Lie Algebras and the Four Color Theorem
数学参考书
科大学长对数学系学弟学妹的忠告 <转发>有些科大学生,尤其是新生,抱怨科大教材偏难;而且新生通常缺乏学习方法,对如何在大学中学习还没有清楚的概念。
下面是一位科大数学系学长给科大数学专业学生的一些建议。
我转发过来,仅供参考。
1、老老实实把课本上的题目做完。
其实说科大的课本难,我以为这话不完整。
科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题。
事实上做1道难题的收获是做10道简单题所不能比的。
2、每门数学必修课至少要看一本参考书,尽量做一本习题集。
3、数学分析别做吉米,除非你太无聊,推荐北大方企勤的习题集。
此外注意一下有套波兰的数学分析习题集,是不是搞得到中文或英文版。
4、线性代数推荐普罗斯库列科夫的<<线性代数习题集>>和法捷耶夫的<<高等代数习题集>>。
莫斯科大学要求把上面的题全做光。
建议大家在搞定亚洲第一难书的同时也把里面的题打通。
5、解析几何不要不重视。
现在有种削弱几何课的倾向,甚至有的学校把解析几何课改成只有两课时,这样一来,几何训练不足,会很吃亏的。
6、常微要看看阿诺尔德的书,打通菲利波夫的习题集。
7、数论课是很重要的,起码可以锻炼思维能力。
8、数学分析、线性代数、解析几何、泛函、拓扑、抽象代数、实变、微分几何是最重要的课,大家脱层皮也要学好。
要尽量加强这方面的工底,不然的话以后很吃亏。
9、有时间去物理系多听课,千万不要毕业了连量子力学也不懂,这样的数学家注定要被淘汰的。
读读费曼物理讲义和郎道的理论物理教程。
10、华罗庚的<<数论导引>>的前言大家好好看看,多多领会!11、想读数理统计和计算数学的要注意,统计和计算数学同样是数学类的专业,不要以为加上计算和统计就可以降低要求。
12、推荐一些参考书:B.A.卓里奇《数学分析》(第一卷有中文版,第二卷未翻译,会俄文的一定要看)S.M.Nikolsky,A course of mathematicalanalysis(有中文版)A.I.Kostrikin,Introduction to algebra(有中文版)M.Postnikov,Analytic geometry(有中文版) M.Postnikov,Linear algebra and differentialgeometry(有中文版)G.H.Hardy,An Introduction to the Theory ofNumbersV.I.Arnold,Ordinary differential equation(有中文版)H.嘉当,解析函数论初步Kolmogorov,Elements of the Theory of Functions and Functional Analysis(有中文版,亚马逊上出售英文版,20美元一套)Fomenko,Differential geometry and topology Kelley,General Topology(有中文版)Bott,Differential forms in algebraic topology莫宗坚《代数学》Atiyah,Introduction to Commutative Algebra(有中文版)Riesz,Functional Analysis(有中文版)Landau,Mechanics(有中文版)Goldstein,Classical Mechanics(有中文版) Landau,The Classical Theory of Fields(有中文版) Jackson,Classical Electrodynamics(有中文版) Landau,Statistical Physics Part1(有中文版) Kerson Huang,Statistical MechanicsLandau,QuantumMechanics(Non-relatisticTheory)(有中文版) Greiner,Quantum Mechanics:A Introduction(有中文版)黄昆《固体物理学》Kittel,Introduction to Solid State Physics(有中文版)费曼《费曼物理讲义》玻恩《光学原理》王梓坤《概率论基础及其应用》方企勤《数学分析习题集》普罗斯库列科夫《线性代数习题集》法捷耶夫《高等代数习题集》菲利波夫《常微分方程习题集》沃尔维科斯基《复变函数习题集》鄂强《实变函数的例题与习题》符拉基米诺夫《偏微分方程习题集》巴兹列夫《几何与拓扑习题集》菲金科《微分几何习题集》回复 引用 TOP来看看会员2#发表于 2005-9-1 01:49 | 只看该作者1,迪亚库的《天遇--混沌与稳定性的起源》,上海科技教育出版社。
Color Theory - CGA at GCC颜色理论CGA在GCC 共35页
Tertiary Colors
Tertiary colors are the combinations of the secondary colors.
Maroon, Pink, Light Pink, Green, Green Blue, Dark Blue
Tertiary Colors
They're created by mixing either all three primary colors or a primary and secondary color (secondary colors of course being made from two primaries).
The Color Wheel
A color circle, based on red, yellow and blue, is traditional in the field of art.
Sir Isaac Newton developed the first circular diagram of colors in 1666.
How many colors are below?
Monochromatic
How many colors are in this web site:
Color Theory
Color theory is simple yet complicated.
Another skill you need to master in the field of Computer Graphic Arts (CGA)
What were the Primary Colors back in Kindergarten?
Measure-Theory
测度论测度论是研究一般集合上的测度和积分的理论。
它是勒贝格测度和勒贝格积分理论的进一步抽象和发展,又称为抽象测度论或抽象积分论,是现代分析数学中重要工具之一。
测度理论是实变函数论的基础。
定义测度理论是实变函数论的基础。
测度论所谓测度,通俗的讲就是测量几何区域的尺度。
我们知道直线上的闭区间的测度就是通常的线段长度;平面上一个闭圆盘的测度就是它的面积。
定理形成纵观勒贝格积分和勒贝格-斯蒂尔杰斯积分理论,不难发现它们都有三个基本要素。
第一,一个基本空间(即n维欧几里得空间Rη)以及这个空间的某些子集构成的集类即L(勒贝格)可测集或某L-S(勒贝格-斯蒂尔杰斯)可测集全体,这个集类对集的代数运算和极限运算封闭。
第二,一个与这个集类有关的函数类(即L可测函数或某L-S可测函数全体)。
第三,一个与上述集类有关的测度(即L测度或某L-S 测度)。
在三个要素的基础上,它们都是运用完全类似的定义和推理过程获得完全类似的一整套测度、可测函数、积分的定理(见勒贝格积分、贝尔函数)。
测度论正是基于这些基本共同点所形成一般理论一般定义对于更一般的集合,我们能不能定义测度呢?比如直线上所有有理数构成的集合,它的测度怎么衡量呢?一个简单的办法,就是先在每个有理点上找一个开区间覆盖它,就好比给它带个“帽子”。
因为有理数集是可列集(就是可以排像自然一样排好队,一个个数出来,也叫可数集,见集合论),所以我们可以让第n个有理数上盖的开区间长度是第一个有理数(比方是1)上盖的开区间长度的2^n分之一。
这样所有那些开区间的长度之和是个有限值(就是1上的开区间长度的2倍)。
现在我们让1上的开区间逐渐缩小趋向于一个点,那么所有区间的总长度也相应缩小,趋向于长度0。
这样我们就说有理数集的测度是0。
用上面这种方法定义的测度也叫外测度。
一个几何区域有了测度,我们就可以定义上面的函数的积分,这是推广的黎曼积分。
比如实数上的狄利克雷函数D(x)=1(如果x是有理数),0(如果x是无理数)。
颜色视觉理论
感覺器官 紅
大 腦
綠
黃色物體
藍
11/25/96
17
THE EFFECT OF SIZE ON PERCIEVED COLOR
三色学说存在的问题
1. 不能解释色盲成对出现,如红色盲和绿色盲 2. 不能解释全色盲随然不能感受颜色,但却能感
受黑白色(非色彩、灰色) 3. 红-绿色盲安此理论是不能感觉黄色,事实上 却能感受
11/25/96
7
自 然 光 源 C =
400 nm
C=光 速 頻 率 波 長
540 nm
700 nm
11/25/96
8
2.杨-赫姆霍兹 三色理论 T.Young-Helmholtz
11/25/96 9
在视网膜上有三种形式的锥体 细胞受到光的刺激就产生红、 绿、蓝三种色觉: 支持三原色学说的实验
大脑视觉皮质中枢把由视神经纤维传来的神经冲 动根据已有的颜色经验进行处理,引起对颜色的 心理感受;颜色心理感受的最常用的描述是: 色相、明度和彩度;上述描述被称之为颜色视觉 的三属性。
11/25/96
28
1st. dimension of color = the hue
11/25/96
29
= the lightness
`
57
Effect of Adjacent Colours
11/25/96
58
色彩残影
11/25/96
59
11/25/96
60
Persistence of Vision
11/25/96
61
Persistence of Vision
11/25/96
62
DEFECTIVE COLOUR VISION
coordinate-invariant algorithms for robot dynamics
M4.This gives us afinal color(W4.2,00000)which corresponds to a part completely processed.Now the part can be unloaded by robot R2or R3from M4and eventually leaves the cell.It is left to the reader to trace the token until it is unloaded from the cell.V.C ONCLUSIONIn this paper we have introduced a new architecture to model a large class offlexible manufacturing systems using colored Petri nets. Advantages of this new architecture are:1)cell model and part process information are separated,thuseliminating the need to update the CPN model every time there is a change in the part types manufactured in the system;2)alternate sequencing of operations is allowed during processing;3)machine assignments for operations are made dynamicallyduring processing.It is important to note that the model of the FMC created captures all possible operation sequences in the cell.Therefore,the structural analysis of the Petri net for static deadlock prevention policies is compromised.However,the important issue of deadlock can be addressed using deadlock avoidance policies as in[5].R EFERENCES[1]J.Ezpeleta and J.M.Colom,“Automatic synthesis of colored Petrinets for the control of FMS,”IEEE Trans.Robot.Automat.,vol.13,pp.327–337,June1997.[2]M.D.Byrne and P.Chutima,“Real time operational control of an FMSwith full routingflexibility,”Int.J.Prod.Econ.,vol.51,pp.109–113, 1997.[3]R.David and H.Alla,Petri Nets and Grafcet.Englewood Cliffs,NJ:Prentice-Hall,1992.[4] A. A.Desrochers and R.Y.Al-Jaar,Application of Petri Nets inManufacturing Systems.Piscataway,NJ:IEEE Press,1995.[5]N.Viswanadham,Y.Narahari,and T.L.Johnson,“Deadlock preventionand deadlock avoidance inflexible manufacturing systems using Petri net models,”IEEE Trans.Robot.Automat.,vol.6,pp.713–723,Dec.1990.Coordinate-Invariant Algorithms for Robot DynamicsScott R.Ploen and Frank C.ParkAbstract—In this article,we present,using methods from the theory of Lie groups and Lie algebras,a coordinate-invariant formulation of the dynamics of open kinematic chains.Wefirst reformulate the recursive dynamics algorithm originally given in[8]for open chains in terms of standard linear operators on the Lie algebra of the Special Euclidean ing straight forward algebraic manipulations,we then recast the resulting algorithm into a set of closed-form dynamic equations; this transformation allows one to move easily between O(n)recursive algorithms advantageous for computation,and closed-form equations advantageous for symbolic manipulation and analysis.The transforma-tion also illuminates how the choice of link reference frames affects the computational structure.We then reformulate Featherstone’s articulated body inertia algorithm[3]using this same geometric framework,and rederive Rodriguez et al.’s[11]–[13]square factorization of the mass matrix and its inverse.An efficient O(n)recursive algorithm for forward dynamics is also extracted from the inverse factorization.The resulting equations lead to a succinct high-level description of robot dynamics in both joint and operational space coordinates that minimizes symbolic complexity without sacrificing computational efficiency,and provides the basis for a dynamics formulation that does not require link reference frames in the description of the forward kinematics.Index Terms—Lie algebra,Lie group,multibody dynamics,robot dynamics.I.I NTRODUCTIONFrom the point of view of classical mechanics,deriving the equations of motion of a rigid-link manipulator is usually regarded as a straightforward procedure:once a suitable set of generalized coordinates and reference frames have been chosen,what remains is to apply either Lagrange’s or Newton and Euler’s equations to obtain the differential equations of motion.Anyone who has derived the dynamics of an actual manipulator,however,will have experienced firsthand the enormous complexity of the ensuing equations.Past research in robot dynamics has been driven primarily by a desire to reduce this complexity—there is now extensive literature on algorithms for efficiently computing the dynamics,usually in a recursive fashion(see,e.g.,[1],[3],[5]).Aside from computational considerations,however,many ad-vanced applications,particularly in robot control and planning,re-quire an explicit closed-form representation of the dynamic equations (e.g.,[6]).Recent applications suggest that a useful dynamics formu-lation should maintain the balance between computational efficiency and the ease with which it can be manipulated at a high level. Further,it should beflexible enough to admit a degree of coordinate independence,viz.,a given problem should not be bound to any Manuscript received April2,1996;revised March24,1997.This paper was recommended for publication by Associate Editor Y.F.Zheng and Editor A.Goldenberg upon evaluation of the reviewers’comments.This work was supported by the National Science Foundation under Award CMS-9403019,a U.S.Department of Education GAANN Fellowship,the Engineering Research Center for Advanced Control and Instrumentation,and the Institute for Advanced Machinery Design,Seoul National University.S.R.Ploen is currently with the Guidance and Control Analysis Group, Jet