猴头菌水溶性多糖的分离纯化与结构表征(英)
不同提取方法猴头菇粗多糖的表征及其抗氧化活性的比较
( 1 。 华 南A - Y - 大学食 品科 学与 工程 学 院 , 广 东广 州 5 1 0 6 4 0; 2 . 广 东太 阳神 集 团有 限公 司, 广 东广 州 5 1 0 6 6 5 )
摘 要: 为探 究不 同提 取 方 法 对 猴 头 菇粗 多糖 提 取 效 果 及 抗 氧 化 活 性 的 影 响 。 以猴 头 菇 子 实体 为 原 料 , 通过 热水 、 超
2 . G u a n g d o n g A p o l l o C r o u p . C o . , L t d , G u a n g z h o u 5 1 0 6 6 5 , C h i n a )
Ab s t r a c t : T o i n v e s t i g a t e t h e e f f e c t s o f v a r i o u s e x t r a c t i o n me t h o d s o n t h e c r u d e p o l y s a e c h a r i d e s r f o m He r i c i u m e r i n a t ¨ a n d t h e i r a n t i o x i d a n t a c t i v i t i e s , t h r e e d i f f e r e n t me t h o d s , i n c l u d i n g h o t wa t e r e x t r a c t i o n, u l t r a s o n i c e x t r a c t i o n a n d a l k a l i e x t r a c t i o n,
具 有 较好 的 清 除 自由基 能 力 , 可作 为 天然 抗 氧 化 剂 开发 利 用 。 关键 词 : 猴头菇 , 粗 多糖 , 提取 , 表征 , 抗 氧 化
猴头菇多糖提取及纯化的研究
s d u o e y uf t- e e e t p oe i a dC r mao r p yc l mn o i m d d c l l e g l lcr h r s n h o tga h ou . s a o s
Ke ywor s: rcu e i a e s p ls c h rd ; xr c ; u i c t n d He ii m rn c u ; oy a c a i e e ta tp rf ai i o
率。 结果表 明在 9 加 水 2 倍 、 H 75 浸提 8h 超声波处理 5 的条件下浸提 率最高, Oc c、 O p = .、 、 Os 可迭 54 %。 用胰蛋 白 .3 利 酶和 Svg法进行脱蛋 白。聚丙烯酰胺凝胶 电泳和凝胶 柱层析检验结果都说 明猴 头菇 多糖是均一 多糖 。 ea
为国产分析纯 。 1 . 1 %苯酚溶液 的配制 .2 0 2
保健效果[ 猴头菇多糖是猴头菇 中重要 的生物活性 物 2 1 。 质 ,可作 为免疫促进剂 ,能控制 细胞 的分裂 和细胞 分 化, 调节细胞 的生 长和衰老 。经 检测 , 菇多糖具 猴头 有 明显的抗补体活性 和促进淋 巴细胞增殖作用 ,对提 高肌体 免疫力具有 重要 的作用口 可广泛应用于医药 、 。 保 健品及 功能食 品 ,作为绿色生 物医药产品具 有广 阔 的市场前景 。本文对猴头菇多糖提取纯化方 法进行 了
猴头菌的活性成分提取方法研究
猴头菌的活性成分提取方法研究猴头菌(Hericium erinaceus)是一种珍贵的木材腐朽真菌,被广泛应用于食品和药物行业。
它以其特殊的形态和多样的营养价值受到了广泛的关注。
研究表明,猴头菌富含多种生物活性成分,如多糖、多肽、三萜类化合物等,这些物质赋予了猴头菌许多药理活性和药物功效。
本文将探讨猴头菌的活性成分提取方法的研究进展。
提取方法是从天然材料中分离出目标活性成分的重要步骤。
对于猴头菌来说,其特殊的菌体形态和组织结构对提取方法提出了一些挑战。
根据目前的研究,常用的猴头菌活性成分提取方法有水煮提取法、酶解法、超声波辅助提取法和超临界流体萃取法等。
下面将对这些方法进行详细介绍。
水煮提取法是最常用的猴头菌提取方法之一。
这种方法简单、操作方便,适用于中小规模的活性成分提取。
其基本原理是将猴头菌切成小块,放入水中煮沸,溶解其中的活性成分。
在提取过程中,可以根据需要加入一些辅助溶剂,如乙醇或甲醇,以增加萃取效果。
水煮提取法可以提取猴头菌中的多糖类和多肽类活性成分,但对于一些脂溶性的成分效果较差。
酶解法是一种利用酶解作用去提取猴头菌活性成分的方法。
该方法首先将猴头菌切碎并加入适量的酶解液,经过一定时间的酶解反应,使猴头菌中的活性成分与酶相互作用并溶解出来。
酶解法可以有效地提取猴头菌中的多肽类成分,因为酶具有高度的特异性和选择性。
但是,由于需使用高价的酶解剂,酶解法的成本较高,适用于小规模的研究和生产。
超声波辅助提取法是利用超声波的机械振动和剪切力来促进猴头菌活性成分的溶解和释放。
该方法通过超声波的高强度振动破坏猴头菌细胞壁,加速活性成分的溶解和扩散。
相比其他提取方法,超声波辅助提取法具有操作简单、提取迅速、效果好等优点。
研究证实,超声波可以有效地提取猴头菌中的多糖类、多酚类和多肽类等活性成分。
然而,超声波处理过程中的高温和高压可能会对某些活性成分造成破坏。
超临界流体萃取法是最近几年兴起的一种猴头菌活性成分提取新方法。
猴头菇子实体碱溶性葡聚糖的分离纯化
1h , 心 分 离 ( 0 0 , 0mi) 到猴 头菇 子 )离 10 0g 3 n 得 实 体残 渣 , 渣反 复浸 提至 浸提 液 的 Moi 残 l h反 应 s ( 定 性 反 应 )9显 示 阴 性 。然 后 在 常 温 下 用 糖 [ 3 1mo/ 氢氧 化钠 对子 实 体 残 渣 进行 浸 提 ( ) lL 2h , 离 心分 离得 到碱 溶 性粗 多 糖 液 , 对残 渣 重 复 同样
实体 的综 合 利 用 具 有 非 常 积 极 的 意 义 。笔 者 对 猴头菇 子 实 体 碱溶 性 多 糖 ( 溶 性 膳 食 纤 维 ) 碱 进
总糖 和蛋 白质 含 量分 别 采 用 苯酚一 酸 法 [] 硫 1 o
和 Bu e 法 妇 irt 测定 , 使用 葡萄 糖 和牛血 清蛋 白作
操 作 至 浸 提 液 的 Moi l h反 应 显 示 阴 性 , 并 每 次 s 合
操 作得 到 的粗 多糖 液 。最 后 往 粗 多 糖 液 中 逐 滴 加入 1mo/ 1 lL HC 溶液 中和 至 性 , 其分 成 中 将 和沉淀 和 中和上 清 两个 组 分 , 中和 沉淀 组 分 即为 碱溶性 多糖 ( 称 AS ) 简 P。
林华 娟 ,秦 小 明
( 东海 洋 大 学 食 品科 技 学 院 , 江 5 4 8 ) 广 湛 2 0 8
摘 要 :脱 脂 猴 头 菇 子 实 体 经 热 水 处 理 去 除 水 溶 性 多糖 后 用 碱 溶 液 进 行 抽 提得 到碱 溶 性 多糖 ( P 。通 过 比 AS )
食用菌多糖的提取和纯化英语
食用菌多糖的提取和纯化英语Extraction and Purification of Edible Fungi Polysaccharides.Edible fungi, known for their nutritional and medicinal properties, have gained significant attention in recent years. Among their various bioactive components, polysaccharides stand out due to their potential health benefits. Extraction and purification of these polysaccharides is crucial for their effective utilization in food, pharmaceutical, and cosmetic industries.Extraction Methods.The extraction of polysaccharides from edible fungi typically involves two main steps: solvent extraction and isolation. Common solvents