长沙市2018届高三统考参考答案(理科数学)
2018年湖南省长沙市高考数学一模试卷(理科)
2018年湖南省长沙市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设复数z1,z2在复平面内的对应点关于实轴对称,z1=1+i,则z1z2=()A.2 B.﹣2 C.1+i D.1﹣i2.(5分)设全集U=R,函数f(x)=lg(|x+1|﹣1)的定义域为A,集合B={x|sinπx=0},则(∁U A)∩B的子集个数为()A.7 B.3 C.8 D.93.(5分)函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象中相邻对称轴的距离为,若角φ的终边经过点,则的值为()A.B.C.2 D.4.(5分)如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的a i为茎叶图中的学生成绩,则输出的m,n分别是()A.m=38,n=12 B.m=26,n=12 C.m=12,n=12 D.m=24,n=105.(5分)设不等式组表示的平面区域为Ω1,不等式(x+2)2+(y﹣2)2≤2表示的平面区域为Ω,对于Ω1中的任意一点M和Ω2中的任意一点N,|MN|2的最小值为()A.B.C.D.6.(5分)若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(0,2) D.(1,2)7.(5分)某多面体的三视图如图所示,则该多面体各面的面积中最大的是()A.11 B.C.D.8.(5分)设等差数列{a n}的前n项和为S n,且满足S2014>0,S2015<0,对任意正整数n,都有|a n|≥|a k|,则k的值为()A.1006 B.1007 C.1008 D.10099.(5分)已知非零向量,,满足|﹣|=||=4,(﹣)•(﹣)=0,若对每一个确定的,||的最大值和最小值分别为m,n,则m﹣n的值为()A.随增大而增大B.随增大而减小C.是2 D.是410.(5分)已知如图所示的三棱锥D﹣ABC的四个顶点均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,则球O的表面积为()A.4πB.12πC.16πD.36π11.(5分)已知双曲线C:(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且,则双曲线C的离心率为()A.B.C.D.12.(5分)已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y ∈[﹣1,1],使得x+y2e y﹣a=0成立,则实数a的取值范围是()A.[1,e]B.C.(1,e]D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知a>0,展开式的常数项为15,则=.14.(5分)设a,b∈R,关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ab的取值范围是.15.(5分)正项数列{a n}的前n项和为S n,且(n∈N*),设,则数列{c n}的前2016项的和为.16.(5分)已知F是椭圆C:+=1的右焦点,P是C上一点,A(﹣2,1),当△APF周长最小时,其面积为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC中,已知点D在BC边上,且,AB=3.(Ⅰ)求AD的长;(Ⅱ)求cosC.18.(12分)如图,在多面体ABCDEF中,四边形ABCD为矩形,△ADE,△BCF 均为等边三角形,EF∥AB,EF=AD=AB.(1)过BD作截面与线段FC交于点N,使得AF∥平面BDN,试确定点N的位置,并予以证明;(2)在(1)的条件下,求直线BN与平面ABF所成角的正弦值.19.(12分)2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图:(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,根据表格中所给数据,分别求b ,c ,a +b ,c +d ,a +c ,b +d ,a +b +c +d 的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?经济损失不超过 4000元经济损失超过 4000元合计捐款超过 500元 a=30b捐款不超 过500元 c d=6合计P (K 2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828 附:临界值表参考公式:,.20.(12分)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x ﹣y ﹣2=0的距离为,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.21.(12分)已知函数f(x)=+be﹣x,点M(0,1)在曲线y=f(x)上,且曲线在点M处的切线与直线2x﹣y=0垂直.(1)求a,b的值;(2)如果当x≠0时,都有f(x)>+ke﹣x,求k的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.[选修4-5:不等式选讲]23.设f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.(1)求集合M;(2)已知a∈M,比较a2﹣a+1与的大小.2018年湖南省长沙市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设复数z1,z2在复平面内的对应点关于实轴对称,z1=1+i,则z1z2=()A.2 B.﹣2 C.1+i D.1﹣i【解答】解:复数z1,z2在复平面内的对应点关于实轴对称,z1=1+i,所以z2=1﹣i,∴z1z2=(1+i)(1﹣i)=2.故选:A.2.(5分)设全集U=R,函数f(x)=lg(|x+1|﹣1)的定义域为A,集合B={x|sinπx=0},则(∁U A)∩B的子集个数为()A.7 B.3 C.8 D.9【解答】解:由|x+1|﹣1>0,得|x+1|>1,即x<﹣2或x>0.∴A={x|x<﹣2或x>0},则∁U A={x|﹣2≤x≤0};由sinπx=0,得:πx=kπ,k∈Z,∴x=k,k∈Z.则B={x|sinπx=0}={x|x=k,k∈Z},则(∁U A)∩B={x|﹣2≤x≤0}∩{x|x=k,k∈Z}={﹣2,﹣1,0}.∴(∁U A)∩B的元素个数为3.∴(∁U A)∩B的子集个数为:23=8.故选:C.3.(5分)函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象中相邻对称轴的距离为,若角φ的终边经过点,则的值为()A.B.C.2 D.【解答】解:由题意相邻对称轴的距离为,可得周期T=π,那么ω=2,角φ的终边经过点,在第一象限.即tanφ=,∴φ=故得f(x)=sin(2x+)则=sin(+)=cos=.故选:A.4.(5分)如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的a i为茎叶图中的学生成绩,则输出的m,n分别是()A.m=38,n=12 B.m=26,n=12 C.m=12,n=12 D.m=24,n=10【解答】解:由程序框图知:算法的功能是计算学生在50名学生的化学考试成绩中,成绩大于等于80的人数,和成绩小于80且大于等于60的人数,由茎叶图得,在50名学生的成绩中,成绩大于等于80的人数有80,80,81,84,84,85,86,89,90,91,96,98,共12人,故n=12,由茎叶图得,在50名学生的成绩中,成绩小于60的人数有43,46,47,48,50,51,52,53,53,56,58,59,共12人,则在50名学生的成绩中,成绩小于80且大于等于60的人数有50﹣12﹣12=26,故m=26故选:B.5.(5分)设不等式组表示的平面区域为Ω1,不等式(x+2)2+(y﹣2)2≤2表示的平面区域为Ω,对于Ω1中的任意一点M和Ω2中的任意一点N,|MN|2的最小值为()A.B.C.D.【解答】解:不等式组表示的平面区域为Ω1,不等式(x+2)2+(y﹣2)2≤2表示的平面区域为Ω,如图:2对于Ω1中的任意一点M和Ω2中的任意一点N,|MN|的最小值就是可行域内的点O与圆的圆心连线减去半径,所以,|MN|的最小值为:=.故选:C.6.(5分)若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(0,2) D.(1,2)【解答】解:∵当x>0时,f(x)>0,∴2﹣m>0,故m<2.f′(x)=.∵f(x)有两个绝对值大于1的极值点,∴m﹣x2=0有两个绝对值大于1的解,∴m>1.故选:D.7.(5分)某多面体的三视图如图所示,则该多面体各面的面积中最大的是()A.11 B.C.D.【解答】解:由多面体的三视图得:该多面体为如图所示的四棱锥P﹣ABCD,其中底面ABCD是边长为1的正方形,平面PAD⊥平面ABCD,点P到平面ABCD的距离为1,∴AB⊥平面PAD,∴AB⊥PA,∴PA==,∴该多面体各面的面积中最大的是△PAB的面积:S△PAB==.故选:C.8.(5分)设等差数列{a n}的前n项和为S n,且满足S2014>0,S2015<0,对任意正整数n,都有|a n|≥|a k|,则k的值为()A.1006 B.1007 C.1008 D.1009【解答】解:由等差数列的求和公式和性质可得S2014==1007(a1007+a1008)>0,∴a1007+a1008>0同理由S2015<0可得2015a1008<0,可得a1008<0,∴a1007>0,a1008<0,且|a1007|>|a1008|∵对任意正整数n,都有|a n|≥|a k|,∴k的值为1008故选:C.9.(5分)已知非零向量,,满足|﹣|=||=4,(﹣)•(﹣)=0,若对每一个确定的,||的最大值和最小值分别为m,n,则m﹣n的值为()A.随增大而增大B.随增大而减小C.是2 D.是4【解答】解:假设=(4,0)、=(2,2)、=(x,y),∵(﹣)•(﹣)=0,∴(4﹣x,﹣y)•(2﹣x,2﹣y)=x2+y2﹣6x﹣2y+8=0,即(x﹣3)2+(y﹣)2=4,∴满足条件的向量的终点在以(3,)为圆心、半径等于2的圆上,∴||的最大值与最小值分别为m=2+2,n=2﹣2,∴m﹣n=4,故选:D.10.(5分)已知如图所示的三棱锥D﹣ABC的四个顶点均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,则球O的表面积为()A.4πB.12πC.16πD.36π【解答】解:∵AB=3,AC=,BC=2,∴AB2+AC2=BC2,∴AC⊥AB,∴△ABC的外接圆的半径为,∵△ABC和△DBC所在平面相互垂直,∴球心在BC边的高上,设球心到平面ABC的距离为h,则h2+3=R2=(﹣h)2,∴h=1,R=2,∴球O的表面积为4πR2=16π.故选:C.11.(5分)已知双曲线C:(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且,则双曲线C的离心率为()A.B.C.D.【解答】解:设双曲线的一条渐近线方程为y=x,A(a,0),P(m,),(m>0),由=3,可得Q(3m,),圆的半径为r=|PQ|==2m•,PQ的中点为H(2m,),由AH⊥PQ,可得=﹣,解得m=,r=.A到渐近线的距离为d==,则|PQ|=2=r,即为d=r,即有=•.可得=,e====.故选:C.12.(5分)已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y ∈[﹣1,1],使得x+y2e y﹣a=0成立,则实数a的取值范围是()A.[1,e]B.C.(1,e]D.【解答】解:由x+y2e y﹣a=0成立,解得y2e y=a﹣x,∴对任意的x∈[0,1],总存在唯一的y∈[﹣1,1],使得x+y2e y﹣a=0成立,∴a﹣1≥(﹣1)2e﹣1,且a﹣0≤12×e1,解得≤a≤e,其中a=1+时,y存在两个不同的实数,因此舍去,a的取值范围是.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知a>0,展开式的常数项为15,则=.=•(﹣1)r•a6﹣r•,【解答】解:由的展开式的通项公式为T r+1令=0,求得r=2,故常数项为•a4=15,可得a=1,因此原式为则=x2dx+xdx+dx=2x2dx+2dx=2•+2(+••22)=,故答案为:.14.(5分)设a,b∈R,关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ab的取值范围是[﹣16,16] .【解答】解:关于x,y的不等式|x|+|y|<1表示的可行域如图的阴影部分:可行域与坐标轴的交点坐标(1,0),(0,1),(0,﹣1),(﹣1,0),关于x,y的不等式|x|+|y|<1和ax+4by≥8无公共解,则ax+4by≥8表示的范围在可行域外侧,当a>0,b>0时满足题意,可得≥1,≥1,可得0<ab≤16,当a>0,b<0时满足题意,可得﹣1,,可得:﹣2≤b<0,0<a≤8可得﹣16≤ab<0,当a<0,b>0时满足题意,可得,,可得:0<b≤2,﹣8≤a<0可得﹣16≤ab<0,当a<0,b<0时满足题意,可得,,可得:﹣2≤b<0,﹣8≤a <0,∴0<ab≤16,当ab=0时,不等式|x|+|y|<1和ax+4by≥8无公共解;故ab的取值范围是:[﹣16,16];故答案为:[﹣16,16].15.