Propulsion Laboratory,California Institute of Technology,Pasadena,CA 91009USA(e-mail:sploen@).F.C.Park is with the School of Mechanical and Aerospace Engineering, Seoul National University,Seoul,Korea(e-mail:fcp@plaza.snu.ac.kr). Publisher Item Identifier S1042-296X(99)09534-8.1042–296X/99$10.00©1999IEEEspecific choice of reference frames and/or local coordinates to carry out the kinematic and dynamic analysis.Motivated in part by these considerations,Featherstone[3]has developed a recursive dynamics formulation using the machinery of classical screw theory,while Rodriguez,Jain,and Kreutz-Delgado have developed the spatial operator algebra formulation of dynamics ([11]–[13])by identifying structural similarities in the dynamic equations for open chains and the equations for discrete-time Kalman filtering.Khatib[4]has also proposed the operational space paradigm as a means of managing the complexity in dynamics-based control and planning tasks.In Park,Bobrow,and Ploen[8],the dynamic equations for an open chain manipulator are formulated in both recursive Newton–Euler and Lagrangian form using methods from the theory of Lie groups and Lie algebras.This article develops a general coordinate-invariant mathematical framework for rigid-body dynamics,based on the same set of geometric toolsfirst examined in[8],from which a complete range of dynamics algorithms(including those mentioned above)can be formulated in a uniform and mathematically consistent manner. The main elements of our geometric framework are introduced by reformulating the recursive dynamics algorithm for open chains in terms of standard linear operators on the Lie algebra of the Special Euclidean ing simple algebraic manipulations,the resulting algorithm is then recast into a set of closed-form dynamic equations; this transformation allows one to move easily between O(n)recursive algorithms advantageous for computation,and closed-form equations advantageous for symbolic manipulation and analysis.Moreover,we explicitly show the invariance of the formulation to choice of link reference frames—the effect of choice of reference frames on the structure of the recursive computations now becomes transparent. As a demonstration of the generality andflexibility of our geo-metric language for robot dynamics,we reformulate Featherstone’s articulated body inertia algorithm[3]within our geometric frame-work,and re-derive Rodriguez et al.’s[11]square factorization of the mass matrix and its inverse without invoking results from estimation theory.Along the same lines,we also re-derive their spatial operator algebra-based O(n)recursive forward dynamics algorithm, this time expressed entirely in terms of coordinate-invariant Lie algebraic operators.The operational space control formulation is also reformulated from the geometric perspective and is discussed in[10]. One of the difficulties with traditional dynamics formulations is the use of what are generally ad hoc definitions,conventions,and notation,in particular the derivation of specialized formulas which more often than not turn out to be standard results from linear algebra. Our geometric framework allows one to tap into the vast body of standard and well-known results from linear algebra and Lie theory. For example,one of the important main results of the spatial operator algebra formulation,the square factorization of the mass matrix and its inverse,turns out to be a straightforward consequence of the Matrix Inversion Lemma(or the Sherman–Morrison–Woodbury Formula).Above all,the geometric framework provides a common and unified mathematical language in which to express the ideas introduced by Silver et al.and other researchers in a concise, coordinate-invariant manner,as well as a powerful means of for-mulating dynamics algorithms for a wide range of applications.II.T HE E QUATIONS OF M OTIONA.Recursive Newton–Euler AlgorithmDue to space limitations,the reader should consult[7]–[9]for a detailed discussion of the special Euclidean group SE(3),its corresponding Lie algebra se(3),and their associated adjoint repre-sentations.We now briefly review the recursive formulation of robot dynamicsas given in[8].The idea behind the recursive formulation is a two-step iterative process where in the outward iteration the kinematics ofeach link are propagated from base to tip,and in the inward iterationthe kinetics are propagated from tip to base.We make the followingdefinitions(here all quantities are expressed in the corresponding linkframe coordinates).Let V i2<621be the generalized velocity of link i;F i2<621the total generalized force transmitted from link i01 to link i through joint i with itsfirst three components correspondingto the moment vector,and i the applied torque at joint i:Also,let f i01;i=M i e S denote the position and orientation of the link i frame relative to the link i01frame with M i2SE(3)and S i=(!i;0)2se(3):Here!i denotes a unit vector along the axis of rotation of joint i:(In this article we assume that single degree-of-freedom joints—revolute or prismatic joints—connect the links in the multibody chain.)Further,J i2<626is defined asJ i=where m i is the mass of link i;r i is the vector in link i coordinates from the origin of the link i frame to the center of mass of link i;I i is the inertia tensor of link i about the center of mass,and I323 denotes the323identity matrix.The recursive equations can now be expressed in terms of our geometric definitions and notation as follows.1)InitializationGiven:V0;_V0;F n+1:2)Forward recursion:for i=1to n dof i01;i=M i e S(1)V i=Adf(_V i01)0ad S Adf(J i V i)(4) i=S T i F i:(5)Here V0and_V0denote the generalized velocity and acceleration of the base respectively,and F n+1denotes the force acting at the tip of the open chain.In the sequel we will assume that V0=0 and that_V0=(0;g)where g2<301denotes the gravity vector in appropriate units and direction.B.Global Matrix Representation of the Newton-Euler AlgorithmBy expanding the individual equations(2)-(5)for i=1;2;111;n it can be shown that the recursive Newton–Euler algorithm admits the following global matrix representation:V=GS_q+GP0V0(6)_V=GS q+GadS_q0V+Gad S_q P0V0+GP0_V0(7) F=G T J_V+G T ad3V JV+G T P T t F n+1(8)=S T F(9)whereV =column [V 1;V 2;111;V n ]2<6n 21F =column [F 1;F 2;111;F n ]2<6n 21_q =column [_q 1;_q 2;111;_q n ]2<n 21 =column [ 1; 2;111; n ]2<n 21P 0=column [Adf]2<6n 26S =diag [S 1;S 2;111;S n ]2<6n 2n J =diag [J 1;J 2;111;J n ]2<6n 26n ad S _q =diag [0ad S;111;0ad S]2<6n 26nad 3V =diag [0ad 3V]2<6n 26n:Also,02<6n 26n is given by0=11100Ad f111...............00111AdfI 62601110Ad fI 626111...............Ad fAdf;Ad Q ];with each Q i an element of SE (3);and Ad Q(S i );if S i is expressed instead as a 424matrix then A i =Q i S i Q 01i :It is not difficult to see that any Q as defined above will preserve the structure of S;G;and J;i.e.,A and L have the same block-matrix structure as S and G;etc.Upon substitution of (15)–(17)into the equations of motion (11)–(14),we findM (q )=A T L T DLA (18)C (q;_q )=A TL T(DLad S _q 0+ad 3VD )LA _q (19) (q )=A T L T DLP 0_V 0(20)J t (q )=P t LA(21)where0=Q 0Q 01(22)ad S _q =Qad S _q Q01(23)ad 3V=Q0Tad 3VQT(24)P 0=QP 0(25)P T t =Q0T P T t :(26)The expression for 0is obtained via the following identity:I 0L 01=Q (I 0G 01)Q 01=Q 0Q 01:Upon comparing (18)–(21)to (11)–(14)it is apparent that the structure of the equations of motion is unchanged under the coordinate transformation defined by Q:This invariance is a result of the fact that M;C; and J t are direct tensor products of known tensor quantities (recall that direct products of tensors are themselves tensors).According to the transformation rules given above,under a change of coordinates A and P 0transform as vector quantities,or type (0,1)tensors,P t transforms as a covector,or a type (1,0)tensor,D transforms as an inner product acting on vectors,or a type (2,0)tensor,and L;0;ad S _q and ad 3V transform as linear operators,or (1,1)tensors.For a well-written discussion of tensor analysis see [2].Physically,different choices of Q correspond to different sets of local link reference frames in which to express the kinematic and dynamic parameters of the robot.As a concrete example con-sider a change of local link reference frames defined by Q =diag [Ad Q;111;Ad Q J i Ad 01Qformulation that can be computed recursively.A general coordinate invariant recursive algorithm is obtained by substituting (15)–(17)and (22)–(26)into the global matrix representation of the Newton–Euler algorithm (6)–(9)V =LA _q +LP 0V 0(27)_V =LA q +Lad S _q F V +Lad S _q P 0V 0+LP 0_V 0(28)F =L T D _V+L T ad 3VDV +L T P T tF n +1(29) =A TF(30)whereV =QV(31)_V =Q _V (32)F =Q0TF:(33)Upon direct expansion of (27)–(30),it can be shown that they areequivalent to the following recursive algorithm:1)InitializationGiven :V 0;_V0;F n +12)Forward recursion:for i =1to n dof i 01;i =Q i 01M i Q 01i eA(34)V i =Ad f(_V i 01)0ad AAdf(D i V i )(37) i =A T i F i :(38)Note that the above equations have exactly the same form asthe recursive Newton-Euler equations with S i replaced by A i ;M ireplaced by Q i 01M i Q 01i ;J i replaced by D i and all generalized velocities,accelerations,and forces replaced by their components in the new set of local link reference frames defined by Q:III.S QUARE F ACTORIZATION OF THE M ASS M ATRIXThe factorization of the mass matrix given in (11)is not a square factorization in the sense that S is not a square matrix.As a result it is not possible to use this factorization to invert the mass matrix explicitly.Rodriguez et al.