计量经济学第五章
《计量经济学》第五章精选题及答案
![《计量经济学》第五章精选题及答案](https://img.taocdn.com/s3/m/8cf0deb87e21af45b207a88d.png)
第五章 异方差二、简答题1.异方差的存在对下面各项有何影响? (1)OLS 估计量及其方差; (2)置信区间;(3)显著性t 检验和F 检验的使用。
2.产生异方差的经济背景是什么?检验异方差的方法思路是什么? 3.从直观上解释,当存在异方差时,加权最小二乘法(WLS )优于OLS 法。
4.下列异方差检查方法的逻辑关系是什么? (1)图示法 (2)Park 检验 (3)White 检验5.在一元线性回归函数中,假设误差方差有如下结构:()i i i x E 22σε=如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。
三、计算题1.考虑如下两个回归方程(根据1946—1975年美国数据)(括号中给出的是标准差):t t t D GNP C 4398.0624.019.26-+= e s :(2.73)(0.0060) (0.0736)R ²=0.999t t t GNP D GNP GNP C ⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡4315.06246.0192.25 e s : (2.22) (0.0068)(0.0597)R ²=0.875式中,C 为总私人消费支出;GNP 为国民生产总值;D 为国防支出;t 为时间。
研究的目的是确定国防支出对经济中其他支出的影响。
(1)将第一个方程变换为第二个方程的原因是什么?(2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设? (3)如果存在异方差,是否已成功地消除异方差?请说明原因。
(4)变换后的回归方程是否一定要通过原点?为什么?(5)能否将两个回归方程中的R²加以比较?为什么?2.1964年,对9966名经济学家的调查数据如下:资料来源:“The Structure of Economists’Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965.(1)建立适当的模型解释平均工资与年龄间的关系。
计量经济学第五章协整与误差修正模型
![计量经济学第五章协整与误差修正模型](https://img.taocdn.com/s3/m/6983e1870408763231126edb6f1aff00bed5702c.png)
根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质
计量经济学第五章
![计量经济学第五章](https://img.taocdn.com/s3/m/135bf96f1eb91a37f1115c18.png)
∴ β 2的显著水平为α的置信区间为
ˆ ˆ ˆ ˆ [ β 2 − t α se( β 2 ),β 2 + t α se( β 2 )]
2 2
同理,β1的显著水平为α的置信区间为
ˆ ˆ ˆ ˆ [ β1 − t α se( β1 ),β1 + t α se( β1 )]
2 2
9
置信区间的宽度与估计量的标准差成 正比,因此,估计量的标准差常被喻 为估计量的精度(precision)
4
置信区间的图形表示
ˆ ˆ Pr( β 2 -δ ≤ β 2 ≤ β 2 + δ ) = 1 - α
置信区间
β2
样本估计值
ˆ β 2 -δ
ˆ β2
真实值存在、未知
置信下限
ˆ β2 + δ
置信上限
区间估计的理解: (1)随机区间包含 β 2 的概率为 1 − α (2)置信区间是一个随机的区间,它随样本的不 同而改变 5 (3)它的概率描述是在平均意义上而言的
步骤 2:给定显著性水平 α 和自由度 n − 2, 查表得到临界值 t α
0.3落在区间外, 所以拒绝H0假设
0.4268
0.5914
17
2、单侧检验 、
有些时候我们可能对要检验的结果具有某些先 验的信息, 例如, 知道 β > 0.3而不会β < 0.3。在 这种情况下,应该做单侧检验: H1 : β > 0.3 H0 : β ≤ 0.3
显著性检验法
显著性检验时利用样本结果,来证实一个零假设 的真伪的一种检验程序。 显著性检验的基本思想:在虚拟假设下,根据 基本思想: 基本思想 样本构造检验统计量(作为估计量)的抽样分布 (置信区间),以此决定是否接受零假设。
计量经济学第五章
![计量经济学第五章](https://img.taocdn.com/s3/m/5bff62e4fc0a79563c1ec5da50e2524de518d0cd.png)