used for polysaccharide extraction include water, dilute acids, and alkaline solutions. Water extraction is the most widely used method due to its simplicity and effectiveness. However, for somefungi species, dilute acid or alkaline extraction may be necessary to disrupt the cell wall and release the polysaccharides.During the extraction process, temperature, time, and solvent-to-solid ratio are critical parameters. Generally, higher temperatures and longer extraction times enhance the yield of polysaccharides. However, excessive temperatures can lead to degradation of the polysaccharides, thus affecting their biological activities. Therefore, it is essential to optimize these parameters for each specific fungi species.Purification Methods.After extraction, the crude polysaccharide mixture often contains impurities such as proteins, lipids, and small molecules. Purification is necessary to obtain a pure polysaccharide fraction with high biological activity. Common purification methods include precipitation, chromatography, and dialysis.Precipitation is a simple and effective method to remove proteins and other impurities. By adjusting the pHor adding specific chemicals, the polysaccharides can be precipitated while the impurities remain in the supernatant. Chromatography, especially anion-exchange and gelfiltration chromatography, is widely used to further purify the polysaccharides. These methods allow for the separation of polysaccharides based on their charge and molecular size, respectively.Dialysis is another purification technique thatinvolves the diffusion of smaller molecules through a semi-permeable membrane. This method is particularly useful for removing small molecules and salts from the polysaccharide solution.Applications of Edible Fungi Polysaccharides.The purified polysaccharides from edible fungi exhibita range of biological activities, including antioxidant, antitumor, immunomodulatory, and hypoglycemic effects. These properties make them valuable ingredients infunctional foods, nutraceuticals, and pharmaceutical formulations.In functional foods, edible fungi polysaccharides can enhance the nutritional value and provide health benefits to consumers. For example, they can be added to beverages, yogurts, and cereals to improve their nutritional profile and functional properties.In the pharmaceutical industry, edible fungi polysaccharides are being investigated for their potential in treating various diseases such as cancer, diabetes, and immune disorders. The purified polysaccharides can be formulated into tablets, capsules, or injectable formulations for therapeutic use.Conclusion.The extraction and purification of polysaccharides from edible fungi is a crucial step in harnessing their numerous biological activities. By optimizing extraction conditions and employing suitable purification methods, it is possibleto obtain pure polysaccharides with high biologicalactivity. These polysaccharides find applications invarious industries, including food, pharmaceutical, and cosmetics, offering health benefits to consumers and therapeutic potential for treating various diseases.(Note: This article is a simplified overview of the extraction and purification of edible fungi polysaccharides. For a more detailed and comprehensive understanding, it is recommended to consult research articles and technical reports in this field.)。
猕猴桃果碱溶性多糖的分离纯化及其结构分析
收稿 日期 :0 61 —6 2 0 —10 ;修回 日期 :0 70 —9 2 0 —31 *南 阳师范学院项 目( yc0 5 3 ) n t2 0 k 5 资助
取猕猴桃 的新鲜果实切片 , 烘干, 用高速组织捣 称[ 。现代药理学试验也表明 , 1 ] 猕猴桃 的果实 、 碎机将其充分捣碎, 根、 制成粉末待用 。
称取 10g待 用 的猕 猴 桃 果 实 粉 末 , 入适 量 5 加