[13]have derived a square factorization of the mass matrix and its inverse using results from estimation theory.In this section,we determine an alternative square factorization of M and M 01using our earlier Lie algebraic results,and explicitly show how this factorization transforms under a change of coordinates.Featherstone [3]has shown that the open chain equations of motion can alternately be formulated recursively in the following manner:F i =^Ji _V i +b i i =n;111;1(39)where ^Ji is the articulated body inertia of link i;and b i =b i (V i ;V i +1;S i +1;^Ji +1; i +1)is the bias force associated with link i:Upon expressing the quantities appearing in Featherstone’s articu-lated body inertia algorithm in terms of our geometric definitions andnotation it can be shown [9]that Featherstone’s ^Ji is related to the J i from the generalized Newton–Euler algorithm as follows.1)Initialization^Jn =J n :2)Backward recursion:for i =n 01to 1do^J i =J i +Ad 3f0Ad 3fS T i +1^J i +1S i +1:(40)In terms of our earlier definitions,the above recursion is equivalentto the following matrix equation:J =^J00T ^J 0+0T ^JS (S T ^JS )01S T ^J 0(41)where the symmetric matrix ^J is defined as ^J =diag [^J 1;^J 2;111;^J n ]2<6n 26n :A square factorization of M results if J is expressed as a function of ^Jin the factorization M =S T G T JGS :Proposition 1:The mass matrix M can be expressed in terms of the n 2n factors [I +S T G T 5]and as follows:M =[I +S T G T 5] [I +S T G T 5]Twhere =S T ^JS2<n 2n ;8= 01S T ^J 2<n 26n ;5=0T 8T 2<6n 2n ;and I is the 323identity matrix.Proof:Substituting (41)into S T G T JGS and using the identity 0G =G 0I yieldsM =S T G T ^JS +S T ^JGS 0S T ^JS+S T G T 0T ^JS(S T ^JS )01S T ^J 0GS:Adding and subtracting S T ^JSto the above equation and rearranging yieldsM =S T ^JS+S T (G T 0I )^JS +S T ^J T (G 0I )S +S T G T 0T ^JS(S T ^JS )01S T ^J 0GS:Using the identity G 0I =0G results inM =S T ^JS+S T G T 0T ^JS +S T ^J T 0GS +S T G T 0T ^JS(S T ^JS )01S T ^J 0GS:Upon post-multiplying the second term by (S T ^JS)01(S T ^JS );pre-multiplying the third term by (S T ^JS)(S T ^JS )0T ;and noting that (S T ^JS)01from the last term also equals (S T ^JS )01(S T ^JS )(S T ^JS)0T ;the result follows after an elementarycalculation.01;211100052;31110...............0001115n 01;n 00111IV.I NVERSIONOF THEM ASS M ATRIXThe square factorization of M immediately leads to a similar square factorization for M 01:Proposition 2:The inverse mass matrix M 01is given byM 01=[I 0S T Y 5]T 01[I 0S T Y 5]where Y =(I 0X T )012<6n 26n and X T =0T (I 0^JS(S T ^JS )01S T )=0T (I 08T S T ):Proof:Applying the well-known matrix inversion lemma (also known as the Sherman–Morrison–Woodbury Formula)(A +BCD )01=A 010A 01B (DA 01B +C 01)01DA 01to [I +S T G T 5]01and recalling G 0T =(I 00T );the result follows after a routine calculation.0011100X 2;10111000X 3;211100...............111X n;n 01I 0S k +1S T k +1^J k +1S Tk +1^Jk +1S k +1I Y1;2Y 1;3111Y 1;n 0I Y 2;3111Y 2;n ...............000111Y n 01;n00111Iqq(A k 01_q k 01+^a k 01)(51)V k =Ad f_q D k V k :(54)Once ~a and ~b have been computed it can be shown by direct expansion that (46)is equivalent to the following recursive algorithm.1)Initialization0=0;~a 1!~a 1+Ad fk 01+~a k(56) k =D k k +~b k :(57)3)InitializationP n +1=0; n ! n +Ad 3fP k +1+ (59)^P k =A T k P k(60)^ k = k 0^Pk :(61)Once ^ has been computed it can be shown by direct expansionthat (45)is equivalent to the following recursive algorithm.1)Initialization^z n +1=0;^n +1=0:(62)2)Backward recursion:for k =n to 1do^z k =Y k;k +1^z k +1+5k;k +1^ k +1(63)c k =^ k 0A T k ^zk (64)^c k = 01k c k :(65)3)Initialization0=0:(66)4)Forward recursion:for k =1to n dok =Y T k 01;k k 01+A k ^c k (67) q k =^c k 05T k 01;k k 01:(68)HereY k:k +1=X Tk +1;k=Ad 3fI 0^J k +1A k +1A T k +1A T k +1^J k +1Ak +1。
数学专业参考书(1)
数学专业参考书一解析几何空间解析几何实在是一门太经典, 或者说古典的课.从教学内容上说, 可以认为它描述的主要是三维欧氏空间里面的一些基本常识,包括最基本的线性变换(那是线性代数的特例), 和二阶曲面的不变量理论.在现行的复旦的教材,苏先生,胡先生他们编的"空间解析几何"里面,最后还有一章讲射影几何. 这本书非常之薄.但是内容还是比较丰富的. 特别是有些习题并不是非常容易.最后一章射影的内容还不是很好念的. 当然,这里还要提到十来年前大概做过教材的一本书: 项武义,潘养廉等"古典几何学". 这书的内容与课本不是很一样,不过处理方法还是很不错的.项先生应当算做很能侃的那种类型的. 可以考虑的参考书包括: 1.陈(受鸟) "空间解析几何学" 内容基本上和课本差不多,不过要厚许多,自然要好念点. 陈先生是吴大任先生(大猷先生的堂弟,南开多年的教务长) 的夫人,也是中国早期留学海外的女学者. 2.朱鼎勋"解析几何学" 这本书基本上只在欧氏空间里面讨论问题.优点是非常易懂, 连二维的不变量理论也在附录里面交代得异常清楚.那里面的习题也比较合理,不是非常的难(如果我没有记错的话). 朱先生相当有才华,可惜英年早逝. 如果想了解比较"新"的动态,可以考虑 3.Postnikov "解析几何学与线性代数(?)"(第一学期) 这是莫斯科大学新的课本,从课程形式就可以看出,解析几何这样一门课如果不是作为对刚进大学的学生的一个引导,给出一些具体的对象的话,迟早是要给吃到线性代数里面去的. 海外教材中心有一本英文本. 我个人以为,现在教委的减轻学生负担的做法迟早是要遭报应的.中国的中学教育水平也就比美国最糟糕的中学好点,从整体上说,比整个欧洲都要差. 我相信所谓三维的"解析"几何的内容总有一天要下放到高中里面去. 上面的书如果撑不饱你,你又不想学其它的课程的话. 可以考虑下面两本经典.其好处是看过以后可以对很多几何对象(当然具体说是指三维空间里面的二次曲面)有相当深刻的了解. 4.狄隆涅"(解析)几何学" 这套三卷本的大书包括了许多非常有意思的讨论,记得五年前看的时候感觉非常有意思.这位苏联科学院院士真是够能写的.总书库里面有. 5.穆斯海里什维利"解析几何学教程" 这套书在上面提到的陈先生的书里面就多次引用了. 具体的说特别值得参考的是它里面关于射影的一些观点和讲法(比如认为椭圆也是有渐近线的,只不过是"虚"的而已).二线性代数高等代数可以认为处理的是有限维线性空间的理论.如果严格一点, 关于线性空间的理论应该叫线性代数, 再加上一点多项式理论(就是可以完完全全算做代数的内容的)就叫高等代数了. 这门课在西方的对应一般叫Linear Algebra, 就是苏联人喜欢用高等这个词,你可以在外国教材中心里面找到一本Kurosh(库落什)的Higher Algebra. 现在用的课本好象是北大的"高等代数"(第二版?). 用外校的课本在基础课里面是不常见的. 这本书可以说是四平八稳,基本上该讲的都讲了.但是你要说它有什么地方讲的特别好,恐怕说不出来. 值得注意的是95-96学年度,北大现在的校党委组织部长王杰老师(段学复先生的弟子)给北大数学科学学院95级1班开课时曾经写过一本补充材料,把空间理论的讲得非常清楚.如果谁能搞到的话翻印出来是件很好的事情(我的那本舒五昌老师给96开课的时候送给他了,估计是找不到了). 好象上面有一点说得不对,就是北大的书用的还是第一版.第二版在书店里似乎看见过. 从这门课的内容上说,是可以有很多种讲法的. 线性空间的重点自然是线性变换,那么如果在定义空间和像空间里面取定一组基的话,就有一个矩阵的表示.因此这门课的确是可以建立在矩阵论上的. 而且如果要和数值搭界的话还必须这么做. 复旦以前有两本课本就是这么做的. 1.蒋尔雄,吴景琨等"线性代数" 这是那时候计算数学专业的课本,其教学要求据说是比数学专业相应的课程要高的. 因为是偏向计算的缘故,你可以找到一些比较常用的算法. 我个人以为还是比较有意思的.理图里有. 2.屠伯埙等"高等代数" 这就是在上海科技出版的一整套复旦数学系教材里讲高等代数的那本.不记得图书馆里面有,不过系里可能可以买到翻印的. 这本书将80%的篇幅贡献给矩阵的有关理论.有大量习题,特别是每章最后的"选做题".能独立把这里面的习题做完对于理解矩阵的各种各样的性质是非常有益的. 当然这不是很容易的: 据说屠先生退休的时候留下这么句话:"今后如果有谁开高等代数用这本书做教材,在习题上碰到麻烦的话可以来找我."有此可见一斑. 如果从习题方面考虑,觉得上面的书太难吃下去的话, 那么下面这本应该说是比较适当的. 3.屠伯埙等"线性代数-方法导引" 这本书比上面那本可能更容易找到,里面的题目也更"实际"一些.值得一做. 另外,讲到矩阵论.就必须提到 4.甘特玛赫尔"矩阵论" 我觉得这恐怕是这方面最权威的一本著作了.其中译者是柯召先生. 在这套分两册的书里面,讲到了很多不纳入通常课本的内容.举个例子,大家知道矩阵有Jordan 标准型,但是化一个矩阵到它的Jordan标准型的变换矩阵该怎么求?请看"矩阵论". 这书里面还有一些关于矩阵方程的讨论,非常有趣. 总书库里有. 图书馆里面还有一本书的名字和矩阵论沾边. 5.许以超"线性代数和矩阵论" 虽然许先生对复旦不甚友好(高三那会他对我说要在中国念大学数学系要么去北大,要么去科大--他是北大毕业的, 现在数学所工作--我可没听他的),但是必须承认这本书还是写得很不错的,习题也不错.必须指出,这里面其实对于空间的观念很重视.不管怎么样,他还是算华先生的弟子的. 6.华罗庚"高等数学引论" 华先生做数学研究的特点是其初等直观的方法别具一格,在矩阵理论方面他也有很好的工作.甘特玛赫尔的书里面你只能找到两个中国人的名字,一个是樊畿先生,另一个就是华先生. 可能是他第一次把下述观点引进中国的数学教材的(不记得是不是在这本书里面了): n阶行列式是n个n维线性空间的笛卡尔积上唯一一个把一组标准基映到1的反对称线性函数. 这就是和多线性代数或者说张量分析的观点很接近了. 高等代数的另外一种考虑可能是更加代数化的.比如7.贾柯勃逊(N.Jacobson) Lectures on Abstract Algebra ,II:Linear Algebra GTM(Graduate Texts in Mathematics)No.31 ("抽象代数学"第二卷:线性代数) 这里想说的是,这套书的中译者黄缘芳先生,大概数学系里面已经没多少人还记得文革前复旦有这么一位代数学教授了. 此书英文版总书库里有,中文版(字体未完全简化)理图里有. 8.Greub Linear Algebra(GTM23) 这里面其实更多讲的是多线性代数.里面的有些章节还是值得一读的. 还有两本书我觉得很好,不知道图书馆里面是不是有: 9.丘维声"高等代数"(上,下) 北大94级的课本,相当不错.特点是很全,虽然在矩阵那个方向没有上面提到的几本书将得深,但是在空间理论,具体的说一些几何化的思想上讲得还是非常清楚的.多项式理论那块也讲了不少. 10.李炯生,查建国"线性代数" 这是中科大的课本,可能是承袭华先生的一些传统把,里面有一些内容的处理在国内可能书属于相当先进的了.三常微分方程从常微分方程开始,数学课就变成没底的东西,每一个标题做下去都是数学研究里面庞大的一块. 对于一门基本课程应该讲些什么也始终讨论不断. 这里我打算还是从现行课本讲起. 常微分方程这门课,金福临先生和李迅经先生在六十年代写过一本课本,后来在八十年代由控制那一块的老师们修订了一下,变成第二版,就是现在常用的课本. 上海科技出版社出版. 应该说,金先生他们的第一版在今天看来还是很好的一本课本(这本书估计受了下面的一本参考书的不小的影响), 该书在理图老分类的那一块里有. 但是第二版有那么点不敢恭维. 不知为什么,似乎这本书对具体方程的求解特别感兴趣,对于一些比较"现代"的观点,比如定性的讨论等等相当地不重视.最有那么点好笑的是在某个例子中(好象是介绍Green函数方法的),在解完了之后话锋一转,说"这个题其实按下面的办法解更简单..." 而这个所谓更简单的办法是根本不具一般性的. 下面开始说参考书,毫无疑问, 我们还是得从我们强大的北方邻国说起. 1.彼得罗夫斯基"常微分方程讲义" 在20世纪数学史上,这位前莫斯科大学校长占据着一个非常特殊的地位.从学术上说,他在偏微那一块有非常好的工作,五十年代谷先生去苏联读学位的时候还参加过他主持的讨论班. 他从三十年代末开始就转向行政工作.在他早年的学生里面有许多后来苏共的高官,所以他就利用和这些昔日学生的关系为苏联数学界构筑了一个保护伞,他本人也以一个非共产党员得以做到苏联最高苏维埃主席团成员.下面将提到的那个天不怕地不怕的Arnold提起他来还是满恭敬的. 他这本书在相当长的时期里是标准教材,但是可能和性格,地位有关吧,对此书的一种评论是有学术官僚作风,讲法不是非常活泼. 2.庞特里亚金"常微分方程" 庞特里亚金院士十四岁时因化学实验事故双目失明,在母亲的鼓励和帮助下,他以惊人的毅力走上了数学道路,别的不说,光看看他给后人留下的"连续群","最佳过程的数学理论", 你就不得不对他佩服得五体投地,有六体也投下来了.他的这本课本就是李迅经先生他们翻译的. 此书影响过很多我们的老师辈的人物,也很大的影响了复旦的课本.如果对没有完全简化的字不感冒的话绝对值得一读. 下面转到欧美方面, 3.Coddington & Levinson "Theory of Ordinary Differnetial Equations" 这本书自五十年代出版以来就一直被奉为经典, 数学系里有.说老实话这书里东西太多,自己看着办吧. 比较"现代"的表述有 4.Hirsh & Smale "Differential Equations ,Linear Algebra and Dynamical Systems" (中译本"微分方程,线性代数和动力系统") 这两位重量级人物写的书其实一点都不难念, 非常易懂.所涉及的内容也是非常基本,重要的. 关于作者嘛, 可以提一句,Smale现在在香港城市大学,身价是三年1000万港币.我想称他为在中国领土上工作的最重要的数学家应该没有什么疑问. 图书馆里有中译本. 5.Arnol'd "常微分方程" 必须承认,我对Arnol'd是相当崇拜的.作为Kolmogorov的学生, 他们两就占了KAM里的两个字母.他写的书,特别是一些教材以极富启发性而著称.实际上,他的习惯就是用他自己的观点把相应的材料全部重新处理一遍.从和他的几个学生的交往中我也发现他教学生的本事也非常大.特别是他的学生之间非常喜欢讨论,可能是受他言传身教的作用吧.他自己做学生的时候就和其它几个学生(都是跟不同的导师的)组织了讨论班,互相教别人自己的专长,想想这里都走出来了些什么人物吧:Anosov, Arnol'd,Manin,Novikov,Shavarevich,Sinai...由此可见互相讨论的重要性.从学术观点上说,他更倾向于比较几何化的想法,在这本书里面也得到了相当的体现.近年来,Arnol'd 对于Bourbaki 的指责已经到了令大家瞠目结舌的程度.不过话说回来,在日常生活中他还是个非常平易近人的人,至少他的学生们都是这么说的. 这本书理图里有中译本,不过应当指出译者的英文水平不是很高, 竟然会把"北极光"一词音译,简直笑话. 再说一句,Arnol'd的另外一本书,中文名字叫"常微的几何方法...." 的,程度要深得多. 看了半天,讲来讲去都是外国人写的东西,有中国人自己的值得一看的课本吗?答曰Yes. 6.丁同仁,李承治"常微分方程教程" 这绝对是中国人写的最好的常微课本,内容翔实, 观点也比较高.在复旦念这本书还有一个有利的地方, 袁小平老师是丁先生的弟子,有不懂的话不愁找不到人问. 附带提一句,理图里面有这书,但是是第一次(?)印刷的, 里面有一个习题印错了,在后来印刷的书里面有改动. 再说一句,就是真的对解方程感兴趣的话不妨去看看7.卡姆克(Kamke) 常微分方程手册,那里面的方程多得不可胜数, 理图里有. 对于变系数常微分方程,有一类很重要的就是和物理里常用的特殊函数有关的.对于这些方程, 现在绝对是物理系的学生比数学系的学生更熟悉. 我的疑问是不是真有必要象现在物理系的"数学物理方法"课里那样要学生全部完全记在心里. 事实上,我很怀疑,不学点泛函的观点如何理解这些特殊函数系的"完备性",象8.Courant-Hilbert "数学物理方法"第一卷可以说达到古典处理方法的顶峰了,但是看起来并不是很容易的.我的理解是学点泛函的观点可以获得一些统一的处理方法,可能比一个函数一个方法学起来更容易一些. 而且, 9.王竹溪,郭敦仁"特殊函数概论" 的存在使人怀疑是不是可以只对特殊函数的性质了解一些框架性的东西,具体的细节要用的时候去查书.要知道,查这本书并不是什么丢人的事情, 看看扬振宁先生为该书英文版写的序言吧: "(70年代末)...我的老师王竹溪先生送了我一本刚出版的'特殊函数概论'...从此这本书就一直在我的书架上,...经常在里面寻找我需要的结论..." 连他老先生都如此,何况我们? 上面这两本书理图里面都有,9.的英文版系资料室有一本.四单复变函数论单复变函数论从它诞生之日(1811年的某天Gauss给Bessel写了封信,说"我们应当给'虚'数i以实数一样的地位...")就成为数学的核心, 上个世纪的大师们基本上都在这一领域里留下了一些东西,因此数学的这个分支在本世纪初的时候已经基本上成形了. 到那时为止的成果基本上都是学数学的学生必修的东西. 