.【分析】直接利用平方差公式因式分解,再进一步找出规律计算即可.【解答】解:原式=(1﹣)×(1+)×(1﹣)×(1+)×(1﹣)×(1+)×…×(1﹣)×(1+)=××××××…××=×=.故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算+(π﹣3)0+|1﹣|+【分析】首先分别计算零指数幂、绝对值、二次根式的化简、负整数指数幂,再计算乘法,后算加减即可.【解答】解:原式=4+1+﹣1﹣4=.16.(8分)解不等式组,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①得x>﹣2,解不等式②得x≤2,∴不等式组解集为﹣2<x≤2,四、(本大题共2小题,每小题8分,满分16分)17.(8分)先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=.【分析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣2,b=时,原式=﹣4.18.(8分)因式分解:(1)a3﹣2a2+a;(2)x2﹣4xy+4y2﹣1【分析】(1)利用提取公因式法与完全平方公式分解因式;(2)利用完全平方公式与平方差公式分解因式;【解答】(1)原式﹣a(a2﹣2a+1)=a(a﹣1)2;(2)原式(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).五、(本大题共2小题,每小题10分,满分20分)19.(10分)某小区有一块面积为196m2的正方形空地,开发商计划在此空地上建一个面积为100m2的长方形花坛,使长方形的长是宽的2倍.请你通过计算说明开发商能否实现这个愿望?(参考数据:≈1.414,≈7.070)【分析】分两种情形,求出长方形的长,正方形的边长比较即可判断.【解答】解:长方形花坛的宽为xm,长为2xm.2x•x=100,∴x2=50,∵x>0,∴x=,2x=2,∵正方形的面积=196m2,∴正方形的边长为14m,∵2>14,∴当长方形的边与正方形的边平行时,开发商不能实现这个愿望.长方形花坛如图放置,设宽为2xm,长为4xm.∵正方形ABCD的面积为196m2,∴AB=14(m),AC=14(m),由题意2x+4x=14,∴x=,∴长方形EFGH的面积=8x2≈87.1<100,∴开发商不能实现这个愿望.综上所述,开发商不能实现这个愿望.20.(10分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元(1)求购买1个篮球和1个足球各需多少元?(2)若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?【分析】(1)设购买1个篮球x元,购买1个足球y元,根据“1个篮球和2个足球共需116元;2个篮球和3个足球共需204元”,即可得出关于x、y的二元一次方程组,解之即可得出结论,(2)设购买m个篮球,则股买的足球数为(40﹣m),根据费用=单价×数量,分别求出篮球和足球的费用,二者相加便是总费用,总费用不超过1800元,列出关于m的一元一次不等式,解之即可得出结论.【解答】解:(1)设购买一个篮球的需x元,购买一个足球的需y元,依题意得,解得,答:购买一个篮球需60元,购买一个足球需28元;(2)设购买m个篮球,则足球数为(40﹣m),依题意得:60m+28(40﹣m)≤1800,解得:m≤,而m为正整数,m最多=21,答:篮球最多可购买21个.六、(本题满分12分)21.(12分)如图所示的是一个运算程序.例如:根据所给的运算程序可知,当x=5时,5×5+2=27<37,再把x=27代入,得5×27+2=137>37,则输出的值为137.(1)填空:当x=10时,输出的值为52;当x=2时,输出的值为62.(2)若需要经过两次运算才能输出结果,求x的取值范围.【分析】(1)根据运算流程分别代入x=10、x=2,求出输出y值即可得出结论;(2)根据运算流程结合需要经过两次运算可得出关于x的一元一次不等式组,解不等式组即可得出结论.【解答】解:(1)当x=10时,5×10+2=52>37,所以输出52;当x=2时,5×2+2=12<37,把x=12代入,得5×12+2=62>37,所以输出62.故答案为:52;62;(2)由题意得:,解得:1≤x<7.答:x的取值范围是1≤x<7.七、(本题满分12分)22.(12分)解不等式|x﹣2|≤1时,我们可以采用下面的解法:①.当x﹣2≥0时,|x﹣2|=x﹣2∴原不等式可以化为x﹣2≤1可得不等式组解得2≤x≤3②.当x﹣2<0时,|x﹣2|=2﹣x∴原不等式可以化为2﹣x≤1可得不等式组解得1≤x≤2综上可得原不等式的解集为1≤x≤3.请你仿照上面的解法,尝试解不等式|x﹣1|≤2.【分析】根据所给的例子分x﹣1<0与x﹣1≥0两种情况进行讨论即可.【解答】解:①当x﹣1<0,即x<1时|x﹣1|=1﹣x∴原不等式化为:1﹣x≤2可得不等式组解得﹣1≤x<1;②当x﹣1≥0,即x≥1时|x﹣1|=x﹣1,∴原不等式化为:x﹣1≤2,可得不等式组,解得,1≤x≤3.综上可得原不等式的解集为﹣1≤x≤3.八、(本题满分18分)4.(4分)下列多项式中,能用公式法分解因式的是()A.﹣m2+n2B.a2﹣2ab﹣b2C.m2+n2D.﹣a2﹣b2【分析】利用平方差公式及完全平方公式的结构特征判断即可.【解答】解:﹣m2+n2=(n+m)(n﹣m),故选:A.23.(14分)图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图②形状拼成一个正方形.(1)请用两种不同方法,求②中阴影部分的面积(不用化简)方法1:(m+n)2﹣4mm;方法2:(m﹣n)2(2)观察图②,写出(m+n)2,(m﹣n)2,mn之间的等量关系,并验证;(3)根据(2)题中的等量关系,解决如下问题:①若a+b=7,ab=5,求(a﹣b)2的值;②若2a+b=5,ab=2,求2a﹣b的值.【分析】(1)利用已知图形结合边长为(m+n)的大正方形的面积减去长为m,宽为n 的4个长方形面积以及边长为(m﹣n)的正方形的面积,分别求出答案;(2)分别化简(1)中求得阴影部分的面积可得答案;(3)①②利用(2)中关系式,将已知变形得出答案.【解答】解:(1)方法1:(m+n)2﹣4mm,方法2:(m﹣n)2;故答案为:(m+n)2﹣4mm,(m﹣n)2;(2)(m+n)2﹣4mn=(m﹣n)2证明:左边=m2+2mn+n2﹣4mn=m2﹣2mn+n2=(m﹣n)2=右边;(3)①(a﹣b)2=(a+b)2﹣4ab=72﹣4×5=29,②(2a﹣b)2=(2a+b)2﹣8ab=52﹣8×2=9,∴2a﹣b=±3.。

2018-2019学年北京市海淀区七年级(下)期中数学试卷

2018-2019学年北京市海淀区七年级(下)期中数学试卷

