初中数学专题中考题精选方程和方程组

合集下载

中考数学真题分类汇编及解析(十七) 函数与方程、不等式

中考数学真题分类汇编及解析(十七) 函数与方程、不等式

2x−y+m=0
(2022•荆州中考)如图是同一直角坐标系中函数y1=2x和y2=2
x的图象.观察图象可得不等式2x>
2
x的解集为
()
A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>1
【解析】选D.由图象,函数y1=2x和y2=2
x的交点横坐标为﹣1,1,
所以当﹣1<x<0或x>1时,y1>y2,即2x>2 x .
(2022•鄂州中考)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b(k、b为常数,且k<
0)的图象与直线y=1
3x都经过点A(3,1),当kx+b<
1
3x时,根据图象可知,x的取值范围是()
A.x>3B.x<3C.x<1D.x>1【解析】选A.由图象可得,
当x>3时,直线y=1
3x在一次函数y=kx+b的上方,
所以当kx+b<1
3x时,x的取值范围是x>3.
二元一次方程组{y =2x +b y =−3x +6
的解是( )
A .{x =2y =0
B .{x =1y =3
C .{x =−1y =9
D .{x =3y =1
【解析】选B .由图象可得直线l 1和直线l 2交点坐标是(4,5),所以方程组组{y =2x +b y =−3x +6
的解为{x =1y =3. (2022•扬州中考)如图,函数y =kx +b (k <0)的图象经过点P ,则关于x 的不等式kx +b >3的解集为 x <
﹣1 .
【解析】由图象可得,
当x =﹣1时,y =3,该函数y 随x 的增大而减小,
所以不等式kx +b >3的解集为x <﹣1,
答案:x <﹣1。

初三数学方程式练习题目精选

初三数学方程式练习题目精选

初三数学方程式练习题目精选1. 解下列方程:(1) 3x - 5 = 10(2) 2(5x + 3) = 26(3) -4(x + 2) - 3 = 5 - 6x2. 某数的一半加上5等于该数的四分之一减去3,求这个数是多少?3. 解方程10 - x = 2(x + 3)。

4. 某数减去8的两倍等于该数加上10的三倍,求这个数是多少?5. 一直线上有两个整数标志,离它们的距离为16,两个整数标志的和是53,求这两个整数是多少?6. 一桶水果有30个,有苹果、橙子和香蕉三种水果,若苹果的个数是橙子个数的3倍,香蕉个数是橙子个数的2倍,求苹果、橙子和香蕉各有多少个?7. 解方程(2x + 1)(3 - 2x) = 2x + 9。

8. 解方程-3(2x - 1) + 4x = 2(3x + 5) - 8。

9. 某数减去它的三分之一再加12等于该数的两倍,求这个数是多少?10. 宁宁买了一些图书,每本10元,若多付1元,则可少买1本,若少付1元,则可多买1本。

求宁宁购买的图书本数和要付多少钱?11. 解方程2(x - 1) + 5 = 3(x + 2) - 4。

12. 解方程2(x - 1) + 3(2x + 1) = 13。

13. 解方程2(3x - 4) = 5(2x + 3) - 7x。

14. 解方程2(3 - x) = 4 - (5 + 2x)。

15. 一辆车以时速60公里从A地出发,一小时后,另一辆车从A地出发,以75公里的时速追赶前一辆车,在追赶了多长时间后,两车相遇?这些题目将帮助你熟练掌握解一元一次方程的方法和技巧。