茎 等含 多种有 效 药用 组分 , 尤其 是猕 猴桃 多糖 , 含 1 碱 溶性 多糖 的提 取 其 . 4 量 约 为 8 ~ 1 %, 7 因其 能 阻 断 亚 硝 酸 类 化 合 物 合 成, 刺激 或提 高机 体免 疫功 能 、 激活 或提 高 巨噬细 胞 的木 瓜蛋 白酶 , 5 量水 提 取 。工 艺 流程 : 猴 桃 用 倍 猕 的吞噬 能力 , 具有 一定 的抗 癌作用 , 而 引起人 们 的 粉末一 沸水 提 取 2次一 过 滤一 合 并 滤 液一 残 渣 ; 从 残
再 用 5 量 的水 提 取 1次 , 并 2次 的提 取 液减 压 倍 合
1 材 料 与 方 法
11 供试 果 实与试 剂 .
浓 缩 至原体 积 的 11 , Svre 除蛋 白, 少得 /0 用 eeg 法 至 重复 6 以上 ; 次 清液 再减 压浓 缩 , 而用 3倍量 的 乙 继 醇沉 淀多糖 , 于冰箱 中静 置过 夜 , 离心 , 得沉 淀物 , 干
用 稀 碱 ( . lL, . 5mo/ 1 0 mo/ 0 5 mo/ 0 7 lL, . lL
猴头菌菌丝多糖的分离纯化及其性质研究
D - yo e a d D - r ts .An h oy a c a i e mo e ua a iy s o d a t ia fe tb sei c t n x ls n fuco e d te p l s c h rd lc lre sl h we n i r lef c y e trf ai v i o
21 年 1 0 1 0月
食品研究与开发
F o e ac n ee p et odR s rhA dD vl m n e o 生物 工 程糖 的分 离纯化 及其性质研 究
杜志强 , 王建英
( 内蒙古科 技大学 数理 与生物 工程学 院 , 内蒙古 包头 04 1 ) 10 0
关 键 词 : 头 菌 ; 丝 多糖 ; 离纯 化 ; 质 研 究 猴 菌 分 性
Se r to pa a i n,Pu i c to a d Pr p ri sRe e r h f rH e ii m rn c u y a ls c ha i e r f a in n o e te s a c o rc u e ia e sH ph e P0y a c rd i
性研 究方 面 的不 断深入 , 取得 了 良好 的成果 。 都 那么 ,
猴头 菌作 为一种重要 的药食两用真 菌 ,研究 清楚多糖 结 构与生物活性之 间的联系 , 就显得 十分必要 了。 本文
通 过对猴头菌丝 多糖进 行分离纯化 ,以及多糖性质 的
Sp a e 一 0 : 典P a a i 司 ; 他试剂 均 为国 eh dx 2 0 瑞 G hr c 公 m a 其
目前 , 于真菌类多糖 的研究 已经 十分全 面 了 , 关 不
S N 14 : 阳农 业大学生物科学技 术学院生物 T程 Y D 5 )沈 实验 室馈赠 。 1 实验药 品与试剂 . 2 DA 一 E E 纤维 素 :上海试剂 二厂 ;eh dxG 10 S pa e 一 0 、
猴头菇多糖研究
猴头菇多糖的提取与分离技术摘要介绍了热水浸提法、超声波提取法提取分离猴头菇多糖的工艺机理以及各方法优缺点的比较,系统阐述了热水浸提法、超声波提取法提取多糖的研究进展。
超声波技术提取植物多糖,该法是应用超声波强烈空化作用提取植物的有效成分,是一种物理破碎过程。
目前,超声波技术在提取植物化学成分方面已得到广泛应用。
关键词:猴头菇多糖,热水浸提法,超声波,提取,分离Hericium Extraction and Separation TechnologyABSTRACTIntroduced the hot water extraction, ultrasonic extraction of polysaccharides Hericium Extraction mechanism and compare advantages and disadvantages of each method, the system described hot water extraction, ultrasonic extraction of polysaccharides extraction progress. Ultrasonic extraction of plant polysaccharides,the law is strong cavitation. Ultrasonic extraction of plant active ingredients is a physical process of fragmentation. At present, the ultrasonic technology in the chemical composition of plant extract has been widely used.KEY WORDS:Hericium Ernaceus Polysaccharide,hot water extraction,ultrasonic extraction,separation目录前言 (1)第1章猴头菇多糖的提取与分离技术的研究进展 (2)第2章猴头菇多糖的提取与分离技术 (3)2.1 热水浸提法 (3)2.2 超声波提取法 (10)第3章猴头菇多糖的提取与分离技术展望 (18)谢辞 (19)参考文献 (20)外文资料翻译 (22)前言猴头菌,又名猴头蘑、熊头菇、刺猬菌,隶属于担子菌门,猴头菌科,是著名的药食两用菌。
猴头多糖提取鉴定及抗肿瘤作用的研究进展
猴头多糖提取鉴定及抗肿瘤作用的研究进展石祥生;于涛【摘要】This paper reviewed the research progress on theextraction,identification,antitumor effects and mechanisms of Hericium erinaceus polysaccharide.%近年来,多项研究表明,猴头多糖具有抗肿瘤活性,是一种潜在的天然抗癌活性物质.本文综述了近些年猴头多糖在提取鉴定、抗肿瘤活性和机制方面的研究进展.【期刊名称】《中国食物与营养》【年(卷),期】2018(024)003【总页数】4页(P63-66)【关键词】猴头;多糖;提取鉴定;抗肿瘤【作者】石祥生;于涛【作者单位】东北林业大学盐碱地生物资源环境研究中心/东北盐碱植被恢复与重建教育部重点实验室,哈尔滨150040;东北林业大学盐碱地生物资源环境研究中心/东北盐碱植被恢复与重建教育部重点实验室,哈尔滨150040【正文语种】中文目前,癌症是危害人类健康的重大疾病之一,近年来癌症发病率逐步增长且死亡率极高。
化疗是癌症治疗的重要手段之一,但多数化疗药物对肿瘤细胞缺乏特异性,在治疗肿瘤的同时会损伤正常组织进而产生严重的毒副作用 [1-2]。
人体的免疫耐受及免疫抑制反应是肿瘤发生和生长的重要原因之一,增强肿瘤免疫功能已经成为一种对宿主无害的癌症治疗新策略[3]。
多糖是由10个及以上单糖通过糖苷键结合形成的高分子碳水化合物,在自然界中分布广泛。
研究表明,多糖能通过产生细胞毒性及提高宿主机体免疫应答等方式达到抗肿瘤作用[4-7]。
目前,菌菇多糖由于具有显著抗肿瘤作用在医药领域引起了广泛关注。
猴头菌(Hericium erinaceus)又名猴菇,是一种常见食用菌。
猴头菌富含多种生物活性物质,其中多糖成分最具药用价值。
研究显示,猴头多糖具有治疗胃溃疡、降血压、降血糖、降血脂、抗氧化及保护神经的作用[8-11]。
猴头菌属不同菌种发酵多糖的分离纯化与结构研究的开题报告
猴头菌属不同菌种发酵多糖的分离纯化与结构研究的开题报告一、研究背景和意义猴头菌属是一种重要的真菌属,具有多种生物活性,其中发酵多糖是猴头菌属中的一种重要代表。
发酵多糖具有很多生物学和医学应用,如抗肿瘤、免疫增强、降血糖、降血脂、抗炎等活性,已经成为了当今研究热点之一。
然而,由于猴头菌属中存在多个不同种类的发酵多糖,糖链结构和活性之间存在差异,因此需要对不同菌种发酵多糖进行的分离纯化和结构研究。
这对于深入理解发酵多糖生物活性的来源与机制,并为其在医学上的应用提供更科学的依据具有非常重要的意义。
二、研究内容和方法本研究将挑选猴头菌属中的多个菌株,通过培养和发酵技术获得多种不同种类的发酵多糖,然后利用离子交换色谱、凝胶过滤、透析等技术进行多糖的分离、纯化和富集。
接着,将采用各种物理、化学和生物学方法对分离纯化后的多糖进行结构表征,包括峰面积、理化特性、差示扫描量热法、核磁共振、质谱和糖链组学方法等。
同时还将对不同菌种发酵多糖的活性进行测定,以探究其生物学和医学应用的潜力。