(5分)正项数列{a n}的前n项和为S n,且(n∈N*),设,则数列{c n}的前2016项的和为.【解答】解:正项数列{a n}的前n项和为S n,且(n∈N*)①,则:②,﹣a n,②﹣①得:+a n+1﹣a n=1,整理得:a n+1当n=1时,,解得:a1=1,所以:数列{a n}是以1为首项,1为公差的等差数列.则a n=1+n﹣1=n,所以:.则:=,数列{c n}的前2016项的和为:,=﹣1+,=﹣.故答案为:16.(5分)已知F是椭圆C:+=1的右焦点,P是C上一点,A(﹣2,1),当△APF周长最小时,其面积为4.【解答】解:椭圆C:+=1的a=2,b=2,c=4,设左焦点为F'(﹣4,0),右焦点为F(4,0).△APF周长为|AF|+|AP|+|PF|=|AF|+|AP|+(2a﹣|PF'|)=|AF|+|AP|﹣|PF'|+2a≥|AF|﹣|AF'|+2a,当且仅当A,P,F'三点共线,即P位于x轴上方时,三角形周长最小.此时直线AF'的方程为y=(x+4),代入x2+5y2=20中,可求得P(0,2),故S=S△PF'F﹣S△AF'F=×2×8﹣×1×8=4.△APF故答案为:4.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC中,已知点D在BC边上,且,AB=3.(Ⅰ)求AD的长;(Ⅱ)求cosC.【解答】解:(Ⅰ)由得到:AD⊥AC,所以,所以.(2分)在△ABD中,由余弦定理可知,BD2=AB2+AD2﹣2AB•AD•cosBAD即AD2﹣8AD+15=0,(4分)解之得AD=5或AD=3,由于AB>AD,所以AD=3.(6分)(Ⅱ)在△ABD中,由正弦定理可知,,又由,可知(8分)所以(10分)因为,即(12分)18.(12分)如图,在多面体ABCDEF中,四边形ABCD为矩形,△ADE,△BCF 均为等边三角形,EF∥AB,EF=AD=AB.(1)过BD作截面与线段FC交于点N,使得AF∥平面BDN,试确定点N的位置,并予以证明;(2)在(1)的条件下,求直线BN与平面ABF所成角的正弦值.【解答】解:(1)当N为CF的中点时,AF∥平面BDN.证明:连结AC交BD于M,连结MN.∵四边形ABCD是矩形,∴M是AC的中点,∵N是CF的中点,∴MN∥AF,又AF⊄平面BDN,MN⊂平面BDN,∴AF∥平面BDN.(2)过F作FO⊥平面ABCD,垂足为O,过O作x轴⊥AB,作y轴⊥BC于P,则P 为BC 的中点.以O 为原点,建立如图所示的空间直角坐标系,设AD=1,则BF=1,FP=,∵EF==1,∴OP=(AB ﹣EF )=,∴OF=.∴A (,﹣,0),B (,,0),C (﹣,,0),F (0,0,),N (﹣,,).∴=(0,2,0),=(﹣,,),=(﹣,﹣,).设平面ABF 的法向量为=(x ,y ,z ),则,∴,令z=得=(2,0,),∴=﹣1,||=,||=. ∴cos <,>==﹣.∴直线BN 与平面ABF 所成角的正弦值为|cos <,>|=.19.(12分)2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图:(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,根据表格中所给数据,分别求b ,c ,a +b ,c +d ,a +c ,b +d ,a +b +c +d 的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?经济损失不超过 4000元经济损失超过 4000元合计捐款超过 500元 a=30 b捐款不超 过500元 c d=6合计P (K 2≥k )0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828 附:临界值表参考公式:,.【解答】解:(Ⅰ)记每户居民的平均损失为元,则:=(1000×0.00015+3000×0.0002+5000×0.00009+7000×0.00003+9000×0.00003)×2000=3360…(2分) (Ⅱ)由频率分布直方图,得: 损失超过4000元的居民有:(0.00009+0.00003+0.00003)×2000×50=15户, ∴ξ的可能取值为0,1,2, P (ξ=0)==,P (ξ=1)==,P (ξ=2)==,∴ξ的分布列为:ξ 01 2 PEξ=0×+1×+2×=. (Ⅲ)如图:经济损失不超过 4000元经济损失超过 4000元合计捐款超过 500元 30 939捐款不超 过500元 5 6 11合计35 15 50K2=≈4.046>3.841,所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否4000元有关.…(12分)20.(12分)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x ﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.【解答】解:(1)焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离,解得c=1,所以抛物线C的方程为x2=4y.(2)设,,由(1)得抛物线C的方程为,,所以切线PA,PB的斜率分别为,,所以PA:①PB:②联立①②可得点P的坐标为,即,,又因为切线PA的斜率为,整理得,直线AB的斜率,所以直线AB的方程为,整理得,即,因为点P(x0,y0)为直线l:x﹣y﹣2=0上的点,所以x0﹣y0﹣2=0,即y0=x0﹣2,所以直线AB的方程为x0x﹣2y﹣2y0=0.(3)根据抛物线的定义,有,,所以=,由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,所以=.所以当时,|AF|•|BF|的最小值为.21.(12分)已知函数f(x)=+be﹣x,点M(0,1)在曲线y=f(x)上,且曲线在点M处的切线与直线2x﹣y=0垂直.(1)求a,b的值;(2)如果当x≠0时,都有f(x)>+ke﹣x,求k的取值范围.【解答】解:(1)f(x)=+be﹣x的导数为f′(x)=,由切线与直线2x﹣y=0垂直,可得f(0)=1,f′(0)=﹣,即有b=1,a﹣b=﹣,解得a=b=1;(2)当x≠0时,都有f(x)>+ke﹣x,即为+e﹣x>+ke﹣x,即有(1﹣k)e﹣x>,即1﹣k>,可令g(x)=,g(﹣x)==g(x),即有g(x)为偶函数,只要考虑x>0的情况.由g(x)﹣1=,x>0时,e x>e﹣x,由h(x)=2x﹣e x+e﹣x,h′(x)=2﹣(e x+e﹣x)≤2﹣2=0,则h(x)在x>0递减,即有h(x)<h(0)=0,即有g(x)<1.故1﹣k≥1,解得k≤0.则k的取值范围为(﹣∞,0].请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52][选修4-5:不等式选讲]23.设f(x)=|x|﹣|2x﹣1|,记f(x)>﹣1的解集为M.(1)求集合M;(2)已知a∈M,比较a2﹣a+1与的大小.【解答】解:(1)由f(x)>﹣1,得或或解得0<x<2,故M={x|0<x<2}.(2)由(1)知0<a<2,因为,当0<a<1时,,所以;当a=1时,,所以;当1<a<2时,,所以.综上所述:当0<a<1时,;当a=1时,;当1<a<2时,.。
2018年湖南省高考数学试卷(理科)(全国新课标Ⅰ)
2018年湖南省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设z=1−i1+i+2i,则|z|=( )A.0B.12C.1D.√22. 已知集合A={x|x2−x−2>0},则∁R A=()A.{x|−1<x<2}B.{x|−1≤x≤2}C.{x|x<−1}∪{x|x>2}D.{x|x≤−1}∪{x|x≥2}3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4. 设S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.−12B.−10C.10D.125. 设函数f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0, 0)处的切线方程为()A.y=−2xB.y=−xC.y=2xD.y=x6. 在△ABC中,AD为BC边上的中线,E为AD的中点,则EB→=()A.3 4AB→−14AC→B.14AB→−34AC→C.3 4AB→+14AC→D.14AB→+34AC→7. 某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( ) A.2√17 B.2√5 C.3 D.28. 设抛物线C:y2=4x的焦点为F,过点(−2, 0)且斜率为23的直线与C交于M,N两点,则FM→⋅FN→=()A.5B.6C.7D.89.已知函数f(x)={e x,x≤0,lnx,x>0,g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是()A.[−1, 0)B.[0, +∞)C.[−1, +∞)D.[1, +∞)10. 如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311. 已知双曲线C:x23−y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.32B.3C.2√3D.412. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.3√34B.2√33C.3√24D.√32二、填空题:本题共4小题,每小题5分,共20分。
2018年高考理科数学全国卷3(含答案与解析)
2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。
2018年全国高考理科数学(全国一卷)试题及答案
2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=( )A.0B. 12 C.1 D. √2 2、已知集合A={x|x 2-x-2>0},则C R A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB → + 14 AC → D. 14 AB → + 34 AC→建设前经济收入构成比例建设后经济收入构成比例7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN→ =( ) A.5 B.6 C.7 D.8 9.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
2018年高考全国卷1理科数学(含答案)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C 的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
湖南省长沙市2018高三统考理科数学试题Word版答案
科目:数学(理科)(试题卷)注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和 该试题卷的封面上,并认真核对条形码的姓名、准考证号和科目。
2.选择题和非选择题均须在答题卡上作答,在本试题卷和草稿纸上作答无效。
考生在答题卡上按答题卡中注意事项的要求答题。
3.本试题卷共7页。
如缺页,考生须及时报告监考老师,否则后果自负。
4.考试结束后,将本试题卷和答题卡一并上交. 姓 名 准考证号 绝密★启用前长沙市2018届高三年级统一模拟考试理科数学长沙市教科院组织名优教师联合命制本试题卷共7页,全卷满分150分,考试用时120分钟。
一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.己知复数iz -=12,则下列结论正确的是 A. z 的虚部为i B.|z|=2C. 2z 为纯虚数 D. z 的共轭复数i z +-=12. 己知命题p: 0x ∃>0,010=-+a x ,若p 为假命题,则a 的取值范围是 A.(-∞,1) B. (-∞,1] C. (1,+∞) D. [1,+∞)3.己知3218==y x ,则=-yx 11 A.1 B. 2 C.-1 D .-24.在△AOB 中,OA = OB=1,OA 丄OB ,点 C 在 AB 边上,且 AB = 4AC ,则AB C ⋅0= A. 21-B. 21C. 23-D. 235.己知某二棱锥的三视图如图所示,其中俯视图由直角三角形和斜边上的中线组成,则该几何体的外接球的体积为 A. π34B. π312C. π4D. π126.己知 53)sin(=+απ,且 α2sin 2<0,则 )4tan(πα+的值为 A. 7 B.-7 C. 71-D. 717.若正整数N 除以正整数m 后的余数为r,则记为 N=r (mod m),例如10 = 2 (mod 4)。
下列程序框图的算法源于我国古代数学名著《孙子算经》中的 “中国剩余定理”,则执行该程序框图输出的i 等于 A. 3B. 9C.27D.818.设函数 )2<<0,0>)(sin()(πϕωϕω+=x x f ,己知)(x f 的最小正周期为π4,且当3π=x 时,)(x f 取得最大值。
2018湖南高考数学[理科]高考试题[版][附答案解析]
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z =A .0B .12C .1D2.已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。
高三数学-2018年长沙市一中高三数学(理科)综合测试题(三) 精品