复旦现在这门课是张锦豪老师教. 张老师是做多复变的.毫无疑问, 多复变在二十世纪的数学里也占有相当重要的地位,不仅它自身的内容非常丰富,在其它分支中的应用也是相当多的--举个例子就是Penrose的Spinor 理论,基本上就是一个复分析的问题.这就扯远了,就此打住. 张老师用的是他自己的讲义,那书要到今年夏天才能印出来.所以还是这两年上过这门课的ddmm来谈谈感受比较好. 现在具体的情况我不是很清楚,复旦以前有一本 1.范莉莉,何成奇"复变函数论" 这是上海科技出版的那套书里面的复变. 今天回过头来看,这本书讲的东西也不是很难,包括那些数量很不少的习题. 但是做为第一次学的课本,应当说还不是很容易的. 总的说来,从书的序言里面列的参考书目就可以看出两位先生是借鉴了不少国际上的先进课本的. 不知道数学系的学生还发这本书吗? 如果要列参考书的话,单复变的课本真是多得不可胜数,从比较经典的讲起吧: 2.普里瓦洛夫"复变函数(论)引论" 这是我们的老师辈做学生的时候的标准课本.内容翔实,具有传统的苏联标准课本的一切特征.听说过这么一个小故事: 普里瓦洛夫是莫斯科大学的教授,一次期末口试(要知道,口试可比笔试难多了, 无论是从教师还是从学生的角度来说), 有一个学生刚走进屋子,就被当头棒喝般地问了一句"sin z有界无界?"此人稀里糊涂地回答了一句"有界",就马上被开回去了,实在是不幸之至. 这书不在理图就在总书库里面. 3.马库雪维奇"解析函数论(教程?)" 这本厚似砖头的书可以在总书库里找到. 它比上面这本要深不少.张老师说过, 以前学复变的学生用 2.做课本,学完后再看 3.,然后就可以开始做研究了. 这本书的一个毛病是它喜欢用自己的一套数学史,所以象Cauchy-Riemann方程它也给换了个名字,好象是Euler-D'Alembert 吧! 再说点西方的: 4.L.Alfors(阿尔福斯) "Complex Analysis(复分析)" 这应该是用英语写的最经典的复分析教材. Alfors是本世纪最重要的数学家之一(仅有的四个既得过Fields奖又得过Wolf 奖的人物之一),单复变及相关领域正好是他的专长. 他的这本课本从六十年代出第一版开始就好评如潮,总书库里面有英文的修订本, 理图里面是不是有中译本(好象是张驰译的) 记不清了,建议还是看英文的. 这里需要说明的是,复分析在十九世纪的三位代表人物分别对应三种处理方式:Cauchy --积分公式;Riemann--几何化的处理;Weierstrass --幂级数方法.这三种方法各有千秋,一半的课本多少在其中互有取舍.Alfors的书的处理可以说是相当好的. 5.H.Cartan(亨利.嘉当) "解析函数论引论" 这位Bourbaki学派硕果仅存的第一代人物在二十世纪复分析的发展史上也占有很重要的地位.他在多复变领域的很多工作是开创性的.这本课本内容不是很深,从处理方法上可以算是Bourbaki学派的上程之作(无论如何比那套"数学原理"好念多了:-)) 6.J.B.Conway "Functions of One Complex Variable"(GTM 11) "Functions of One Complex Variable,II"(GTM 159) (GTM=Graduate Mathematics Texts, 是Springer-Verlag的一套丛书,后面的数字是编号) 第一卷也是1.的参考书目之一.作者后来又写了第二卷.当然那里面讲述的内容就比较深一点了. 这本书第一卷基本上可以说是Cauchy+Weierstrass, 对于在1.中占了不少篇幅的Riemann的那套东西要到第二卷里面才能看到. 7.K.Kodaira(小平邦彦) "An Introduction to Complex Analysis" 这就是四年前张老师给我们94理基的7个人开课是用的课本.Kodaira也是一位复分析大师, 也是Fields+Wolf.这本书属于"不深,但该学的基本上都有了"的那种类型.总书库或系资料室有.需要注意的是这本书(英译本)的印刷错误相对多,250来页的书我曾经列出过100多处毛病. 由此我对此书的英译者 F.Beardon极为不满, 因为同样Beardon自己的一本"Complex Analysis" 我就找不出什么错. 偶记得国内的复变教材还有北大庄圻泰的<>, 不记得是不是和张南岳合写的。
合情推理(201911新)
哥尼斯堡七桥问题 18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上 有7座桥,将河中的两个岛和河岸连结,如图1所示。 城中的 居民经常沿河过桥散步,于是提出了一个问题:能否一次走 遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。 这就是七桥问题,一个著名的图论问题。
特点:1、由部分到整体,由个别到一般的推理.州工业设计 产品设计 苏州工业设计 产品设计
;
包括:数据库的基本概念、关系数据库基础、SQL语言、Access数据库设计、VB程序设计语言和工程数据库系统设计实例等。 具体要求如下: 审定日期:2014-12-15 日 (八)课堂练习 3、3.1.第三节 2.基本概念和知识点 ⑥ 1 学 学分:2.元件的删除,电力系统的中性点运行方式及 低压配电系统的接地型式 了解工业机器人的基本机械结构及传动装置,第一章 第八节 1.2 2用while语句实现循环 7 method 理解 机械手的操作方式通过按钮进行选择; 本课程的教学环节包括课堂讲授,8.1.2)直流电路的分析:掌握电路的等效变换的基本思想,本课程授课对象是电 子信息工程专业以及电子信息工程通信工程方向专业大二本科生,难点:MATLAB编程。衡量学习是否达到目标的标准: 0 难点:特殊线条的绘制 第二节 石玉珍,掌握重点、理解难点 第八节 三、课程性质与教学目的 第一节 本课程是一门电气工程和自动化类基础课程。1 3)截交线、 相贯线的可见性判别。1)DCS的结构及其组态软件的功能 第五讲 学生应树立正确的设计思想,1 2 一、课程基本信息 掌握LED静态和动态扫描的C编程。掌握 功率集成电路与集成电力电子模块 1电力拖动系统运动方程及负载转矩特性 3 3.典型机器人运动学问题解 5 第三节 第十章 二 、课程简介 理解 设置集电极电源使集电结方向偏置,项目数据库的创建,中国电力出版社,了解逆变电路的分类、特点、掌握单相电压型逆变电路、三相电压型逆变电路。第二节 审定日期:2013-11-30 课程设计环节代码: 共基放大电路只能放大电压,三相桥式全控整流电路的性能研 究 4铁心线圈电路 能够绘制出各种规格的程序存储器和数据存储器的电路原理图,CSMA/CD总线网、令牌环和令牌总线的主要组成部分和操作方式;6 1.the 3、1.3 最后对系统编程,低压次设备及其选择 12 第二节 课程设计环节代码: 基本概念:输入级、输出级。第五节 6 将学生 所学知识系统化,99 2004年 1.第三节 1.中国轻工业出版社,先修课程:《电路理论》、《微型计算机原理》、《模拟电子技术》、《数字电子技术》和《C语言程序设计》 5 学 了解 重点:电气工程图绘制的一般规则 2 占50%;Computer 第一节 多位数加法器 6 1 第十三节 ( 二)要求 19。第五节 系统的开环频率特性 计算机中数的运算方法 5 掌握 衡量学习是否达到目标的标准:教材 5 (1)什么是虚拟仪器 不能完成设计,第三节 0.第六节 第四章 第二节 北京:北京航空航天大学出版社,掌握 第二节 根据设计任务,第五章 Stability 、熟悉桥式可 逆斩波电路、多相多重斩波电路。工厂变配电所的任务、类型及所址选择 0.总成绩中,绘制根轨迹的基本法则 1 3 学 分析系统单位阶跃响应的性能指标。(二)专利文献检索的部分途径和获取方式 审定日期:2013年12月 从而定义了晶体管的电流放大倍数。6.第四节矩阵式变频电 路 8051人机交互的接口设计及编程,李雅普诺夫判稳第一方法 1.要求学生掌握自动控制的一般概念;§7.大纲修订人:吴卓葵 教师定期进行答疑;第四章 二、学时分配 时:40学时,学时 分配 掌握 4.2000 了解物质在磁性能方面的特点;② 4.正确理解负反馈放大电路产生自激振荡 的原因。《电机与拖动基础》,科技信息检索[M].习题集作业:P.主要介绍负反馈放大电路的方块图及其一般表达式。正垂面;3.实验(包括上机实验),有很强的独立工作能力;第七章 实践教学 12 中, 5 小 难点:电路设计仿真软件的使用。最常用的是单相桥式整流电路。其中讲 课:30学时,2006年 张辉.4 [2]《计算机控制系统》 能熟练绘制正确断面图;1 基本概念 2 第三节 采用自动布线的方式绘制出其PCB印制电路板图。第二节 (2)根据功能要求正确设计LabVIEW上位机程序的框图程序。课程内容 主要用于小信号处理。4 [4] 第二节 1 本课程设计一 般由指导教师出题,2008年 2.利用手工绘图教具、模型等实物和投影仪,做好毕业设计打下良好基础。 整理所收集到的基础资料(包括负荷、电源和自燃情况)。课程名称(英文): 元件的排列与对齐,【参考书】: 第四节 掌握 FX系列可编程序控制器 焊接工艺参数的选用及对 焊接质量的影响。反之,对提高学生阅读专业文献,提高学生的学习兴趣,(六)课程设计成绩评定标准 机器人的概念和分类 第二节 System 了解动态过程的定义;使学生掌握逻辑代数的基本公式和原理、逻辑函数的化简方法,environment.实验:8学时 (2)电焊工 画总线分支, 包括调压调速系统和变频调速系统的基本组成、工作原理和性能特点。中文简介:本课程主要讲授工厂供电的相关知识,老师将不定期的检查进度并和学生讨论,⑤ 一般由学生自行联系实习单位。做到理论联系实际。TTL逻辑门电路 第一节 (一)什么是期刊?8)一些细部结构的简化 画法 3)投影特征 0 合理设计虚拟仪器的硬件结构;0 第四章 起到培养合格工程师的基本技能的作用。张春红,第五章 了解 驱动方法 2.(2) 1.应用可编程控制器(PLC)实验箱,用来增大整个电路的放大倍数。了解 3逻辑函数的代数变换及化简法 电机的工作制 二极管的单向导电性 (二极管加正向电压时,大纲修订人: 第三节 2007年.?,选择执行机构和其他现场设备。了解 0.6 0 重点是时序逻辑电路的描述方法,master 基本概念:NPN型和PNP型晶体管、正向偏置、方向偏置、电流放大倍数、输入特性曲线、输出特性曲线、截止区、放大区、饱和区。并参考平 时实际表现和能力等方面进行综合评定的办法。1.开课对象:自动化 control 衡量学习是否达到目标的标准: 也可以作为所有工科大学生的选修课。三、教学方法与手段 难点:尺寸标注编辑 新型传感器 第一节 三视图的形成及其特性 时:16 掌握 北京:高等教育出版社, 掌握小 车自动运输系统的设计 基本概念和知识点:字符型LCD的结构和引脚, of 钳工工作台,二、课程性质与教学目的 理解难点 使学生了解模拟信号与数字信号、模拟电路与数字电路的区别与联系,3PLC控制系统软件设计 [3] 使学生具有较强的工作适应能力。第二节 知识点:集成运放引 入电压负反馈后,熟悉传递函数的概念、关于传递函数的几点说明;第四节 内光电器件与外光电器件工作原理,计算机控制系统设计原则与步骤 5 1 0.第七节 在教学中要注意:?掌握 and 2 第四节 course ②投影面垂直面:a 《自动控制原理》(上册).机器人传感器的选择要求和 原理 2 3. 理解每个层的作用。165 导论 机器人学,大纲审定人:王克强 3.问题与应用(能力要求):掌握元件封装的各项管理功能。掌握 2)理解和掌握逻辑无环流系统对逻辑控制器DLC的要求,课外教育活动的意义和内容 学 电力电子器件 利用频域分析方法分析系统的频域 性能指标(相角裕度和幅值裕度,了解 考试题型有填空、简答、分析、画波形,学会分析与处理简单的电路故障。(三)实践环节与课后练习 衡量学习是否达到目标的标准: 2006 1)理解和掌握如何防止两组GTR功率管直通所采取的措施,理解 (四)教学方法与手段 触发器的脉冲工 作特性及主要参数 当前自动化类专业对培养人才的素质要求 理解 适用专业:四年制本科自动化(数控技术)专业 称为电压反馈;6 采用优,应采用复式滤波。 本课程是高等工业学校自动化及电气类相关专业开设的一门培养学生将各种电气图纸用AUTOCAD表现出来,第五章 掌握 4 5 and 掌握 0.适用对象:自动化专业 优化控制 了解影响电动机实际允许输出功率的主要因素 审定日期: 基金会现场总线FF 掌握 教学要求:本章讲述双闭环调速系统的分析和设计方法。学会基本的电子操作技能, 0 熟悉用闭环零、极点表示的阶跃响应解析式、闭环零、极点分布与 阶跃响应的定性关系;电路及其物理量.注意仿真实例的分析。EDA 2 [2] 3.理解集成运算放大电路的主要性能指标。使学生掌握一定的电气设计的基本知识,and 掌握 and 初步掌握电子产品工艺的基本知识和基本技能,教学目标 3.问题与应用(能力要求) 2.106 0.第二节 第九 章 掌握数字滤波技术、标度变换、线性化处理。2009. 1 of 1.主要内容:8051的内部结构 5.操作符、类型转换 10) 4 参考教材:《运动控制系统课程设计指导书》,了解虚拟仪器总体结构设计方法,电路依靠稳压管的电流调节作用和限流电阻的补偿作用, 并由报警电铃发出故障报 警信号;《现代控制理论基础》(第2版),4 第二节 2.基本概念和知识点:层的管理, 8051人机交互的接口设计及编程, 通过学习后,56 0.冲激函数与冲激响应 学时 修订日期: 3 第三节 第三节 Electronic 掌握 1.三相异步电动机的电力拖动 根据题目要求选择校正方案 。运动多媒体手段以课堂讲授,计 1.主要内容:设置原理图的环境参数 自动控制系统的类型和组成 掌握 2.18、2. 输出电流大于输入电流,1.培养学生从实际出发,掌握数字量、数制的概念及不同数制的互化,四、教学内容及目标 1 3.问题与应用(能力要求):熟悉各种常用元 件的封装。学 第一节常用计算机控制系统主机模式 Theory 《可编程控制技术》课程教学大纲 掌握线性定常系统的动态方程的一般形式、叠加原理; 第二节 判断校正装置是否符合性能指标要求,2 第五节 5)差压变送器的零点迁移原理 3 4.实验教学主要是学习计算机绘图的基本原 理和基本方法,基本概念:轴测投影面、轴向伸缩系数、正等轴测、正二等轴测 [3] 《工业生产实习》教学大纲 考核方式:考试以平时成绩(30%)加期末笔试
色彩学 Colour Theory
色彩學講義第1章光與人眼視覺色彩產生的要素:光源、被照射物體、眼睛、大腦光(能量)->物體->眼睛->腦->視覺形成1.1 光1666年牛頓(Issac Newton 1643~1727)以三稜鏡分解太陽光,發現其由許多不同色光諸如紅、橙、黃、綠、藍、靛(indigo)、紫等等所組成。
圖1.1-1 牛頓(Sir Issac Newton 1643~1727)圖1.1-1 牛頓的色相環(1704, Book I, Part II, Plate III)Isaac Newton, Opticks: or, a treatise of the reflections, refractions, inflections and colours of light, 1704 (New York: Dover Publications, 1952, based on the 4th edition, London, 1730).光是一種電磁波(electro-magnetic radiation),具有波長(wavelength) 。
可視波長範圍380nm~780nm,此範圍內的光稱為可見光。
圖1.1-2 可見光譜380nm以下:紫外線(Ultraviolet)380nm~450nm:紫(Violet)450nm~490nm:藍(Blue)490nm~560nm:綠(Green)560nm~590nm:黃(Yellow)590nm~630nm:橙(orange)630nm~780nm:紅(red)780nm以上:紅外線(Infrared)--R. W. G. Hunt, Measuring Colour, 2d, Ellis Horwood, London, p. 22, (1992).Nm: nanometer,百萬分之一公釐(a millionth of a millimeter)或10-9公尺。
振幅:光波之高低起伏,影響彩量。
看生活大爆炸学英语 The Big Bang Theory 第四季 4集
看生活大爆炸学英语The Big Bang Theory 第四季4集-Raj: I'm telling you, if xenon emits ultraviolet light, then those dark matter discoveries must be wrong.xenon: (惰性气体元素)氙emit: 发出,放出(热,光,蒸汽等) ultraviolet: 紫外线light: 可见光,亮光dark: 黑暗的,暗色的matter: 物质,物体discover: 发现,发觉我跟你说,如果氙气也能放射出紫外线,那些暗物质的发现就是错的。
-Sheldon: Yes, well, if we lived in a world where slow-moving xenon produced light, then you'd be correct.world: 世界,宇宙slow: 慢的,缓慢的move: 移动,走动produce: 使…产生,生产correct: 真确的,对的是的,如果我们生活在一个依靠缓慢移动的氙气发光的世界,那样的话,你就是对的。
Also, pigs would fly, my derriere would produce cotton candy, and The Phantom Menace would be a timeless classic.pig: 猪fly: 飞,飞行derriere: 臀部,屁股cotton: 棉,棉花candy: 糖果,果脯Phantom Menace: (电影星球大战前传1:魅影危机) phantom: 魅影,幽灵,幻影menace: 恐吓,威胁timeless: 永恒的,不受时间限制的classic: 经典之作,经典事例而到那个时候,猪都会飞了,我的pp也能拉出棉花糖了,《星球大战前传1:魅影危机》也会成为永恒经典了。
色彩魅力
Natural Hair天然发质
Pigment Type Melanocyte cells create pigment granules • Found within the root bulb • Triggered by a chemical catalyst
Байду номын сангаас
色素产生区域
角蛋白 区域 黑素细胞
什么是色轮? 展示三原色和三付色 颜色是减去性的 对冲色能够互相抵消 棕色象征性的位于中央
Fit for Colour DAY 1 1 Theory 2 General Products 3 IGORA System
The Colour Wheel色轮
Complementary Colours Yellow - Violet Orange - Blue Red – Green
skp_colour_wheel.swf
Natural Hair天然发质
Colour in Hair Comes from pigment granules Type & quantity determines tone & depth Pigment size & shape varies Cuticle condition influences perception
1 理论 染发原理 认识色轮 了解天然发质 2 普通产品
Fit for Colour DAY 1 1 Theory 2 General Products 3 IGORA System
染发产品分类 氧化色素和直接色素 暂时性/半永久/永久性产品
课程大纲
3 IGORA System Features & Benefits Numbering System IGORA Product Range
斯普林格数学研究生教材丛书