三、研究意义和预期成果1. 本研究能够深入理解猴头菌属中不同菌种分泌的多种发酵多糖的结构和生物学活性,为其应用提供可靠的科学依据。
2. 非常有可能发掘出新的具有生物学活性的发酵多糖物质,并为其在开发新的医学产品方面提供一定的实践参考。
3. 通过对猴头菌属中不同菌种发酵多糖的分析研究,可以为相关菌类的分类鉴定提供初步的依据。
预期成果如下:1. 完成猴头菌属中不同菌种发酵多糖的分离纯化和结构表征;2. 研究并鉴定不同发酵多糖的理化和化学性质;3. 研究发酵多糖在生物学和医学领域的相关应用与前景;4. 发表相关研究论文,并举办学术研讨会,向相关领域专家学者展现研究成果。
盐析法纯化猴头菌多糖工艺条件的研究
盐析法纯化猴头菌多糖工艺条件的研究猴头菌多糖是一种天然的高分子化合物,拥有多种生物活性,具有抗肿瘤、抗氧化、降血脂等功效。
然而,其在生产过程中常常受到杂质的影响,导致其质量不稳定,因此需要进行纯化。
盐析法是一种常用的多糖纯化方法,该方法利用多糖在高盐浓度下的溶解度与其它杂质不同的特性,将多糖与杂质分离。
在猴头菌多糖的纯化中,盐析法也被广泛应用。
猴头菌多糖的盐析法纯化工艺条件的研究包括盐的种类、盐的浓度、溶液pH值、温度、时间等方面。
下面将对这些方面进行详细探讨。
1. 盐的种类不同种类的盐对多糖的溶解度和沉淀有不同的影响。
在猴头菌多糖的盐析法纯化过程中,常用的盐种类包括硫酸铵、氯化钠、硫酸钠等。
其中,硫酸铵是一种常用的盐,其在一定浓度范围内能够使多糖与其它杂质分离,但过高或过低的浓度都会影响纯化效果。
2. 盐的浓度盐的浓度是影响盐析法纯化效果的重要因素之一。
在猴头菌多糖的盐析法纯化中,盐的浓度应根据多糖的特性和溶液中杂质的种类和浓度进行选择。
一般来说,盐的浓度应在多糖的临界浓度以下,以避免多糖与盐结合而溶解。
3. 溶液pH值溶液pH值对多糖的溶解度和沉淀有明显的影响。
在猴头菌多糖的盐析法纯化中,溶液pH值应根据多糖的pKa值和溶液中杂质的种类和pH值进行选择。
一般来说,多糖的pKa值与其缩合态有关,不同的缩合态对应不同的pH值,因此应选择合适的pH值以保证多糖的溶解度和沉淀效果。
4. 温度温度对盐析法纯化的效果也有一定的影响。
在猴头菌多糖的盐析法纯化中,温度一般应控制在常温下进行。
过高的温度会使多糖失去稳定性,影响纯化效果,而过低的温度则会使多糖与盐结晶速度变慢。
5. 时间盐析法纯化的时间也是影响纯化效果的重要因素之一。
在猴头菌多糖的盐析法纯化中,时间应根据多糖的溶解度和沉淀速度进行选择。
一般来说,多糖的溶解速度较慢,沉淀速度较快,因此纯化时间应尽量控制在短时间内,以保证多糖的纯度和产量。
盐析法是一种有效的多糖纯化方法,可以在一定程度上提高猴头菌多糖的质量和产量。
猴头菌素分离纯化、结构鉴定及体外活性研究
猴头菌素分离纯化、结构鉴定及体外活性研究何晋浙;樊鹏;孙培龙【期刊名称】《核农学报》【年(卷),期】2018(32)2【摘要】为探究猴头菌功效成分的结构构成及其生物活性,对猴头菌发酵菌丝体中猴头菌素进行分离纯化和结构鉴定,并对其抑菌活性、抗肿瘤活性及刺激神经细胞分泌生长因子能力进行分析。
采用乙醇回流提取,并依次通过石油醚、乙酸乙酯萃取得到粗萜物质,粗萜物质经硅胶柱层析和半制备高效液相色谱分离纯化得到组分Fr-3-1,红外光谱及质谱分析表明其为猴头菌素A类似物。
采用滤纸片法测定Fr-3-1抑菌活性,MTT法测定其体外抗肿瘤活性,酶联免疫吸附法测定其刺激神经细胞分泌生长因子能力。
结果表明,Fr-3-1对金黄色葡萄球菌具有良好的抑菌活性,对人胃癌细胞MGB-523有一定的抑制效果,其最小抑菌浓度(MIC)值分别为0.781 mg·mL^(-1)和453.14μg·mL^(-1)。
当浓度为100μg·mL^(-1)时,Fr-3-1促进大鼠星型神经细胞的分泌神经因子浓度为46.63 pg·mL^(-1),显著高于同浓度的肾上腺素。
本研究结果为猴头菌作为治疗老年痴呆症和神经衰弱等症状的备选药物及保健食品的开发利用提供了理论依据。
【总页数】7页(P318-324)【关键词】猴头菌素;分离;纯化;抑菌;抗肿瘤活性【作者】何晋浙;樊鹏;孙培龙【作者单位】浙江工业大学海洋学院食品与加工安全系【正文语种】中文【中图分类】TS207.4【相关文献】1.洛蒙德链霉菌S015中吩嗪类活性产物洛蒙真菌素的分离纯化、结构鉴定及发酵优化 [J], 王华盛;贝晓宇;胡洪波;彭华松;张雪洪;王威2.暗双孢菌AGR0073产生的单端孢菌素的分离纯化、结构解析及其抗植物病原真菌活性 [J], 杨佩文;文孟良;李元广;番华彩;郭志祥;金桂梅;刘树芳;曾莉3.安徽产地桑叶多糖分离纯化、结构鉴定与抗氧化活性研究 [J], 圣志存; 陈晓兰4.桉叶提取物中抗氧化活性物分离纯化、结构鉴定及其活性的研究 [J], 陈洪璋;李伟;肖苏尧;曹庸;陈运娇5.籽用西瓜多糖的分离纯化、一级结构分析及体外生物活性研究 [J], 代彩玲;王萍;李书颉;杨永升;于晓婧因版权原因,仅展示原文概要,查看原文内容请购买。
猴头发酵菌丝多糖的分离、提取、纯化及其初步研究
猴头发酵菌丝多糖的分离、提取、纯化及其初步研究
史军花;倪秀珍;等
【期刊名称】《长春师范学院学报:自然科学版》
【年(卷),期】2002(021)001
【摘要】从猴头菌(Hericunm erinaceus)发酵菌丝中提取胞内水溶性粗多糖,
经酶法和Sevag法脱蛋白,乙醇分级后得到四个级分:HPA,HPB,HPC,HPD,其中HPA和HPB经检验为均一组分。
组成分析表明二者均为葡萄糖。
【总页数】3页(P36-38)
【作者】史军花;倪秀珍;等
【作者单位】东北师范大学生命科学学院,吉林长春130024;长春师范学院,吉
林长春130032
【正文语种】中文
【中图分类】R284.2
【相关文献】
1.小刺猴头液体深层发酵浸膏多糖提取工艺的优化及分离纯化 [J], 王新宇;柳洪芳;沈思捷;韩铁军;杨晓兵;宋慧
2.猴头菌菌丝多糖的分离纯化及其性质研究 [J], 杜志强;王建英
3.碱提猴头发酵菌丝体多糖的分离、纯化及初步研究 [J], 耿慧;梁忠岩;史军花;陈
凤清
4.猴头菌子实体和菌丝体多糖的分离纯化与理化特征的比较 [J], 杨焱;周昌艳;白韵
琴;张劲松
5.猴头多糖分离纯化的初步研究 [J], 宋扬;周顺新
因版权原因,仅展示原文概要,查看原文内容请购买。
猴头菇多糖纯化及活性研究
选择女性伴侣的建议本杰明
第一,她们更加有智慧,更加了解这个世界,更有洞察力,更加通情达理,跟她们谈话不仅会更有收获而且更加愉快。
第二,当一个女人花容已逝,她必然开始学习通情达理。
她们更少地凭借美丽的外表赢得男人们的钟情,而更多地依靠娴熟的生活能力。
她们掌握大量的小而有用的生活技巧,当你生病时她们是你所有的朋友中最会照顾你的人。
她们永远那么亲切待人,几乎所有成熟女人都是很善良的人。
第三,在她们身上,你会更少地受那些少女身上常见的孩子气的烦恼。
第四,因为见多识广,她们对于你的婚外情更加敏感小心,更能防止你因出轨而颜面尽失。
而且,即便你真的出轨了,人们也会主要批评她们,没有服侍好和管教好你,使你劳身伤财去搞婚外情。
第五,直立行走的各种物种,都是最上面的器官的肌肉先丧失活力:首先是脸变得松弛起皱,进而是脖子,进而是乳房和手臂,再下面的器官会维持活力很久。
所以,如果用一个盖子遮上所有腰带以上的部分,你是不可能区分出一个少女和成熟女人的。
俗话说,黑夜里所有的猫都是黑色的,关上灯跟成熟女人做那事是一样的感觉,而且也许更爽,因为,熟能生巧。
第六,她们会更少发生红杏出墙,少女时期的恣意激情也许给她们身心带来了深深的伤痛,她们早已厌倦了那种生活。
第七,她们带给你的愧疚更少,少女在感情的多愁善感会传染给你,给你平添许多不能好好爱她的自责,而在成熟女人那里,她更多的是给你带来生活自如的快乐。
猴头菇多糖提取方法的比较
猴头菇多糖提取方法的比较
张素斌;黄劲峥
【期刊名称】《食品与发酵工业》
【年(卷),期】2014(040)004
【摘要】比较猴头菇多糖的几种提取方法.以猴头菇为原料,分别用热水提取法、超声波法、纤维素酶法、木瓜蛋白酶法、果胶酶法、复合酶法、超声复合酶法提取多糖,用苯酚-硫酸法测定猴头菇多糖含量,并对这几种方法的最佳提取条件和提取率进行了比较.结果表明:在最佳提取条件下,超声波法的多糖提取率为6.41%,热水提取法为5.80%,纤维素酶法为10.20%,木瓜蛋白酶法为9.77%,果胶酶法为7.94%,复合酶法为10.89%,超声复合酶法为15.59%,超声与复合酶法的协同作用可使多糖提取率大为提高.