2018年长沙市一中高三数学(理科)综合测试题(三)一、选择题:(5分×12 = 60分)1.由下列各组命题构成的复合命题中,“p 或q ”为真,“p 且q ”为假,“非p ”为真的是( ) A .p :0∈φ,q :0 =φB .p :若x ∈A ∩B ,则x ∈A ∪B ,q :若x ∈A ∪B ,则x ∈A ∩BC .p :a ∈{a ,b },q :{a } {a ,b }D .p :若x >1,则x >2,q :若x >2,则x >1 2.下列各式中,值为0.5的是( )A .sin15°cos15°B .12sin 12cos 22ππ- C .︒-︒5.22tan 15.22tan 2 D .26cos1π+3.已知直线m ,n 和平面α,则m ∥n 的一个必要不充分条件是( ) A .m ∥α,n ∥α B .m ⊥α,n ⊥α C .m ∥α,n α⊂D .m 、n 与α成等角4.函数f (x ) = 3 + log a (x – 1) (a >0且a ≠1)的反函数的图象恒过定点( ) A .(a , 1)B .(3, 1)C .(3, 2)D .(2, 3)5.将棱长为1的正方体木块切削成一个体积最大的球,则该球的体积是( ) A .π23B .π32 C .6π D .34π 6.直线l 的方向向量为(1, –2),直线l 的倾斜角为α,则tan2α=( ) A .34 B .–34 C .43 D .–43 7.函数y = sin )26(x -π+cos2x 的最小正周期和最小值是( )A .3,2-π B .3,-π C .2,-π D .2,2-π⊂≠8.设{a n }是等差数列,S 10>0,S 11<0,则使a n <0的最小的n 的值是( ) A .5B .6C .7D .89.如果以原点为圆心的圆经过双曲线2222b y a x -=1(a >0,b >0)的焦点,而且被双曲线的右准线分成弧长为2:1的两段圆弧,那么该双曲线的离心率为( ) A .5B .25 C .3 D .210.已知平面α、β、γ,直线l ,m 满足l ⊥m ,γα⊥,αγ⋂= m ,l =⋂βγ,那么在①γβ⊥;②l ⊥α;③m ⊥β中,可以由上述已知条件推出的只有( ) A .①和②B .②和③C .①和③D .②11.已知f (x )是偶函数,且当x ∈[0,+∞)时,f (x ) = x –1,则不等式f (x – 1)>1的解集是( )A .}31|{<<-x xB .1|{-<x x 或}3>xC .}2|{>x xD .}3|{>x x12.设⎪⎩⎪⎨⎧>-≤+=-)0()1()0(2)(x x f x a x f x ,若f (x ) = x 有且仅有两个实根,则实数a 的取值范围是( ) A .),2(-∞- B .(–∞, 2) C .),0[+∞ D .]0,(-∞二、填空题(4分×4 = 16分)13.把抛物线x 2 = ay 按向量b = (1, 2)平移后得到曲线c 2,曲线c 2的焦点F 的坐标是(1,47),则a 的值是.14.正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1的底面边长是2,侧棱长为22,则侧面对角线E 1D与BC 1所成的角是.15.从正方体的8个顶点中任取三个点为顶点作三角形,其中非直角三角形的个数是 . 16.计算机执行以下程序:(1)初始值x = 3,s = 0;(2)x = x + 1;(3)s = s + x ;(4)如果s ≥2018,则进行(5),否则从(2)继续运行;(5)打印x ;(6)stop. 那么由语句(5)打印出的数值是 .综合测试题(三)答卷(理)一、选择题(5分×12 = 60分)二、填空题(4分×4 = 16分) 13..14. .15. .16. .三、解答题:本大题共6个小题,74分,解答应写出文字说明,证明过程及演算步骤. 17.(12分)△ABC 中,三个内角分别是A 、B 、C ,向量a = (cos A , sin A ),b = (cos B , sin B ),a ·b = 5sin A ·sin B ,m = (2cos6,2cos 10BA C ),求|m |.18.(12分)已知函数f (x ) = x 3 + ax 2 + bx + c 的图象在点(1, f (1))处的切线的斜率为0,且f (x )在R 上是增函数,求a 、b 的值.19.(12分)在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为D 1C 1与AB 的中点(如图)(1)求A 1B 1与截面A 1ECF 所成角的大小; (2)求点B 到截面A 1ECF 的距离;(3)求截面A 1ECF 与底面ABCD 的所成锐二面角的大小.20.(12分)某企业一个车间原有3名工人,过去每人年薪为1万元,从今年起,计划每人每年的工资比一上年增加10%,另外,计划每年新招生3名工人,每名新工人第一年年薪为0.8万元,第二年开始拿与老工人一样数额的年薪.(1)若今年算第一年,试把第n 年企业付给该车间工人的工资总额T (万元)表示成n 的函数;(2)若企业今年向每位工人收90元作为住房基金,而且今后每年向每位工人收取的住房基金都比上一年增加10元,试问:企业每年向该车间工人收取的住房基金总金额是否会超过这一年付给他们工资总额10%?AFBCC 1B 1ED 1A 1D21.(12分)如图已知圆c:(x + 1)2 + y2 = 8,定点A (1, 0),M为圆上一动点,点P在AM上,点N在CM上,且满足0=,点N的轨迹为曲⋅2=, Array线E.(1)求曲线E的方程;(2)若过定点F (0, 2)的直线交曲线E于不同的两点G,H (点G在点F、H之间),且满足FHFGλ=,求λ的取值范围.22.(14分)如图,曲线x y =上的点Pi 与x 轴的正半轴上的点Qi 及原点O 构成一系列正三角形△OP 1Q 1,△Q 1P 2Q 2,…,△Q n –1P n Q n …,设正三角形Q n – 1P n Q n 的边长为a n ,n∈N + (记Q 0为O ),Q n (S n ,O ).(1)求a 1的值;(2)求数列{a n }的通项公式a n ; (3)求证当n ≥2时,.2311122212<++++nn na a a。
(完整版)2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12 C .1 D .22.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->UD .{|1}{|2}x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uuu r B .1344AB AC -uuu r uuu rC .3144AB AC +uu u r uuu rD .1344AB AC +uuu r uuu r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
2018年高考湖南卷数学(理)试卷及答案
2018年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()()1z i i i =+为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法 3.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于 A .12π B .6π C .4π D .3π 4.若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2 B .0 C .53 D .525.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .06. 已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是A.⎤⎦B.⎤⎦C.1⎡⎤⎣⎦D.1⎡⎤⎣⎦7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 B.2 D.28.在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的中心,则AP 等A .2B .1C .83 D .43二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆 ()ϕ为参数的右顶点,则常数a 的值为 .10.已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 12 .11.如图2O 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 的距离为 .必做题(12-16题) 12.若209,Tx dx T =⎰则常数的值为 .13.执行如图3所示的程序框图,如果输入1,2,a b a ==则输出的的值为 9 .14.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___。
2018年高考理科数学(全国I卷)试题(含答案)WORD版
2018年高考理科数学(全国I卷)试题(含答案)WORD版2018年普通高等学校招生全国统一考试理科数学注意事项:1.在答题卡上填写姓名和准考证号。
2.选择题用铅笔在答题卡上涂黑对应的答案标号,非选择题在答题卡上作答。
3.考试结束后将试卷和答题卡一并交回。
一、选择题:共12小题,每小题5分,共60分。
每小题有四个选项,只有一项是正确的。
1.设 $z=\frac{1-i+2i}{1+i}$,则 $|z|$ 等于A。
$\frac{1}{2}$B。
$\sqrt{2}$C。
$1$D。
$2$2.已知集合 $A=\{x|x^2-x-2>0\}$,则 $A$ 等于A。
$\{-1<x<2\}$B。
$\{-1\leq x\leq 2\}$C。
$\{x2\}$D。
$\{x\leq -1\}\cup \{x\geq 2\}$3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为了更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A。
新农村建设后,种植收入减少B。
新农村建设后,其他收入增加了一倍以上C。
新农村建设后,养殖收入增加了一倍D。
新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和。
若$3S_3=S_2+S_4$,$a_1=-12$,则切线方程为A。
$y=-2x$B。
$y=-x$XXXD。
$y=x$5.设函数 $f(x)=x^3+(a-1)x^2+ax$。
若 $f(x)$ 是奇函数,则曲线 $y=f(x)$ 在点 $(0,0)$ 处的切线方程为A。
$y=-2x$B。
$y=-x$XXXD。
$y=x$6.在 $\triangle ABC$ 中,$AD$ 是 $BC$ 边上的中线,$E$ 是 $AD$ 的中点,则 $EB$ 等于A。
2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案
2502018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CBABD ABDCA BA第Ⅱ卷(非选择题 90分)二、填空题(共20分)13.6 14.63- 15.16 16.2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 解:(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,∴sin =5ADB ∠.由题设知,90ADB ∠<︒,∴cos ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得2222cos BC BD DC BD DC BDC=+-⋅∠25825255=+-⨯⨯=.∴5BC =.18.(本小题满分12分) 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,∴BF ⊥平面PEF .又BF ⊂平面ABFD , ∴平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,∴PE.又PF =1,EF =2,∴PE ⊥PF .可得3,22PH EH ==,且3(0,0,0),(0,0,1,,0)22H P D -,3(1,22DP =.3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin 4HP DP HP DPθ⋅==⋅. ∴DP 与平面ABFD所成角的正弦值为4. 19.(本小题满分12分) 解:(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A的坐标为(1,)2或(1,2-. ∴AM 的方程为20x -=或20x --=.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴OMA OMB ∠=∠.251当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,且11(,)A x y ,22(,)B x y,则12x x MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y kx k y kx k =-=-得 []()()12121223()422MA MB k x x x x k k x x -+++=--.