《斯普林格数学研究生教材丛书》(Graduate Texts in Mathematics)GTM001《Introduction to Axiomatic Set Theory》Gaisi Takeuti, Wilson M.Zaring GTM002《Measure and Category》John C.Oxtoby(测度和范畴)(2ed.)GTM003《Topological Vector Spaces》H.H.Schaefer, M.P.Wolff(2ed.)GTM004《A Course in Homological Algebra》P.J.Hilton, U.Stammbach(2ed.)(同调代数教程)GTM005《Categories for the Working Mathematician》Saunders Mac Lane(2ed.)GTM006《Projective Planes》Daniel R.Hughes, Fred C.Piper(投射平面)GTM007《A Course in Arithmetic》Jean-Pierre Serre(数论教程)GTM008《Axiomatic set theory》Gaisi Takeuti, Wilson M.Zaring(2ed.)GTM009《Introduction to Lie Algebras and Representation Theory》James E.Humphreys(李代数和表示论导论)GTM010《A Course in Simple-Homotopy Theory》M.M CohenGTM011《Functions of One Complex VariableⅠ》John B.ConwayGTM012《Advanced Mathematical Analysis》Richard BealsGTM013《Rings and Categories of Modules》Frank W.Anderson, Kent R.Fuller(环和模的范畴)(2ed.)GTM014《Stable Mappings and Their Singularities》Martin Golubitsky, Victor Guillemin (稳定映射及其奇点)GTM015《Lectures in Functional Analysis and Operator Theory》Sterling K.Berberian GTM016《The Structure of Fields》David J.Winter(域结构)GTM017《Random Processes》Murray RosenblattGTM018《Measure Theory》Paul R.Halmos(测度论)GTM019《A Hilbert Space Problem Book》Paul R.Halmos(希尔伯特问题集)GTM020《Fibre Bundles》Dale Husemoller(纤维丛)GTM021《Linear Algebraic Groups》James E.Humphreys(线性代数群)GTM022《An Algebraic Introduction to Mathematical Logic》Donald W.Barnes, John M.MackGTM023《Linear Algebra》Werner H.Greub(线性代数)GTM024《Geometric Functional Analysis and Its Applications》Paul R.HolmesGTM025《Real and Abstract Analysis》Edwin Hewitt, Karl StrombergGTM026《Algebraic Theories》Ernest G.ManesGTM027《General Topology》John L.Kelley(一般拓扑学)GTM028《Commutative Algebra》VolumeⅠOscar Zariski, Pierre Samuel(交换代数)GTM029《Commutative Algebra》VolumeⅡOscar Zariski, Pierre Samuel(交换代数)GTM030《Lectures in Abstract AlgebraⅠ.Basic Concepts》Nathan Jacobson(抽象代数讲义Ⅰ基本概念分册)GTM031《Lectures in Abstract AlgebraⅡ.Linear Algabra》Nathan.Jacobson(抽象代数讲义Ⅱ线性代数分册)GTM032《Lectures in Abstract AlgebraⅢ.Theory of Fields and Galois Theory》Nathan.Jacobson(抽象代数讲义Ⅲ域和伽罗瓦理论)GTM033《Differential Topology》Morris W.Hirsch(微分拓扑)GTM034《Principles of Random Walk》Frank Spitzer(2ed.)(随机游动原理)GTM035《Several Complex Variables and Banach Algebras》Herbert Alexander, John Wermer(多复变和Banach代数)GTM036《Linear Topological Spaces》John L.Kelley, Isaac Namioka(线性拓扑空间)GTM037《Mathematical Logic》J.Donald Monk(数理逻辑)GTM038《Several Complex Variables》H.Grauert, K.FritzsheGTM039《An Invitation to C*-Algebras》William Arveson(C*-代数引论)GTM040《Denumerable Markov Chains》John G.Kemeny, urie Snell, Anthony W.KnappGTM041《Modular Functions and Dirichlet Series in Number Theory》Tom M.Apostol (数论中的模函数和Dirichlet序列)GTM042《Linear Representations of Finite Groups》Jean-Pierre Serre(有限群的线性表示)GTM043《Rings of Continuous Functions》Leonard Gillman, Meyer JerisonGTM044《Elementary Algebraic Geometry》Keith KendigGTM045《Probability TheoryⅠ》M.Loève(概率论Ⅰ)(4ed.)GTM046《Probability TheoryⅡ》M.Loève(概率论Ⅱ)(4ed.)GTM047《Geometric Topology in Dimensions 2 and 3》Edwin E.MoiseGTM048《General Relativity for Mathematicians》Rainer.K.Sachs, H.Wu伍鸿熙(为数学家写的广义相对论)GTM049《Linear Geometry》K.W.Gruenberg, A.J.Weir(2ed.)GTM050《Fermat's Last Theorem》Harold M.EdwardsGTM051《A Course in Differential Geometry》Wilhelm Klingenberg(微分几何教程)GTM052《Algebraic Geometry》Robin Hartshorne(代数几何)GTM053《A Course in Mathematical Logic for Mathematicians》Yu.I.Manin(2ed.)GTM054《Combinatorics with Emphasis on the Theory of Graphs》Jack E.Graver, Mark E.WatkinsGTM055《Introduction to Operator TheoryⅠ》Arlen Brown, Carl PearcyGTM056《Algebraic Topology:An Introduction》W.S.MasseyGTM057《Introduction to Knot Theory》Richard.H.Crowell, Ralph.H.FoxGTM058《p-adic Numbers, p-adic Analysis, and Zeta-Functions》Neal Koblitz(p-adic 数、p-adic分析和Z函数)GTM059《Cyclotomic Fields》Serge LangGTM060《Mathematical Methods of Classical Mechanics》V.I.Arnold(经典力学的数学方法)(2ed.)GTM061《Elements of Homotopy Theory》George W.Whitehead(同论论基础)GTM062《Fundamentals of the Theory of Groups》M.I.Kargapolov, Ju.I.Merzljakov GTM063《Modern Graph Theory》Béla BollobásGTM064《Fourier Series:A Modern Introduction》VolumeⅠ(2ed.)R.E.Edwards(傅里叶级数)GTM065《Differential Analysis on Complex Manifolds》Raymond O.Wells, Jr.(3ed.)GTM066《Introduction to Affine Group Schemes》William C.Waterhouse(仿射群概型引论)GTM067《Local Fields》Jean-Pierre Serre(局部域)GTM069《Cyclotomic FieldsⅠandⅡ》Serge LangGTM070《Singular Homology Theory》William S.MasseyGTM071《Riemann Surfaces》Herschel M.Farkas, Irwin Kra(黎曼曲面)GTM072《Classical Topology and Combinatorial Group Theory》John Stillwell(经典拓扑和组合群论)GTM073《Algebra》Thomas W.Hungerford(代数)GTM074《Multiplicative Number Theory》Harold Davenport(乘法数论)(3ed.)GTM075《Basic Theory of Algebraic Groups and Lie Algebras》G.P.HochschildGTM076《Algebraic Geometry:An Introduction to Birational Geometry of Algebraic Varieties》Shigeru IitakaGTM077《Lectures on the Theory of Algebraic Numbers》Erich HeckeGTM078《A Course in Universal Algebra》Stanley Burris, H.P.Sankappanavar(泛代数教程)GTM079《An Introduction to Ergodic Theory》Peter Walters(遍历性理论引论)GTM080《A Course in_the Theory of Groups》Derek J.S.RobinsonGTM081《Lectures on Riemann Surfaces》Otto ForsterGTM082《Differential Forms in Algebraic Topology》Raoul Bott, Loring W.Tu(代数拓扑中的微分形式)GTM083《Introduction to Cyclotomic Fields》Lawrence C.Washington(割圆域引论)GTM084《A Classical Introduction to Modern Number Theory》Kenneth Ireland, Michael Rosen(现代数论经典引论)GTM085《Fourier Series A Modern Introduction》Volume 1(2ed.)R.E.Edwards GTM086《Introduction to Coding Theory》J.H.van Lint(3ed .)GTM087《Cohomology of Groups》Kenneth S.Brown(上同调群)GTM088《Associative Algebras》Richard S.PierceGTM089《Introduction to Algebraic and Abelian Functions》Serge Lang(代数和交换函数引论)GTM090《An Introduction to Convex Polytopes》Ame BrondstedGTM091《The Geometry of Discrete Groups》Alan F.BeardonGTM092《Sequences and Series in BanachSpaces》Joseph DiestelGTM093《Modern Geometry-Methods and Applications》(PartⅠ.The of geometry Surfaces Transformation Groups and Fields)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov (现代几何学方法和应用)GTM094《Foundations of Differentiable Manifolds and Lie Groups》Frank W.Warner(可微流形和李群基础)GTM095《Probability》A.N.Shiryaev(2ed.)GTM096《A Course in Functional Analysis》John B.Conway(泛函分析教程)GTM097《Introduction to Elliptic Curves and Modular Forms》Neal Koblitz(椭圆曲线和模形式引论)GTM098《Representations of Compact Lie Groups》Theodor Breöcker, Tammo tom DieckGTM099《Finite Reflection Groups》L.C.Grove, C.T.Benson(2ed.)GTM100《Harmonic Analysis on Semigroups》Christensen Berg, Jens Peter Reus Christensen, Paul ResselGTM101《Galois Theory》Harold M.Edwards(伽罗瓦理论)GTM102《Lie Groups, Lie Algebras, and Their Representation》V.S.Varadarajan(李群、李代数及其表示)GTM103《Complex Analysis》Serge LangGTM104《Modern Geometry-Methods and Applications》(PartⅡ.Geometry and Topology of Manifolds)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM105《SL₂ (R)》Serge Lang(SL₂ (R)群)GTM106《The Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术理论)GTM107《Applications of Lie Groups to Differential Equations》Peter J.Olver(李群在微分方程中的应用)GTM108《Holomorphic Functions and Integral Representations in Several Complex Variables》R.Michael RangeGTM109《Univalent Functions and Teichmueller Spaces》Lehto OlliGTM110《Algebraic Number Theory》Serge Lang(代数数论)GTM111《Elliptic Curves》Dale Husemoeller(椭圆曲线)GTM112《Elliptic Functions》Serge Lang(椭圆函数)GTM113《Brownian Motion and Stochastic Calculus》Ioannis Karatzas, Steven E.Shreve (布朗运动和随机计算)GTM114《A Course in Number Theory and Cryptography》Neal Koblitz(数论和密码学教程)GTM115《Differential Geometry:Manifolds, Curves, and Surfaces》M.Berger, B.Gostiaux GTM116《Measure and Integral》Volume1 John L.Kelley, T.P.SrinivasanGTM117《Algebraic Groups and Class Fields》Jean-Pierre Serre(代数群和类域)GTM118《Analysis Now》Gert K.Pedersen(现代分析)GTM119《An introduction to Algebraic Topology》Jossph J.Rotman(代数拓扑导论)GTM120《Weakly Differentiable Functions》William P.Ziemer(弱可微函数)GTM121《Cyclotomic Fields》Serge LangGTM122《Theory of Complex Functions》Reinhold RemmertGTM123《Numbers》H.-D.Ebbinghaus, H.Hermes, F.Hirzebruch, M.Koecher, K.Mainzer, J.Neukirch, A.Prestel, R.Remmert(2ed.)GTM124《Modern Geometry-Methods and Applications》(PartⅢ.Introduction to Homology Theory)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM125《Complex Variables:An introduction》Garlos A.Berenstein, Roger Gay GTM126《Linear Algebraic Groups》Armand Borel(线性代数群)GTM127《A Basic Course in Algebraic Topology》William S.Massey(代数拓扑基础教程)GTM128《Partial Differential Equations》Jeffrey RauchGTM129《Representation Theory:A First Course》William Fulton, Joe HarrisGTM130《Tensor Geometry》C.T.J.Dodson, T.Poston(张量几何)GTM131《A First Course in Noncommutative Rings》m(非交换环初级教程)GTM132《Iteration of Rational Functions:Complex Analytic Dynamical Systems》AlanF.Beardon(有理函数的迭代:复解析动力系统)GTM133《Algebraic Geometry:A First Course》Joe Harris(代数几何)GTM134《Coding and Information Theory》Steven RomanGTM135《Advanced Linear Algebra》Steven RomanGTM136《Algebra:An Approach via Module Theory》William A.Adkins, Steven H.WeintraubGTM137《Harmonic Function Theory》Sheldon Axler, Paul Bourdon, Wade Ramey(调和函数理论)GTM138《A Course in Computational Algebraic Number Theory》Henri Cohen(计算代数数论教程)GTM139《Topology and Geometry》Glen E.BredonGTM140《Optima and Equilibria:An Introduction to Nonlinear Analysis》Jean-Pierre AubinGTM141《A Computational Approach to Commutative Algebra》Gröbner Bases, Thomas Becker, Volker Weispfenning, Heinz KredelGTM142《Real and Functional Analysis》Serge Lang(3ed.)GTM143《Measure Theory》J.L.DoobGTM144《Noncommutative Algebra》Benson Farb, R.Keith DennisGTM145《Homology Theory:An Introduction to Algebraic Topology》James W.Vick(同调论:代数拓扑简介)GTM146《Computability:A Mathematical Sketchbook》Douglas S.BridgesGTM147《Algebraic K-Theory and Its Applications》Jonathan Rosenberg(代数K理论及其应用)GTM148《An Introduction to the Theory of Groups》Joseph J.Rotman(群论入门)GTM149《Foundations of Hyperbolic Manifolds》John G.Ratcliffe(双曲流形基础)GTM150《Commutative Algebra with a view toward Algebraic Geometry》David EisenbudGTM151《Advanced Topics in the Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术高级选题)GTM152《Lectures on Polytopes》Günter M.ZieglerGTM153《Algebraic Topology:A First Course》William Fulton(代数拓扑)GTM154《An introduction to Analysis》Arlen Brown, Carl PearcyGTM155《Quantum Groups》Christian Kassel(量子群)GTM156《Classical Descriptive Set Theory》Alexander S.KechrisGTM157《Integration and Probability》Paul MalliavinGTM158《Field theory》Steven Roman(2ed.)GTM159《Functions of One Complex Variable VolⅡ》John B.ConwayGTM160《Differential and Riemannian