Variables-Likelihood Ratio • 出现对话框时,写入删除变量名--OK • 对比删除前后的AIC与SC信息值,信息
值小的结论是应采纳的。
9
用Eviews的误设定检验3
• 第一,估计出简单(单纯)方程 • 第二,在命令窗口上写入genr v_hat=resid 或者 Procs/Generate Series中 v_hat=resid 发现 v_hat • 第三,估计出新的回归方程
无约束模型(U)
有约束模型(K) (general to simple)
计算统计量F
F=(RSSK-RSSu)/J RSSu/(n-k-1)
~F(J, n-k)
J 为表示约束条件数, K 为表示自变量数 或者 应估计的参数数, n 为表示样本数(obs)
4
2. LM检验(Lagrange Multiplier
多重共线性多出现在横截面资料上。
16
三、异方差性的检验及对策
Var(ℇi)≠Var(ℇj) (i≠j)时, ℇi中存在异方差性(Herteroskedasticity)。 即随机项中包含着对因变量的影响因素。 异方差性多发生在横截面资料上。
17
异方差性的检验
1.图示检验法 如模型为Yi=0+1X1i+2X2i+…+ℇi 时,
7
用Eviews的误设定检验1
• 首先估计出简单(单纯)方程 • View/Coefficient Tests/Omitted
Variables-Likelihood Ratio • 出现对话框时,写入新变量名 OK • 检验结果出现在上端,如果P值很小时, 拒
《计量经济学》第五章习题及参考答案.doc
![《计量经济学》第五章习题及参考答案.doc](https://img.taocdn.com/s3/m/d46f11e455270722182ef75b.png)
第五章经典单方程计量经济学模型:专门问题一、内容提要本章主要讨论了经典单方程回归模型的几个专门题。
第一个专题是虚拟解释变量问题。
虚拟变量将经济现象中的一些定性因素引入到可以进行定量分析的回归模型,拓展了回归模型的功能。
本专题的重点是如何引入不同类型的虚拟变量来解决相关的定性因素影响的分析问题,主要介绍了引入虚拟变量的加法方式、乘法方式以及二者的组合方式。
在引入虚拟变量时有两点需要注意,一是明确虚拟变量的对比基准,二是避免出现“虚拟变量陷阱”。
第二个专题是滞后变量问题。
滞后变量包括滞后解释变量与滞后被解释变量,根据模型中所包含滞后变量的类别又可将模型划分为自回归分布滞后模型与分布滞后模型、自回归模型等三类。
本专题重点阐述了产生滞后效应的原因、分布滞后模型估计时遇到的主要困难、分布滞后模型的修正估计方法以及自回归模型的估计方法。
如对分布滞后模型可采用经验加权法、Almon多项式法、Koyck方法来减少滞项的数目以使估计变得更为可行。
而对自回归模型,则根据作为解释变量的滞后被解释变量与模型随机扰动项的相关性的不同,采用工具变量法或OLS 法进行估计。
由于滞后变量的引入,回归模型可将静态分析动态化,因此,可通过模型参数来分析解释变量对被解释变量影响的短期乘数和长期乘数。
第三个专题是模型设定偏误问题。
主要讨论当放宽“模型的设定是正确的”这一基本假定后所产生的问题及如何解决这些问题。
模型设定偏误的类型包括解释变量选取偏误与模型函数形式选取取偏误两种类型,前者又可分为漏选相关变量与多选无关变量两种情况。
在漏选相关变量的情况下,OLS估计量在小样本下有偏,在大样本下非一致;当多选了无关变量时,OLS估计量是无偏且一致的,但却是无效的;而当函数形式选取有问题时,OLS估计量的偏误是全方位的,不仅有偏、非一致、无效率,而且参数的经济含义也发生了改变。
在模型设定的检验方面,检验是否含有无关变量,可用传统的t检验与F检验进行;检验是否遗漏了相关变量或函数模型选取有错误,则通常用一般性设定偏误检验(RESET检验)进行。
第五章计量经济学-非线性
![第五章计量经济学-非线性](https://img.taocdn.com/s3/m/a5c77ba9ec3a87c24028c4f3.png)
R-squared 0.9997778 Adjusted R-squared 0.9997172 S.E. of regression 1009.3026 Sum squared resid 11205609 Log likelihood -122.7131 Durbin-Watson stat 2.2758414
柯布—道格拉斯生产函数的应用
• (1)弹性值分析 • (2)边际值分析 • (3)测定科技进步率
•Y=A0eδtKαLβ
dy / y dk / k dl / l a b dt dt dt
dy / y dt
dk / k dt
dl / l dt