将(1)(0)y k x k =-≠代入2212x y +=得 2222(21)4220k x k x k +-+-=. ∴22121222422=,2121k k x x x x k k -+=++,∴[]121223()4k x x x x -++3332441284021k k k k k k --++==+. 从而0MA MB k k +=,∴MA ,MB 的倾斜角互补, ∴OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 20.(本小题满分12分) 解:(1)20件产品中恰有2件不合格品的概率为221820()(1)f p C p p =-,且 21821720()[2(1)18(1)]f p C p p p p '=---217202(110)(1)C p p p =--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. ∴()f p 的最大值点为0.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,202254025X Y Y =⨯+=+.∴(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,∴应该对余下的产品作检验. 21.(本小题满分12分)解:(1)()f x 的定义域为(0,)+∞,且22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2,1a x ==时,()0f x '=, ∴()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2a a x ⎛⎛⎫+∈+∞⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x∈⎝⎭时,()0f x '>. ∴()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点时,当且仅当2a >.由于()f x 的两个极值点12,x x 满足21=0x a x -+,∴121x x =,不妨设12x x <,则21x >. 1212()()f x f x x x --121212ln ln 11x x a x x x x -=--+-1212ln ln 2x x a x x -=-+-2522222ln 21x ax x -=-+-,∴1212()()2f x f x a x x -<--等价于 22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)=0g ,从而当(1,)x ∈+∞时,()0g x <. ∴22212ln 0x x x -+<,即 1212()()2f x f x a x x -<--.(二)选考题:22. (本小题满分10分)[选修4—4:坐标系与参数方程]解:(1)由cos ,sin x y ρθρθ==得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,2=,解得43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+.23.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当1a =时,()11f x x x =+--,即2(1),()2(11),2(1).x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩∴不等式()1f x >的解集为1,2⎛⎫+∞⎪⎝⎭. (2)当(0,1)x ∈时11x ax x +-->成立等价于当(0,1)x ∈时1ax -<1成立. 若0a ≤,则当(0,1)x ∈时1ax -≥1; 若a >0,1ax -<1的解集为20x a<<,∴21a≥,∴02a <≤. 综上,a 的取值范围为(]0,2.2532018年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 DABBA ABCCA CD第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.2y x = 14.9 15.12-16.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.∴{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.∴当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(本小题满分12分)解:(1)由已知得(1,0)F ,l 的方程为为(1)(0)y k x k =-≠. 设11(,)A x y ,22(,)B x y .由2(1),4y k x y x =-⎧⎨=⎩得22222(2)0k x k x k -++=. ∴ 216160k ∆=+>,212224=k x x k++. ∴AB AF BF =+212244(1)(+1)=k x x k +=++.由题设知2244=8k k+,解得k =–1(舍去),k =1.∴l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),∴AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为(x 0,y 0),则00220005,(1)(1)16,2y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩∴所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.(本小题满分12分) 解:(1)∵4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =254连结OB .因为2AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知OP OB ⊥. 由OP OB ⊥,OP AC ⊥知 OP ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0)O B A -,(0,2,0)C,(0,0,P ,(0,2,AP =.取平面P AC 的法向量(2,0,0)OB =. 设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面P AM 的法向量为(,,)x y z m =.由0,0,AP AM ⎧⋅=⎪⎨⋅=⎪⎩m m即20,(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩得,).y a x z a ⎧=⎪⎨-=⎪⎩可取),,)a a -m =.所以cos OB <>=m,由已知得cos 2OB <>=m,.=. 解得4a =或4a=-(舍去).∴4(,)333-m =.又∵(0,2,PC =-,∴3cos PC <>=m, ∴PC 与平面P AM 所成角的正弦值为4. 21.(本小题满分12分)解:(1)当a =1时,()1f x ≥等价于2(1)10x x e -+-≤.设函数2()(1)1xg x x e-=+-,则22()(21)(1)x x g x x x e x e --'=--+=--. 当1x ≠时,()0g x '<, ∴()g x 在(0,)+∞单调递减. 而(0)0g =,∴当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当a >0时,()(2)x h x ax x e -'=-.当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>.∴()h x 在(0,2)单调递减,在(2,)+∞单调递增.∴2(2)14h ae -=-是()h x 在[0,)+∞的最小值.①若(2)0h >,即214a e <,()h x 在255(0,)+∞没有零点;②若(2)0h =,即214a e =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即214a e >,由于(0)1h =,∴()h x 在(0,2)内有一个零点, 由(1)知,当0x >时,2x e x >,∴334221616(4)11()a a a a h a e e =-=-34161110(2)a a a>-=->.∴()h x 在(2,4)a 内有一个零点, ∴()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,214a e =.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为 (tan )2tan y x αα=+-. 当cos 0α=时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos t αα+++ sin )80t α-=.①∵曲线C 截直线所得线段的中点(1,2)在C 内,∴方程①有两个解12,t t ,且1224(2cos sin )13cos t t ααα++=-+. 由参数t 的几何意义得120t t +=.∴2cos sin 0αα+=,于是直线的斜率tan 2k α==-. 22.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当a =1时,24(1),()2(12),26(2).x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩当1x ≤-时,由()240f x x =+≥得2x ≥-,即21x -≤≤-;当12x -<≤时,()20f x =>; 当2x >时,由()260f x x =-+≥得 3x ≤,即23x <≤. 综上可得()0f x ≥的解集为[]2,3-. (2)()1f x ≤等价于24x a x ++-≥. 而22x a x a ++-≥+,且当x=2时等号成立.∴()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥. ∴a 的取值范围是(][),62,-∞-+∞.2562018年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CDABC ADBCB CB第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.1214.3- 15.3 16.2 (一)必考题:共60分. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.C解:∵{}[)101,A x x =-≥=+∞,{}012B =,,, ∴ {}1,2AB =,∴选C .2.D解:∵()()212223i i i i i i +-=-+-=+, ∴选D . 3.A解:选A . 4.B解:由已知条件,得2217cos 212sin 1239αα⎛⎫=-=-= ⎪⎝⎭,∴选B .5.C解:由已知条件,得 251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令1034r -=,解得2r =, x 4的系数为22552240rr C C ==, ∴选C .6.A解:由已知条件,得(2,0),(0,2)A B --,∴||AB == 圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为= ∴点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.∴选A . 7.D解:令0x =,得2y =,∴A,B 不能选. 令321424()02y x x x x '=-+=-->,得2x <-或02x <<,即函数在0⎛ ⎝⎭内单调递增, ∴选D . 8.B解:由已知条件知,X ~B (10,p ),且 10p (1-p )=2.4,解得p =0.6或p =0.4. 又由P (X=4)< P (X=6)得,即4466641010(1)(1)C p p C p p -<-,0.5p >,∴p =0.6. ∴选B . 9.C解:由已知条件,得2222cos 44ABC a b c ab CS ∆+-==cos 1sin 22ab C ab C ==,即tan 1C =,∴4C π=.∴选C . 10.B解:如图,ABC ∆为等边三角形,点O 为,,,A B C D 外接球的球心,E 为ABC ∆的重心,点F 为边BC 的中点.当点D 在EO 的延长上,即DE ⊥面ABC 时,三棱锥D ABC -体积取得最大值.V =,5分,.1=2,x,且196π.257258当366x πππ≤+≤时有1个零点,3,629x x πππ+==;当326x πππ<+≤时有1个零点,343,629x x πππ+==; 当192366x πππ<+≤时有1个零点,573=,629x x πππ+=. ∴零点个数为3,∴填3. 16.2解:由已知条件知,抛物线C 的焦点为(1,0)F . 设22121212(,),(,)()44y yA yB y y y ≠,则由A ,F ,B 三点共线,得221221(1)(1)44y y y y -=-,∴12=4y y -. ∵∠AMB =90º,∴221212(1,1)(1,1)44y y MA MB y y ⋅=+-⋅+-,221212(1)(1)(1)(1)44y y y y =+++-⋅-2121(2)04y y =+-=, ∴12=2y y +.