2018-2019学年北京市海淀区七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.4的算术平方根是()A. 16B. ±2C. 2D. √22.在平面直角坐标系中,点P(-3,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.过点B画线段AC所在直线的垂线段,其中正确的是()A. B.C. D.4.如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A. 30∘B. 32∘C. 34∘D. 36∘5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A. 内错角相等,两直线平行B. 同位角相等,两直线平行C. 两直线平行,内错角相等D. 两直线平行,同位角相等6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A. 4B. 5C. 6D. 77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A. (3.2,1.3)B. (−1.9,0.7)C. (0.7,−1.9)D. (3.8,−2.6)8.我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A. ①B. ①②C. ②③D. ①②③9.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A. 1B. 6C. 9D. 1010.根据表中的信息判断,下列语句中正确的是x1515.115.215.315.415.515.615.715.815.916 x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256()A. √25.281=1.59B. 235的算术平方根比15.3小C. 只有3个正整数n满足15.5<√n<15.6D. 根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共8小题,共16.0分)11.将点A(-1,4)向上平移三个单位,得到点A′,则A′的坐标为______.12.如图,数轴上点A,B对应的数分别为-1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数______.13.如图,直线a,b相交,若∠1与∠2互余,则∠3=______.14.依据图中呈现的运算关系,可知a=______,b=______.15.平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是______.16.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是______.17.如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中______号点的位置时,接收到的信号最强(填序号①,②,③或④).18.若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线PA,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域______时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有______种连线方案.三、计算题(本大题共1小题,共4.0分)19. 有一张面积为100cm 2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm 2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共8小题,共50.0分)20. 计算:(1)√(−4)2+(√13)2-√83; (2)√2(3−√2)−5√2.21. 求出下列等式中x 的值:(1)12x 2=36;(2)x 38−3=38.22.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(-3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:______;(2)若中国人民大学的坐标为(-3,-4),请在坐标系中标出中国人民大学的位置.23.如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.25.在平面直角坐标系xOy中,已知点A(a,a),B(a,a-3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1<y<√5,直接写出a的所有可能取值:______.26.如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.时,α=______;(1)当∠AEF=a2(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:______.27.对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:,1),B(2,1)若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(12互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为______;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.______(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(12,12),点D坐标为(32,12),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:______.答案和解析1.【答案】C【解析】解:∵2的平方为4,∴4的算术平方根为2.故选:C.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.【答案】B【解析】解:点P(-3,2)在第二象限,故选:B.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】D【解析】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.垂线段满足两个条件:①经过点B.②垂直于AC;由此即可判断.本题考查作图-复制作图,垂线的定义等知识,解题的关键是熟练掌握基本知识.4.