【命中考心】2013高考数学必考点之——圆的方程 典型例题一
高中数学圆的方程 经典例题(含详细解析)
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上, 又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a . 由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=abb a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程. 解:设切线方程为1(3)y k x -=-,即310kx y k --+=, ∵圆心(1,0)到切线l 的距离等于半径2, ∴()22|31|21k k k -+=+-,解得34k =-,∴切线方程为31(3)4y x -=--,即34130x y +-=, 当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2, 故直线3x =也适合题意。
圆与方程典型例题
圆的方程考点一:求圆的方程1.过两点P (2,2)、Q (4,2),且圆心在直线x -y =0上的圆的标准方程是( )A .(x -3)2+(y -3)2=2B .(x +3)2+(y +3)2=2C .(x -3)2+(y -3)2= 2D .(x +3)2+(y +3)2= 22.求经过点A (10,5)、B (-4,7),半径为10的圆的方程.3. 求以A (2,2)、B (5,3)、C (3,-1)为顶点的三角形的外接圆的标准方程.4. 已知A (3,-2),B (-5,4),则以AB 为直径的圆的方程是( )A .(x -1)2+(y +1)2=25B .(x +1)2+(y -1)2=25C .(x -1)2+(y +1)2=100D .(x +1)2+(y -1)2=1005.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是( )A .a <-2或a >23B .-23<a <2 C .-2<a <0 D .-2<a <23 6.220x y x y R +-++=表示一个圆,则R 的取值范围是( ) A .(],2-∞ B .(),2-∞ C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎤-∞ ⎥⎝⎦ 7. 已知方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求:(1)实数m 的取值范围; (2)圆心坐标和半径.8.ABC ∆的三个顶点坐标分别为()()()1,5,2,2,5,5A B C ---,求其外接圆的方程.7.一圆经过点)3,4(-P ,圆心在直线012=+-y x 上,且半径为5,求该圆的标准方程。
点关于直线对称8.圆12-)1(22=+-)(y x 关于直线02=--y x 对称的圆的方程为( ) 9.圆14)3(22=++-)(y x 关于直线0=+y x 对称的圆的方程是( ) A.14)3(22=-++)(y x B.13)4(22=++-)(y x C.13)4(22=-++)(y x D.14)3(22=-+-)(y x10.经过两点P (-2,4)、Q (3,-1),且在x 轴上截得的弦长为6的圆的方程.11.已知直线01=-+y x 与圆心为C 的圆4a -)1(22=+-)(y x 相交于B A ,两点,若ABC ∆为等边三角形,则实数=a ( )A.6-B.6C.6±D.61±12.圆心在x 轴上,半径长为2,且过点),(12-的圆的方程为( ) A.2)1(22=++y x B.2222=++)(y x C.2)3(22=++y x C.2)1(22=++y x 或2)3(22=++y x13.点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是______ 外14.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程是( )A .(x -2)2+y 2=5B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5周长最小15.圆过点)4,1(),2,1(--B A ,求:(1)周长最小的圆的方程(2)圆心在直线042=--y x 上的圆的方程。
高考数学复习圆的方程专项练习(附解析)
高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。
以下是圆的方程专题练习,请考生查缺补漏。
一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。
2013江苏高考数学考点8-直线与圆-典型易错题会诊-命题角度-圆的方程复习资料
命题角度4 圆的方程1(典型例题)从原点向圆x 2+y 2-12y+27=0作两条切线,则该圆夹在两条切线间的劣弧长为( )ππππ6.4.2..D C B A[考场错解]由半径为3,圆心与原点距离为6,可知两切线间的夹角为60。
,故所相应的圆心角为120,故所求劣弧为圆弧长的C 故选为.4323232ππ=⨯⨯.[专家把脉]没有理解清楚优弧,劣弧的概念,劣弧应为相对较短的一段弧。
[对症下药]所求劣弧是整个圆弧的ππ2313231=⨯⨯故所求弧长为.2.(典型例题) △ABC 的外接圆的圆心为O ,两条边上的高的交点为H.),(OC OB OA m OH ++=则实数m=______.[考场错解]选取特殊三角形,取△ABC 为等边三角形,则,0||,0||=++=OC OB OA OH 故m 可取任意实数。
[专家把脉]情况太特殊,若所取三角形为等腰三角形(非等边三角形)此时0||,0||≠++≠OC OB OA OH 此时与m 为任意实数相矛盾。