通过反复练习,相信你的数学功底会得到极大提升。

在解答问题时,要注意仔细分析每道题目给出的条件,并采用合适的方法进行求解。

考虑到字数要求,这里提供了一些题目,希望对你的学习有所帮助。

祝你取得良好的成绩!。

2024届中考数学高频考点专项练习:专题四 一次方程(组)综合训练(B)及答案

2024届中考数学高频考点专项练习:专题四 一次方程(组)综合训练(B)及答案

2024届中考数学高频考点专项练习:专题四一次方程(组)综合训练(B)1.已知是关于x的一元一次方程,则( )A.3或1B.1C.3D.02.若,,则的值为( )A.4B.C.D.3.端午节前夕,某食品加工厂准备将生产的粽子装入A、B两种食品盒中,A种食品盒每盒装8个粽子,B种食品盒每盒装10个粽子,若现将200个粽子分别装入A、B两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有( )A.2种B.3种C.4种D.5种4.如果的值与的值互为相反数,那么x等于( )A. B.0 C.1 D.5.定义:使等式成立的一对有理数a,b称为“伴随数对”,记为,如:数对,都是“伴随数对”,若5是“伴随数对”中的一个有理数,则这个“伴随数对”是( )A. B.C.或D.或6.有这样一首关于周瑜年龄的诗:“而立之年督东吴,早逝英年两位数;十比个位正小三,个位六倍与寿符”.大意为:周瑜病逝时的年龄是一个大于30的两位数,其十位上的数字比个位上的数字小3,个位上的数字的六倍正好等于这个两位数.若设周瑜年龄的个位数为x,十位数为y,则可列出方程组为( )A. B. C. D.7.如图,电子蚂蚁P,Q在边长为1个单位长度的正方形的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2019次相遇在( )A.点AB.点BC.点CD.点D8.中国减贫方案和减贫成就是史无前例的人类奇迹,联合国秘书长古特雷斯表示,“精准扶贫”方略帮助贫困人口实现2030年可持续发展议程设定的宏伟目标的唯一途径,中国的经验可以为其他发展中国家提供有益借鉴,为了加大“精准扶贫”力度,某单位将19名干部分成甲、乙、丙三个小组到村屯带领50个农户脱贫,若甲组每人负责4个农户,乙组每人负责3个农户,丙组每人负责1个农户,则分组方案有( )A.6种B.5种C.4种D.30种9.对x,y定义一种新运算T,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:,若,,则结论正确的个数为( )(1),;(2)若,则;(3)若,m,n均取整数,则或或;(4)若,当n取s,t时,m对应的值为c,d,当时,;(5)若对任意有理数x,y都成立(这里和T均有意义),则A.2个B.3个C.4个D.5个10.已知关于x,y的二元一次方程组则的值是__________.11.记,则方程所有解的和为_________.12.为进一步改善生态环境,村委会决定将一块土地分成甲,乙,丙三个区域来种树.村委会将三个区域的占地面积划分完毕后,发现将原甲区域的面积错划分给了乙区域,而原乙区域30%的面积错划分给了甲区域,丙区域面积未出错,造成现乙区域的面积占甲,乙两区域面积和的.为了协调三个区域的面积占比,村委会重新调整三个区域的面积,将丙区域面积的分两部分划分给现在的甲区域和乙区域.如果调整结束后,甲,乙,丙三个区域的面积比变为,那么村委会调整时从丙区域划分给甲区域的面积与三个区域总面积的比为_________.13.为了同学们的身体健康,学校初、高中部分别购买了A、B、C三种健身器材.已知初中部购买A、B、C的数量之比为,A、B、C的单价之比为;高中部购买A种器材比初中部购买A种器材多出的费用占高中部购买三种器材总费用的,高中部购买A种工具的单价比初中部少,高中部购买B种工具超出初中部B种工具的费用与高中部购买C种工具超出初中部购买C种工具的费用之比为;高中部购买A种工具的费用与购买B种工具的费用之比为;那么初中部购买A种工具的数量与高中部购买的A种工具的数量之比为_______________.14.为了加强公民的节水意识,合理利用水资源.某市采用阶梯价格调控手段达到节水目的,价目表如图.(1)若某户居民1月份用水,则水费__________元;(2)若某户居民某月用水,则用含x的代数式表示水费;(3)若某户居民3、4月份共用水,(4月份用水量超过3月份),共交水费44元,则该户居民3、4月份各用水多少立方米?15.