【答案】D【解析】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°-∠CAB=36°,故选:D.根据平行线的性质即可得到结论.本题考查了平行线的性质的应用,能求出∠1+∠2=180°是解此题的关键.5.【答案】B【解析】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.根据平行线的判定定理即可得到结论.本题考查了作图-复杂作图,平行线的判定定理,熟练掌握平行线的定理是解题的关键.6.【答案】C【解析】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.根据平移的性质确定平移过程中扫过的图形的形状,从而确定面积;考查了平移的性质,能够确定平移形成的图形是确定面积的基础,难度不大.7.【答案】B【解析】解:由图可知,(-1.9,0.7)距离原点最近,故选:B.根据平面直角坐标系的定义建立平面直角坐标系,然后根据象限特点解答即可.本题考查了坐标确定位置,主要利用了平面直角坐标系的定义和在平面直角坐标系中确定点的位置的方法.8.【答案】A【解析】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.根据平行线的判定、垂直和互余进行判断即可.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.【答案】D【解析】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.将各个选项的x的值代入程序框图得输出的y值,依次进行判断即可.此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.10.【答案】C【解析】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.根据表格中的信息可知x2和其对应的算术平方根的值,然后依次判断各选项即可.此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.11.【答案】(-1,7)【解析】解:将点A(-1,4)向上平移三个单位,得到点A′,则A′的坐标为(-1,7),故答案为:(-1,7),直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.本题考查了坐标与图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.12.【答案】√3(答案不唯一,无理数在-1与2之间即可)【解析】解:由C点可得此无理数应该在-1与2之间,故可以是,故答案为:(答案不唯一,无理数在-1与2之间即可),根据无理数的估计解答即可.此题考查实数与数轴,关键是根据无理数的估计解答.13.【答案】135°【解析】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°-45°=135°,故答案为:135°.依据∠1与∠2互余,∠1=∠2,即可得到∠1=∠2=45°,进而得出∠3的度数.本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.14.【答案】-2019 -2019【解析】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是-m,∴m3=2019,(-m)3=a,∴a=-2019;又∵n的平方根是2019和b,∴b=-2019.故答案为:-2019,-2019.利用立方根和平方根的定义及性质即可解决问题.本题考查了立方根和平方根的定义及性质,熟练掌握定义及性质是解题的关键.15.【答案】(-2,2)或(8,2)【解析】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3-5=-2,点B在点A的右边时,3+5=8,∴点B的坐标为(-2,2)或(8,2).故答案为:(-2,2)或(8,2).根据平行于x轴的直线上的点的纵坐标相等,再分点B在点A的左边与右边两种情况讨论求解.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.16.【答案】15°【解析】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB-∠EDF=45°-30°=15°,故答案为15°.利用平行线的性质即可解决问题.本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】①【解析】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.根据垂线段最短得出即可.本题考查了直角三角形的性质和垂线的性质,能知道垂线段最短是解此题的关键.18.【答案】② 6【解析】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.(1)由相交线的定义可以找到点Q所在的区域;(2)因为要求所有连线不能相交,所以可按图示6种方法连接.本题考查了直线、射线、线段的画法,掌握它们的定义是解题的关键.19.【答案】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=√10(负值舍去)所以长方形信封的宽为:3x=3√10,∵√100=10,∴正方形贺卡的边长为10cm.∵(3√10)2=90,而90<100,∴3√10<10,答:不能将这张贺卡不折叠的放入此信封中.【解析】设长方形信封的长为5xcm,宽为3xcm.根据长方形的面积列出关于x的方程,解之求得x的值,再由其宽和长与10的大小可得答案.本题主要考查一元二次方程的应用,解题的关键是根据长方形的面积得出关于x的方程.−220.【答案】解:(1)原式=4+13=73(2)原式=3√2−2−5√2=−2−2√2.【解析】(1)根据实数的混合计算解答即可;(2)根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.21.【答案】解:(1)x2=3∴x=±√3(2)x3-24=3x3=27∴x=3【解析】(1)根据等式的性质方程两同时除以12,再由平方根的定义问题可解.(2)方程可先去分母,得x3-24=3,再移项合并同类项,最后根据立方根定义可求解.本题考查用平方根,立方根定义法解方程,理解平方根,立方根定义是解题的关键.22.【答案】(3,1)【解析】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:(1)利用清华大学的坐标为(0,3),北京大学的坐标为(-3,2)画出直角坐标系;(2)根据点的坐标的意义描出中国人民大学所表示的坐标.