[对症下药].1,.,.90,,.1.=∴++=-===<=m OC OB OA OH OC OB OA OH A ABC m 故或利用直角三角形意义又可求由向量的加减法的几何3.(典型例题)圆心在直线2x-y-7=0上的圆C 与y 轴交于两点A(0,-4),B(0,-2),则圆C 的方程为_____.[考场错解]设圆的方程为⎪⎪⎩⎪⎪⎨⎧=---+=-∙-=----=-++∙-==-+-.072)2()4(224,24,02,0.)()(00220200220200222020y x r y x x r y x x x x y r y y x x 故分别为方程的两根令解得x 0=-3,y 0=-13,r=168.故所求圆的方程为(x+3)2+(y+13)2=168.[专家把脉]应是令x=0,而不是令y=0,故后面的结果均错。
[对症下药] 法一:∵AB 的中垂线,3-=y 必过圆心故解⎩⎨⎧=---=0723y x y 得圆心坐标为=-'|'|),3,2(0A O ∴.5所求圆的方程为.5)3()2(22=++-y x法二:设圆C 的方程:22020)()(r y y x x =-+-圆心在直线072=--y x 上07200=--∴y x ①又 圆过A (0, -4) B (0, -2)22020)4(r y x =--+∴ ②22020)2(r y x =--+ ③ 由①②③解得⎪⎩⎪⎨⎧=∴-==53200r y x 圆的方程++-y x ()2(2 2)3专家会诊1.求圆的方程应注意根据所给的条件,恰当选择方方程的形式,用待定系数法求解.2讨论点、直线、圆与圆的位置关系时,一般可从代数特征(方程组解的个数)或几何特征去考虑,其中几何特征数更为简捷实用。
圆方程经典例题
高中数学圆的方程典型例题类型一:圆的方程〔1〕标准方程,圆心a,b,半径为r;点M(x0,y0)与圆(x a)2(y b)2r2的位置关系:当,点在圆外当,点在圆上当,点在圆内〔2〕一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。
3〕求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
1.假设过点P(a,a)可作圆x2+y2-2ax+a2+2a-3=0的两条切线,那么实数a的取值范围是.2.圆x2+y2-2x+6y+5a=0关于直线y=x+2b成轴对称图形,那么a-b的取值范围是()A.(-∞,4)B.(-∞,0)C.(-4,+∞)D.(4,+∞)3.求过两点A(1,4)、B(3,2)且圆心在直线y 0上的圆的标准方程并判断点P(2,4)与圆的关4.求半径为4,与圆x2y24x 2y 4 0相切,且和直线y0相切的圆的方程.5.求经过点A(0,5),且与直线x 2y 0和2x y0都相切的圆的方程.6.直线l:x+y-2=0和圆C:x2+y2-12x-12y+54=0,那么与直线l和圆C都相切且半径最小的圆的标准方程是.7、设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为3:1,在满足条件(1)(2)的所有圆中,求圆心到直线l:x 2y0的距离最小的圆的方程.12+(y-1)2222=上的动点,那么|PN|-|PM|的8.点P(2,2),点M是圆O:x=上的动点,点N是圆O:(x-2)+y 最大值是()A.-1B.-2类型二:直线与圆的位置关系直线与圆的位置关系有三种情况:〔1〕设直线l:AxByC0222,圆心Ca,b到l的距离为,圆C:xa ybrAa BbC,那么有dB2A22〕过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),那么过此点的切线方程1、直线3x y 23 0和圆x2y24,判断此直线与圆的位置关系.2:直线x y 1与圆x2y22ay 0(a 0)没有公共点,那么a的取值范围是3:假设直线ykx2与圆(x2)2(y3)21有两个不同的交点,那么k的取值范围是.4.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为.圆(x3)2(y3)29上到直线3x4y110的距离为1的点有几个6.、假设直线y x m与曲线y 4 x2有且只有一个公共点,求实数m的取值范围.7.圆M:x2(y2)21,Q是x轴上的动点,QA、QB分别切圆M于A,B两点(1)假设点Q的坐标为〔1,0〕,求切线QA、QB的方程;42(2)求四边形QAMB的面积的最小值;(3)假设AB,求直线MQ的方程.3类型三:圆与圆的位置关系通过两圆半径的和〔差〕,与圆心距〔d〕之间的大小比拟来确定。
高中数学圆的方程典型例题选
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
类型三:弦长、弧问题例8、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为例10、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系例11、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系.例12、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.例13 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?类型五:圆与圆的位置关系14:若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则实数m 的取值集合是 .15:求与圆522=+y x 外切于点)2,1(-P ,且半径为52的圆的方程.解:设所求圆的圆心为),(1b a O ,则所求圆的方程为20)()(22=-+-b y a x .∵两圆外切于点P ,∴131OO =,∴),(31)2,1(b a =-,∴6,3=-=b a ,∴所求圆的方程为20)6()3(22=-++y x .。
最新高中数学圆的方程经典例题与解析