∴212221124244y y k y y y y -===+-,∴填2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分) 解:(1)设数列{}n a 的公比为q ,则由534a a =,得2534a q a ==,解得2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112nn n S -==--或1(2)1[1(2)]123n n n S +-==--+,∴2163mm S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.18.(本小题满分12分) 解:(1)第一种生产方式的平均数为184X =,第二种生产方式平均数为274.7X =,∴12X X >,∴第一种生产方式完成任务的平均时间大于第二种,即第二种生产方式的效率更高. (2)由茎叶图数据得到中位数80m =,∴列联表为(3)()()()()()22n ad bc K a b c d a c b d -=++++,()24015155510 6.63520202020⨯-⨯==>⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.(本小题满分12分) 解:(1)由已知条件知,在正方形ABCD 中,AD CD ⊥.∵正方形ABCD ⊥半圆面CMD ,平面ABCD 半圆面CMD CD =, ∴AD ⊥半圆面CMD .∵CM 在平面CMD 内,∴AD CM ⊥,即CM AD ⊥.259OM (0,0,1)(0,-1,0)0)又∵M 是CD 上异于C ,D 的点, ∴CM MD ⊥.又∵AD DM D =, ∴CM ⊥平面AMD , ∵CM 在平面BMC 内,∴平面AMD ⊥平面(2)由条件知,2ABC S ∆=是常数, ∴当点M 到平面ABCD 的距离.最大,即点M 为弧CD 的中点时,三棱锥M – ABC 体积最大.如图,以CD 中点O 为原点,过点O 且平行于AD 的直线为x 轴,OC ,OM 所在直线为y ,Z 轴建立空间直角坐标系O-xyz ,则由已知条件知,相关点的坐标为 A(2,-1,0),B(2,1,0),M(0,0,1) ,且(0,2,0)AB =,(2,1,1)MA =--.由(1)知,平面MCD 的法向量为(1,0,0)=m .令平面MXB 的法向量为(,,)x y z =n ,则(,,)(0,2,0)=20,(,,)(2,1,1)20AB x y z y MA x y z x y z ⎧⋅=⋅=⎪⎨⋅=⋅--=--=⎪⎩,n n 即0,2y z x ==, ∴取(1,0,2)=n.∴cos ,⋅<>==⋅m nm n m n ,∴sin ,5<>=m n ,即面MAB 与MCD 所成二面角的正弦值.为5.20.(本小题满分12分)解:(1)设直线l 的方程为y kx t =+,则由22,143y kx t x y =+⎧⎪⎨+=⎪⎩消去y ,得222(43)84120k x ktx t +++-=,①由22226416(43)(3)0k t k t ∆=-+->,得2243t k <+.②设1122(,),(,)A x y B x y ,则12,x x 是方程①的两个根,且122843ktx x k -+=+,121226()243ty y k x x t k +=++=+. ∵线段AB 的中点为()()10M m m >,, ∴1228243ktx x k -+==+,121226()2243ty y k x x t m k +=++==+. ∵0m >,∴0t >,0k <,且2434k t k+=-.③由②③得22243434k k k ⎛⎫+-<+ ⎪⎝⎭,解得12k >或12k <-.∵0k <,∴12k <-.(2)∵点()()10M m m >,是线段AB 的中点,且FP FA FB ++=0,∴2FP FM +=0,即2FP FM =-.④ 由已知条件知,()()10M m m >,,()10F ,.令(,)P x y ,则由④得:(1,)2(0,)x y m -=-,即1,2x y m ==-, ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得26034m =或34m =-(舍去),且3(1,)2P -.又222211221,14343x y x y +=+=, ∴两式相减,得2112211234y y x xx x y y -+=--+. 又12123=2,22x x y y m ++==,∴21122112314y y x xk x x y y -+==-=--+, 243744k t k +=-=,∴直线l 的方程为74y x =-+. 将71,4k t =-=代入方程①,得 2285610x x -+=,解得121,11414x x =-=+,1233414414y y =+=-.∴3(2FA x ==+, 32FP =,3(2FB x == ∴=2FA FB FP +,即,,FA FP FB 成等差数列,且该数列的公差28d =±. 另解:(1)设1122(,),(,)A x y B x y ,则222211221,14343x y x y +=+=, 两式相减,得2112211234y y x xk x x y y -+==--+. ∵线段AB 的中点为()()10M m m >,, ∴122x x +=,122y y m +=,34k m=-. 由点()()10M m m >,在椭圆内得21143m +<,即302m <<. ∴12k <-.(2)由题设知(1,0)F .令(,)P x y ,则由FP FA FB ++=0得1122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=,∴1212=3(),()x x x y y y -+=-+. 由得=1,2x y m =-<0. ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得34m =或34m =-(舍去),且3(1,)2P -,且32FP =. (FA x =122x=-,同理222xFB =-.∴12=2222x xFA FB +-+-124322x xFP +=-==,即,,FA FP FB 成等差数列.把34m =代入34k m =-得1k =-,且3(1,)4M∴直线l 的方程为74y x =-+. 把直线方程与椭圆方程联立,消去y 得:2285610x x -+=,于是有121212,28x x x x +==.设成等差数列的公差为d ,则26121122d FB FA x x =-=-==, d =±21.(本小题满分12分)解:由条件知,函数()f x 的定义域为(1,)-+∞.(1)若0a =,则函数()(2)ln(1)2f x x x x =++-,且1()ln(1)11f x x x'=++-+, 2211()1(1)(1)xf x x x x ''=-=+++. ∴(0)0f =,(0)0f '=,(0)0f ''=. ∴当10x -<<时,()0f x ''<,∴当10x -<<时,()f x '单调递减. ∴()(0)0f x f ''>=,∴当10x -<<时,()f x 单调递增, ∴()(0)0f x f <=,即()0f x <. 当x > 0时,()0f x ''>,∴当x > 0时, ()f x '单调递增.∴()(0)0f x f ''>=,∴当x > 0时,()f x 单调递增, ∴()(0)0f x f >=,即()0f x >. 综上可得,当10x -<<时,()f x <0; 当x > 0时,()0f x >. (2)(i )若0a ≥,由(1)知,当x >0时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与x=0是()f x 的极大值点矛盾.(ii )若0a <,设函数2()()2f x g x x ax =++22ln(1)2xx x ax =+-++. 由于当min x ⎧⎪<⎨⎪⎩时,220x ax ++>, ∴()g x 与()f x 符号相同. 又(0)(0)0g f ==,∴0x =是()f x 的极大值点当且仅当0x =是()g x 的极大值点.22212(2)2(12)()12x ax x ax g x x x ax ++-+'=-+++() 22222(461)(1)(2)x a x ax a x x ax +++=+++. 如果610a +>,则当6104a x a+<<-,且m i n 1,x ⎧⎪<⎨⎪⎩时,()0g x '>,∴0x =不是()g x 的极大值点.如果610a +<,则22461=0a x ax a +++存在根10x <.∴当1(,0)x x ∈,且m in 1,x ⎧⎪<⎨⎪⎩时,()0g x '<,∴0x =不是()g x 的极大值点. 如果61=0a +,则322(24)()(1)(612)x x g x x x x -'=+--.当(1,0)x ∈-时,()0g x '>; 当(0,1)x ∈时,()0g x '<. ∴0x =是()g x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-.(二)选考题:共10分,请考生在第22、23题中任选一题作答。
2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32二、填空题:本题共4小题,每小题5分,共20分。
推荐-全国大联考(湖南专用)2018届高三第三次联考数学试卷(理科) 精品
全国大联考(湖南专用)2018届高三第三次联考数学试卷(理科)第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i (1+2i) z = 5,则z 等于( )A .2-iB .-2+iC .-2-iD .-1-2i1. 设f :x →x 2是集合A 到集合B 的映射,若B ={1,2},则A ∩B 等于( )(A )Φ (B ){1} (C )Φ或{2} (D )Φ或{1} 2.设某等差数列的首项为a (a ≠0),第二项为b .则这个数列中有一项为0的充要条件是( )A .a -b 是正整数B .a+b 是正整数C .b a b -是正整数 D .ba a-是正整数 3.在△ABC 中,若sin A = cos Bcos C ,则tan C+tan B 的值为( ) A .-1 B .1 C .-2 D .24.如图,一条螺旋线是用以下方法画成:△ABC 是边长为1的正三角形,曲线CA 1,A 1A 2,A 2A 3分别以A 、B 、C 为圆心,AC 、BA 1、CA 2为半径画的圆弧,曲线CA 1A 2A 3称为螺旋线旋转一圈.然后又以A 为圆心AA 3为半径画圆弧……这样画到第n 圈,则所得螺旋线的长度l n 为( )A .(3n 2+n)πB .(3n 2-n+1) πC .()2n n32π+ D .()21n n 32π+- 5.已知α∈(0,2π),且cos α= a ,则关于x 的不等式sin x ≤ a 的解集可以用区间表示为( )A .[2k π-α+2π,2k π+α+2π] (k ∈Z) B .[2k π-α+2π,2k π+α+23π] (k ∈Z) C .[2k π-α,2k π+α] (k ∈Z) D .[2k π+α+2π,2k π-α+25π] (k ∈Z) 6.已知11n 23a n -=(n ∈ N*),记数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值为( )A .10B .11C .12D .137.已知函数f (x) = 3sin ()ϕω+x ,g(x) = 3cos ()ϕω+x .若对任意x ∈R 都有⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛+x 6f x 6f ππ,则g (6π)的值为 ( )A .0B .3C .-3D .3或-38.数列{a n }的前n 项和为S n ,且2n 1n n a S 2S +=+,1a 2-=则数列{a n }的首项为( )A .1或一2B .土1C .土2D .2或-19.已知数列{a n }、{b n }的前n 项和分别为A n 、B n ,记n n n n n n n b a A b B a c ⋅-⋅+⋅= (n ≥1),则数列{c n }的前10项和为( ) A .A 10+B 10 B .2B A 1010+ C . A 10·B 10 D .1010B A ⋅ 10.已知定义在R 上的减函数f (x),对任意t ∈R ,总有f (-1+t)+f (-1-t)= 2.若m+n<-2,则( )A .f (m)-f (n)>2B .f (m) + f (n)>2C .f (m)-f (n)<2D .f (m) + f (n)<2第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中的横线上. 11.设随机变量的分布列为P(ξ=k) = ak (k=1,2,…,n),则a=____________.12.5cos 5sin 355cos 2-的值是__________________. 13.已知cos β= a ,sin α= 4sin(α+β),则tan(α+β) =_______________. 14.在公差为d (d≠0)的等差数列{a n }中,若S n 是数列{a n }的前n 项和,则数列1020S S -,2030S S -,3040S S -也成等差数列,且公差为l00d .类比上述结论,相应地在公比为q(q≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有_________________________________________________________________.15.如图,某人从A 出发沿道路逆时针行走再回到A ,且所走过 的路线是一个矩形,则不同的走法有________种;若从B 出发 按同样要求回到B ,则不同的走法有__________种.