——产出年均增长率 ——资本投入年均增长率
——劳动投入年均增长率
表 1958-1972年中国台湾地区农业部门的实际总产值、劳动日和实际资本投入 年份 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 实际总产值Y (百万元新台币) 16607.70 17511.30 20171.20 20932.90 20406.00 20831.60 24806.30 26465.80 27403.00 28628.70 29904.50 27508.20 29035.50 29281.50 31535.80 劳动日X1 (百万日) 275.50 274.40 269.70 267.00 267.80 275.00 283.00 300.70 307.50 303.70 304.70 298.60 295.50 299.00 288.10 实际资本投入X3 (百万元新台币) 17803.70 18096.80 18271.80 19167.30 19647.60 20803.50 22076.60 23445.20 24939.00 26713.70 29957.80 31585.90 33474.50 34821.80 41794.30
计量经济学第五章 异方差
![计量经济学第五章 异方差](https://img.taocdn.com/s3/m/ba882d706edb6f1afe001f19.png)
X 20000
5.3异方差的侦查
利用残差图——绘制残差平方与X散点图
(一般把异方差看成是由于解释变量的变化而引起的)
5.1异方差的概念
三、异方差产生的原因 模型设定误差:省略了重要的解释变量
例:真实模型 Yi 1 2 X 2i 3 X 3i i 采用模型 Yi 1 2 X 2i i
如果X3随着X2的不同而对Y产生不同的影响,则 该影响体现在扰动项中。
测量误差: 一方面,测量误差常常在一定时间内逐渐增加,如X 越大,测量误差就会趋于增大 另一方面,测量误差随时间变化趋于减少,如抽样技 术的改进使得测量误差减少。
)
2 i
5.1异方差的概念
6 Y
4
300 Y
200
2
100
0 0
X
0
X
10
20
30
0
5000
10000
15000
20000
250
Y
二、常见的异方差类型: 200
递增型异方差:
150
100
递减型异方差:
50
条件异方差(略):
0 0
X
10
20
30
时间序列数据和截面数据中都有可能存在异方差。
经济时间序列中的异方差常为递增型异方差。
ˆ 2 ei2 (Yi ˆX i )2 (( ˆ) X i i )2
n 1
n 1
n 1
5.2异方差的后果
E (vaˆr(ˆ ))
E(
ˆ 2
X
2 i
)
E(
(( ˆ)X
(n 1)
计量经济学第五章 异方差性
![计量经济学第五章 异方差性](https://img.taocdn.com/s3/m/3c779d2567ec102de2bd8939.png)
●异方差性的概念 ●异方差产生的后果 ●异方差的检测方法 ●异方差的补救
1
第一节 异方差性的概念
一、异方差性的实质 二、异方差产生的原因
2
一、异方差性的实质
设模型为
Yi 1 2 X 2i 3 X3i ... k X ki ui
如果对于模型中随机误差项,有:
8
第二节 异方差性的后果
一、对参数估计统计特性的影响 二、对参数显著性检验的影响 三、对预测的影响
9
一、对参数估计式统计特性的影响
1、仍然具有线性性 2、仍然具有无偏性
参数估计的无偏性仅依赖于基本假定中的零 均值 假定(即 E(ui ) 0 )。所以异方差的存在对 无偏性的成立没有影响。
3、仍然具有一致性 4、不再具有最小方差性
24
4、检验的特点
(1)适用于大样本; (2)检验递增型或递减型异方差; (3)只能判断异方差是否存在,在多个解释变 量的情下,对哪一个变量引起异方差的判断存在局 限; (4)该检验的功效取决于C,C值越大,检验功 效越好; Continued
25
Continued (5)两个子样回归所用的观测值个数如果不 相等时,也可以用该检验,需要通过改变自由度 和统计量的计算公式来调整; (6)当模型中包含多个解释变量时,应对每 个可能引起异方差的解释变量都进行检验。
26
三、White检验
1、基本思想:
构造残差平方序列与解释变量之间的辅助函 数,通过判断辅助函数的显著性来判断原方程是 否存在异方差。 一般而言,辅助回归的解释变量包括常数项、 原模型中的解释变量、解释变量平方、其交叉乘 积。
27
2、检验的基本步骤:
原模型为
计量经济学第五章(新)
![计量经济学第五章(新)](https://img.taocdn.com/s3/m/bf73a70f581b6bd97f19eaa5.png)