高中数学圆的方程经典例题与解析例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a ra解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r . 故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k 解得43=k 所以()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解. 例3、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB .例4 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.例5:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。
高中数学圆的方程典型例题
高中数学圆的方程典型例题类型一:圆的方程例1求过两点)4,1(A、)2,3(B且圆心在直线0=y上的圆的标准方程并判断点)4,2(P与圆的关系.例2求半径为4,与圆042422=---+y某y某相切,且和直线0=y相切的圆的方程.例3求经过点)5,0(A,且与直线02=-y某和02=+y某都相切的圆的方程.例4、设圆满足:(1)截y轴所得弦长为2;(2)被某轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y某l:的距离最小的圆的方程.类型二:切线方程、切点弦方程、公共弦方程例5已知圆422=+y某O:,求过点()42,P与圆O相切的切线.例6两圆0111221=++++FyE某Dy某C:与0222222=++++FyE某Dy某C:相交于A、B两点,求它们的公共弦AB所在直线的方程.例7、过圆122=+y某外一点)3,2(M,作这个圆的两条切线MA、MB,切点分别是A、B,求直线AB的方程。
练习:1.求过点(3,1)M,且与圆22(1)4某y-+=相切的直线l的方程.2、过坐标原点且与圆0252422=++-+y某y某相切的直线的方程为3、已知直线0125=++ay某与圆0222=+-y某某相切,则a的值为.类型三:弦长、弧问题例8、求直线063:=--y某l被圆042:22=--+y某y某C截得的弦AB 的长.例9、直线0323=-+y某截圆422=+y某得的劣弧所对的圆心角为例10、求两圆0222=-+-+y某y某和522=+y某的公共弦长类型四:直线与圆的位置关系例11、已知直线0323=-+y某和圆422=+y某,判断此直线与已知圆的位置关系.例12、若直线m某y+=与曲线24某y-=有且只有一个公共点,求实数m的取值范围.例13圆9)3()3(22=-+-y某上到直线01143=-+y某的距离为1的点有几个?练习1:直线1=+y某与圆)0(0222>=-+aayy某没有公共点,则a的取值范围是练习2:若直线2+=k某y与圆1)3()2(22=-+-y某有两个不同的交点,则k的取值范围是.3、圆034222=-+++y某y某上到直线01=++y某的距离为2的点共有().(A)1个(B)2个(C)3个(D)4个4、过点()43--,P作直线l,当斜率为何值时,直线l与圆()()42122=++-y某C:有公共点,如图所示.类型五:圆与圆的位置关系问题导学四:圆与圆位置关系如何确定?例14、判断圆02662:221=--++y某y某C与圆0424:222=++-+y某y某C的位置关系,例15:圆0222=-+某y某和圆0422=++yy某的公切线共有条。
高中数学圆的方程典型例题(含答案)
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
高三数学 圆的6个考点的典型例题
高三数学圆的6个考点的典型例题【典型例题】考点一研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。
法一:设直线L的方程为:y=k(x+2),与圆的方程联立,代入圆的方程令△>0可得:。
法二:设直线L的方程为:y=k(x+2),利用圆心到直线的距离d O-L∈[0,R]可解得:。
考点二研究圆的切线例2 直线y=x+b与曲线有且仅有一个公共点,求b的取值范围。
分析:作出图形后进行观察,以找到解决问题的思路。
解:曲线即x2+y2=1(x≥0),当直线y=x+b与之相切时,满足:由观察图形可知:当或时,它们有且仅有一个公共点。
例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的方程。
解:因P点在圆上,故可求切线L的方程为x+2y=5。
说明:过圆x2+y2+Dx+Ey+F=0上一点P(x0,y0)的切线方程为:如果是过圆外一点作圆的切线,其切线方程的求解应利用△=0或利用圆心到直线的距离等于半径进行。
考点三求圆的切线长例4 过点P(2,3)作圆x2+y2=5的切线L,切点为M,求切线段LM的长。
分析:数形结合,构造三角形求LM,如图。
解:说明:自圆x2+y2+Dx+Ey+F=0外一点P(x0,y0)向圆所引切线段的长为:考点四研究两圆的位置关系例5 求过两圆x2+y2-1=0和x2+y2-4x=0的交点且与直线相切的圆的方程。
解:设所求圆的方程为x2+y2-1+λ(x2+y2-4x)=0,整理后得:因为该圆与直线相切,故圆心到直线的距离等于半径,即:代入即可得所求圆的方程为:3x2+3y2+32x-11=0.说明:利用过两圆交点的圆系方程求解比较简洁。
过两定圆交点的圆系方程为:,λ、μ不同时为0,两边同除以λ(或μ),则该方程只有一个待求参数。
考点五研究两相交圆的公共弦所在直线方程例6 求两圆x2+y2-1=0和x2+y2-4x=0的交点弦所在的直线方程。
高中数学圆的方程知识点及习题(含答案)