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程及演算步骤. 16.(本小题满分12分) 已知tan A 与tan (4π-A)是方程0q px x 2=++的两根,若3tan A=2tan (4π-A),求p 与q 的值.17.(本小题满分12分) 已知函数f (x) = cos (x ω+a) (0<ω<2π)的图象向右平移a 个单位后得到的图象关于点(a+1,0)对称,且f (x)在[ωa-,1]上是单调函数,f(x)的图象关于点(4,0)对称,求f (x)的表达式.18.(本小题满分14分) 已知函数()()()1n 3nnn r 1n 2rrn 1n 22n n 21n 1n 20n x 1x 1x x x x f C C C C C -+-+--++-+-+-= ,其中n ∈N*,求函数f (x)的极大值和极小值.19.(本小题满分14分) 已知函数()x b b 242ax x f 22-+-=,()()2a x 1x g ---= (a ,b ∈R).(1) 当b=0时,若f (x)在[2,+∞)上单调递增,求a 的取值范围;(2) 当a 为整数时,若存在x 0使得f (x 0)是f (x)的最大值,g (x 0)是g(x)的最小值,求a ,b 的值.20.(本小题满分14分) 设数列{a n }满足:若n=2k -1 (k ∈N*),a n = n ;若n=2k (k ∈N*),a n = a k . (1) 求a 2+a 4+a 6+a 8+a 10+a 12+a 14+a 16;(2) 若n n 212321n a a a a a S +++++=- ,求证:S n = 4 n -1+S n -l (n ≥2);(3) 证明:n n 21411S 1S 1S 1-<+++ .21.(本小题满分14分) 在平面直角坐标系内,已知三个点列{A n },{B n },{C n },其中A n (n ,an ),B n (n ,b n ),C n (n -1,0),n n 1n n C B //A A +,且点列{B n }在斜率为6的直线上.(1) 试用a 1,b 1与n 表示a n (n ≥2);(2) 设a 1= a ,b 1=-a ,在a 6与a 7两项中至少有一项是数列{a n }的最小项,试求a 的取值范围; (3)设n ∈N*,在(2)的条件下,证明:数列{a n }中,最小项为a 6与最小项为a 7的概率相等.2018届高三数学试卷(理科)参考答案一、选择题1.C 2.D 3.B 4.A 5.D 6.B 7.A 8.A 9.C 10.B 二、填空题11.()1n n 2+ 12.1 13.4a a 12--± 14.1020T T ,2030T T ,3040T T 也成等比数列,且公比为q l 0015.30,94 提示: 2.D ba a1n -=-是正整数.故选D . 3.B tan C+tan B=()1Asin B C sin =+. 4.A ()()ππn n 3n 332132l 2n +=++++=. 5.D 根据诱导公式可知,cos α = a ,于是结合正弦线或者正弦曲线可知,所求解选D . 6.B 由通项公式,a 1+a 2+…+a 10 =0,n ≥1l 时,a n >0,S n 开始大于0,故n 最小为11. 7.A f 2 (x)+g 2 (x)=9,由已知6x π=是函数f (x)图象的对称轴,f(6π)=3或f(6π)=-3,g(6π)=0,故选A .8.A a l = 2 (a l +a 2)+a 12得 a l =1或-2.9.C 当n ≥2时,1n 1n n n n B A B A c ---=,故c l +c 2 +…+c 10= A l0B l0. 10.B 由已知得f[-1+(n+1)]+f[-1-(n+1)]=2,即f (-2-n)=2-f(n),由于 m <-2一n ,所以 f (m)>f(-2-n)=2-f(n),即 f m)+f(n)>2. 11.()1n n 2+ 由a (1+2+…+n)=1,可得.12.1 原式= ()5cos 5sin 3560cos 2--=1.13.4a a 12--±sin α= sin [(α+β)-β]=…= 4sin(α+β) 可化为()=-=+4cos sin tan βββα4a a 12--±.15.30,94 横边、竖边各取一条与点A 所在的横边、竖边可组成一个矩形,有6×5=30种;当B 为矩形顶点时有5×6=30种,当B 在横边上(不为顶点)时有5×2×4=40种,当B 在纵边上(不为顶点)时有6×1×4=24种,共有30+40+24—94种.16.解:设t=tan A ,则tan(4π一A)=t1t1+- …………………………………2分 由已知得3t=2t1t 1+-,解得t=31或t=-2,…………………………………5分当t=31时,tan(4π一A)=21, 此时p=-[tan A+tan(4π一A)]=65-, q=tan A·tan(4π一A)=61………8分当t=-2时,tan(4π-A)=-3,此时p=5,q=6.…………………………………………………………11分 由以上讨论知:p=65-,q=61;或p=5,q=6.………………………12分17.解:由题设y=cos[ω(x -a)+α]的图象关于点(a+l ,0)对称, 则cos[ω(a+1-a)+α]=0,即 2k ππαω+=+(k ∈Z).……………………3分又f (x) =cos(ωx+α)在[ωa-,1]上是单调函数,令t=ωx+α,则g(t)= cos t 在[0,ω+α]上是单调函数, ∴0<2k ππαω+=+≤π,∴0<k+21≤1. ∵k ∈Z ,∴k=0,于是 ω+α=2π………………………………………8分又f (x) =cos(ωx+α)的图象关于点(4,0)对称, ∴4ω+α2m ππ+= (m ∈Z),∴πωm 3=(m ∈Z). ……………… 11分 ∵0<ω<2π,∴3πω=,∴f(x)=cos(6x 3ππ+).……………………………12分18.解:由已知可得 ()()n1n 2x 1x x f -=- ……………2分 所以()()()()[]x 1n 31n 2x 1x x 'f 1n 2n 2----=--………………………… 4分令()0x 'f =,得x l =0,x 2=1n 31n 2--,x 3=1.………………………… 5分 从而x l < x 2< x 3.当n 为偶数时,f(x)的增减表如下:从而f(x)在x=0时无极值;在x=1n 31n 2--时取得极大值()1n 31n 3n 1n 2--⋅-;在x=1时取极小值0.………………………………………………………9分 当n 为奇数时f(x)的增减表如下:从而f(x)在x=0时无极值;在x=1n 31n 2--时取得极大值()1n 31n 3n 1n 2--⋅-;在x=1时无极值. ……………………………………………………14分 19.解:(1)当b=0时,f(x)= ax 2-4x ,若a=0,则f (x)=-4x ,则f(x)在[2,+∞)上递减,不合题意. 则知a ≠0,要使f(x)在[2,+∞)上单调递增,则知:a ≥1………………………………………………………6分 (2) 若a=0,f (x)=-22b b 24-+x ,则f (x)无最大值,由知a ≠0.要使f(x)有最大值,必须 ⎩⎨⎧≥-+<0b b 240a 2即a<0且1-5≤b ≤1+5 此时ab b 24x x 20-+==,f (x)取最大值.又g (x)取最小值时,a x x 0==,依题意有ab b 24a 2-+=∈Z∴()51b 5b b 24a 222≤--=-+=,又a<0,a ∈Z ,则a=-1,此时b =-1或3.…………………………………………14分 20.(1)解:a 2+a 4+a 6+a 8+a 10+a 12+a 14+a 16 =22.……………………4分 (2) n n 212321n a a a a a S +++++=-= (1231n a a a -+++ )+(n 242a a a +++ ) =[1+3+5+…+(2n -1)]+( 12321n a a a a -++++ )=1n 1n n S 22121--+⨯-+= 4n -1+S n -1 (n ≥2).………………8分(3) 由(2)并累加得 ()2431444S S n1n 21n +=++++=- , ∴n n n 43243S 1<+=, ∴⎪⎭⎫⎝⎛++++<+++-1n 2n 21414141143S 1S 1S 1 n 411-=…14分 21.解:(1) 1n n A A +=(1,a n+l -a n ),n n C B =(-1,-b n ),又∵ n n 1n n C B //A A +,∴ 1×(-b n )=-1×(a n+l -a n ),即b n = a n+l -a n ∵ 点列{B n }在斜率为6的直线上,∴()n1n b b n1n -+-+=6,∴ b n+1-b n =6, 即数列{b n }是首项为b 1,公差为6的等差数列, ∴ b n = b 1+6(n —1),故a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)= a l +b l +b 2+…+b n -1= 3 n 2+(b 1-9)n+6+a 1-b 1 (n ≥2). …………………………5分 (2) 由a 1= a ,b 1=-a ,及(1),得a n =3n 2-(a+9)n+6+2a ,因为二次函数f(x) = 3x 2-(a+9)x+6+2a 是开口向上,对称轴为直线69a x +=的抛物线,在a 6与a 7两项中至少有一项是数列{a n }的最小项,则21569a 211≤+≤, ∴ 24≤a ≤36.……………………………………………………………9分 (3)证明:∵ a n+1-a n =6n -(a+6),又 30≤a +6≤42,若 6n ≤30,即n≤5时。
2018届湖南省十四校高三第一次联考数学理科试卷及答案解析
2018 届高三·十四校联考
第Ⅰ卷(共 60 分)
第一次考试
数学(理科)试卷
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只
有一项是符合题目要求的. 1.已知复数 z 满足 2 i z 3 4i ,则 z 的共轭复数是( A. 2 i B. 2 i C. 2 i D. 2 i )
2.已知全集为 R ,集合 A x 2 1 , B x x 3x 2 0 ,则 A ðR B ( A. x x 0
x
2
)
B. x 0 x 1或x 2
C. x 1 x 2
D. x 0 x 1或x 2
3.袋中装有大小相同的四个球,四个球上分别标有数字“ 2 ”“ 0 ”“ 1”“ 8 ”,现从中随 机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( A. )
k
.
3
2018 届湖南省十四校高三第一次联考数学理科试卷及答案解析
16.已知数列 an 满足: a1 3 , an 2an 1 3 1
n
n 2 .设 ak 是等差数列,数列
t
kt t N 是各项均为正整数的递增数列,若 k1 1 ,则 k3 k2
2 3
B.
1 2
C.
1 3
D.
1 4
4.若双曲线 A. 0 或 4
x2 y2 1 的焦距为 4 ,则 m 等于( 3 m m 1
2018届湖南省三湘名校教育联盟高三第三次联考数学(理)试题(解析版)
2018届湖南省三湘名校教育联盟高三第三次联考数学(理)试题一、单选题1.设全集U R =,集合{}(){}11,20A x x B x x x =-<<=-<,则()UA CB ⋂=( )A. {}10x x -<≤B. {}12x x <<C. {}01x x <<D. {}01x x ≤< 【答案】A 【解析】{}{}|02,|02U B x x C B x x x =<<∴=≤≥或,则(){}10U A C B x x ⋂=-<≤,故选A.点睛: 1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.已知i 为虚数单位,复数322iz i+=-,则以下为真命题的是( ) A. z 的共轭复数为7455i - B. z 的虚部为85C. 3z =D. z 在复平面内对应的点在第一象限 【答案】D 【解析】()()()()322324722255i i i i z i i i +++===+--+, z 的共轭复数为4755i -, z 的虚部为75, z == z 在复平面内对应的点为47,55⎛⎫⎪⎝⎭,故选D. 3.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?” 意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤? ”设该金箠由粗到细是均匀变化的,则金箠的重量为( ) A. 15斤 B. 14斤 C. 13斤 D. 12斤 【答案】A【解析】由题知,由粗到细每段的重量成等差数列,设该数列为{}n a ,不妨设12345a a a a a <<<<,则152,4a a ==,则金箠的重量为()1555152a a S +==,故选A.4.与双曲线2212x y -= )A. 60x -=B. 260y ±±=C. 60x ±=D.260y ±+=【答案】B【解析】双曲线2212x y -=的渐近线为y x =,20y ±=,与之平行的直线20,0y m m ±+=≠,6m ==±,故选B.5.