利用Eviews得回归方程为:
ˆ ln y 1.6524 0.3397 ln x1 0.9460 ln x2
t = (-2.73) p= (0.0144*) R2=0.995 (1.83) (0.085) (9.06) (0.000**)
对回归方程解释如下:斜率系数0.3397表示 产出对劳动投入的弹性,即表明在资本投入保持 不变的条件下,劳动投入每增加一个百分点,平 均产出将增加0.3397个百分点。同样地,在劳动 投入保持不变的条件下,资本投入每增加一个百 分点,产出将平均增加0.8640个百分点。两个弹 性系数相加为规模报酬参数,其数值等于1.1857 ,表明墨西哥经济的特征是规模报酬递增的(如 果数值等于1,属于规模报酬不变;小于1,则属 于规模报酬递减)。
20.5879 z 1 20.5879 x (4.6794 ) (4.3996 ** )
3、半对数模型和双对数模型
形式为:
ln y 0 1 x u y 0 1 ln x u
的模型称为半对数模型。 把形式为:
ln y 0 1 ln x u
即可利用多元线性回归分析的方法处理了。
例如,描述税收与税率关系的拉弗曲线:抛物线 t = a + b r + c r2 c<0
t:税收;
r:税率
设 z1 = r, z 2 = r2, 则原方程变换为 s = a + b z1 + c z 2 c<0
例 某生产企业在1981-1995年间每年的产量和总成本如下 表,试用回归分析法确定其成本函数。
表5-1 墨西哥的实际GDP、就业人数和实际固定资本
年份 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 GDP 114043 120410 129187 134705 139960 150511 157897 165286 178491 199457 212323 226977 241194 260881 277498 296530 306712 329030 354057 374977 就业人数 8310 8529 8738 8952 9171 9569 9527 9662 10334 10981 11746 11521 11540 12066 12297 12955 13338 13738 15924 14154 固定资产 182113 193749 205192 215130 225021 237026 248897 260661 275466 295378 315715 337642 363599 391847 422382 455049 484677 520533 561531 609825
计量经济学课件-第五章
![计量经济学课件-第五章](https://img.taocdn.com/s3/m/831c2b675627a5e9856a561252d380eb629423f9.png)
假定系数服从以下多项式分布
bj a0 a1 j ar jr j 1, 2, p
• 则:
b0 a0 b1 a0 a1
ar
b p
a0 a1 p
ar p r
• 如果 r 2
b0 a0 b1 a0 a1 a2
b0 b1 b2
b0
b0
b0
2
对原模型做Koyck变换
Yt b0 X t b0 X t 1 b0 2 X t 2
Ut
1
Yt 1 b0 X t 1 b0 X t 2 b0 2 X t 3
U t 1 2
Yt 1 b0 X t 1 b0 2 X t 2 b0 3 X t 3 U t 1
p
i 1
bt
i
称为长期(long-run)或均衡乘数(total
distributed-lag multiplier),表示X变动一个单位,由于
滞后效应而形成的对Y均值总影响的大小。
• (2)自回归分布滞后模型(autoregressive distributed-lag model)
模型中的解释变量仅包含X的当期值与被解释 变量Y的一个或多个滞后值
Yt a b0 X t b1Yt1 b2Yt2 bqYtq Ut
• 3、分布滞后模型的OLS估计 (1)估计中存在的问题: 无限分布滞后:样本有限,无法估计; 有限分布滞后: 没有先验准则确定滞后长度; 滞后期过长导致丧失过多自由度; 容易出现多重共线;
• (2)一般处理
各种方法的基本思想大致相同:都是通过对各滞后变 量加权,组成新变量从而有目的地减少滞后变量的数 目,以缓解多重共线性,保证自由度。
计量经济学 第五章 异方差讲解
![计量经济学 第五章 异方差讲解](https://img.taocdn.com/s3/m/fbed8f3c2f60ddccda38a0d9.png)
5.5 异方差的修正方法(GLS)