某市有甲、乙两个有名的乐团,这两个乐团决定向某服装厂购买演出服,已知甲乐团购买的演出服每套70元,乙乐团购买的演出服每套80元,两个乐团共75人,购买演出服的总价钱为5600元.(1)甲、乙两个乐团各有多少人?(2)现从甲乐团抽调人,从乙乐团抽调人,去儿童福利院献爱心演出,并在演出后每位乐团成员向儿童们进行“心连心活动”,甲乐团每位成员负责3位小朋友,乙乐团每位成员负责5位小朋友,这样恰好使得福利院65位小朋友全部得到“心连心活动”的温暖.请写出所有的抽调方案,并说明理由.答案以及解析1.答案:B解析:是关于x的一元一次方程,且,解得:或3,且,.故选B.2.答案:A解析:因为,所以,因为,所以,联立方程组可得解方程组可得,所以,故选A.3.答案:C解析:设使用A食品盒x个,使用B食品盒y个,根据题意得,,x、y都为正整数,解得,,,,一共有4种分装方式;故选C.4.答案:A解析:的值与的值互为相反数,,即,解得:.故选:A.5.答案:C解析:当时,,解得,此时“伴随数对”是,当时,,解得,此时“伴随数对”是,“伴随数对”是或,故选:C.6.答案:C解析:其十位上的数字比个位上的数字小3,可得方程:;根据个位上的数字的六倍正好等于这个两位数,可得方程:,可列出方程组为,故选:C.7.答案:D解析:设两只电子蚂蚁每隔x秒相遇一次,根据题意得:,解得:.电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,它们第1次相遇电子蚂蚁P走了个单位长度,相遇在B点,同理,第2次相遇在C点,第3次相遇在D点,第4次相遇在A点,第5次相遇在B 点,第6次相遇在C点,….又,第2019次相遇和第3次相遇地点相同,即第2019次相遇在点D.故选:D.8.答案:B解析:设甲组有x名干部,乙组有y名干部,则丙组有名干部,由题意得,化简得,,当,时,,即甲组有1名干部,乙组有14名干部,则乙组有4名干部,当,时,,即甲组有3名干部,乙组有11名干部,则乙组有5名干部,当,时,,即甲组有5名干部,乙组有8名干部,则乙组有6名干部,当,时,,即甲组有7名干部,乙组有5名干部,则乙组有7名干部,当,时,,即甲组有9名干部,乙组有2名干部,则乙组有8名干部,综上,有5种方案,故选:B.9.答案:C解析:由题意可知,,,即,解得,故(1)正确;,;,,则;故(2)正确m,n均取整数,,的取值为,,,1,2,4;当,即时,;当,即时,;当,即时,;当,即时,;当,即时,;当,即时,;故(3)不正确,,,,当时,;故(4)正确;,,,,,,对任意有理数x,y都成立(这里和均有意义),则故(5)正确故选C10.答案:1解析:①-②×2,得,解得,把代入②,得,解得,故.11.答案:/解析:当时,,当时,,当时,,当时,,令,方程可化为,①;②;③;④;解得:或;或;或;或;或,解得:或或;所有解的和为,故答案为:.12.答案:解析:设甲,乙,丙三个区域原来的面积分别为x,y,z,,解得则此时,甲区域:,乙区域:,将丙区域面积的分两部分划分给现在的甲区域和乙区域,甲,乙,丙三个区域的面积比变为,则解得:,设最后从丙区域面积的分两部分划分给现在的甲区域面积为,则,解得,村委会调整时从丙区域划分给甲区域的面积与三个区域总面积的比为,故答案为:.13.答案:解析:设初中部购买A、B、C的数量分别为、、,A、B、C的单价分别为、y、y,则初中部购买A、B、C的费用分别为、、,高中部购买三种工具的总费用为a元,高中部购买B种工具超出初中部B种工具的费用,高中部购买C种工具超出初中部购买C种工具的费用分别为,,根据题意得:,解得:,高中部购买的A种工具的数量为:,初中部购买A种工具的数量与高中部购买的A种工具的数量之比为.故答案为:.14.答案:(1)20(2)水费为(元)(3)该户居民3月份的用水量为,4月份的用水量为解析:(1)(元).故答案为:20.(2)当时,水费为元;当时,水费为元;当时,水费为元.综上所述,水费为(元).(3)设3月份的用水量为,则4月份的用水量为,当时,,解得:,;当时,,解得:(不合题意,舍去);当时,,该情况不符合题意.答:该户居民3月份的用水量为,4月份的用水量为.15.答案:(1)甲乐团有40人,乙乐团有35人(2)共有两种方案:从甲乐团抽调5人,从乙乐团抽调10人;或者从甲乐团抽调10人,从乙乐团抽调7人;见解析解析:(1)设甲乐团有x人,乙乐团有y人,根据题意,得,解得,答:甲乐团有40人,乙乐团有35人;(2)由题意,得,变形得,因为,,且a,b均为整数,所以或,所以共有两种方案:从甲乐团抽调5人,从乙乐团抽调10人;或者从甲乐团抽调10人,从乙乐团抽调7人.。