【总页数】5页(P233-237)
【作者】张素斌;黄劲峥
【作者单位】肇庆学院化学化工学院,广东肇庆,526061;肇庆学院化学化工学院,广东肇庆,526061
【正文语种】中文
【相关文献】
1.猴头菇多糖的提取方法及其开发应用研究进展 [J], 裴小平
2.灵芝子实体多糖提取方法优化及不同来源赤芝子实体的多糖分子质量比较 [J], 孙小梅;戴军;陈尚卫;朱松
3.枸杞多糖提取方法及两种不同产地枸杞中多糖含量的比较研究 [J], 阿依姑丽·艾
合麦提;王颖;杨晓君;韩海霞;包晓玮;朱金芳;于娜娜
4.林蛙多糖提取方法比较与不同部位多糖含量测定 [J], 李凤伟;刘芳芳;阎红;张晶
5.膜分离与醇沉技术纯化猴头菇粗多糖的比较 [J], 蔡铭; 陈思; 骆少磊; 杨开; 孙培龙
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The isolation and structural characterization of a water-soluble polysaccharide from Hericium erinaceusZHANG An-qiang a FU Li a SUN Pei-long a ZHANG Jing-song b,*PAN Ying-jie ca College of Biological & Environmental Engineering, Zhejiang University of T echnology, Hangzhou, 310014, C hinab Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106,chinac College of Food Science, Shanghai Fisheries University, Shanghai 200090, C hinaAbstract: A novel water-soluble heteropolysaccharide termed HEPF2 was isolated from the fruiting bodies ofHericium erinaceus. HEPF2 had a molecular weight of 1.66⨯104 Da and was composed of fucose, galactose andglucose in the ratio of 1.00:3.69:5.42, as well as a small amount of 3-O-methylrhamnose. Its structural characteristics were further investigated by FT-IR, sugar analysis, methylation analysis, partial acid hydrolysis andNMR spectroscopy. Based on the data obtained, HEPF2 was found to be a heteropolysaccharide composed of(1→4)-linked glucosyl, (1→6)-linked glucosyl and (1→6)-linked galactosyl residue, attached to the O-2 of mainchain with terminal fucosyl residue or a minor of terminal gulcosyl and galactosyl residues. NMR spectra showedthat (1→4)-linked glucosyl wa s β configuration, (1→6)-linked galactosyl, (1→2,6)-linked galactosyl were α configuration and terminal fucosyl residue was also α configuration.Keywords: fungi, Chinese traditional herb, heteropolysaccharide, purification, structure elucidation猴头菌水溶性多糖的分离纯化与结构表征张安强a傅立a孙培龙a 张劲松b,*潘迎捷ca浙江工业大学生物与环境工程学院杭州 310004b上海农业科学院食用菌研究所上海 201106c上海水产大学食品学院上海 200090摘要:于猴头菌子实体中分离得到一种新型的水溶性杂多糖HEPF2,分子量大小为1.66⨯104 Da,该多糖由岩藻糖、半乳糖和葡萄糖以1.00:3.69:5.42比例构成,同时也含有微量的3-O-甲基鼠李糖。
进一步利用傅立叶变换红外光谱法、糖组成分析、甲基化分析、部分酸水解法和核磁共振法等方法进行结构鉴定,检测结果表明,该杂多糖中包含1→4、1→6结合的葡萄糖和1→6结合的半乳糖残基,连接于主链的侧链残基,包括岩藻糖残基、少数的端基葡萄糖和半乳糖残基。
核磁共振法检测结果还表明,1→4结合葡萄糖为β构型,(1→6)结合半乳糖、(1→2,6)结合半乳糖和端基葡萄糖均为α构型。
关键词:大型真菌,传统中草药,杂多糖,纯化,结构分析* C orresponding au thor. E-mail address: zhangjs888@IntroductionHericium erinaceus is a traditional Chinese medicinal fungus, which is distributed throughout China and used to treat gastric ulcers, chronic gastritis and other digestive tract-related diseases. Both the fruiting bodies and mycelia of the fungus have been reported to contain bioactive polysaccharide (Zhou 2000). It has been shown that the polysaccharides from H. erinaceus exhibited various pharmacological activities, for example, enhancement of immune system, antitumor, hypoglycemic and anti-aging properties (Zhou 2000; Nie 2003). The main aim of this work is to find an efficient route to extraction, isolation and fractionation of the polysaccharides present in H. erinaceus and also its structural characterization, as a contribution to better identify correlations between structure and functionality. In this paper, the isolation and structural investigation of HEPF2, a novel neutral polysaccharide purified from the fruiting bodies of H. erinaceus, is described.1 MATERIALS AND METHODS1.1 MaterialsFruiting bodies were purchased from Pan’an in Zhejiang Province, China. DEA E-Sepharose Fast Flow and Sephacryl S-100, S-200, S-300 High Resolution were purchased from Amersham Pharmacia Biotech. Dextrans and the monosaccharides (D-Gal, D-Ara, L-Fuc, L-Rha, D-man, D-Xyl and D-Glc) were from Sigma. All other reagents were of A.R. grade and made in China. HPLC was carried out on a Waters 2695 HPLC system (2695 HPLC Pump, 2414 Refractive Index Detector). GC-MS was carried out using a Thermo Finnigan V oyager GC/MS with Trace 2000 GC, and NMR spectra were determined with a V arian INOV A 500.1.2 Isolation and purificationThe total fruiting bodies of H. erinaceus were first exhaustively extracted with ethanol under reflux for 12 h to remove lipids. After filtration, the residue was air dried and extracted 3 times for 2 h each with boiling water. The combined aqueous filtrate was concentrated into one-tenth of the original volume, and 95% ethanol was added to the aqueous filtrate until the final alcohol concentration reached 30%. Precipitated material was removed by centrifugation (10000 rpm, 10 min, 4 ︒C), and 95% ethanol was again added slowly to 60% final concentration. The precipitate was separated out and lyophilized termed HEPF60. A portion of HEPF60 was dissolved in water and the insoluble residue was removed by centrifugation. The supernatant was applied to a DEA E-Sepharose Fast Flow column (XK 26 ⨯100 cm), eluted first with distilled water and then with 0-2 M gradient of NaCl. The fractions were collected by an auto-collector and compounds were detected by means of the phenol-sulfuric acid assay (Zhang 1999). HEPF60-B was obtained from the 0-2 M gradient NaCl fraction elute, which was further purified by gel permeation chromatography on a column of Sephacryl S-300 High Resolution (XK 26 ⨯ 100 cm). Eluting with water, the main fraction was collected, dialyzed and lyophilized to get a white purified polysaccharide (HEPF2), whose molecular weight range was detected on a linked column SN of TSK PWXL 4000 and 3000 gel filtration columns firstly.1.3 Determination of purity and molecular weightDetermination of the homogeneity and molecular weight of samples was done by HPLC on a linked column of TSK PW XL 4000 and 3000 gel filtration columns, eluting with 0.1 M phosphate buffer solution (PBS) and 0.3 M NaNO3at PH 7.0 with a flow rate of 0.6 mL /min. The column was kept at 30.0 ± 0.1 ︒C. The linear regression was calibrated by dextrans (T-700, 580, 300, 110, 80, 70, 40, 9.3, 4). All samples were prepared as 0.2 % (w/v) solutions, and 10 µL of solution was analyzed in each run.1.4 Monosaccharide composition analysisHEPF2 (2 mg) was hydrolyzed with 2 M trifluoroacetic acid (TFA) at 110 ︒C for 2 h, and the monosaccharide composition was determined by high-performance anion-exchange chromatography (HPA EC) using a Dionex LC30 equipped with a CarboPacTM PA20 column (3 mm ⨯150 mm). The column was eluted with 2 mM NaOH (0.45 mL/min) and the monosaccharides were monitored using a pulsed amperometric detector (Dionex) (Y ang 2005). 