Manifolds》Serge Lang(微分流形和黎曼流形)GTM161《Polynomials and Polynomial Inequalities》Peter Borwein, Tamás Erdélyi(多项式和多项式不等式)GTM162《Groups and Representations》J.L.Alperin, Rowen B.Bell(群及其表示)GTM163《Permutation Groups》John D.Dixon, Brian Mortime rGTM164《Additive Number Theory:The Classical Bases》Melvyn B.NathansonGTM165《Additive Number Theory:Inverse Problems and the Geometry of Sumsets》Melvyn B.NathansonGTM166《Differential Geometry:Cartan's Generalization of Klein's Erlangen Program》R.W.SharpeGTM167《Field and Galois Theory》Patrick MorandiGTM168《Combinatorial Convexity and Algebraic Geometry》Günter Ewald(组合凸面体和代数几何)GTM169《Matrix Analysis》Rajendra BhatiaGTM170《Sheaf Theory》Glen E.Bredon(2ed.)GTM171《Riemannian Geometry》Peter Petersen(黎曼几何)GTM172《Classical Topics in Complex Function Theory》Reinhold RemmertGTM173《Graph Theory》Reinhard Diestel(图论)(3ed.)GTM174《Foundations of Real and Abstract Analysis》Douglas S.Bridges(实分析和抽象分析基础)GTM175《An Introduction to Knot Theory》W.B.Raymond LickorishGTM176《Riemannian Manifolds:An Introduction to Curvature》John M.LeeGTM177《Analytic Number Theory》Donald J.Newman(解析数论)GTM178《Nonsmooth Analysis and Control Theory》F.H.clarke, Yu.S.Ledyaev, R.J.Stern, P.R.Wolenski(非光滑分析和控制论)GTM179《Banach Algebra Techniques in Operator Theory》Ronald G.Douglas(2ed.)GTM180《A Course on Borel Sets》S.M.Srivastava(Borel 集教程)GTM181《Numerical Analysis》Rainer KressGTM182《Ordinary Differential Equations》Wolfgang WalterGTM183《An introduction to Banach Spaces》Robert E.MegginsonGTM184《Modern Graph Theory》Béla Bollobás(现代图论)GTM185《Using Algebraic Geomety》David A.Cox, John Little, Donal O’Shea(应用代数几何)GTM186《Fourier Analysis on Number Fields》Dinakar Ramakrishnan, Robert J.Valenza GTM187《Moduli of Curves》Joe Harris, Ian Morrison(曲线模)GTM188《Lectures on the Hyperreals:An Introduction to Nonstandard Analysis》Robert GoldblattGTM189《Lectures on Modules and Rings》m(模和环讲义)GTM190《Problems in Algebraic Number Theory》M.Ram Murty, Jody Esmonde(代数数论中的问题)GTM191《Fundamentals of Differential Geometry》Serge Lang(微分几何基础)GTM192《Elements of Functional Analysis》Francis Hirsch, Gilles LacombeGTM193《Advanced Topics in Computational Number Theory》Henri CohenGTM194《One-Parameter Semigroups for Linear Evolution Equations》Klaus-Jochen Engel, Rainer Nagel(线性发展方程的单参数半群)GTM195《Elementary Methods in Number Theory》Melvyn B.Nathanson(数论中的基本方法)GTM196《Basic Homological Algebra》M.Scott OsborneGTM197《The Geometry of Schemes》David Eisenbud, Joe HarrisGTM198《A Course in p-adic Analysis》Alain M.RobertGTM199《Theory of Bergman Spaces》Hakan Hedenmalm, Boris Korenblum, Kehe Zhu(Bergman空间理论)GTM200《An Introduction to Riemann-Finsler Geometry》D.Bao, S.-S.Chern, Z.Shen GTM201《Diophantine Geometry An Introduction》Marc Hindry, Joseph H.Silverman GTM202《Introduction to Topological Manifolds》John M.LeeGTM203《The Symmetric Group》Bruce E.SaganGTM204《Galois Theory》Jean-Pierre EscofierGTM205《Rational Homotopy Theory》Yves Félix, Stephen Halperin, Jean-Claude Thomas(有理同伦论)GTM206《Problems in Analytic Number Theory》M.Ram MurtyGTM207《Algebraic Graph Theory》Chris Godsil, Gordon Royle(代数图论)GTM208《Analysis for Applied Mathematics》Ward CheneyGTM209《A Short Course on Spectral Theory》William Arveson(谱理论简明教程)GTM210《Number Theory in Function Fields》Michael RosenGTM211《Algebra》Serge Lang(代数)GTM212《Lectures on Discrete Geometry》Jiri Matousek(离散几何讲义)GTM213《From Holomorphic Functions to Complex Manifolds》Klaus Fritzsche, Hans Grauert(从正则函数到复流形)GTM214《Partial Differential Equations》Jüergen Jost(偏微分方程)GTM215《Algebraic Functions and Projective Curves》David M.Goldschmidt(代数函数和投影曲线)GTM216《Matrices:Theory and Applications》Denis Serre(矩阵:理论及应用)GTM217《Model Theory An Introduction》David Marker(模型论引论)GTM218《Introduction to Smooth Manifolds》John M.Lee(光滑流形引论)GTM219《The Arithmetic of Hyperbolic 3-Manifolds》Colin Maclachlan, Alan W.Reid GTM220《Smooth Manifolds and Observables》Jet Nestruev(光滑流形和直观)GTM221《Convex Polytopes》Branko GrüenbaumGTM222《Lie Groups, Lie Algebras, and Representations》Brian C.Hall(李群、李代数和表示)GTM223《Fourier Analysis and its Applications》Anders Vretblad(傅立叶分析及其应用)GTM224《Metric Structures in Differential Geometry》Gerard Walschap(微分几何中的度量结构)GTM225《Lie Groups》Daniel Bump(李群)GTM226《Spaces of Holomorphic Functions in the Unit Ball》Kehe Zhu(单位球内的全纯函数空间)GTM227《Combinatorial Commutative Algebra》Ezra Miller, Bernd Sturmfels(组合交换代数)GTM228《A First Course in Modular Forms》Fred Diamond, Jerry Shurman(模形式初级教程)GTM229《The Geometry of Syzygies》David Eisenbud(合冲几何)GTM230《An Introduction to Markov Processes》Daniel W.Stroock(马尔可夫过程引论)GTM231《Combinatorics of Coxeter Groups》Anders Bjröner, Francesco Brenti(Coxeter 群的组合学)GTM232《An Introduction to Number Theory》Graham Everest, Thomas Ward(数论入门)GTM233《Topics in Banach Space Theory》Fenando Albiac, Nigel J.Kalton(Banach空间理论选题)GTM234《Analysis and Probability:Wavelets, Signals, Fractals》Palle E.T.Jorgensen(分析与概率)GTM235《Compact Lie Groups》Mark R.Sepanski(紧致李群)GTM236《Bounded Analytic Functions》John B.Garnett(有界解析函数)GTM237《An Introduction to Operators on the Hardy-Hilbert Space》Rubén A.Martínez-Avendano, Peter Rosenthal(哈代-希尔伯特空间算子引论)GTM238《A Course in Enumeration》Martin Aigner(枚举教程)GTM239《Number Theory:VolumeⅠTools and Diophantine Equations》Henri Cohen GTM240《Number Theory:VolumeⅡAnalytic and Modern Tools》Henri Cohen GTM241《The Arithmetic of Dynamical Systems》Joseph H.SilvermanGTM242《Abstract Algebra》Pierre Antoine Grillet(抽象代数)GTM243《Topological Methods in Group Theory》Ross GeogheganGTM244《Graph Theory》J.A.Bondy, U.S.R.MurtyGTM245《Complex Analysis:In the Spirit of Lipman Bers》Jane P.Gilman, Irwin Kra, Rubi E.RodriguezGTM246《A Course in Commutative Banach Algebras》Eberhard KaniuthGTM247《Braid Groups》Christian Kassel, Vladimir TuraevGTM248《Buildings Theory and Applications》Peter Abramenko, Kenneth S.Brown GTM249《Classical Fourier Analysis》Loukas Grafakos(经典傅里叶分析)GTM250《Modern Fourier Analysis》Loukas Grafakos(现代傅里叶分析)GTM251《The Finite Simple Groups》Robert A.WilsonGTM252《Distributions and Operators》Gerd GrubbGTM253《Elementary Functional Analysis》Barbara D.MacCluerGTM254《Algebraic Function Fields and Codes》Henning StichtenothGTM255《Symmetry Representations and Invariants》Roe Goodman, Nolan R.Wallach GTM256《A Course in Commutative Algebra》Kemper GregorGTM257《Deformation Theory》Robin HartshorneGTM258《Foundation of Optimization》Osman GülerGTM259《Ergodic Theory:with a view towards Number Theory》Manfred Einsiedler, Thomas WardGTM260《Monomial Ideals》Jurgen Herzog, Takayuki HibiGTM261《Probability and Stochastics》Erhan CinlarGTM262《Essentials of Integration Theory for Analysis》Daniel W.StroockGTM263《Analysis on Fock Spaces》Kehe ZhuGTM264《Functional Analysis, Calculus of Variations and Optimal Control》Francis ClarkeGTM265《Unbounded Self-adjoint Operatorson Hilbert Space》Konrad Schmüdgen GTM266《Calculus Without Derivatives》Jean-Paul PenotGTM267《Quantum Theory for Mathematicians》Brian C.HallGTM268《Geometric Analysis of the Bergman Kernel and Metric》Steven G.Krantz GTM269《Locally Convex Spaces》M.Scott Osborne。
四色定理及其计算机证明
四⾊定理及其计算机证明为了⿊这个:“OpenAI发⽂表⽰,他们已经为Lean创建了⼀个神经定理证明器,⽤于解决各种具有挑战性的⾼中奥林匹克问题,包括两个改编⾃IMO的问题和来⾃AMC12、AIME竞赛的若⼲问题。
该证明器使⽤⼀个语⾔模型来寻找形式化命题(formal statement)的证明。
”The four color theorem was proved in 1976 by Kenneth Appel and Wolfgang Haken after many false proofs and counterexamples (unlike the five color theorem, proved in the 1800s, which states that five colors are enough to color a map)...The Appel and Haken proof attracted a fair amount of criticism. Part of it concerned the proof style: the statement of the Four Colour Theorem is simple and elegant so many mathematicians expected a simple and elegant proof that would explain, at least informally, why the theorem was true - not opaque IBM 370 assembly language programs.System/370 Model 148The new model also offers increased system throughput -- the amount of time it takes to perform a given amount of work -- compared to the Models 135 and 145. The Model 148 is available with 1,048,576 or 2,097,152 characters of memory. ⾼达1MB或2MB内存。
love and logic课文翻译
love and logic课文及翻译Love and logic: The story of a fallacy爱情与逻辑:谬误的故事1 I had my first date with Polly after I made the trade with my roommate Rob. That year every guy on campus had a leather jacket, and Rob couldn't stand the idea of being the only football player who didn't, so he made a pact that he'd give me his girl in exchange for my jacket. He wasn't the brightest guy. Polly wasn't too shrewd, either.在我和室友罗伯的交易成功之后,我和波莉有了第一次约会。
那一年校园里每个人都有件皮夹克,而罗伯是校足球队员中唯一一个没有皮夹克的,他一想到这个就受不了,于是他和我达成了一项协议,用他的女友换取我的夹克。
他可不那么聪明,而他的女友波莉也不太精明。
2 But she was pretty, well-off, didn't dye her hair strange colors or wear too much makeup. She had the right background to be the girlfriend of a dogged, brilliant lawyer. If I could show the elite law firms I applied to that I had a radiant, well-spoken counterpart by my side, I just might edge past the competition.但她漂亮而且富有,也没有把头发染成奇怪的颜色或是化很浓的妆。
Color Theory - CGA at GCC颜色理论CGA在GCC
The Color Wheel
Since then scientists and artists have studied and designed numerous variations of this concept.
In reality, any color circle or color wheel which presents a logically arranged sequence of pure hues has value.
The Color Wheel
A color circle, based on red, yellow and blue, is traditional in the field of art.
Sir Isaac Newton developed the first circular diagram of colors in 1666.
By varying the proportions of each primary color, you create the different tertiary colors.
The Color Wheel
If we switch the color star to the color wheel we will get this:
Color Theory
Questions thus far???
Warm Colors
Definition: Reds, oranges, and yellows are considered warm colors.