圆的方程【考纲要求】1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,2.能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.3.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;4.能用待定系数法,由已知条件导出圆的方程. 【知识网络】【考点梳理】考点一:圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=.(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.考点二:圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E --. 圆的方程圆的一般方程简单应用圆的标准方程点与圆的关系(2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 考点三:点和圆的位置关系如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<圆的标准方程与一般方程的转化:标准方程垐垐?噲垐?展开配方一般方程. 【典型例题】类型一:圆的标准方程例1. 已知圆与y 轴相切,圆心在直线x-3y=0,且这个圆经过点A(6,1),求该圆的方程.【思路点拨】已知圆与y 轴相切,圆心在直线x-3y=0,因此可设圆的标准方程,利用待定系数法解决问题.解析:设圆心为||3a a r a ⎛⎫∴= ⎪⎝⎭,,()2226133111a a a a a ⎛⎫∴-+-= ⎪⎝⎭∴==或 ∴圆心为(3,1)(111,37)∴圆的方程为(x-3)2+(y-1)2=9或(x-111)2+(y-37)2=1112. 总结升华:圆心或半径的几何意义明显,则可设标准方程. 举一反三:【变式1】若圆C 的半径为1,圆心在第一象限,且与直线4x-3y=0和x 轴都相切,则该圆的标准方程是( )A. 22(2)(1)1x y -+-= B.22(2)(1)1x y -++=C. 22(2)(1)1x y ++-= D. 22(3)(1)1x y -+-=解析:依题意,设圆心坐标为(,1)a ,其中0a >,则有|43|15a -=,由此解得2a =,因此所求圆的方程是22(2)(1)1x y -+-=,选A.类型二:圆的一般方程例2.求过三点A(1,12),B(7,10),C(-9,2)的圆的方程,并求出圆的圆心与半径,作出图形. 【思路点拨】因为圆过三个定点,故可以设圆的一般方程来求圆的方程. 解:设所求的圆的方程为220x y Dx Ey F ++++=,依题意有⎪⎩⎪⎨⎧=++-+=++++=++++.029481,010710049,0121441F E D F E D F E D解得D=-2,E=-4,F=-95.于是所求圆的方程为x 2+y 2-2x-4y-95=0. 将上述方程配方得(x-1)2+(y-2)2=100.于是,圆的圆心D 的坐标为(1,2),半径为10,图形如图所示.总结升华:求过三个定点的圆的方程往往采用待定系数法来求解.利用圆经过不在同一直线上的三点的条件,由待定系数法求出圆的一般式方程,并由此讨论圆的几何性质,这是解题的捷径.对于由一般式给出的圆的方程,研究其几何性质(圆心与半径等)时,常可用配方法或公式法加以求解.如由公式可得2221(2)(4)(4)4(95)102r=-+-+---=.举一反三:【变式1】圆与y轴相切,圆心P在直线30x y-=上,且直线y x=截圆所得弦长为27,求此圆的方程。
2013高考数学必考点 圆的方程3
【命中考心】2013高考数学必考点之——圆的方程 3例11 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等. ∴5252yx yx +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上.设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC , ∴22)53(532-+=+t t tt .化简整理得0562=+-t t .解得:1=t 或5=t ∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.典型例题十二例12 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2.∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52ba d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x解法二:同解法一,得 52ba d -=.∴d b a 52±=-. ∴2225544d bd b a +±=.将1222-=b a 代入上式得: 01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d , ∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?典型例题十三例13 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有: 0101012020=++++F y E x D y x ①020*******=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.典型例题十四例14 已知对于圆()1122=-+y x 上任意一点()y x P ,,不等式0≥++m y x 恒成立,求实数m 的取值范围.解:运用圆的参数方程,设P 的坐标为()θθsin 1cos +,, [)πθ20,∈即θcos =x ,θsin 1+=y ,∵0≥++m y x 恒成立∴()y x m +-≥恒成立即()θθsin 1cos ++-≥m 恒成立∴只需m 大于等于()θθsin 1cos ++-的最大值.令()()14sin 21sin cos sin 1cos -⎪⎭⎫ ⎝⎛+-=-+-=++-=πθθθθθu u 的最大值为12- ∴12-≥m说明:在上述解法中我们运用了圆上点的参数设法.采用这种设法的优点在于,一方面可以减少参数的个数,另一方面可以灵活地运用三角公式.从代数的观点看,这种设法的实质就是三角代换.另外本题也可以不用圆的参数方程求解,本题的实质就是求最值问题,方法较多.但以上述解法较简.典型例题十五例15 试求圆⎩⎨⎧==θθsin 2,cos 2y x (θ为参数)上的点到点)4,3(A 距离的最大(小)值. 分析:利用两点间距离公式求解或数形结合求解. 解法一:设P 是圆⎩⎨⎧==θθsin 2,cos 2y x 上任一点,则)sin 2,cos 2(θθP .所以22)sin 24()cos 23(θθ-+-=PAθθsin 16cos 12425--+=)43arctan ()sin(2029=+-=ϕϕθ. 