1.5 Methylation analysisV acuum dried polysaccharide (2 mg) was methylated by the Kalyan’s(1992) method. Complete methylation was confirmed by the disappearance of the hydroxyl peak (3200~3700 cm-1) in the IR spectrum. The permethylated product was hydrolyzed by treatment with HCO2H (88%, 0.5 mL), H2O (0.1 mL) and CF3CO2H acid (0.05 mL) at 100 ︒C for 16 h. The partially methylated sugars in the hydrolysate were reacted with NaBH4and acetylated with acetic anhydride, and the resulting mixture of alditol acetates was analyzed by GC-MS.1.6 Partial acid hydrolysis Oligosaccharides were produced by partial acid hydrolysis of the polysaccharide. HEPF2 (100 mg) was hydrolyzed by 0.05 M CF3COOH (50 mL) for 1 h at 100 ︒C. The acid was removed by co-distillation with CH3OH. The hydrolyzate was dissolved in distilled water (0.5 mL), and dialyzed against distilled water for 24 h. The dialysate was purified by gel permeation chromatography on a column of Sephacryl S-100 High Resolution (XK 26 ⨯100 cm) and lyophilized (HEPF2dw1). The nondialysate was purified by gel permeation chromatography on a column of Sephacryl S-300 High Resolution (XK 26 ⨯ 100 cm) and was lyophilized to give a degraded polymer (HEPF2dn1). A portion of HEPF2dn1 was methylated and its glycosyl linkage composition was determined as described above. HEPF2dn1 (30 mg) was further hydrolyzed by 0.1 M CF3COOH (15 mL) for 1 h at 100 ︒C. After partial acid hydrolysis of HEPF2dn1, the hydrolysate was dialyzed. A depolymerized product (HEPF2dn2) was obtained and separated by Sephacryl S-200 High Resolution (XK 26 ⨯100 cm) chromatography. The dialysate was concentrated and lyophilized, designated HEPF2dw2. A portion of HEPF2dn2 was methylated and its glycosyl linkage composition was determined as described above. The glycosyl residue compositions of HEPF2dw1, HEPF2dn1, HEPF2dw2 and HEPF2dn2 were determined by GC as alditol acetates (Albersheim et al.1967) and analyzed by GC-MS using a DB-5 column (30 m ⨯0.25 mm ⨯0.25 µm) at a temperature program as follows: 80 ︒C to 200 ︒C at a rate of 5 ︒C/min, increasing to 215 ︒C at a rate of 2 ︒C/min, and finally to 280 ︒C at a rate of 20 ︒C/min. The injector and detector heater temperatures were both 250 ︒C.1.7 NMR analysisHEPF2 (30 mg) was lyophilized three times in D2O (0.5 mL). The 1H NMR (25 ︒C, 60 ︒C) and 13C NMR (25 ︒C) spectra were determined in 5-mm tubes using a V arian INOV A 500 NMR spectrometer. 1H chemical shifts were referenced to residual HDO at δ4.78 (25 ︒C) as internal standard. 13C chemical shifts were determined in relation to DSS (δ 0.00) calibrated externally.2 Results2.1 Isolation, determination of purity and molecular weight of HEPF2HEPF2 was purified by anion-exchange (Fig.1) and gel filtration chromatography from the fruiting bodies of H. erinaceus. HPLC eluted as a single symmetrical peak, indicating it was a homogeneous polysaccharide (Fig.2). Correlation with the calibration curve of dextran standards, the molecular weight of HEPF2 was 1.66⨯104 Da. Lack of absorption at 280 nm by UV scanning indicated that HEPF2 contained no protein.Fig. 1 The elu tion of HEPF60 isolated from the fruiting b odies of H. erinaceus by DEAE-Sepharose F.F. column chromatography. OD490: The absorbance of the compou nds detected by means of phenol-sulfuric acid assay (Zhang 1999) under 490nm.Fig. 2 High Performance Liquid Chromatog raphy (HPLC) elu tion of HEPF2 isolated from the fruiting b odies of H. erinaceus.2.2 FTIR s pectroscopic characterizationThe infrared spectrum of the polysaccharide was shown in Fig.3. The broadly-stretched intense peak at 3400 cm-1was due to the hydroxyl stretching vibration of the polysaccharide. The band at 2925.5 cm-1 was due to C-H stretching of CH2 groups. The band at 1646.9 cm-1 showed that the occurrence of bound water. The bands approximately in the regain of 3400, 2930 and 1650 cm-1are characteristic of a carbohydrate ring (Li et al.2008). Three absorption peaks between 1010 and 1160 cm-1attributed to the stretching vibrations of pyranose ring. Two stretching peaks at 1161 and 1041 cm-1 in the IR spectrum suggested the presence of C-O bonds (Zhao et al. 2007). No absorption peaks at 1740 cm-1 indicated that there were no uronic acids. 