设模型为 Y = X + u 其中 E(u) = 0,Var(u) = E(u u') = 2 。 已知, 与 k 未知。因为 I,违反了假定条件,所以应该对模型进行适当修正。 因为 是一个 T 阶正定矩阵,所以必存在一个非退化 TT 阶矩阵 M 使下式成立。 M M ' = I TT 从上式得 M 'M = -1 用 M 左乘上述回归模型两侧得 MY=MX+Mu 取 Y* = M Y, X * = M X, u* = M u , 上式变换为 Y* = X* + u* 则 u* 的方差协方差矩阵为 Var(u*) = E(u* u*' ) = E (M u u' M ' ) = M 2 M ' = 2 M M ' = 2 I 对变换后模型进行 OLS 估计,得到的是 的最佳线性无偏估计量。 这种估计方法称作广义最小二乘法。 的广义最小二乘 (GLS) 估计量定义为 ˆ (GLS) = (X*' X*)-1 X*' Y* = (X 'M ' M X ) -1 X ' M 'M Y = (X ' -1X) -1 X ' -1Y
H0:ut不存在异方差, H1:ut存在异方差。
5.4 异方差检验
(2) White检验
④在同方差假设条件下,统计量
TR 2 2(5)
其中T表示样本容量,R2是辅助回归式的OLS估计的可决系数。 自由度5表示辅助回归式中解释变量项数(注意,不计算常数 项)。T R 2属于LM统计量。 ⑤判别规则是 若 T R 2 2 (5), 接受H0(ut 具有同方差) 若 T R 2 > 2 (5), 拒绝H0(ut 具有异方差)
《计量经济学》第五章最新完整知识
![《计量经济学》第五章最新完整知识](https://img.taocdn.com/s3/m/fab6213bcaaedd3383c4d38f.png)
第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。
需要我们建立多元线性回归模型。
一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。
最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。
假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。
(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。
计量经济学第五章-异方差
![计量经济学第五章-异方差](https://img.taocdn.com/s3/m/4531a83aaef8941ea76e05ff.png)
可编辑ppt
5
一、参数的OLS估计仍然是线性无偏的,但不 是最小方差的估计量
1、线性性
bˆ1
= xi yi xi 2
= b1
+ xi ui xi 2
一元线性回归模型为例
2、无偏性
E( bˆ1 )=E(
b1
+
xi ui xi 2
在同方差的假定下才被证明是服从 t 分布的。 分母变大,t 值变小,t 检验也就失去意义。
三、降低预测精度
由于存在异方差,参数的OLS估计的方差增大,参数 估计值的变异程度增大,从而造成对 Y 的预测误差变大, 降低预测的精度。
可编辑ppt
7
第二节 异方差的检验
• 1、图解法 • 2、戈德菲尔德—匡特法(双变量模型) • 3、怀特检验(White) • 4、戈里瑟(Glejser)检验 • 5、帕克(Park)检验
• 二、随着收入的增长,人们有更多的备用收入,从而如何支配 他们的收入有更大的选择范围。因此,在做储蓄对收入的回归 时,很可能发现,由于人们对其储蓄行为有更多的选择,与收 入俱增。
• 三、个体户收入随时间变化。
• 四、异方差还会因为异常值的出现而产生。一个超越正常值范 围的观测值或称异常值是指和其它观测值相比相差很多(非常 小或非常大)的观测值。
)= b1+
xi E(ui xi 2
)
=
b1
3、方差
该形式不具有最小方差
Var( bˆ1 ) =
i 2
xi 2
在同方差时,
xi2 Xi2 xi 2
该形式具有最小方差
Var(
潘省初计量经济学——第五章
![潘省初计量经济学——第五章](https://img.taocdn.com/s3/m/0af6bc39af1ffc4fff47ac24.png)
得到一国GDP的年增长率的估计值,这里t为时间趋 势变量。
8
线性-对数模型的形式如下:
Y t 0 1 ln X t u t
与前面类似,我们可用微分得到
因此
1 X
dY dX
dY dX X
dY dX
11 X这表明1Y的 绝 对 变 动 X的相对变动
3. R 2 : 该变量加进方程中后,R 2 是否增大?
4. 偏倚: 该变量加进方程中后,其它变量的系数 估计值是 否显著变化?