因为R ∈θ,所以R ∈+ϕθ,因此当1)sin(-=+ϕθ时,72029=+=最大值PA . 当1)sin(=+ϕθ时,32029=-=最小值PA .解法二:将圆⎩⎨⎧==θθsin 2,cos 2y x 代入普通方程得422=+y x . 如图所示可得,A P 1、A P 2分别是圆上的点到)4,3(A 的距离的最小值和最大值.易知:31=A P ,72=A P .说明:(1)在圆的参数方程⎩⎨⎧+=+=θθsin ,cos r b y r a x (θ为参数)中,),(b a A 为圆心,)0(>r r 为半径,参数θ的几何意义是:圆的半径从x 轴正向绕圆心按逆时针方向旋转到P 所得圆心角的大小.若原点为圆心,常常用)sin ,cos (θθr r 来表示半径为r 的圆上的任一点.(2)圆的参数方程也是解决某些代数问题的一个重要工具.。
高中数学圆的方程典型例题 学生版
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C ∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a . 由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=abb a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b ba ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d .将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x .类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k解得 43=k 所以 ()4243+-=x y即 01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x . 例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程. 分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧. 解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
高中数学圆的方程典型例题总结归纳
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.上题若点为(1,3)呢?类型三:弦长、弧问题例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为类型四:直线与圆的位置关系.例13 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.类型五:圆与圆的位置关系例15:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。
类型六:圆中的对称问题例17 自点()33,-A 发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆074422=+--+y x y x C :相切(1)求光线l 和反射光线所在的直线方程.(2)光线自A 到切点所经过的路程.说明:本题亦可把圆对称到x 轴下方,再求解.再比如圆关于某点\某直线的对称问题:类型七:圆中的最值问题例19 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑数形结合解决.类型九:圆的综合应用例25、 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.分析:设P 、Q 两点的坐标为),(11y x 、),(22y x ,则由1-=⋅O Q O P k k ,可得02121=+y y x x ,再利用一元二次方程根与系数的关系求解.高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra ra 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r . 故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k 解得43=k所以()4243+-=x y 即 01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.类型三:弦长、弧问题例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB .类型四:直线与圆的位置关系.例13 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 类型五:圆与圆的位置关系 例15:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。
【命中考心】高考数学必考点之——圆的方程 3.pdf
典型例题十一 例11 求经过点,且与直线和都相切的圆的方程. 分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上. 解:∵圆和直线与相切, ∴圆心在这两条直线的交角平分线上, 又圆心到两直线和的距离相等. ∴. ∴两直线交角的平分线方程是或. 又∵圆过点, ∴圆心只能在直线上. 设圆心 ∵到直线的距离等于, ∴. 化简整理得. 解得:或 ∴圆心是,半径为或圆心是,半径为. ∴所求圆的方程为或. 说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法. 典型例题十二 例12 设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程. 分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程. 解法一:设圆心为,半径为. 