2.3 Sugar and methylation analysisSugar analysis and GC-MS revealed the presence of fucose, galactose, glucose, in the molar ratio of 1.00:3.69:5.42, as well as a s mall amount of 3-O-methylrhamnose.The alditol acetates of the methylated material from the polysaccharide were analyzed by GC-MS using a DB-5 MS fused silica capillary column. The polysaccharide showed that the presence of 1,4,5-tri-O-acetyl-2,3,6-tri-O- methyl-D-glucitol, 1,5,6-tri-O-acetyl-2,3,4-tri-O- methyl-D-glucitol, 1,5-di-O-acetyl-2,3,4,6-tetra -O-methyl-D-glucitol,1,5,6-tri-O-acetyl-2,3,4-tri -O-methyl-D-galactitol,1,2,5,6-tetra-O-acetyl-3, 4-di-O-methyl-D-galactitol,Fig. 3 FT-IR spectrum of the polysaccharide HEPF2 isolated from the fruiting bodies of H. erinaceus.1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl-D-galacti tol,1,5-di-O-acetyl-2,3,4-tri-O-methyl-L-fucitol, 1,5-di-O-acetyl-2,3,4-tri-O-methylrhamnose in a molar ratio of 3.31:2.13:0.25:2.03:1.11:0.21:1.00:0.19(Table 1). These results indicated that (1→4)-linked Glc p, (1→6)-linked Glc p, (1→6)-linked Gal p, (1,2→6)-linked Gal p, nonreducing-end Glc p, nonreducing-end Gal p, nonreducing-end Fuc p were present in the polysaccharide. Besides, it also contained a minor terminal 3-O-methyl rhamnose residue.Table 1. The methylation analysis of HEPF2Methylated sugar Type of linkage MolarratioMajor mass fragment (m/z)2,3,4-Me3-Rha p1-linked3-O-Me-Rha p0.19 43,71,89,101,117,131,145,1612,3,4-Me3-Fuc p1-linked Fuc p 1.00 43,72,89,101,115,117,131,161,175 2,3,4,6-Me4-Glc 1-linked Glc p0.25 43,71,87,101,117,129,145,161,205 2,3,6-Me4-Glc p1,4-linked Glc p 3.31 45,71,87,101,117,129,143,161,203,233 2,3,4-Me3-Glc p1,6-linked Glc p 2.13 43,71,87,101,117,129,161,173,189,233 2,3,4,6-Me4-Gal p1-linked Gal p0.21 43,71,87,101,117,129,145,161,205 2,3,4-Me4-Gal p1,6-linked Gal p 2.03 43,87,99,101,117,129,161,173,189,233 3,4-Me2-Gal p1,2,6-linked Gal p 1.11 43,71,87,99,129,159,173,189,2332.4 Partial acid hydrolysisDue to the complexity of the HEPF2 structure, partial acid hydrolysis experiment was carried out with the polysaccharide. After partialacidhydrolysis of HEPF2, the hydrolysate was dialyzed. The dialysate was purified by gel permeation chromatography on a column of Sephacryl S-100 High Resolution and lyophilized to give HEPF2dw1. The nondialysate was subjected to gel permeation chromatography on a column of Sephacryl S-300 High Resolution and was lyophilized to give a degraded polymer (HEPF2dn1). HEPF2dn1 was further hydrolyzed by 0.1 M CF3COOH for 1 h at 100 C. The nondialysate was subjected to gel permeation chromatography on a column of Sephacryl S-200 High Resolution and was lyophilized to give a degraded polymer (HEPF2dn2). The dialysate was concentrated and lyophilized, termed HEPF2dw2. HPAEC spectrum of HEPF2dw1 and HEPF2dw2 revealed the presence of fucose, 3-O-methyl rhamnose and a few galactose, glucose. This result indicates that the nonreducing-end D-galactopyranosyl, nonreducing-end glucopyranosyl, nonreducing-end fucopyranosyl moieties were destroyed during partial acid hydrolysis. Compositional analysis of the degraded polysaccharide HEPF2dn1 suggested that it was composed of fucose, galactose and glucose in a molar ratio of 0.04:1:2.34 (Table 2). The contents of fucose and 3-O-methyl rhamnose in HEPF2dn1 decreased remarkably compared with those of native polysaccharide. It was in agreement with the results of methylation analysis of HEPF2 that the fucosyl residues and 3-O-methyl rhamnose residues were terminal residues. Compositional analysis of the degraded polysaccharide HEPF2dn2 suggested that it was composed of fucose, galactose and glucose in a molar ratio of 0.07:1:4.27 (Table 2). In comparison with the composition of the native polysaccharide, the proportion of glucose significantly increased, while the content of fucose and galactose decreased remarkably. The methylation analysis of HEPF2dn2 showed the presence of 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl-D-glucitol, 1,5,6-tri-O-acetyl-2,3,4-tri-O-methyl-D-glucitol, 1,5,6-tri-O-acetyl-2,3,4-tri-O-methyl-D-galactito l, 1,2,5,6-tetra-O-acetyl -3,4-di-O-methyl-D-galactitol,1,5-di-O-acetyl-2,3,4-tri-O-methyl-L-fucitol, in a molar ratio of 3.8:1.5:1.00:0.25:0.13 (Table 3). In comparison with the methylation analysis of the native polysaccharide, the proportion of (1→6)-linked galactose and (1→2,6)-linked galactose residues decreased, while the proportion of (1→4)-linked and (1→6)-linked glucosyl residues significantly increased. These results established that the backbone chain of the native polysaccharide was composed of 1,4 and 1,6 linked glucosyl residue and 1,6 and 1,2,6 linked galactosyl residues, with terminal fucosyl residue or a minor of terminal glucosyl and galactosyl residues.Table 2 Glycosyl composition of HEPF2 and its partial acid hydrolysatesGlycosyl residues Molar ratioHEPF2 HEPF2dw1 HEPF2dn1 HEPF2dw2 HEPF2dn2 3-O-methyl-rhamnose 0.28 1.00 0.01 1.00 n.d.a Fucose 1.00 6.17 0.04 6.26 0.07Galactose 3.69 1.25 1.00 3.36 1.00Glucose 5.42 0.74 2.34 0.53 4.27a Note: non detected. HEPF2dw1 was given from partial acid hydrolysis of HEPF2 by gel permeation chromatography S-100. HEPF2dn1 was given from The nondialysate by gel permeation chromatography S-300. HEPF2dn2 was from the nondialysate of further hydrolyzing of HEPF2dn1 by gel permeation chromatography S-200. Concentrated and lyophilized the dialysate, termed HEPF2dw2.2.5 NMR analysisThe 1H (500 MHz, 25 ︒C, 60 ︒C) and 13C (500 MHz, 25 ︒C) NMR experiments were carried out. The 500 MHz 1H NMR spectrum (60 ︒C, Fig. 4) of the native polysaccharide mainly contained signals for five anomeric protons at δ 5.10, 5.06, 5.00, 4.74 and 4.54. One CH3-C group at δ 1.27 (J5, 6 5.6 Hz) corresponded to the chemical shift of H-6 of Fuc. Other sugar protons were in the region of δ3.50~4.41 along with a signal for an O-methyl group at δ3.50. Sugar residues were designated A-E according to the decreasing chemical shifts of the anomeric configuration. Methylation analysis showed the highest proportion of residues was (1→4)-linked Glc p, and in the 1H NMR spectrum the highest proportion was residue E. So residue E was designated as a (1→4)-linked Glc p The large coupling constants J H-2, H-3 and J H-3, H-4(~10 Hz) were observed for E, further indicating that it was a D-glucosyl moiety. The anomeric chemical shift for moiety E at δ 4.54 and appearing as a doublet, indicated