如果对四个问题的回答都是肯定的,则该变量应该包括在 方程中;如果对四个问题的回答都是“否”, 则该变量是 无关变量,可以安全地从方程中删掉它。这是两种容易决 策的情形。
14
ln Y t 0 1 X t u t
对数-线性模型中,斜率的含义是Y的百分比变动, 即解释变量X变动一个单位引起的因变量Y的百分比 变动。这是因为,利用微分可以得出:
1
d ln Y dX
1 Y
dY dX
dY Y
( dX 1)
7
这表明,斜率度量的是解释变量X的单位变动所 引起的因变量Y的相对变动。将此相对变动乘以100, 就得到Y的百分比变动,或者说得到Y的增长率。 由于对数-线性模型中斜率系数的这一含义,因而也 叫增长模型 (growth model)。增长模型通常用于测 度所关心的经济变量(如GDP)的增长率。例如, 我们可以通过估计下面的半对数模型
双曲函数模型的特点是,当X趋向无穷时,Y趋 向 0 ,反映到图上,就是当X趋向无穷时,Y将无 限靠近其渐近线(Y = 0 )。
双曲函数模型通常用于描述著名的恩格尔曲线和 菲利普斯曲线。
10
3. 多项式回归模型 多项式回归模型通常用于描述生产成本函数,其 一般形式为:
计量经济学第5章
![计量经济学第5章](https://img.taocdn.com/s3/m/fca8fc7501f69e31433294b6.png)
q p q p
1 0 0
0
公式分子减分母的差额,反映了由于所分析的数 量指标的变动,使价值量指标增加或减少的数额。
2、质量指标综合指数分析
相对数分析:
q q
1
p1 p0
1
公式分子与分母的比值反映了所研究的质 量指标报告期比基期相对综合变动程度。 绝对数分析:
q p q p
价格总指数为
Kp
pq p q
20200 102.85% 19640
二、平 均 指 数
(一)平均指数的编制
平均指数的编制方法是“先对比,后平均” 从个体指数出发,并以价值量指标为权数, 通过加权平均计算来测定复杂现象的变动程度。
平均指数的计算形式
1、算术平均数指数: 公式中:
kq q1 q0
22 10 4 —
24 8 5
9900 4000 1200
14400 4000 1800
133 125 120 —
109 80 125 —
— 15100 20200
Iq
销售量总指数 价格总指数
i pq pq
q
Ip
i pq pq
p
第二节
综合指数和平均指数 一、综 合 指 数
(一)综合指数的编制
相对数分析:
商品销售额指数 = 销售量指数 × 销售价格指数
q p q p
1 0
1 0
=
q q
1 0
p0 p0
×
q p q p
1 1
1
0
绝对数分析:
q p q p ( q p q p ) ( q p q p )
1 1 0 0 1 0 0 0 1 1 1 0
伍德里奇《计量经济学》chap5
![伍德里奇《计量经济学》chap5](https://img.taocdn.com/s3/m/a8e4a90bf12d2af90242e625.png)
第5章 OLS 的渐近性(样本容量无限增大的情况:OLS 的大样本性质)5.1一致性(1) 依概率收敛定义 (2) 均方收敛定义 (3) 概率极限法则(4) 大数定律(弱大数定律,切比雪夫和辛钦) (5)一致性z 假定:MLR.1- MLR.4 z 不一致性:源于MLR.4不满足 简单回归模型 多元回归模型:一般而言,如果x1和u 相关,其他自变量x 都和u 无关,所有的1ˆβ……ˆkβ都是不一致的。
特殊情况:如果x1和u 相关,其他自变量x 都和u 无关,而且,其他自变量x和x1也无关,则只有1ˆβ是不一致的。
和偏误的比较:相似和区别(样本和总体的区别)5.2渐近正态性(作用:大样本情形下,可替代MLR.6假定)(1) 依分布收敛定义:符号d→,极限分布 (2) 中心极限定理(3) 渐近分布(来源于极限分布,又区别于极限分布),符号a∼z 假定:MLR.1- MLR.5同方差假定不成立,会如何?实际上渐近正态性仍然成立。
但是渐近方差计算方式改变,所以t 和F 分布要改变。
z 理解:当n →∞,ˆj β是均方收敛的,即收敛于期望,而且方差收敛于0。
但是,当n 是有限数时,n 很大的话,ˆjβ可近似看作服从正态分布,其方差还没有变为0,而是渐近方差。
见式5.7。
随着n →∞渐近方差的估计值,即se 是以1/n 的速度趋向于0的。
z 5.7式怎么来的?)12ˆijr −∑来5.3渐近有效性z 渐近有效性定义:“致,且渐近正态”的估计量,其渐近协方差阵小于等于任何一个一致且渐近正态的估计量的协方差阵,则它是渐近有效的。
z 格林P76:我们还没有在大样本中证明OLS 按照“任何”一种标准都是最优的。
定理5.3也不过是告诉我们:在某一类估计量中,OLS 是最优的,即渐近有效的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章练习题参考解答5.1 设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。