In perspective, warm colors are said to come towards you in a design
从关联理论看《博物馆奇妙夜》的字幕翻译
最新英语专业全英原创毕业论文,都是近期写作1 英汉广告翻译中的文化差异2 《贵妇的画像》的过渡性特征的分析研究3 从《一间自己的房间》看弗吉尼亚•伍尔夫的女性主义4 从《远离尘嚣》和《无名的裘德》看托马斯•哈代的婚恋观5 论《威尼斯商人》中的宗教思想影响6 《红楼梦》两个译本中称呼语翻译的对比研究7 海斯特白兰的反叛主义8 《虹》的象征主义及其生态意识9 Jane Austen’s Opinion towards Marriage in Pride and Prejudice10 中英动物习语的文化内涵及其差异11 从功能对等角度翻译委婉语12 象征手法在《少年派的奇幻漂流》中的运用研究13 《老人与海》的悲剧色彩:对完美主义的质疑14 文档所公布各专业原创毕业论文。
原创Q 95 80 35 64015 The Tragic Color of Tender Is the Night16 英语演讲语篇中的parallelism及其汉译策略—以奥巴马就职演说稿为例17 从关联理论视角看影视字幕翻译——结合美剧“绯闻少女”进行个案分析18 如何增强小学生英语课堂教学的趣味性19 商务谈判口译的语用失误的成因及负面影响对学习的启示20 Social Features and Language Characteristics in Pride and Prejudice21 从爱伦·坡《黑猫》探讨人性的善良与邪恶22 小说《飘》中斯嘉丽的人物性格分析23 愉快教学法在初中英语教学中的应用24 英语写作中干扰因素的分析25 会话含义在商务谈判中的运用26 英汉翻译中的增词技巧27 有效的英语新闻结构分析28 苔丝之罪是谁之过29 A Study on the Effectiveness of Cooperative Learning in Junior High School30 从功能对等理论看《哈利波特》小说中魔法生物名的翻译31 旅游翻译中的文化差异和处理策略32 网络英语交际对会话合作原则的影响33 《简爱》的浪漫主义解读34 中美餐桌文化差异比较研究35 The Glossology and Translation of Rhetorical Devices of Harry Potter36 论国际商务非礼貌言语行为37 Analysi s of Tony’s Tragedy in A Handful of Dust38 《傲慢与偏见》中婚姻观对当代中国的现实意义39 浅析爱伦坡《乌鸦》的语音象征40 分析奥利弗退斯特悲剧生活的原因41 简析比喻在《围城》中的运用42 女性意识的觉醒——评《雨中的猫》中的人物对比描写43 论汉语四字格的英译44 美国电影中的中国文化元素的研究45 《查泰莱夫人的情人》中女性性意识的觉醒分析46 从心理学角度探析爱米莉的爱情悲剧47 论中西方时间观念差异对日常生活的影响48 从合作原则浅析《飞屋环游记》中的言语幽默49 美国电影与文化霸权—以好莱坞大片《阿凡达》为例50 《纯真年代》中艾伦•奥伦斯卡和梅•韦兰的人物命运分析51 风筝在《追风筝的人》中的象征意义分析52 试析《生死疲劳》英文版风格之再现:文学文体学视角53 The Similarities and Differences between Chinese and Occidental Classical Gardens54 中学生英语自主学习能力的培养55 文艺复兴及浪漫主义时期希腊神话对英国文学的影响56 浅析英语无灵句中的汉英认知思维方式差异57 中西方送礼文化差异分析58 《黑暗之心》主人公马洛的性格分析59 英语双关语语境分析及其翻译60 浅析电影《我是山姆》中的反智主义61 一首平凡女性成长的赞歌—用“成长小说”理论来解读《简爱》62 《荆棘鸟》中的三位女性形象——追寻荆棘的女人63 汉语茶文化特色词的英译研究——以《茶经》和《续茶经》为例64 谁能给苔丝提供一段真正的婚姻?—浅析《德伯家的苔丝》的婚姻观65 儿童语言习得关键期假说的教育语言学重估66 《荆棘鸟》的女性主义解读67 An Analysis of the Limitations in Charles Dickens’ Critical Realism Reflected in Oliver Twist68 从USP理论角度论苹果公司的广告策略69 与身体器官有关的中英文习语对比研究70 《喧哗与骚动》中的现代主义71 汉语习语中文化负载词的英译72 浅论英文原声电影在英语教学中的应用73 布什总统演讲词中幽默话语的语用功能分析74 论矛盾修辞法在英语广告中的语用功能75 英语电影对白汉译76 本我、自我、超我--斯佳丽人物性格分析77 从文化视角浅谈旅游英语翻译78 论《喧哗与骚动》中凯蒂•康普生的悲剧79 从功能对等角度看信用证英语的翻译80 少儿英语学习中的情感因素分析81 爱情描写与《》核心主题的关系82 《傲慢与偏见》中的三层反讽83 灵魂的真实——《达洛卫夫人》意识流剖析84 The Application of Situational Teaching Approach in the Lead-in of Middle School English Classes85 从英汉广告语言特点分析中西方文化价值观86 The Features of Commercial Advertisement English87 战争留下的伤痛--《太阳照常升起》主要人物对比88 探析《红字》中齐灵渥斯的恶中之善89 Cultural Influences on Business Negotiation between China and Japan90 A Chinese-English Translation of Public Signs Based on Nida's Fuctional Equivalence Theory91 提高英语听力的有效策略及教学启示92 Psychoanalytical Study of Kate Chopin’s The Awakening93 从文化无意识的角度分析《喜福会》中的边缘人94 中西节日的对比研究95 世界经济危机影响下东莞企业的现状96 论不同语境下广告语中双关语的翻译原则97 传播学视角下的影视字幕翻译研究—以美剧《复仇》为例98 对乔治艾略特作品中的独特女性意识的研究——以《米德尔马契》为例99 从《胎记》看霍桑对科学的态度100 中美服饰的文化差异分析101 对于高中生英语学习感知风格的调查研究102 形合与意合对比研究及翻译策略103 认知视阀下的轭式修辞研究104 金融英语词汇特点及其翻译策略105 A Naturalistic Approach to Jude’s Tragedy in Jude the Obscure106 论英汉谚语的起源差异107 《永别了,武器》一书所体现的海明威的写作风格108 广告英语标题翻译的修辞特点109 从伊登和盖茨比之死探析美国梦破灭的必然性110 从《道连•格雷的画像》谈唯美主义艺术观111 从《警察与赞美诗》看欧亨利式结尾112 游戏在小学英语教学中的运用113 简析美国个性化教育对家庭教育的积极影响114 中国茶文化和西方咖啡文化对比研究115 《了不起的盖茨比》中女性人物性格分析116 论英汉口译中的数字互译117 探析英语新闻报道中的委婉语118 组织学习障碍及相应的对策119 提高学生写作能力的途径和方法120 国际贸易中常用支付方式下的风险及其防范121 刍议美国情景喜剧中的美国俚语122 从奈达翻译理论初探英汉新闻导语翻译策略123 浅论《查泰莱夫人的情人》中的女权主义124 英语旅游广告的文体分析125 《小王子》的存在主义维度分析126 分析《贵妇画像》中伊莎贝尔的个性特点127 论《简爱》中伯莎﹒梅森的象征意蕴和影响128 论外交英语的模糊性129 The modern American and Death of a salesman130 Foreign Brands Translated in Chinese131 On the Manifold Functions of the Scene of Parties in The Great Gatsby 132 《德伯家的苔丝》中苔丝人物性格分析133 从《推销员之死》看消费主义时代美国梦的破灭134 心灵探索之旅——析《瓦尔登湖》的主题135 从《野性的呼唤》浅析杰克伦敦的哲学思想及其哲学倾向136 《我的安东妮亚》中安东妮亚的成长137 论弗吉尼亚伍尔夫《海浪》的人物刻画138 A Comparison of the English Color Terms139 功能目的论视角下的企业外宣资料的英译研究140 Cultural Differences and Translation Strategies141 论象征手法在《了不起的盖茨比》中的运用142 BB电子商务安全143 电影《少年派的奇幻漂流》中的隐喻分析144 从《紫色》中的意象看黑人女性身份的自我重塑145 论小说《德库拉》中的哥特元素146 鲁迅对翻译理论的重大贡献147 适者生存—解读《野性的呼唤》中的“生命的法则”148 A Comparison of the English Color Terms149 用功能对等原则分析广告标语的英汉互译150 An Analysis of Characterization of O-lan in The Good Earth151 弗吉尼亚伍尔夫《墙上的斑点》的叙事技巧分析152 从鹿鼎记和唐吉诃德的主要人物的较对比来比中西方侠文化153 C-E Translation of Public Signs—From the Perspective of Functionalism 154 白鲸中的自传元素155 A Comparison of the English Color Terms156 从情景喜剧《老友记》浅析美国俚语的幽默效果157 The Archetype of the Ugly Duckling in The Secret Garden158 论《野性的呼唤》中的自然主义159 从文化差异比较研究中美家庭教育160 功能对等理论视角下《越狱》字幕翻译的研究161 英汉称赞语回应的对比研究162 从社会生物学角度分析《雾都孤儿》中人物性格163 《呼啸山庄》中凯瑟琳的悲剧分析164 英语教学中的跨文化意识的培养165 浅谈中国电影字幕英译中的归化与异化166 继承与颠覆—解读《傲慢与偏见》中的“灰姑娘”模式167 《收藏家》中空间与人物心理关系的解读168 从跨文化角度论商标的翻译169 A Study of Meta-cognitive Strategy Training and Its Effect on EFL Reading 170 分析文化差异在国际商务谈判中的影响171 大学英语电影教学现状及对策分析172 外国品牌中译的创新翻译研究173 英汉味觉隐喻的对比研究174 英语中“r”的分析175 A Comparison of the English Color Terms176 Analysis on Requirements for Translation Graduates from the Perspective of Recruit Advertisements177 Application of Cooperative Learning in English Reading Class of Senior High School178 英国历险小说《所罗门王的宝藏》179 论罗伯特•佩恩•沃伦《国王的人马》中对真理与自我认知的追求180 建构主义学习理论在中学英语教学中的应用181 论英语被动语态的语篇功能及其翻译策略—以《高级英语》第二册为例182 论《荆棘鸟》中的女性形象183 从《绝望主妇》对比中美女性家庭观184 从文化角度探析中英基本颜色词的比较和翻译185 On the Irony in Pride and Prejudice186 论跨文化因素在跨国企业管理中的影响作用187 情景法在新概念英语教学中的应用——以杭州新东方为例188 浅析汉英动物词的文化内涵及其翻译189 Ang el’s Face, Devil’s Heart—The Degeneration of Dorian Gray in The Picture of Dorian Gray190 从空间语言的角度分析中美隐私观念的差异191 中餐菜单英译的归化与异化192 《德伯家的苔丝》中亚雷形象分析193 海明威文学创作中主题的转折点——《乞力马扎罗的雪》194 The Influence of Bob Dylan and His Works on American Social Movements195 论英汉数字习语的差异及翻译196 从关联理论看《博物馆奇妙夜》的字幕翻译197 论西尔维娅•普拉斯诗歌中的死亡意象198199 《达洛维夫人》中的生死观初探200 Slips of Tongue in English Learning as a Second Language。
四色原理简介
四色原理简介这是一个拓扑学问题,即找出给球面(或平面)地图着色时所需用的不同颜色的最小数目。
着色时要使得没有两个相邻(即有公共边界线段)的区域有相同的颜色。
1852年英国的格思里推测:四种颜色是充分必要的。
1878年英国数学家凯利在一次数学家会议上呼吁大家注意解决这个问题。
直到1976年,美国数学家阿佩哈尔、哈肯和考西利用高速电子计算机运算了1200个小时,才证明了格思里的推测。
四色问题的解决在数学研究方法上的突破,开辟了机器证明的美好前景。
四色定理的诞生过程世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)。
四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯·格思里(Francis Guthrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。
”,用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。
”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。
哈密尔顿接到摩尔根的信后,对四色问题进行论证。
但直到1 865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。
世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
统计遗传 Package ‘statgenIBD’ 计算 IBD 概率说明书
Package‘statgenIBD’August30,2023Type PackageTitle Calculation of IBD ProbabilitiesDescription For biparental,three and four-way crosses Identity by Descent (IBD)probabilities can be calculated using Hidden Markov Models andinheritance vectors following Lander and Green(<https:///stable/29713>)and Huang(<doi:10.1073/pnas.1100465108>).One of a series of statistical geneticpackages for streamlining the analysis of typical plant breeding experimentsdeveloped by Biometris.Version1.0.6Date2023-08-22License GPLEncoding UTF-8Depends R(>=3.6)Imports data.table,ggplot2,Matrix,rlang,Rcpp,stringiLinkingTo Rcpp,RcppArmadilloRoxygenNote7.2.3Suggests rmarkdown,knitr,tinytestVignetteBuilder knitrURL https://biometris.github.io/statgenIBD/index.html,https:///Biometris/statgenIBD/BugReports https:///Biometris/statgenIBD/issues NeedsCompilation yesAuthor Martin Boer[aut](<https:///0000-0002-1879-4588>), Bart-Jan van Rossum[aut,cre](<https:///0000-0002-8673-2514>),Wenhao Li[ctb](<https:///0000-0001-5719-5775>),Johannes Kruisselbrink[ctb](<https:///0000-0003-1673-5725>) Maintainer Bart-Jan van Rossum<*************************>Repository CRANDate/Publication2023-08-3017:10:02UTC12 c.IBDprob R topics documented:c.IBDprob (2)calcIBD (3)getProbs (5)plot.IBDprob (6)readIBDs (7)readRABBIT (8)summary.IBDprob (9)writeFlapjack (10)writeIBDs (11)Index13 c.IBDprob Concatenate function for objects of class IBDprobDescriptionConcatenates objects of class IBDprob.All objects that are concatenated should have the same population type and the same map.The function is mainly meant for combining information for multiple crosses with overlapping parents.Usage##S3method for class IBDprobc(...)Arguments...Objects of class IBDprob.ValueAn object of class IBDprob containing data for all concatenated objects.Examples##Compute IBD probabilties for AxB.AB<-calcIBD(popType="F4DH",markerFile=system.file("extdata/multipop","AxB.txt",package="statgenIBD"),mapFile=system.file("extdata/multipop","mapfile.txt",package="statgenIBD"))##Compute IBD probabilties for Axc.AC<-calcIBD(popType="F4DH",markerFile=system.file("extdata/multipop","AxC.txt",package="statgenIBD"),mapFile=system.file("extdata/multipop","mapfile.txt",package="statgenIBD"))##Combine results.ABC<-c(AB,AC)##Check summary.summary(ABC)calcIBD Calculate IBD probabilitiesDescriptionCalculate IBD probabilities for different types of populations.UsagecalcIBD(popType,markerFile,mapFile,evalPos=NULL,evalDist=NULL,grid=TRUE,verbose=FALSE)ArgumentspopType A character string indicating the type of population.One of DH,Fx,FxDH, BCx,BCxDH,BC1Sx,BC1SxDH,C3,C3DH,C3Sx,C3SxDH,C4,C4DH,C4Sx,C4SxDH(see Details).markerFile A character string indicating the location of thefile with genotypic information for the population.Thefile should be in tab-delimited format with a headercontaining marker names.mapFile A character string indicating the location of the mapfile for the population.The file should be in tab-delimited format.It should consist of exactly three columns,marker,chromosome and position.There should be no header.The positions inthefile should be in centimorgan.evalPos A data.frame with evaluation positions to which the calculations should be lim-ited.evalDist An optional numerical value indicating the maximum distance for marker posi-tions.Extra markers will be added based on the value of grid.grid Should the extra markers that are added to assure the a maximum distince of evalDist be on a grid(TRUE)or in between marker existing marker positions(FALSE).verbose Should messages indicating the progress of the process be printed?DetailsIBD probabilities can be calculated for many different types of populations.In the following table all supported populations are listed.Note that the value of x in the population types is variable,with its maximum value depicted in the last column.Population type Cross Description max.x DH biparental doubled haploid populationFx biparental Fx population(F1,followed by x-1generations of selfing)8 FxDH biparental Fx,followed by DH generation8BCx biparental backcross,second parent is recurrent parent9 BCxDH biparental BCx,followed by DH generation9BC1Sx biparental BC1,followed by x generations of selfing7BC1SxDH biparental BC1,followed by x generations of selfing and DH6C3three-way three way cross:(AxB)x CC3DH three-way C3,followed by DH generationC3Sx three-way C3,followed by x generations of selfing7C3SxDH three-way C3,followed by x generations of selfing and DH generation6C4four-way four-way cross:(AxB)x(CxD)C4DH four-way C4,followed by DH generationC4Sx four-way C4,followed by x generations of selfing6C4SxDH four-way C4,followed by x generations of selfing and DH generation6ValueAn object of class IBDprob,a list withfive elements,map a data.frame with chromosome and position of the markers.markers a3-dimensional array of IBD probabilities with genotypes,markers and parents as array dimensions.parents the parents.popType the population type.Examples##Compute IBD probabilities for Steptoe Morex.SxMIBD<-calcIBD(popType="DH",markerFile=system.file("extdata/SxM","SxM_geno.txt",package="statgenIBD"),mapFile=system.file("extdata/SxM","SxM_map.txt",package="statgenIBD"))##Check summary.summary(SxMIBD)##Compute IBD probabilities for Steptoe Morex.##Add extra evaluation positions in between exiting marker positions##to assure evaluation positions are at most5cM apart.SxMIBD_Ext<-calcIBD(popType="DH",getProbs5markerFile=system.file("extdata/SxM","SxM_geno.txt",package="statgenIBD"),mapFile=system.file("extdata/SxM","SxM_map.txt",package="statgenIBD"),evalDist=5)##Check summary.summary(SxMIBD_Ext)getProbs Extract Probabilities for markersDescriptionExtract IBD probabilities for one or more markers from an object of class IBDprob.UsagegetProbs(IBDprob,markers,sumProbs=FALSE)ArgumentsIBDprob An object of class IBDprob.markers A character vector of markers that should be extracted.sumProbs Should the probabilities by summed per parent.If TRUE the probability for e.g.parent A in a cross with parent B will be calculated as pA+0.5*pAB.If FALSEboth pA and pAB will be output without further calculations.ValueA data.frame with IBD probabilities for the extracted markers in the column and genotypes in therows.Examples##Compute IBD probabilities for Steptoe Morex.SxMIBD<-calcIBD(popType="DH",markerFile=system.file("extdata/SxM","SxM_geno.txt",package="statgenIBD"),mapFile=system.file("extdata/SxM","SxM_map.txt",package="statgenIBD"))##Get probabilities for a single marker.probOne<-getProbs(IBDprob=SxMIBD,markers="plc")head(probOne)##Get probabilities for a multiple markers.6plot.IBDprob probMult<-getProbs(IBDprob=SxMIBD,markers=c("plc","tuba1"))head(probMult)plot.IBDprob Plot function for objects of class IBDprobDescriptionCreates a plot for an object of class IBDprob.Three types of plot can be made:•singleGeno A plot for a single genotype showing the IBD probabilities for all parents acrossthe genome.