则到轴、轴的距离分别为和. 由题设知:圆截轴所得劣弧所对的圆心角为,故圆截轴所得弦长为. ∴ 又圆截轴所得弦长为2. ∴. 又∵到直线的距离为 ∴ 当且仅当时取“=”号,此时. 这时有 ∴或 又 故所求圆的方程为或 解法二:同解法一,得 . ∴. ∴. 将代入上式得: . 上述方程有实根,故 , ∴. 将代入方程得. 又 . 由知、同号. 故所求圆的方程为或. 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢? 典型例题十三 例13 两圆与相交于、两点,求它们的公共弦所在直线的方程. 分析:首先求、两点的坐标,再用两点式求直线的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧. 解:设两圆、的任一交点坐标为,则有: ① ② ①-②得:. ∵、的坐标满足方程. ∴方程是过、两点的直线方程. 又过、两点的直线是唯一的. ∴两圆、的公共弦所在直线的方程为. 说明:上述解法中,巧妙地避开了求、两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛. 典型例题十四 例14 已知对于圆上任意一点,不等式恒成立,求实数的取值范围. 解:运用圆的参数方程,设的坐标为, 即,, ∵恒成立 ∴恒成立 即恒成立 ∴只需大于等于的最大值. 令 的最大值为 ∴ 说明:在上述解法中我们运用了圆上点的参数设法.采用这种设法的优点在于,一方面可以减少参数的个数,另一方面可以灵活地运用三角公式.从代数的观点看,这种设法的实质就是三角代换. 另外本题也可以不用圆的参数方程求解,本题的实质就是求最值问题,方法较多.但以上述解法较简. 典型例题十五 例15 试求圆(为参数)上的点到点距离的最大(小)值. 分析:利用两点间距离公式求解或数形结合求解. 解法一:设是圆上任一点,则.所以 . 因为,所以,因此 当时,. 当时,. 解法二:将圆代入普通方程得. 如图所示可得,、分别是圆上的点到的距离的最小值和最大值.易知:,. 说明: (1)在圆的参数方程(为参数)中,为圆心,为半径,参数的几何意义是:圆的半径从轴正向绕圆心按逆时针方向旋转到所得圆心角的大小.若原点为圆心,常常用来表示半径为的圆上的任一点. (2)圆的参数方程也是解决某些代数问题的一个重要工具. 高考学习网: 高考学习网:。
2013届高考一轮复习 圆的方程
实用文档2013届高考一轮复习 圆的方程一、选择题1、设圆C 的圆心在双曲线2221(0)2y x a a-=>的右焦点且与此双曲线的渐近线相切,若圆C 被直线l:0x =截得的弦长等于2,则a 的值为( )C.2D.32、将直线20x y λ-+=沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为( )A.-3或7B.-2或8C.0或10D.1或113、圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A.22(2)1x y +-=B.22(2)1x y ++=C.22(1)(3)1x y -+-=D.22(3)1x y +-=4、直线y=x+1与圆221x y +=的位置关系为( )A.相切实用文档B.相交但直线不过圆心C.直线过圆心D.相离5、经过点P(2,-3)作圆(x+21)+225y =的弦AB,使点P 为弦AB 的中点,则弦AB 所在直线方程为( )A.x-y-5=0B.x-y+5=0C.x+y+5=0D.x+y-5=06、圆22221x y x y +--+=0上的点到直线x-y=2的距离最大值是( )A.2B.1C.1+D.1+7、已知圆O 的半径为1,PA PB A B ,,,,为该圆的两条切线为两切点那么PA PB ⋅的最小值为 ( )A.4-+B.3-+C.4-+D.3-+8、直线y x =与圆心为D 的圆y 1x θθ⎧=,⎪⎨=⎪⎩([02θ∈,π))交于 A ( )B AD BD ,,两点则直线与的倾斜角之和为实用文档 A.76π B.54π C.43π D.53π9、圆22(2)5x y ++=关于原点P(0,0)对称的圆的方程为( )A.22(2)5x y -+=B.22(2)5x y +-=C.22(2)(2)5x y +++=D.22(2)5x y ++=二、填空题10、已知圆C 的圆心是直线x-y+1=0与x 轴的交点,且圆C 与直线x+y+3=0相切,则圆C 的方程为 .11、已知圆心在x 轴上,的圆O 位于y 轴左侧,且与直线x+y=0相切,则圆O 的方程是 .12、直线x-2y+5=0与圆228x y +=相交于A 、B 两点,则|AB|= .13、已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为则圆C 的标准方程为 .三、解答题实用文档14、已知定点A(-1,0),F(2,0),定直线l :12x =,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍.设点P 的轨迹为E,过点F 的直线交E 于B C AB AC l M N ,,,,.两点直线分别交于点(1)求E 的方程;(2)试判断以线段MN 为直径的圆是否过点F,并说明理由.15、点P(a,b)在直线x+y+1=0上,求22222a b a b +--+的最小值.16、已知圆C 和y 轴相切,圆心在直线x-3y=0上,且被直线y=x 截得的弦长为27,求圆C 的方程.以下是答案一、选择题1、A解析:圆C 的圆心2(20)C a +,,20x ay C ±=,到渐近线的距离为222222a a +=,+故圆C 方程为222(2)2x a y ++=.由l 被圆C 截得的弦长是2及圆C 的半径2可知,圆心C 到直线l 的距离为1,221213a a +=⇒=+实用文档2、 A解析:直线20x y λ-+=沿x 轴向左平移1个单位得220x y λ-++=, 圆22240x y x y ++-=的圆心为C(-12)5535r d λ,,=,==,=-,或7λ=. 