本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.23.【答案】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.【解析】想办法证明∠BDF=∠A即可解决问题.本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=-4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=√2.【解析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.本题考查了平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键.25.【答案】2,3,4,5【解析】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a-1),(a,a-2)或(a,a-3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.(1)根据坐标与图形的特点解答即可;(2)根据x轴的点的特点解答即可;(3)根据无理数的估计和坐标特点解答即可.本题考查了坐标与图形,关键是根据坐标与图形的特点和代数式求值解答.26.【答案】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=a,2∴α+α=180°,2∴α=120°;(2)如图1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°-160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF-∠NMP=90°-20°=70°.∴α=180°-∠PMF=180°-70°=110°;(3)如图2所示,∵FQ平分∠CFE,∴∠QFM=α,2∵AB∥CD,∴∠NEM=180°-α,∵MN∥FQ,∴∠NME=α,2∵∠ENM=180°-∠ANM=20°,∴20°+α+180°-α=180°,2∴α=40°.【解析】本题考查了平行线的性质,角平分线定义,熟练掌握平行线的性质定理是解题的关键.(1)根据平行线的性质即可得到结论;(2)如图1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD,根据平行线的性质即可得到结论;(3)如图2,根据角平分线的定义和平行线的性质即可得到结论.27.【答案】(1,1)是 13【解析】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(-1,3),B′(-1,),∵-1×(-1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.(1)设A(x1,y1),B(x2,y2),由题意得出x2=1,y2=,点B的坐标为(1,),由平移的性质得出A′(-1,3),B′(-1,),即可得出结论;(2)①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,得出N(,),此时点M(,)在线段EF上,满足题意;(3)由题意得出各边上点的横坐标和纵坐标的绝对值都≤1,得出正方形面积的最大值为1即可.本题是四边形综合题目,考查了正方形的性质、新定义“倒数点”、平面直角坐标系、平移的性质等知识;熟练掌握正方形的性质,正确理解新定义“倒数点”是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年七年级(下)期中数学试卷一、选择题(每小题4分,共48分)1.49的平方根是()A.7 B.﹣7 C.±7 D.2.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.3.在下列各数:3.14,﹣π,,、、中无理数的个数是()A.2 B.3 C.4 D.54.下面四个图形中,∠1=∠2一定成立的是()A.B.C.D.5.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限6.在同一平面内,下列说法正确的是()A.两直线的位置关系是平行、垂直和相交B.不平行的两条直线一定互相垂直C.不垂直的两条直线一定互相平行D.不相交的两条直线一定互相平行7.(4分)下列运算正确的是()A. B.(﹣3)3=27 C.=2 D.=38.(4分)下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A.0个B.1个C.2个D.3个9.(4分)点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8) B.(1,﹣2) C.(﹣7,﹣1)D.(0,﹣1)10.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1 B.3 C.4 D.911.(4分)若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为()A.(2,1)B.(﹣2,1) C.(2,﹣1) D.(1,﹣2)12.(4分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°二、填空题(每小题4分,共32分)13.(4分)的平方根为.14.(4分)把命题“对顶角相等”改写成“如果…那么…”的形式:.15.(4分)图中A、B两点的坐标分别为(﹣3,3)、(3,3),则C的坐标为.16.(4分)如图所示,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为.17.(4分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.18.(4分)已知x、y为实数,且+(y+2)2=0,则y x=.19.(4分)平方根等于它本身的数是.20.(4分)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=.三、解答题(每题8分,共16分)21.(8分)计算(1)﹣+﹣;(2)|﹣|﹣(﹣)﹣|﹣2|.22.(8分)解下列方程(1)4x2﹣16=0;(2)(x﹣1)3=﹣125.四、解答题(23-25题每题10分,26-27题每题12分,共54分)23.(10分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).24.(10分)如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.