初中数学解方程专项练习题

初中数学解方程专项练习题

初中数学解方程专项练习题解方程是初中数学中的重要内容,它要求我们通过运算和推理,找到未知数的值。

解方程需要一定的技巧和方法,掌握了这些技巧和方法,我们就能够轻松应对各种解方程题目。

本文将通过一些专项练习题,帮助大家巩固解方程的知识点。

一、一元一次方程的解1. 解方程2x - 3 = 7。

解法:首先将方程化简为2x = 7 + 3,即2x = 10。

然后将方程两边同时除以2,得到x = 5。

所以方程的解为x = 5。

2. 解方程3(x - 4) = 15。

解法:首先将方程化简为3x - 12 = 15,然后将方程两边同时加上12,得到3x = 27。

最后将方程两边同时除以3,得到x = 9。

所以方程的解为x = 9。

二、一元一次方程组的解1. 解方程组{x + y = 10,x - y = 2}。

解法:根据第一个方程,可以得到x = 10 - y。

将这个结果代入第二个方程中,得到(10 - y) - y = 2。

化简得到10 - 2y = 2,再继续化简得到2y = 8,最后得到y = 4。

将y = 4代入第一个方程,可以得到x = 10 - 4,即x = 6。

所以方程组的解为{x = 6, y = 4}。

2. 解方程组{2x - y = 5,3x + 2y = 12}。

解法:根据第一个方程,可以得到y = 2x - 5。

将这个结果代入第二个方程中,得到3x + 2(2x - 5) = 12。

化简得到3x + 4x - 10 = 12,再继续化简得到7x = 22,最后得到x = 22/7。

将x = 22/7代入第一个方程,可以得到y = 2(22/7) - 5,即y = 44/7 - 35/7,化简得到y = 9/7。

所以方程组的解为{x = 22/7, y = 9/7}。

三、含绝对值的一元一次方程的解1. 解方程|2x - 3| = 7。

解法:分两种情况讨论,当2x - 3 > 0时,即x > 3/2,方程化简为2x - 3 = 7。

中考数学复习考点题型专题练习05 一次方程(组)与一元二次方程

中考数学复习考点题型专题练习05 一次方程(组)与一元二次方程

中考数学复习考点题型专题练习专题05 一次方程(组)与一元二次方程一.选择题1.(2022·内蒙古包头)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( )A .3或9-B .3-或9C .3或6-D .3-或62.(2022·黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( )A .8B .10C .7D .93.(2022·四川雅安)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( )A .﹣3B .0C .3D .94.(2022·贵州黔东南)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( ) A .7 B .7- C .6 D .6-5.(2022·广西梧州)一元二次方程2310x x -+=的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定6.(2022·湖北武汉)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .67.(2022·湖南郴州)一元二次方程2210x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.(2022·广西贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,2-B .0,0C .2-,2-D .2-,09.(2022·北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为( )A .4-B .14-C .14D .4 10.(2022·山东临沂)方程22240x x --=的根是( )A .16x =,24x =B .16x =,24x =-C .16x =-,24x =D .16x =-,24x =-11.(2022·黑龙江牡丹江)下列方程没有实数根的是( )A .2410x x +=B .23830x x +-=C .2230x x -+=D .()()2312x x --=12.(2022·海南)若代数式1x +的值为6,则x 等于( )A .5B .5-C .7D .7-13.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A.2cm B.21cm4C.4cm D.5cm14.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.815.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.24015015012x x+=⨯B.24015024012x x-=⨯C.24015024012x x+=⨯D.24015015012x x-=⨯16.(2022·广西)方程3x=2x+7的解是()A.x=4B.x=﹣4C.x=7D.x=﹣717.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .1718.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x 根,下等草一捆为y 根,则下列方程正确的是( )A .51177255y x y x -=⎧⎨-=⎩B .51177255x y x y +=⎧⎨+=⎩C .51177255x y x y -=⎧⎨-=⎩D .71155257x y x y-=⎧⎨-=⎩ 19.(2022·贵州贵阳)在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; ③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( )A .1B .2C .3D .420.(2022·广西河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( )A .30(1+x )2=50B .30(1﹣x )2=50C .30(1+x 2)=50D .30(1﹣x 2)=50二.填空题21.(2022·湖北鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b+的值为 _____.22.