3、A解析:设圆心坐标为(0,b),2(01)(2)1b -+-=,解得b=2, 故圆的方程为2x +2(2)1y -=.4、 B解析:圆心(0,0)到直线y=x+1的距离212d ==而201<<,选B.5、 A解析:设圆心为C,则AB 垂直于302(1)CP CP k --,==---1,故AB:y+3=x-2,选A.6、B解析:圆心为C(1,1max )121r d ,=,=.7、 D解析:如图,设APO θ∠=,实用文档PA PB ⋅=|PA |2⋅cos 2θ=|PA |2⋅(1-2sin 2)θ =(|OP|2211)(12)OP --⋅=|||OP|2223OP +-|| 223≥-,当且仅当|OP|222OP =,||即|OP|42=时,“=”成立. 8、C解析:把 33cos y 13sin x θθ⎧=+,⎪⎨=+⎪⎩ 代入32y x =+, 得sin 2()6πθ-=, 所以512πθ=或1112π, 由参数θ的意义知直线AD 与BD 的倾斜角之和为512π+114123ππ=.9、A解析:点(x,y)关于原点P(0,0)对称的点为(-x,-y), 则得22(2)()5x y -++-=,即2(2)x -+25y =.二、填空题10、 22(1)2x y ++=解析:令y=0得x=-1,所以直线x-y+1=0与x 轴的交点为(-1,0).实用文档因为直线与圆相切,所以圆心到直线的距离等于半径,即r == 所以圆C 的方程为22(1)2x y ++=.11、22(5x y ++=解析:设圆心为(a,0)(a<0),则r ==解得a=-5.12、解析:圆心为(0,0),半径为圆心到直线x-2y+5=0的距离为d ==故222()2AB ||+=, 得|AB|=.13、 22(3)4x y -+=解析:由题意,设圆心坐标为(a,0),则由直线l:y=x-1被该圆所截得的弦长为得2+2=2(1)a -,解得a=3或-1,又因为圆心在x 轴的正半轴上,所以a=3. 故圆心坐标为(3,0).又已知圆C 过点(1,0),所以所求圆的半径为2,故圆C 的标准方程为22(3)4x y -+=.三、解答题实用文档14、 解:(1)设P(x,y),2=|12x -|, 化简得221(0)3y x y -=≠. (2)①当直线BC 与x 轴不垂直时,设BC 的方程为y=k (2)(0)x k -≠, 与双曲线方程2213y x -=联立消去y 得 2222(3)4(43)0k x k x k -+-+=.由题意知230k -≠,且0∆>.设1122()()B x y C x y ,,,,则 2122212243433k x x k k x x k ⎧+=,⎪-⎨+⎪=,-⎩222222121212122224389(2)(2)[2()4](4)333k k k y y k x x k x x x x k k k k +-=--=-++=-+=---. 因为1211x x ≠-,≠-,所以直线AB 的方程为11(1)1y y x x =++. 因此M 点的坐标为1131()22(1)y x ,,+ 1133()22(1)y FM x =-,,+ 同理可得2233()22(1)y FN x =-,,+ 因此FM FN ⋅22212221222819393()024(1)(1)44344(1)33k y y k x x k k k k --=-+=+=+++++--. ②当直线BC 与x 轴垂直时,其方程为x=2,则B(2,3),C(2,-3), AB 的方程为y=x+1,因此M 点的坐标为31()22FM ,,33()22=-,.实用文档 同理可得33FN ()22=-,-. 因此2333FM FN ()()0222⋅=-+-⨯=. 综上FM FN ⋅=0,即FM FN ⊥.故以线段MN 为直径的圆经过点F.实用文档15、 解:22(1)(1)a b -+-的最小值为点(1,1)到直线x+y+1=0的距离, 而22min 32323(222)222d a b a b ==,+--+=.16、解:设圆心为(3t,t),半径为r=|3t|,令32t t d |-|==|2t |, 而22222(7)9271r d t t t =-,-=,=±, ∴22(3)(1)9x y -+-=或22(3)(1)9x y +++=.。
2013年高考真题理科数学分类汇编:考点39 圆的方程、直线与圆、圆与圆的位置关系含解析
考点39 圆的方程、直线与圆、圆与圆的位置关系一、选择题1.(2013·重庆高考文科·T4)设P是圆22-++=上的动点,(3)(1)4x yx=-上的动点,则PQ的最小值为( )Q是直线3A. 6 B。
4 C. 3 D. 2【解题指南】PQ的最小值为圆心到直线的距离减去圆的半径。
【解析】选B。
PQ的最小值为圆心到直线的距离减去圆的半径.圆心)1,3(-到直线3-=x的距离为6,半径为2,所以PQ的最小值为6=-。
242.(2013·天津高考文科·T5)已知过点P(2,2)的直线与圆(x—1)2+y2=5相切,且与直线ax-y+1=0垂直,则a= ( )A. 1- B. 1 C。
2 D。
122【解题指南】根据圆的切线的性质确定切线的斜率,再由两直线垂直求a的值.【解析】选C.因为点P(2,2)为圆(x-1)2+y2=5上的点,由圆的切线性质可知,圆心(1,0)与点P(2,2)的连线与过点P(2,2)的切线垂直.因为圆心(1,0)与点P(2,2)的连线的斜率k=2,故过点P,所以直线ax-y+1=0的斜率为2,因此(2,2)的切线斜率为—12a=2。
A.1 B 。
2 C 。
4 D 。
【解题指南】 由圆的半径、圆心距、半弦长组成直角三角形,利用勾股定理即可求得半弦长。
【解析】选C.由22(1)(2)5x y 得圆心(1,2),半径5r,圆心到直线x+2y-5+的距离|1455|15d,在半径、圆心距、半弦长组成的直角三角形中,弦长222244lr d 。
4。
(2013·重庆高考理科·T7)已知圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=,M、N 分别是圆1C 、2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( ) A 。