that the D-glucose was an β-linked.Fig. 4 500-MHz 1H NMR spectru m of HEPF2 isolated from the fruiting bodies of H. erinaceus at 60 ︒C. A-E were donated by the decreasing chemical shifts of the anomeric configuration.The other signals for anomeric protons were in the region of δ5.00~5.10, indicating 1-linked Fuc p, (1→6)-linked Gal p, (1→2,6)-linked Gal p were α configuration. The 13C NMR spectrum (Fig. 5) of the polysaccharide mainly contained signals for five anomeric carbons at δ106.14、106.07, 105.89, 101.4 and 101.2. Sugar ring carbons linked to oxygen in the region of δ63.12~80.6 and one CH3-C groups (C-6 of Fuc) at δ18.4. In addition, a minor signal at δ57.5 could be assigned to an O-methyl group which, based on GC-MS data, was probably due to 3-O-methyl-rhamnose. The presence of β-D-(1→4)-linked Glc p was proved by the signals at δ80.6. The O-substituted C-6 was shown by the signals at δ 70.05 and δ 69.9, and the signal of the unsubstituted C-6 was at δ64.1and δ 59.1. 4.2.6 ConclusionBased on the data presented above, HEPF2 was composed of fucose, galactose and glucose in a molar ratio of 1.00:3.69:5.42 and a minor of 3-O-methyl-rhamnose. Methylation analysis showed it contained (1→4)-linked glucosyl, (1→6)-linked glucosyl, (1→6)-linked galactosyl, (1→2,6)-linked galactosyl, terminal fucosyl residue, and a minor of terminal 3-O-methyl-rhamnose, terminal glucosyl andgalactosyl residues.Fig. 5 500-MHz 13C NMR spectrum of HEPF2 isolated from the fruiting b odies of H. erinaceus at 25 ︒C. Fuc C-6: This peak was a result of one CH3-C groups (C-6 of Fuc) at δ 18.4.Partial hydrolysis and acetolysis indicated that the polysaccharide was composed of (1→4)-linked glucosyl, (1→6)-linked glucosyl and (1→6)-linked galactosyl residue, attached to the O-2 of main chain with terminal fucosyl residue or a minor of terminal gulcosyl and galactosyl residues. NMR spectra showed that (1→4)-linked glucosyl was β configuration, (1→6)-linked galactosy l, (1→2,6)-linked galactosyl were α configuration and terminal fucosyl residue was also α configuration.3 DISCUSSIONIn the former fungi examined, polysaccharides composed of β-glucans, α-D-manmans, have been reported to be the major components of the cell wall and the intercellular matrix, with the latter found mainly in yeast cell walls and medicinal mushrooms (Vingradov et al.1998). In contrast, polysaccharide consisting of fucogalactan,fucoglucogalactan (Zhang et al. 2006, 2007) and β-glucan (Dong et al.2006) have been found in the fungus, H. erinaceus. The biological effects of these polysaccharides have been widely studied for their immunostimulating and anti-tumor activities (Tokunaka et al.2000).However, structure of a heteropolysaccharide comp osed of β-glucose, α-fucose and α-galactose, containing diverse terminal residues has not been previouslyreported in the H .erinaceus, and HEPF2 is therefore a novel fungal polysaccharide.Acknowledgements: This study was supported by the key disciplines of Shanghai Municipal Education Commission (No. J50704)[REFERENCES]Albersheim P, Nevins DJ, English PD, Karr A, 1967. A method for the analysis of sugars in plant cell-wallpolysaccharides by gas-liquid chromatography.Carbohydrate Research, 5: 340-345Dong Q, Jia LM, Fang JN, 2006. A β-D-glucan isolated from the fruiting b odies of Hericium erinaceus and itsaqueous conformation. Carbohydrate Research,341:791–795Kalyan RA, Paul B T, 1992. A comprehensive procedure for preparation of partially methylated alditol acetates fromglycoprotein carbohyd rates. Analytical Biochemistry,203: 101-108Li W, Zhang HB, Zhang XY, Chen ZX, 2008. Purification and identification of a novel heteropolysaccharide RB PS2awith anti-complementary activity from defatted rice bran.Food Chemistry, 110: 150-155Nie JS, Zhu SF, 2003. Hericium erinaceus polysaccharide and its antineoplastic activity and influence on immunity onmice. Shanxi Medical Journal, 32: 107-109 (in chinese) Tokunaka K, Ohno N, Adachi Y, Tanaka S, Tamura H, 2000.TImmu nopharmacological and immunotoxicologicalactivities of a water-soluble (1→3)-beta-D-glucan,CSBG from Candida spp. International Journal of Immunopharmacology, 22: 382-394V ingradov E, Petersen B, Bock K, 1998. S tructural analysis of the intact polysaccharide manman from Saccharomyces cerevisiae yeast using1H and 13C NMR spectroscopy at 750 MHz. C arbohydrate Research, 307: 177-185Yang R Z, Zhang JS, Tang QJ, 2005. High performance anion exchange chromatography method to determine the monosaccharide composition of polysaccharide. Edible Fungi China, 24: 42-44 (in chinese)Zhang AQ, Zhang JS, Tang QJ, Jia W, Yang Y, Liu YF, et al, 2006. Structural elucidation of a novel fucogalactan contains 3-O-methyl rhamnose isolated from the fruitingbodies of the fungus,Hericium erinaceus. Carbohydrate Research,341: 645-649Zhang AQ, Sun PL, Zhang JS, Tang C H, Fan JM, Shi XM, et al, 2007. S tructural investigation of novel fucoglucogalactan isolated from the fruiting bodies of the fu ngus Hericium erinaceus. Food C hemistry,104: 451-456Zhou HP, Liu WL, C hen QH, Wang SR, 1991. Anti-ageing effect of Hericium erinaceus polysaccharide. Journal of China Pharmaceutical University, 22: 86-88 (in chinese) Zhou HP, Y ang Y, Yan HF, Wang CG, Bai YQ, 2000. S tudies on immunoregulatory fu nction of Hericium erinaceus.Acta Edulis Fungi, 7 (1): 19-22 (in chinese)Zhao MM, Yang N, Yang B, Jiang YM, Zhang GH, 2007.Structural characterization of water-soluble polysaccharides from Opuntia monacantha cladodes in relation to their anti-glycated activities. Food C hemistry, 105:1480-1486Zhang WJ, 1999. Biochemical Techniques in complex carbohydrates (2nd ed.). Hangzhou: Zhejiang University Press, p. 11。