试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
5.2 根据本章第四节的对数变换,我们知道对变量取对数通常能降低异方差性,但须对这种模型的随机误差项的性质给予足够的关注。
例如,设模型为u X Y 21ββ=,对该模型中的变量取对数后得如下形式u X Y ln ln ln ln 21++=ββ(1)如果u ln 要有零期望值,u 的分布应该是什么? (2)如果1)(=u E ,会不会0)(ln =u E ?为什么? (3)如果)(ln u E 不为零,怎样才能使它等于零?5.3 由表中给出消费Y 与收入X 的数据,试根据所给数据资料完成以下问题: (1)估计回归模型u X Y ++=21ββ中的未知参数1β和2β,并写出样本回归模型的书写格式;(2)试用Goldfeld-Quandt 法和White 法检验模型的异方差性; (3)选用合适的方法修正异方差。
Y X Y X Y X 55 80 152 220 95 140 65 100 144 210 108 145 70 85 175 245 113 150 80 110 180 260 110 160 79 120 135 190 125 165 84115140205115180981301782651301859514019127013519090125137230120200759018925014020574105558014021011016070851522201131507590140225125165651001372301081457410514524011518080110175245140225841151892501202007912018026014524090125178265130185981301912705.4由表中给出1985年我国北方几个省市农业总产值,农用化肥量、农用水利、农业劳动力、每日生产性固定生产原值以及农机动力数据,要求:(1)试建立我国北方地区农业产出线性模型;(2)选用适当的方法检验模型中是否存在异方差;(3)如果存在异方差,采用适当的方法加以修正。
地区农业总产值农业劳动力灌溉面积化肥用量户均固定农机动力(亿元)(万人)(万公顷)(万吨)资产(元)(万马力)北京19.6490.133.847.5394.3435.3天津14.495.234.95 3.9567.5450.7河北149.91639 .0357.2692.4706.892712.6山西55.07562.6107.931.4856.371118.5内蒙古60.85462.996.4915.41282.81641.7辽宁87.48588.972.461.6844.741129.6吉林73.81399.769.6336.92576.81647.6黑龙江104.51425.367.9525.81237.161305.8山东276.552365.6456.55152.35812.023127.9河南200.022557.5318.99127.9754.782134.5陕西68.18884.2117.936.1607.41764新疆49.12256.1260.4615.11143.67523.35.5表中的数据是美国1988研究与开发(R&D)支出费用(Y)与不同部门产品销售量(X)。
试根据资料建立一个回归模型,运用Glejser方法和White方法检验异方差,由此决定异方差的表现形式并选用适当方法加以修正。
单位:百万美元工业群体销售量X R&D费用Y利润Z1.容器与包装6375.362.5185.12.非银行业金融11626.492.91569.53.服务行业14655.1178.3276.84.金属与采矿21869.2258.42828.15.住房与建筑26408.3494.7225.96.一般制造业32405.610833751.97.休闲娱乐35107.71620.62884.18.纸张与林木产品40295.4421.74645.79.食品70761.6509.25036.410.卫生保健80552.86620.113869.911.宇航952943918.64487.812.消费者用品101314.31595.310278.913.电器与电子产品116141.36107.58787.314.化工产品122315.74454.116438.815.五金141649.93163.99761.416.办公设备与电算机175025.813210.719774.517.燃料230614.51703.822626.618.汽车2935439528.218415.45.6 由表中给出的收入和住房支出样本数据,建立住房支出模型。
假设模型为i i i u X Y ++=21ββ,其中Y 为住房支出,X 为收入。
试求解下列问题: (1)用OLS 求参数的估计值、标准差、拟合优度(2)用Goldfeld-Quandt 方法检验异方差(假设分组时不去掉任何样本值)(3)如果模型存在异方差,假设异方差的形式是222i i X σσ=,试用加权最小二乘法重新估计1β和2β的估计值、标准差、拟合优度。