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令x m =,等式两边都乘以x ,得2x mx =.①等式两边都减2m ,得222x m mx m -=-.②等式两边分别分解因式,得()()()x m x m m x m +-=-.③等式两边都除以x m -,得x m m +=.④等式两边都减m ,得x =0.⑤所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.23.(2022·广西梧州)一元二次方程()()270x x -+=的根是_________.24.(2022·四川内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 _____.25.(2022·广东深圳)已知一元二次方程260x x m ++=有两个相等的实数根,则m 的值为________________.26.(2022·上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.27.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =_____.28.(2022·广西贺州)若实数m ,n满足50m n --∣∣,则3m n +=__________.29.(2022·广东)若1x =是方程220x x a -+=的根,则=a ____________.30.(2022·江苏无锡)二元一次方程组321221x y x y +=⎧⎨-=⎩的解为________. 31.(2022·四川雅安)已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____. 32.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.33.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额(10)x x >的函数解析式为______.34.(2022·山东潍坊)方程组2313320x y x y +=⎧⎨-=⎩的解为___________. 35.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程423x y +=,则 表示的方程是_______.36.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x 的值为________.37.(2022·湖南长沙)关于的一元二次方程220x x t ++=有两个不相等的实数根,则实数t 的值为___________.38.(2022·江苏泰州)方程2x 2x m 0-+=有两个相等的实数根,则m 的值为__________.39.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.40.(2022·上海)解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 三.解答题 41.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?42.(2022·内蒙古赤峰)某学校建立了劳动基地,计划在基地上种植A 、B 两种苗木共6000株,其中A 种苗木的数量比B 种苗木的数量的一半多600株.(1)请问A 、B 两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A 种苗木50株或B 种苗木30株,应分别安排多少人种植A 种苗木和B 种苗木,才能确保同时..完成任务?43.(2022·湖南)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.44.(2022·四川广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B 厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.(1)求A、B两厂各运送多少吨水泥?(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w 与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由45.(2022·广西桂林)解二元一次方程组:13x yx y-=⎧⎨+=⎩.46.(2022·江苏常州)第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021⨯+⨯+⨯+⨯=,表示ICME-14的举办年份.(1)八进制数3746换算成十进制数是_______;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.47.(2022·江苏泰州)如图,在长为50 m,宽为38 m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260 m2,道路的宽应为多少?48.(2022·黑龙江齐齐哈尔)解方程:22+=+(23)(32)x x49.(2022·贵州贵阳)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a_______b,ab_______0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x−1=0;②x2−3x=0;③x2−4x=4;④x2−4=0.50.(2022·内蒙古呼和浩特)计算求解:(1)计算112sin45|23-⎛⎫-+- ⎪⎝⎭︒(2)解方程组451223x yx y+=⎧⎪-⎨+=⎪⎩51.(2022·湖南长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.()②刘三姐的姐妹们给出的答案是唯一正确的答案.()③该歌词表达的数学题的正确答案有无数多种.()(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.52.(2022·四川雅安)某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式.53.(2022·海南)我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.。