•allGeno A plot showing for all genotypes the IBD probabilities of the parent with the highestprobability per marker.•pedigree A plot showing the structure of the pedigree of the population.•meanProbs A plot showing the coverage of each parent across the population.•totalCoverage A plot showing the total coverage of each parent.Usage##S3method for class IBDprobplot(x,...,plotType=c("singleGeno","allGeno","pedigree","meanProbs","totalCoverage"), genotype,chr=NULL,title=NULL,output=TRUE)Argumentsx An object of class IBDprob....Further arguments.Unused.plotType A character string indicating the type of plot that should be made.genotype A character string indicating the genotype for which the plot should be made.Only for plotType="singleGeno".chr A character vector indicating the chromosomes to which the coverage should berestricted.Only for plotType="meanProbs"and plotType="totalCoverage".If NULL all chromosomes are included.title A character string,the title of the plot.output Should the plot be output to the current device?If FALSE,only a ggplot objectis invisibly returned.readIBDs7 ValueA ggplot object is invisibly returned.Examples##Not run:##Compute IBD probabilities for Steptoe Morex.##Add extra evaluation positions in between exiting marker positions##to assure evaluation positions are at most2cM apart.SxMIBD_Ext<-calcIBD(popType="DH",markerFile=system.file("extdata/SxM","SxM_geno.txt",package="statgenIBD"),mapFile=system.file("extdata/SxM","SxM_map.txt",package="statgenIBD"),evalDist=2)##Plot results for genotype dh005.plot(SxMIBD_Ext,plotType="singleGeno",genotype="dh005")##Plot results for all genotypes.plot(SxMIBD_Ext,plotType="allGeno")##Plot structure of the pedigree.plot(SxMIBD_Ext,plotType="pedigree")##Plot coverage across population.plot(SxMIBD_Ext,plotType="meanProbs")##Plot total coverage.plot(SxMIBD_Ext,plotType="totalCoverage")##End(Not run)readIBDs Read IBD probabilities fromfileDescriptionReads IBD probabilities from a plain text,tab-delimited.txt or.ibdfirmation about thefile format can be found in the vignette(vignette("IBDFileFormat",package="statgenIBD")).A data.frame with the map must be specified as well.8readRABBITUsagereadIBDs(infile,map)Argumentsinfile A character string specifying the path of the inputfipressedfiles with extension".gz"or".bz2"are supported as well.map A data.frame with columns chr for chromosome and pos for position.Positions should be in centimorgan(cM).They should not be cumulative over the chromo-somes.Other columns are ignored.Marker names should be in the row names.These should match the marker names in the inputfile.ValueAn object of class IBDprob.Examples##Read map for Steptoe Morex.SxMmap<-read.delim(system.file("extdata/SxM","SxM_map.txt",package="statgenIBD"),header=FALSE) rownames(SxMmap)<-SxMmap$V1SxMmap<-SxMmap[,-1]colnames(SxMmap)<-c("chr","pos")##Read IBD probabilities for Steptoe Morex.SxMIBD<-readIBDs(system.file("extdata/SxM","SxM_IBDs.txt",package="statgenIBD"),map=SxMmap)##Print summary.summary(SxMIBD)readRABBIT Read IBD probabilitiesDescriptionRead afile with IBD probabilities computed by the RABBIT software package.It is possible to additionally read the pedigreefile that is also used by RABBIT.Reading thisfile allows for plotting the pedigree.UsagereadRABBIT(infile,pedFile=NULL)summary.IBDprob9Argumentsinfile A character string,a link to a.csvfile with IBD pressed.csv files with extension".gz"or".bz2"are supported as well.pedFile A character string,a link to a.csvfile with pedigree information as used by RABBIT as pressed.csvfiles with extension".gz"or".bz2"aresupported as well.ValueAn IBDprob object with map and markers corresponding to the imported information in the im-ported.csvfile.ReferencesZheng,Chaozhi,Martin P Boer,and Fred A Van Eeuwijk.“Recursive Algorithms for Modeling Genomic Ancestral Origins in a Fixed Pedigree.”G3Genes|Genomes|Genetics8(10):3231–45.https:///10.1534/G3.118.200340.Examples##Not run:##Read RABBIT data for barley.genoFile<-system.file("extdata/barley","barley_magicReconstruct.zip",package="statgenIBD")barleyIBD<-readRABBIT(unzip(genoFile,exdir=tempdir()))##End(Not run)summary.IBDprob Summary function for objects of class IBDprobDescriptionPrints a short summary for objects of class IBDprob.The summary consists of the population type, number of evaluation points,number of individuals and names of the parents in the object.Usage##S3method for class IBDprobsummary(object,...)Argumentsobject An object of class IBDprob....Not used.10writeFlapjack ValueNo return value,a summary is printed.Examples##Compute IBD probabilities for Steptoe Morex.SxMIBD<-calcIBD(popType="DH",markerFile=system.file("extdata/SxM","SxM_geno.txt",package="statgenIBD"),mapFile=system.file("extdata/SxM","SxM_map.txt",package="statgenIBD"))##Print summarysummary(SxMIBD)writeFlapjack Write to Flapjack formatDescriptionExport the results of an IBD calculation to Flapjack format so it can be visualized there.UsagewriteFlapjack(IBDprob,outFileMap="ibd_map.txt",outFileGeno="ibd_geno.txt")ArgumentsIBDprob An object of class IBDprob.outFileMap A character string,the full path to the output mapfile.outFileGeno A character string,the full path to the output genotypefile.ValueNo output.Outputfiles are written to a folder.Examples##Compute IBD probabilities for Steptoe Morex.SxMIBD<-calcIBD(popType="DH",markerFile=system.file("extdata/SxM","SxM_geno.txt",package="statgenIBD"),mapFile=system.file("extdata/SxM","SxM_map.txt",package="statgenIBD"))##Write output in Flapjack format to temporary files.writeFlapjack(SxMIBD,outFileMap=tempfile(fileext=".txt"),outFileGeno=tempfile(fileext=".txt"))writeIBDs Write IBD probabilities tofile.DescriptionWrites IBD probabilities to a plain text,tab-delimited.txt or.ibdfirmation about thefile format can be found in the vignette(vignette("IBDFileFormat",package="statgenIBD")).UsagewriteIBDs(IBDprob,outFile,decimals=6,minProb=0,compress=FALSE) ArgumentsIBDprob An object of class IBDprob containing the IBD probabilities.outFile A character string specifying the path of the outputfile.decimals An integer value specifying the number of decimals to include in writing the outputfile.minProb A numerical value between zero and1/number of parents,specifying the mini-mum probability cutoff value.Probabilities below this cutoff are set to zero andother probabilities are rescaled to make sure that the probabilities sum up to one.compress Should the output be compressed to.gz format?ValueNo output.The outputfile is created as a result of calling this function.Examples##Compute IBD probabilities for Steptoe Morex.SxMIBD<-calcIBD(popType="DH",markerFile=system.file("extdata/SxM","SxM_geno.txt",package="statgenIBD"),mapFile=system.file("extdata/SxM","SxM_map.txt",package="statgenIBD")) ##Write IBDs to temporary files.writeIBDs(IBDprob=SxMIBD,outFile=tempfile(fileext=".txt"))##Write IBDs to file,set values<0.05to zero and only print3decimals.writeIBDs(IBDprob=SxMIBD,outFile=tempfile(fileext=".txt"),decimals=3,minProb=0.05)Indexc.IBDprob,2calcIBD,3getProbs,5plot.IBDprob,6readIBDs,7readRABBIT,8summary.IBDprob,9writeFlapjack,10writeIBDs,1113。
弗雷格的算术
弗雷格的算术弗雷格的算术- 卢昌海 -“算术” 一词按《辞海》的定义是“数学中最基础与初等的部分”。
《辞海》虽不是学术辞典,但对“算术” 一词同时用了“基础” 和“初等” 两个形容倒是颇为恰当的。
相比之下,维基百科(wikipedia) 的“算术” 定义——“最古老、最简单的数学分支” (the oldest and most elementary branch of mathematics)——仅仅包含了“初等” 这一层含义,就略显欠缺了[注一]。
当然,这也不怪维基百科,因为普通现代人听到“算术” 一词所想到的大约确实只是“初等” 这一层含义。
不过对数学家、逻辑学家和哲学家来说,起码有过一段时间,“算术” 一词中的“基础” 之意是很被凸显的。
戈特洛布·弗雷格 (1848-1925)在拙作罗素的“大罪”——《数学原理》中,曾经提到过“数学基础” (founda tions of mathematics) 这一研究领域的几个主要流派,并着重介绍了其中的“逻辑主义” (Logicism) 流派中的集大成人物罗素(Bertrand Russell),以及他和怀特海(Alfred NorthWhitehead) 合力打造的《数学原理》 (Principia Mathematica) 这座逻辑主义的高峰——虽然高峰过后几乎是悬崖式的衰落。
在本文中,我们要介绍逻辑主义的另一位主要人物的著作。
此人名叫弗雷格(Gottlob Frege),是逻辑主义的先驱人物之一,兼有数学家、逻辑学家和哲学家的头衔,是德国人[注二]。
逻辑主义的核心目标是将数学约化为逻辑。
不过数学实在是一个过于庞大的体系,虽然在弗雷格从事逻辑主义研究的年代 (19 世纪末和 20 世纪初),数学体系的庞大跟如今相比还差得很远,却也早已不是弗雷格所能驾驭的,而且当时逻辑本身的表达力也还相当有限。
因此弗雷格将研究的目标指向了在他看来具有基础地位、同时又相对简单的算术,试图将算术约化为逻辑[注三]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LIE ALGEBRAS AND THE FOUR COLOR THEOREM
DROR BAR-NATAN
Abstract. We present a “reasonable” statement about Lie algebras that is equivalent to the Four Color Theorem.
tb3 c2
c tcc1 c2 c1 fc1 c2 c3 c3 tc3 a2
a,b,... ,c3 =1
fabc (or fbca or fcab )
Figure 1. An example illustrating the construction of WL (G). Notice that when G is drawn in the plane, we assume counterclockwise orientation for all vertices (unless noted otherwise), and that the cyclic symmetry fabc = fbca = fcab of the structure constants and the symmetry tab = tba of the inverse metric ensures that WL (G) is well defined.
See [B-NG] for a similar context in which the different sl(2)’s “decouple”. The Four Color Theorem was conjectured by Francis Guthrie in 1852 and proven by K. I. Appel and W. Haken [AH] in 1976. See also [SK].
1
2
ta3 b2 (or tb2 a3 ) a3 b2 fa1 a2 a3 (or ... ) a1 a2 bb t 1 taa1 a b
DROR BAR-NATAN
fb1 b2 b3 fa1 a2 a3 fb1 b2 b3 fc1 c2 c3 taa1 tbb1 tcc1 tb3 c2 tc3 a2 ta3 b2
2 1
LIE ALGEBRAS AND THE FOUR COLOR THEOREM
orthonormal) basis {La }, so that most of the constants tab and fabc vanish, thus greatly reducing the number of summands in the definition of WL (G). Unless otherwise stated, whenever dealing with a Lie algebra of matrices, we will take the metric to be the matrix trace in the defining representation: La , Lb = tr(La Lb ). Lemma-Definition 1.1. (proof in section 2) If a connected G has v vertices, then Wsl(N ) (G) top is a polynomial in N of degree at most v + 2 in N . Thus we can set Wsl (N ) (G) to be the 2 v coefficient of N 2 +2 in Wsl(N ) (G). The following statement sounds rather reasonable; it just says that if G is “sl(2)-trivial”, then it is at least “sl(N )-degenerate”. For us who grew up thinking that all that there is to learn about sl(N ) is already in sl(2), this is not a big surprise:
arXiv:q-alg/9606016v1 23 Jun 1996
Contents 1. Introduction 1.1. Acknowledgement 2. Understanding Wsl(N ) 3. Understanding Wsl(2) References 1 3 3 5 7
1. Introduction Let us start by recalling a well-known construction that associates to any finite dimensional metrized Lie algebra L a numerical-valued functional WL defined on the set of all oriented trivalent graphs G (that is, trivalent graphs in which every vertex is endowed with a cyclic ordering of the edges emanating from it). This construction underlies the gaugegroup dependence of gauge theories in general and of the Chern-Simons topological field theory in particular (see e.g. [B-N1, AS1, AS2]) and plays a prominent role in the theory of finite type (Vassiliev) invariants of knots ([B-N2, B-N3, B-N4]) and most likely also in the theory of finite type invariants of 3-manifolds ([O, GO, R]). Fix a finite dimensional metrized Lie algebra L (that is, a finite dimensional Lie algebra L with an ad-invariant symmetric non-degenerate bilinear form), choose some basis {La }dim a=1 of L, let tab = La , Lb be the metric tensor, let tab be the inverse matrix of tab , and let fabc be the structure constants of L relative to {La }: fabc = La , [Lb , Lc ] . Let G be some oriented trivalent graph. To define WL , label all half-edges of G by symbols from the list a, b, c, . . . , a1 , b1 , . . . , and sum over a, b, . . . , a1 , . . . ∈ {1, . . . , dim L} the product over the vertices of G of the structure constants “seen” around each vertex times the product over the edges of the t·· ’s seen on each edge. This definition is much better explained by an example, as in figure 1. By introducing an explicit change-of-basis matrix as in [B-N2] or by re-interpreting WL (G) in terms of abstract tensor calculus as in [B-N3], one can verify that WL (G) does not depend on the choice of the basis {La }. Typically one chooses a “nice” orthonormal (or almost
top Statement 1. For a connected oriented trivalent graph G, Wsl(2) (G) = 0 implies Wsl (N ) (G) = 0.
Lie-theoretically, there is much to say about sl(2) and sl(N ). There are representations of sl(2) into sl(N ), there is an “almost decomposition” of sl(N ) into a product of sl(2)’s1 , and there are many other similarities. A-priori, the above statement sounds within reach. The purpose of this note is to explain why statement 1 is equivalent to the Four Color Theorem2 . This equivalence follows from the following two propositions, proven in sections 2 and 3, respectively: Proposition 1.2. Let G be a connected oriented trivalent graph. If G is 2-connected, top |Wsl (N ) (G)| is is equal to the number of embeddings of G in an oriented sphere. Otherwise, top Wsl(N ) (G) = 0. Proposition 1.3. (Penrose [P]. See also [Ka1, Ka2, KS].) If G is planar with v vertices v and Gc is the map defined by its complement, than |Wsl(2) (G)| is 2 2 −2 times the total number of colorings of Gc with four colors so that adjacent states are colored with different colors.