5.7 表中给出1969年20个国家的股票价格(Y )和消费者价格年百分率变化(X )的一个横截面数据。
国家 股票价格变化率%Y消费者价格变化率%X1.澳大利亚 5 4.32.奥地利 11.1 4.63.比利时 3.2 2.44.加拿大 7.9 2.45.智利 25.5 26.4 6.丹麦 3.8 4.27.芬兰 11.1 5.58.法国9.9 4.7 9.德国 13.3 2.2 10.印度 1.5 4 11.爱尔兰 6.4 4 12.以色列 8.9 8.4 13.意大利 8.1 3.3 14.日本 13.5 4.7 15.墨西哥 4.7 5.2 16.荷兰 7.5 3.6 17.新西兰 4.7 3.6 18.瑞典 8 4 19.英国 7.5 3.9 20.美国92.1试根据资料完成以下问题:(1)将Y 对X 回归并分析回归中的残差;(2)因智利的数据出现了异常,去掉智利数据后,重新作回归并再次分析回归中的残差; (3)如果根据第1条的结果你将得到有异方差性的结论,而根据第2条的结论你又得到相反的结论,对此你能得出什么样的结论?5.8 表中给出的是1998年我国重要制造业销售收入与销售利润的数据资料试完成以下问题:(1)求销售利润岁销售收入的样本回归函数,并对模型进行经济意义检验和统计检验; (2)分别用图形法、Glejser 方法、White 方法检验模型是否存在异方差; (3)如果模型存在异方差,选用适当的方法对异方差性进行修正。
5.9 下表所给资料为1978年至2000年四川省农村人均纯收入t X 和人均生活费支出tY 的数据。
四川省农村人均纯收入和人均生活费支出 单位:元/人时间农村人均纯收入X农村人均生活费支出Y时间农村人均纯收入X农村人均生活费支出Y1978 127.1 120.3 1990 557.76 509.16 1979155.9142.11991590.21552.391980 187.9 159.5 1992 634.31 569.461981 220.98 184.0 1993 698.27 647.431982 255.96 208.23 1994 946.33 904.281983 258.39 231.12 1995 1158.29 1092.911984 286.76 251.83 1996 1459.09 1358.031985 315.07 276.25 1997 1680.69 1440.481986 337.94 310.92 1998 1789.17 1440.771987 369.46 348.32 1999 1843.47 1426.061988 448.85 426.47 2000 1903.60 1485.341989 494.07 473.59数据来源:《四川统计年鉴》2001年。
(1)求农村人均生活费支出对人均纯收入的样本回归函数,并对模型进行经济意义检验和统计检验;(2)选用适当的方法检验模型中是否存在异方差;(3)如果模型存在异方差,选用适当的方法对异方差性进行修正。
5.10 在题5.9中用的是时间序列数据,而且没有剔除物价上涨因素。
试分析如果剔除物价上涨因素,即用实际可支配收入和实际消费支出,异方差的问题是否会有所改善?由于缺乏四川省从1978年起的农村居民消费价格定基指数的数据,以1978年—2000年全国商品零售价格定基指数(以1978年为100)代替,数据如下表所示:数据来源:《中国统计年鉴2001》练习题参考解答练习题5.1 参考解答(1)因为22()i i f X X =,所以取221i iW X =,用i W 乘给定模型两端,得312322221i i i i i i iY X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即 22221()()i i i iu Var Var u X X σ== (2)根据加权最小二乘法及第四章里(4.5)和(4.6)式,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223ˆii i i i i i i i i i i ii ii i iW y x W x W y x W x x W xW xW x xβ-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii i i i i i i i i i i ii ii i iW y x W x W y x W x x WxWxWx xβ-=-∑∑∑∑∑∑∑其中22232***23222,,i ii ii iiiiW X W XW Y X X Y WWW===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y =-=-=-练习题5.3参考解答(1)该模型样本回归估计式的书写形式为2ˆ9.34750.6371(2.5691)(32.0088)0.9464,..9.0323,1023.56i iY X R s e F =+===(2)首先,用Goldfeld-Quandt 法进行检验。