初三数学解方程组练习题

初三数学解方程组练习题

初三数学解方程组练习题在初三数学学习中,解方程组是一个重要的知识点。

解方程组涉及到多个方程式之间的关系,能够帮助我们找到多个变量的值。

下面是一些初三数学解方程组的练习题,通过练习这些题目,可以帮助同学们加深对解方程组的理解和掌握。

练习一:二元一次方程组1. 解方程组:{ 2x + y = 7{ 3x - y = 12. 解方程组:{ 4x - 3y = 5{ 2x + y = 33. 解方程组:{ x + y = 8{ x - y = 24. 解方程组:{ 3x + 2y = 10{ 5x - 4y = 13练习二:二元二次方程组1. 解方程组:{ x^2 + y^2 = 5{ x + y = 32. 解方程组:{ x^2 + y^2 = 20{ x - y = 43. 解方程组:{ x^2 - y^2 = 9{ x + y = 54. 解方程组:{ x^2 + y^2 = 13{ x - y = 3练习三:三元一次方程组1. 解方程组:{ x + y + z = 4{ 2x - 3y + z = 1{ 3x + y - z = 02. 解方程组:{ 2x - 3y + z = 7{ 3x + y - 2z = 2{ x + 2y + 3z = 123. 解方程组:{ x + y - z = 1{ x + 2y + z = 4{ 2x - y + 3z = 84. 解方程组:{ x + y - z = -2{ 2x - y + 2z = 3{ 3x + y - 3z = 2以上是一些初三数学解方程组的练习题,通过反复练习和掌握解方程组的方法和技巧,同学们会逐渐提高解方程组的能力。

解方程组是数学中的一个重要内容,不仅在初中阶段用到,更是在高中和大学阶段都会有所涉及。

因此,加强对解方程组的学习是十分必要的。

希望同学们能够利用这些练习题,不断加强自己的解方程组能力,为将来的学习打下坚实的基础。

中考数学专题练习 二元一次方程组(含解析)

中考数学专题练习 二元一次方程组(含解析)