若()f x 为偶函数,且在0,2π⎛⎫⎪⎝⎭上满足任意12x x <, ()()12120f x f x x x ->-,则()f x 可以为( ) A.5cos 2y x π⎛⎫=+ ⎪⎝⎭ B. ()sin y x π=+ C. tan y x =- D.212cos 2y x =-【答案】B 【解析】5cos 2y x π⎛⎫=+⎪⎝⎭=-sinx 为奇函数,排除A; tan y x =-为奇函数,排除C; 212cos 2y x =-=-cos4x 为偶函数,且单调增区间为,224k k πππ⎡⎤+⎢⎥⎣⎦,k∈Z,排除D;()sin y x π=+= sin x 为偶函数,且在0,2π⎛⎫⎪⎝⎭上单调递增,故选B.6.执行如图所示的程序框图,当7t =时,输出的S 值为( )A. B. 0 C. D. 【答案】D【解析】由题意,数列()sin1,2,3...3k k π⎧⎫=⎨⎬⎩⎭的周期是6,当7t =时,输出的S= 2345678sinsinsin sin sin sin sin sin 33333333ππππππππ+++++++=故选D.7.“中国梦”的英文翻译为“China Dream ”,其中China 又可以简写为CN ,从“CN Dream ”中取6个不同的字母排成一排,含有“ea ” 字母组合(顺序不变)的不同排列共有( )A. 360种B. 480种C. 600种D. 720种 【答案】C【解析】从其他5个字母中任取4个,然后与“ea ”进行全排列,共有4555600C A =,故选B.8.()4231x x +-的展开式中x 的系数为( ) A. 4- B. 8- C. 12- D. 16- 【答案】C【解析】()()()()()4432221222324443133331x x x x C x x C x x C x x +-=+-+++-++,又()23rx x +的二项式展开式的通项公式()()2213?3?r kkk k k r k k r r T C x x C x --+==,当且仅当r=1,k=1时符合题意, ()4231x x +-的展开式中x 的系数为34·312C -=-,故选C. 9.随机变量X 服从正态分布()()210,,12X N P X m σ~>=, ()810P X n ≤≤=,则21m n+的最小值为( )A. 3+B. 6+C. 8+D. 6+ 【答案】D 【解析】由题意,1,2m n +=∴21m n+=()2142·22426n m m n m n m n ⎛⎫++=+++≥+ ⎪⎝⎭6=+,当且仅当42n m m n =,即m n ==,故选D. 点睛: 本题考查正态分布图象的对称性以及基本不等式的应用.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.如图所示,网格纸上小正方形的边长为1,粗实线和虚线画出的是某几何体的三视图,则该几何休的表面积为( )A. 20B. 24C. )201π+D. )241π+【答案】D【解析】由三视图知,该几何体是一个棱长为2的正方体挖去一个圆锥,其表面积为)22162122412S πππ=⨯-⨯+⨯=+,故选D.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.11.已知抛物线()220y px p =>的焦点为F ,准线为l ,过点F 的直线交拋物线于,A B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为()03,y 时, AEF ∆为正三角形,则此时OAB ∆的面积为( )A.3B. C.3 D. 3【答案】A【解析】如图所示,过点F 作AE 的垂线,垂足为H,则H 为AE 的中点,则3,,2pAE EH p =+=232p p ∴=+,解得p=2,(()24,,1,0,AF y x A F k ∴=∴=,直线AF 为)1y x =-,代入抛物线方程为()2314x x -=,解得x=3或x=13,y ∴=或y ∴=,112OABOFBOFASSS⎛∴=+=⨯⨯= ⎝⎭,故选A.12.已知函数()()1ln 1,1{21,1x x x f x x -->=+≤,则方程()()()3204f f x f x ⎡⎤-+=⎢⎥⎣⎦的实根个数为( )A. 6B. 5C. 4D. 3 【答案】C【解析】令t=f(x),则方程()()()3204ff x f x ⎡⎤-+=⎢⎥⎣⎦等价于()3202f t t --=,在同一平面直角坐标系中作出f(x)与直线y=2x+32的图象,由图象可得有两个交点,且()3202f t t --=的两根分别为10t =和212t <<,当()10t f x ==时,解得x=2,当()()21,2t f x =∈时, f(x)有3个不等实根,综上所述, 方程()()()3204f f x f x ⎡⎤-+=⎢⎥⎣⎦的实根个数为4,故选C.点睛:本题考查函数与方程思想和数形结合思想的应用,考查换元法的应用技巧,属于中档题. 对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.即函数的零点就是指使函数值为零的自变量的值.通过化简也经常将函数的零点问题转化为两个函数图象的交点问题.二、填空题13.已知函数()21tan 322f x x x πθθ⎛⎫=++≠ ⎪⎝⎭在区间⎡⎤⎢⎥⎣⎦上是单调函数,其中θ是直线l 的倾斜角,则θ的所可能取值范围为__________.【答案】3,,6224ππππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦【解析】函数()21t a n 322f x x x πθθ⎛⎫=++≠ ⎪⎝⎭的对称轴是tan x θ=-,tan θ∴-≤tan 1θ-≥,即tan θ≥或tan 1θ≤-,又[)0,θπ∈,则θ的所可能取值范围为3,,6224ππππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦,故填3,,6224ππππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦.14.若ABC ∆的三内角,,A B C 满足: sin :sin :sin 2:3:3A B C =,则以2B 为一内角且其对边长为__________. 【答案】8116π【解析】设内角,,A B C 所对的边分别为a,b,c ,由题设a=2k(k>0),则b=c=3k,222217cos ,cos22cos 1239a c b B B B ac +-∴==∴=-=-,则sin2B =,设所求三角形的外接圆半径为R,则2R =,解得94R =,所以三角形的外接圆的面积为2R π=8116π,故填8116π. 15.已知实数,x y 满足{0 22x yy x y ≤-≥+≤-,且()1,1m a x =+-,()1,n y a =+,若m n ⊥,则实数a 的最大值是__________. 【答案】12【解析】作出不等式组所表示的平面区域如图阴影部分所示,其中A(-2,2),B(-1,0),m n ⊥则10ax y a +--=,即11y a x -=-,其几何意义为可行域内的点与P(1,1)连线的斜率,其最大值为011112PBk -==--,即实数a 的最大值为12,故填12. 16.已知函数()()()()()22,,1ln 1f x kx x g x x h x x x =+==++,若当[]1,x e ∈时,不等式组()()()(){2f x g x f x x h x ≥-≤恒成立,则实数k 的取值范围为__________.【答案】[]2,2e -【解析】当[]1,x e ∈时,不等式组()()22{1ln 1kx x xkx x x ≥-≤++恒成立,即()()2{1ln 1k x x x k x≥-++≤恒成立,要使2k x ≥-在[]1,e 上恒成立,则2k e ≥-;令()()()1ln 1x x u x x++=,则()ln u x x x -'=, ()11u x x=-'',当[]1,x e ∈时, ()0u x ''≥恒成立,则()u x '在[]1,e 上单调递增, ()()()11,0u x u u x ∴≥='∴'>'恒成立,则u(x) 在[]1,e 上单调递增,要使()()1ln 1x x k x++≤在[]1,e 上恒成立,则k ()12u ≤=,综上可知,实数k 的取值范围为[]2,2e -,故填[]2,2e -.三、解答题17.已知数列{}n b 是首项为1的等差数列,数列{}n a 满足1310n n a a +--=,且3211,1b a a +==.(1)求数列{}n a 的通项公式;(2)令n n n c a b =⋅,求数列{}n c 的前n 项和n T .【答案】(1) 312n n a -=;(2) ()()12133218n n n n n T +-⋅+-+=.【解析】试题分析: (1)根据数列{}n a 的递推关系式以及等比数列的定义,得出12n a ⎧⎫+⎨⎬⎩⎭是一个等比数列,根据基本量运算求解即可;(2)先求出等差数列{}n b 的通项公式,代入n n n c a b =⋅,根据错位相减法求出数列的前n 项和. 试题解析:(1)∵1310n n a a +--=,∴131n n a a +=+,∴111322n n a a +⎛⎫+=+ ⎪⎝⎭, ∴12n a ⎧⎫+⎨⎬⎩⎭是首项为32,公比为3的等比数列, ∴113322n n a -+=⨯,即312n n a -=.(2)由(1)知, 232311132b a -=-=-=,∴33n b n n =+-=,则322n n n nc ⋅=-, ∴()()2111323324n n n n T n +=⨯+⨯++⨯-,令213233n n S n =⨯+⨯++⨯,① 231313233n n S n +=⨯+⨯++⨯,②①-②得1211133132333333222n n n n n n S n n n ++++-⎛⎫-=+++-⨯=-⨯=-- ⎪⎝⎭∴()121334n nn S +-⋅+=.∴()()12133218n nn n n T +-⋅+-+=. 点睛: 用错位相减法求和应注意的问题 :(1)要善于识别题目类型,特别是等比数列公比为负数的情形; (2)在写出“Sn ”与“qSn ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn -qSn ”的表达式; (3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.18.2016年1月1日,我国实行全面二孩政策,同时也对妇幼保健工作提出了更高的要求.某城市实行网格化管理,该市妇联在网格1与网格2两个区域内随机抽取12个刚满8个月的婴儿的体重信息,休重分布数据的茎叶图如图所示(中位:斤,2斤=1千克).体重不超过9.8kg 的为合格.(1)从网格1与网格2分别随机抽取2个婴儿,求网格1至少一个 婴儿体重合格且网格2至少一个婴儿体重合格的概率;(2)妇联从网格1内8个婴儿中随机抽取4个进行抽检,若至少2个 婴儿合格,则抽检通过,若至少3个合格,则抽检为良好.求网格1在抽检通过的条件下,获得抽检为良好的概率;(3)若从网格1与网格2内12个婴儿中随机抽取2个,用X 表示网格2内婴儿的个数,求X 的分布列与数学期望. 【答案】(1)5584;(2) 1753;(3)见解析. 【解析】试题分析: (1)根据茎叶图得出网格1内体重合格的婴儿数和网格2内体重合格的婴儿数,运用对立事件的概率求解即可;(2)分别求出网格1在抽检通过的概率和获得抽检为良好的概率,运用条件概率求解即可;(3) 由题意得出所有x 的可能取值,分别求出概率列成表格形式得出分布列,根据定义求得期望值. 试题解析:(1)由茎叶图知,网格1内体重合格的婴儿数为4,网格2内体重合格的婴儿数为2,则所求概率22422284551184C C P C C ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭.(2)设事件A 表示“2个合格,2个不合格”;事件B 表示“3个合格,1个不合格”;事件C 表示“4个全合格”;事件D 表示“抽检通过”;事件E 表示“抽检良好”.∴()()()()22314444444448885370C C C C C P D P A P B P C C C C =++=++=, ()()()31444444881770C C C P E P B P C C C =+=+=,则所求概率()()1753P D P P E ==.(3)由题意知, X 的所有可能取值为0,1,2.∴()2821214033C P X C ===, ()114821216133C C P X C ===, ()242121211C P X C ===, ∴X 的分布列为∴()1416120123333113E X =⨯+⨯+⨯=. 点睛:在求某事件的概率时,若事件较为复杂,可通过求它的对立事件的概率来求解,对于含有”至多”,”至少”等词语的概率问题时,一般用对立事件的概率来解较为简单;求概率时,当题目中含有”在…发生的条件下,求…发生的概率”时,一般用条件概率求解,解题时分清楚谁是条件,然后利用公式求解.19.如图所示,四边形ABCD 为菱形,且120,2//ABC AB BE DF ∠=︒=,,且BE DF = DF ⊥平面ABCD .(1)求证:平面ABE ⊥平面ABCD ;(2)求平面AEF 与平面ABE 所成锐二面角的正弦值. 【答案】(1)见解析;(2)4. 【解析】试题分析: (1)先证得BE ⊥平面ABCD ,再根据面面垂直的判定定理得出结论;(2)建立合适的空间直角坐标系,分别求出平面AEF 和平面ABE 的法向量,利用二面角的公式求解即可. 试题解析:(1)∵//,BE DF DF ⊥平面ABCD ,∴BE ⊥平面ABCD , 又BE ⊂平面ABE ,∴平面ABE ⊥平面ABCD .(2)设AC 与BD 的交点为O ,建立如图所示的空间直角坐标系O xyz -,则)()((,0,1,0,,0,AB E F -,∴()()()0,2,0,3,1,3,3,1,0EF AE AB =-=-=-设平面AEF 的法向量为()1111,,n x y z =,则110{EF nAE n ⋅=⋅=,即111120{y y -=++=,令11x=,则110,0y z ==,∴()11,0,1n =.