(3)求出三角形ABC的面积.25.(10分)已知+1的整数部分为a,﹣1的小数部分为b,求2a+3b的值.26.(12分)已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.27.(12分)探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.49的平方根是()A.7 B.﹣7 C.±7 D.【分析】根据一个正数有两个平方根,它们互为相反数解答即可.【解答】解:∵(±7)2=49,∴±=±7,故选:C.【点评】本题考查了平方根的概念,掌握一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根是解题的关键.2.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知图案B通过平移后可以得到.故选:B.【点评】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.3.在下列各数:3.14,﹣π,,、、中无理数的个数是()A.2 B.3 C.4 D.5【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数.【解答】解:无理数有﹣π,,共3个.故选B.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.4.下面四个图形中,∠1=∠2一定成立的是()A.B.C.D.【分析】根据对顶角、邻补角、平行线的性质及三角形的外角性质,可判断;【解答】解:A、∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B、∠1、∠2是对顶角,根据其定义;故本选项正确;C、根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D、根据三角形的外角一定大于与它不相邻的内角;故本选项错误.故选B.【点评】本题考查了对顶角、邻补角、平行线的性质及三角形的外角性质,本题考查的知识点较多,熟记其定义,是解答的基础.5.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选B.【点评】本题考查了点的坐标,个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.6.在同一平面内,下列说法正确的是()A.两直线的位置关系是平行、垂直和相交B.不平行的两条直线一定互相垂直C.不垂直的两条直线一定互相平行D.不相交的两条直线一定互相平行【分析】在同一平面内,两直线的位置关系有2种:平行、相交,根据以上结论判断即可.【解答】解:A、∵在同一平面内,两直线的位置关系是平行、相交,2种,∴在同一平面内,两直线的位置关系是平行、相交(相交不一定垂直),故本选项错误;B、在同一平面内,不平行的两条直线一定相交,故本选项错误;C、在同一平面内,不垂直的两直线可能平行,可能相交,故本选项错误;D、在同一平面内,不相交的两条直线一定平行,故本选项正确;故选D.【点评】本题考查了对平行线的理解和运用,注意:①在同一平面内,两直线的位置关系有2种:平行、相交,②相交不一定垂直.7.下列运算正确的是()A. B.(﹣3)3=27 C.=2 D.=3【分析】根据算术平方根、立方根计算即可.【解答】解:A、,错误;B、(﹣3)3=﹣27,错误;C、,正确;D、,错误;故选C【点评】此题考查算术平方根、立方根,关键是根据算术平方根、立方根的定义计算.8.下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A.0个B.1个C.2个D.3个【分析】根据对顶角的性质、平行公理、平行线的判定定理和垂直的定义对各个选项进行判断即可.【解答】解:相等的角不一定是对顶角,①错误;在同一平面内,若a∥b,b∥c,则a∥c,②正确;同旁内角不一定互补,③错误;互为邻补角的两角的角平分线互相垂直,④正确,故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8) B.(1,﹣2) C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.10.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1 B.3 C.4 D.9【分析】依据平方根的性质列方出求解即可.【解答】解:∵一个正数的平方根是2a﹣1和﹣a+2,∴2a﹣1﹣a+2=0.解得:a=﹣1.∴2a﹣1=﹣3.∴这个正数是9.故选:D.【点评】本题主要考查的是平方根的定义和性质,依据平方根的性质列出关于a 的方程是解题的关键.11.若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为()A.(2,1)B.(﹣2,1) C.(2,﹣1) D.(1,﹣2)【分析】可先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【解答】解:∵M到x轴的距离为1,到y轴的距离为2,∴M纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,∴M坐标为(2,﹣1).故选C.【点评】考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.12.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠FED=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.故选:A.【点评】本题考查了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.二、填空题(每小题4分,共32分)13.的平方根为±3.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±3.故答案为:±3.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.14.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.15.图中A、B两点的坐标分别为(﹣3,3)、(3,3),则C的坐标为(﹣1,5).【分析】首先根据A、B两点的坐标确定坐标系,然后确定出C的坐标即可.【解答】解:如图,,∵A,B两点的坐标分别为(﹣3,3),(3,3),∴线段AB的中垂线为y轴,且向上为正方向,最下面的水平线为x轴,且向右为正方向,∴C点的坐标为(﹣1,5).故答案为:(﹣1,5).