425- B.117-C.226-D.17【解题指南】根据圆的定义可知421-+=+PC PCPN PM ,然后利用对称性求解.【解析】选A.由题意知,圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=的圆心分别为)4,3(),3,2(21C C ,且421-+=+PC PCPN PM ,点)3,2(1C 关于x 轴的对称点为)3,2(-C ,所以252221=≥+=+CC PC PC PC PC ,即425421-≥-+=+PC PCPN PM .5.(2013·广东高考文科·T7)垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A .0x y +=B .10x y ++=C .10x y +-= D .0x y +=【解析】选A. 由题意知直线方程可设为0x y c +-=(0c >),则圆心到直线的距离等于半径1,即1=,c =所求方程为0x y +=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【命中考心】2013高考数学必考点之——圆的方程 典型例题一
例1 圆9)3()3(2
2
=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2
2
=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324
311
34332
2
<=+-⨯+⨯=
d .
如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.
又123=-=-d r .
∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.
解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.
设所求直线为043=++m y x ,则14
3112
2
=++=
m d ,
∴511±=+m ,即6-=m ,或16-=m ,也即
06431=-+y x l :,或016432=-+y x l :.
设圆9)3()3(2
2
1=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则
34
36
34332
2
1=+-⨯+⨯=
d ,14
316
34332
2
2=+-⨯+⨯=
d .
∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.
说明:对于本题,若不留心,则易发生以下误解:
设圆心1O 到直线01143=-+y x 的距离为d ,则324
311
34332
2
<=+-⨯+⨯=d .
∴圆1O 到01143=-+y x 距离为1的点有两个.
显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.
到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.
典型例题三
例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.
分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.
解法一:(待定系数法)
设圆的标准方程为2
22)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2
22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.
∴⎪⎩⎪⎨⎧=+-=+-2
22
24)3(16)1(r
a r a
解之得:1-=a ,202=r .
所以所求圆的方程为20)1(2
2
=++y x . 解法二:(直接求出圆心坐标和半径)
因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为
13
12
4-=--=
AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .
又知圆心在直线0=y 上,故圆心坐标为)0,1(-C
∴半径204)11(22=++=
=AC r .
故所求圆的方程为20)1(2
2
=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为
r PC d >=++==254)12(22.
∴点P 在圆外.
说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?
典型例题四
例4 圆03422
2
=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).
(A )1个 (B )2个 (C )3个 (D )4个
分析:把03422
2
=-+++y x y x 化为()()8212
2
=+++y x ,圆心为()21--,
,半径为22=r ,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于2,所以选C .
典型例题五
例5 过点()43--,P 作直线l ,当斜率为何值时,直线l 与圆()()4212
2
=++-y x C :有
公共点,如图所示.
分析:观察动画演示,分析思路. 解:设直线l 的方程为
()34+=+x k y
即
043=-+-k y kx
根据r d ≤有
214
322
≤+-++k
k k
整理得
0432=-k k
解得
3
40≤
≤k .
典型例题二
例6 已知圆42
2
=+y x O :,求过点()42,P 与圆O 相切的切线.
解:∵点()42,P 不在圆O 上,
∴切线PT 的直线方程可设为()42+-=x k y 根据r d =
∴
21422
=++-k
k
解得 43
=
k 所以 ()424
3
+-=x y
即 01043=+-y x
因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .
说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.
本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.。