设平面ABE 的法向量为()2222,,n x y z =,则220{AE n AB n ⋅=⋅=,即222220{y y ++=+=,令21x =,则220y z ==,∴()2n =. ∴1212122cos ,42n n n n n n ⋅===⋅,∴1214sin ,4n n =, ∴平面AEF 与平面ABE 所成锐二面角的正弦值为144. 20.已知椭圆()2222:10x y C a b a b +=>> ,4a M b ⎛⎫ ⎪⎝⎭为焦点是1,02⎛⎫⎪⎝⎭的抛物线上一点, H 为直线y a =-上任一点, ,A B 分别为椭圆C 的上,下顶点,且,,A B H 三点的连线可以构成三角形. (1)求椭圆C 的方程;(2)直线,HA HB 与椭圆C 的另一交点分别交于点,D E ,求证:直线DE 过定点.【答案】(1) 2214x y +=;(2)见解析. 【解析】试题分析: (1)由已知列出方程组,解出a,b,c 的值,求出椭圆的标准方程;(2)联立直线HA 与椭圆方程,得到关于x的一元二次方程,利用根与系数的关系得出D 点坐标,同理求出E 点坐标,代入直线方程并化简,即可求出定点. 试题解析:(1)由题意知,22222{2 4c a a b a b c ==⨯=+,解得2{1 a b c ===, ∴椭圆C 的方程为2214x y +=. (2)设点()(),20H m m -≠,易知()()0,1,0,1A B -, ∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立2231{14y x mx y =-++=,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴2222436,3636D D m m x y m m -==++, 冋理可得22284,44E E m m x y m m --==++, ∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-, ∴直线DE 过定点10,2⎛⎫-⎪⎝⎭. 21.已知函数()ln ,xe f x a x ax a R x=--+∈. (1)当0a <时,讨论()f x 的单调性; (2)设()()()g x f x x f x =+',若关于x 的不等式()()212xx g x e a x ≤-++-在[]1,2上有解,求a 的取值范围. 【答案】(1)见解析;(2) (],0-∞.【解析】试题分析: (1)对函数两次求导,判断出函数的单调性;(2)将函数g(x)的解析式代入关于x 的不等式,化简并构造新函数,对新函数求导,讨论参数的范围判断出单调性求出最值,代入不等式即可. 试题解析:(1)由题意知, ()()()221x x xax e x a xe e f x a x x x ---=--='+, 令()()()1xF x ax ex =--,当0a <时, 0xax e-<恒成立,∴当1x >时, ()0F x <;当01x <<时, ()0F x >, ∴函数()f x 在()0,1上单调递增,在()1,+∞上单调递减.(2)∵()()()g x f x xf x =+',∴()ln 2xg x a x e ax a =--+-,由题意知,存在[]01,2x ∈,使得()()0200012x x g x e a x ≤-++-成立.即存在[]01,2x ∈,使得()2000ln 102x a x a x a -++--≤成立, 令()()[]2ln 1,1,22x h x a x a x a x =-++--∈, ∴()()()[]11,1,2x a x ah x a x x x x---=++-=-∈'. ①1a ≤时, []1,2x ∈,则()0h x '≤,∴函数()h x 在[]1,2上单调递减, ∴()()min 2ln20h x h a a ==-+≤成立,解得0a ≤,∴0a ≤;②当12a <<时,令()0h x '>,解得1x a <<;令()0h x '<,解得2a x <<, ∴函数()h x 在[]1,a 上单调递增,在[],2a 上单调递减, 又()112h =,∴()2ln20h a a =-+≤,解得0a ≤,∴a 无解; ③当2a ≥时, []1,2x ∈,则()0h x '≥,∴函数()h x 在[]1,2上单调递增, ∴()()min 1102h x h ==>,不符合题意,舍去; 综上所述,a 的取值范围为(],0-∞.22.选修4-4:坐标系与参数方程在极坐标系中,直线l 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭,现以极点O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系,曲线1C 的参数方程为12{ 22x cos y sin ϕϕ=-+=-+(ϕ为参数).(1)求直线l 的直角坐标方程和曲线1C 的普通方程;(2)若曲线2C 为曲线1C 关于直线l 的对称曲线,点,A B 分别为曲线1C 、曲线2C 上的动点,点P 坐标为()2,2,求AP BP +的最小值. 【答案】(1)见解析;(2)6.【解析】试题分析: (1)利用cos x,?sin y ρθρθ==进行代换,即可得出直线l 的直角坐标方程,利用22sincos 1ϕϕ+=消去参数可得曲线1C 的普通方程;(2) 点P 在直线4x y +=上,根据对称性, AP 的最小值与BP 的最小值相等,求出点P 到圆心的距离减去半径即可. 试题解析:(1)∵sin 4πρθ⎛⎫+= ⎪⎝⎭,∴cos sin 22ρθρθ+= 即cos sin 4ρθρθ+=,∴直线l 的直角坐标方程为40x y +-=;∵12{22x cos y sin ϕϕ=-+=-+,∴曲线1C 的普通方程为()()22124x y +++=.(2) ∵点P 在直线4x y +=上,根据对称性, AP 的最小值与BP 的最小值相等, 曲线1C 是以()1,2--为圆心,半径2r =的圆. ∴1min 23AP PC r =-==,则AP BP +的最小值为236⨯=. 23.选修4-5:不等式选讲已知函数()12,f x x x m m R =++--∈. (1)若5m =,求不等式()0f x >的解集;(2)若对于任意x R ∈,不等式()2f x ≥恒成立,求m 的取值范围. 【答案】(1) ()(),23,-∞-⋃+∞;(2) (],1-∞.【解析】试题分析: (1)对函数()f x 去掉绝对值写成分段函数形式,分别解不等式取并集即可;(2)对不等式进行参变分离,利用绝对值不等式求出最值,即可得到参数的范围.试题解析:(1)令()21,112{3,12 21,2x x f x x x x x x -+≤-=++-=-<≤->.当5m =时, ()0f x >等价于1{ 215x x ≤--+>或12{ 35x -<≤>或2{ 215x x >->,解得2x <-或∅或3x >,∴不等式()0f x >的解集为()(),23,-∞-⋃+∞. (2)由题意知, 122m x x ≤++--在R 上恒成立, 又()()1221221x x x x ++--≥+---=, ∴1m ≤,即m 的取值范围是(],1-∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
3
23
g(x) = f (x + π ) = sin[1 (x + π ) + π ]
3
2 33
= sin( x + π ) = cos x ,则 g(x)为偶函数.当 x∈[0,2π]时, x ∈ [0,π] ,则 g(x)
22
2
2
单调递减,选 D.
9.D
【解析】设 AD=x,则 CD=16-x. 据题意, ⎧⎪⎪⎨⎪⎪⎩1x6≥−ax ≥ 4 ,即 a≤x≤12.
=
1
JJJG AB
+
JJG OA
=
(
3
,
1
)
.
4
44
所以
JJJG OC
⋅
JJJG AB
=
−
3
+
1
=
−
1
,选
A.
44 2
5.A
【解析】由三视图可知,该几何体为三棱锥 P-ABC,如图.其中顶点 P 在底面 ABC 内
的射影 O 是 BC 的中点,且 AB=2, AC = 2 2 , OP = 3 .因为 AB⊥AC,
第三次执行循环体,得 i=27,N=50,此时 50=2(mod 3).
且 50=1(mod 7),
退出循环. 所以输出 i 的值为 27,选 C.
8.D
【解析】因为
T = 4π , 则
2π ω
=
4π
,
即
ω
=
1 2
.因为
f
π (
)
=
1
,则
sin(
π
+
ϕ)
=
1
,又
3
6
0 < ϕ < π , 则 ϕ = π , 所 以 f (x) = sin( x + π ) . 由 题 设 ,
log3
2
=
log3
18 2
=
log3
9
=
2
,选
B.
4.A
JJJG 【解析】解法一:由已知,| AB |=
JJJG 2 ,| AC |=
2
,<
JJG OA,
JJJG AB
>=
3π
,<
JJJG AC,
JJJG AB
>=
0
,
4
4
JJJG JJJG JJG JJJG JJJG JJG JJJG JJJG JJJG 则 OC ⋅ AB = (OA + AC) ⋅ AB = OA ⋅ AB + AC ⋅ AB =
则 BC = 4 + 8 = 2 3 ,从而 OA = OB = OC = 3 ,
所以点 O 为三棱锥 P-ABC
P
外接球的球心,球半径 R = 3 , A 其体积V = 4 πR3 = 4 3π ,
3
B O
2 正视图
3
22 侧视图
选 A.
C
数学(理科)参考答案第 1 页 共 9 页
俯视图
6.D
【解析】由已知,sinα = − 3 < 0 ,且 sin2α=2sinαcosα<0,所以 cosα = 4 ,从而 tanα = − 3 .
长沙市 2018 届高三年级统一模拟考试
数学(理科)参考答案及评分标准
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.C
【解析】因为
z=
2(1+ i) (1− i)(1+ i)
= 1+ i ,则
z
的虚部为
1,|z|=
2 ,z2=2i 为纯虚数,
5
5
4
所以
tan(α
+
π
)
=
tan α
+
1
=
−
3 4
+1
=
1
,选
D.
4 1 − tanα 1 + 3 7
4
7.C
【解析】第一次执行循环体,得 i=3,N=14,此时 14=2(mod 3).
但 14≠1(mod7).
第二次执行循环体,得 i=9,N=23,此时 23=2(mod 3),
但 23≠1(mod 7).
x2 , - y2). 由 已 知 ,
k AB
=
y1 x1
− y2 − x2
=3
,
k AM
=
y1 x1
+ +
y2 x2
=1
.两式相乘,得
y12 − y22 x12 − x22
=3.
因为点 A,B 在双曲线上,则 x12 − y12 a2 b2
= 1 , x22 − y22 a2 b2
= 1 .两式
相减,得
y-2=0
A x
l
x+2y-5=0
【解析】因为 3× 2m = 2m+1 + 2m = 2m+1 + 2m + 0 × 2m−1 + 0 × 2m−2 + ⋅ ⋅ ⋅ + 0 × 20 ,
则 k(3× 2m )=m,所以 k (3× 210 ) = 10 ,
因为 2m − 3 = 2m − 4 + 1 = 4(2m−2 − 1) + 1 = 2m−1 + 2m−2 + ⋅ ⋅ ⋅ + 23 + 22 + 0 × 21 + 20 , 2 −1
z = 1− i ,选 C.
2.D
【解析】因为 p 为假命题,则﹁q 为真命题,即 ∀ x>0,x+a-1≠0,即 x≠1-a,所
以 1-a≤0,即 a≥1,选 D.
3.B
【解析】由已知, x = log18 3 , y = log2 3 ,则
1 x
−
1 y
=
1 log18
3
−
1 log2
3
=
log3 18 −
x12 − x22 a2
=
y12 − y22 b2
,即
y12 − y22 x12 − x22
=
b2 a2
.所以 b2 a2
= 3 ,即 c2 − a2 a2
=3,
则 e2=4,所以 e=2,选 B.
11.A
【解析】作可行域,如图中阴影三角形. 设线段 AB 的中点为 P,则 AB⊥OP,
所以当|OP|最长时,|AB|为最短.
数学(理科)参考答案第 2 页 共 9 页
12.C
因为直线 l 经过可行域, 由图知,当点时,
|OP|最长.
因为 kOP
=1, 2
则直线 l 的方程是 y − 2 = −2(x − 4) ,
即 2x+y-10=0,选 A.
y B P
O
x-y-2=0
2 cos 3π +
2⋅
2 =−1 ,选
44
2
A.
JJG
JJJG
JJJG JJJG JJG
解法二:由已知可设 OA = (1,0) , OB = (0,1) ,则 AB = OB − OA = (−1,1) .
因为
JJJG AB
=
JJJG 4 AC
=
JJJG 4(OC
−
JJG OA)
,则
JJJG OC
则 k( 2m -3)=1,所以 k( 218 -3)=1. 从而 k(3× 210 ) + k(218 − 3) = 11 ,选 C.
二、填空题:本大题共 4 个小题,每小题 5 分,共 20 分.把各题答案的最简形式写在题 中的横线上. 13. 1024 .
所以 S = x(16 − x) = −(x − 8)2 + 64(a ≤ x ≤ 12) .
当 0<a≤8 时,f(a)=S(8)=64;当 8<a<12 时,f(a)=S(a)=a(16-a),选 D.
10.B
【解析】设点 A(x1,y1),B(x2,y2),据题意,点 B,M 关于坐标原点对称,则点 M(-