【点评】此题主要考查了坐标确定位置,解题的关键是确定坐标原点和x,y轴的位置及方向.16.如图所示,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为平行.【分析】根据同位角相等,两直线平行判断.【解答】解:根据题意,∠1与∠2是三角尺的同一个角,所以∠1=∠2,所以,AB∥CD(同位角相等,两直线平行).故答案为:平行.【点评】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.17.如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.18.已知x、y为实数,且+(y+2)2=0,则y x=﹣8.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以,y x=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.平方根等于它本身的数是0.【分析】根据平方根的定义即可求出平方根等于它本身的数.【解答】解:∵02=0,∴0的平方根是0.∴平方根等于它本身的数是0.故填0.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=(3,2).【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.三、解答题(每题8分,共16分)21.计算(1)﹣+﹣;(2)|﹣|﹣(﹣)﹣|﹣2|.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=2﹣﹣+1=1;(2)原式=﹣+﹣2+=2﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)解下列方程(1)4x2﹣16=0;(2)(x﹣1)3=﹣125.【分析】(1)根据平方根的定义计算即可;(2)根据立方根的定义计算即可.【解答】解:(1)4x2=16,x2=4,x=±2;(2)x﹣1=﹣5,x=﹣4.【点评】本题考查了平方根和立方根,掌握它们的定义是解题的关键.四、解答题(23-25题每题10分,26-27题每题12分,共54分)23.推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.24.(10分)如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.(3)求出三角形ABC的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点A′、B′、C′的坐标;(3)利用△ABC所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【解答】解:(1)A(﹣2,﹣2),B (3,1),C(0,2);(2)△A′B′C′如图所示,A′(﹣3,0)、B′(2,3),C′(﹣1,4);(3)△ABC的面积=5×4﹣×2×4﹣×5×3﹣×1×3,=20﹣4﹣7.5﹣1.5,=20﹣13,=7.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.25.(10分)已知+1的整数部分为a,﹣1的小数部分为b,求2a+3b的值.【分析】求出2<<3,根据的范围求出+1和﹣1的范围,求出a、b 的值,代入求出即可.【解答】解:∵2<3∴3+1<4,1﹣1<2,∴a=3,b=﹣2,∴2a+3b=2×3+3×(﹣2)=3.【点评】本题考查了估算无理数的性质和二次根式的加减的应用,解此题的关键是求出a、b的值.26.(12分)已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.【分析】求出AD∥EF,推出∠1=∠2=∠BAD,推出DG∥AB即可.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴DG∥AB,∴∠DGC=∠BAC.【点评】本题考查了平行线的性质和判定的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.27.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.【分析】(1)首先作EF∥AB,根据AB∥CD,可得EF∥CD,据此分别判断出∠B=∠1,∠D=∠2,即可判断出∠B+∠D=∠E,据此解答即可.(2)首先作EF∥AB,即可判断出∠B=∠1;然后根据∠E=∠1+∠2=∠B+∠D,可得∠D=∠2,据此判断出EF∥CD,再根据EF∥AB,可得AB∥CD,据此判断即可.(3)首先过E作EF∥AB,即可判断出∠BEF+∠B=180°,然后根据EF∥CD,可得∠D+∠DEF=180°,据此判断出∠E+∠B+∠D=360°即可.(4)首先根据AB∥CD,可得∠B=∠BFD;然后根据∠D+∠E=∠BFD,可得∠D+∠E=∠B,据此解答即可.(5)首先作EM∥AB,FN∥AB,GP∥AB,根据AB∥CD,可得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,所以∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;然后根据∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,可得∠E+∠G=∠B+∠F+∠D,据此判断即可.【解答】解:(1)如图1,作EF∥AB,,∵AB∥CD,∴∠B=∠1,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.(2)如图2,作EF∥AB,,∵EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,∴EF∥CD,又∵EF∥AB,∴AB∥CD.(3)如图3,过E作EF∥AB,,∵EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.(4)如图4,,∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.(5)如图5,作EM∥AB,FN∥AB,GP∥AB,,又∵AB∥CD,∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;∵∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,∴∠E+∠G=∠B+∠F+∠D.【点评】此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.。

相关文档
最新文档