二元一次方程组一、填空题1.用加减消元法解方程组,由①×2﹣②得.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= ,当x=3时,y= .3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ;当m=2,n=﹣3时代数式的值是.4.已知方程组与有相同的解,则m= ,n= .5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为,根据题意得方程组.7.如果是方程6x+by=32的解,则b= .8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= .9.已知a2﹣a+1=2,那么a﹣a2+1的值是.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= .二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣212.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=113.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.414.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.015.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>116.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠217.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.118.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4三、解答题19.解方程组:.20.解方程组:.21.解方程组:.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量已知关于x、y的方程组与有相同的解,求a、b的值.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5 乙种货车辆(辆) 3 6 累计运货吨数(吨)15.5 35二元一次方程组参考答案与试题解析一、填空题1.用加减消元法解方程组,由①×2﹣②得2x=﹣3 .【考点】解二元一次方程组.【专题】计算题.【分析】此题主要考查加减消元法的应用,按照题目要求解答即可.【解答】解:①×2﹣②得,6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得,2x=﹣3.【点评】注意掌握二元一次方程的加减消元法.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= 12x﹣20 ,当x=3时,y= 16 .【考点】解二元一次方程.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ﹣2 ;当m=2,n=﹣3时代数式的值是﹣7 .【考点】代数式求值.【分析】直接把m=﹣2,n=1代入代数式,求得k,再利用代入法求代数式的解.【解答】解:∵m=﹣2,n=1∴3m+5n﹣k=1∴k=﹣2∵m=2,n=﹣3,k=﹣2∴3m+5n﹣k=3×2+5×(﹣3)﹣(﹣2)=﹣7.【点评】解题关键是先把m=﹣2,n=1代入代数式求出k的值,再把k的值,m=2,n=﹣3代入代数式求值.4.已知方程组与有相同的解,则m= ,n= 12 .【考点】同解方程组.【专题】计算题.【分析】解此题可先将第二个方程组解出x、y的值,再代入第一个方程组,化为只有m、n的方程组,即可求出n、m.【解答】解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.【点评】此题考查的是考生对二元一次方程组的解的理解和二元一次方程组的解法,解出x、y的值,再代入方程组求出m、n的值、最重要的是将方程化简到只含有两个未知数.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值.【解答】解:∵(2x﹣3y+5)2+|x+y﹣2|=0,∴,解,得x=,y=.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为10y+x ,根据题意得方程组.【考点】由实际问题抽象出二元一次方程组.【分析】如果设原两位数的个位数字为x,十位数字为y,那么原两位数可表示为10y+x.此题中的等量关系有:①有一个两位数,它的两个数字之和为11可得出方程x+y=11;②根据“把这个两位数的个位数字与十位数字对调,所得的新数比原数大63”,可得出方程为(10x+y)﹣(10y+x)=63,那么方程组是.【解答】解:根据数位的意义,该两位数可表示为10y+x.根据有一个两位数,它的两个数字之和为11,可得方程x+y=11;根据把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,可得方程(10x+y)﹣(10y+x)=63.那么方程组是.故答案为:10y+x,.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意两位数的表示方法.7.如果是方程6x+by=32的解,则b= 7 .【考点】二元一次方程的解.【专题】方程思想.【分析】将x=3,y=2代入方程6x+by=32,把未知数转化为已知数,然后解关于未知系数b的方程.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.【点评】本题的关键是将方程的解代入原方程,把关于x、y的方程转化为关于系数b的方程,此法叫做待定系数法,在以后的学习中,经常用此方法求函数解析式.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= ﹣43 .【考点】二元一次方程的解.【分析】要求5a﹣2b的值,要先求出a和b的值.根据题意得到关于a和b的二元一次方程组,再求出a和b的值.【解答】解:把代入方程ax﹣by=1,得到a+2b=1,因为a+b=﹣3,所以得到关于a和b的二元一次方程组,解这个方程组,得b=4,a=﹣7,所以5a﹣2b=5×(﹣7)﹣2×4=﹣35﹣8=﹣43.【点评】运用代入法,得关于a和b的二元一次方程组,再解方程组求解是解决此类问题的关键.9.已知a2﹣a+1=2,那么a﹣a2+1的值是0 .【考点】代数式求值.【专题】整体思想.【分析】先求出a2﹣a的值,再把原式化为﹣(a2﹣a)+1的形式进行解答.【解答】解:∵a2﹣a+1=2,∴a2﹣a=1,∴a﹣a2+1=﹣(a2﹣a)+1,=﹣1+1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a2﹣a的值,然后利用“整体代入法”求代数式的值.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= ﹣2:3:6 .【考点】解三元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】解此题可以根据函数的非负性进行求解,含不等式的式子必大于0,含平方的式子也必大于0,因此可知|3a+4b﹣c|=0,且(c﹣2b)2=0,据此可以求出a,b,c的比.【解答】解:依题意得:|3a+4b﹣c|=0,且(c﹣2b)2=0,∴,∴由②得3a=﹣2b,即a=﹣b,∴a:b:c=﹣b:b:2b=﹣2:3:6.故答案为:﹣2:3:6.【点评】此题考查的是非负数的性质,据此可以列出二元一次方程组,求出相应的比,就可以计算出此题.二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【专题】计算题.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.【点评】根据同类项的定义列出方程组,是解本题的关键.12.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.13.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.4【考点】解三元一次方程组.【专题】计算题.【分析】由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx﹣9中,求得k的值.【解答】解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选D.【点评】本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.14.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.0【考点】解二元一次方程.【分析】应先用方程表示y的值,然后再根据解为正整数分析解的情况.【解答】解:由题意,得,要使x,y都是正整数,必须满足3x﹣1大于0,且是2的倍数.根据以上两个条件可知,合适的x值为正奇数.故选A.【点评】解题关键是把方程做适当的变形,再确定符合条件的x的取值范围.15.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>1【考点】解二元一次方程组;解一元一次不等式.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解答】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.16.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠2【考点】二元一次方程的定义.【专题】计算题.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求a的取值.【解答】解:方程ax﹣4y=x﹣1变形得(a﹣1)x﹣4y=﹣1,根据二元一次方程的概念,方程中必须含有两个未知数,所以a﹣1≠0,即a≠1.故选C.【点评】二元一次方程必须符合以下三个条件:(1)方程中必须只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.解本题时是根据条件(1).17.(2013春•苏州期末)当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.1【考点】代数式求值.【专题】整体思想.【分析】把x=2代入ax3+bx+1=6,得到8a+2b=5;又当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1.所以把8a+2b当成一个整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,即8a+2b+1=6,∴8a+2b=5①当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1②把①代入②得:ax3+bx+1=﹣5+1=﹣4.故选B.【点评】此题考查的是代数式的性质,将已知变形然后求解.18.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4【考点】由实际问题抽象出二元一次方程.【专题】行程问题.【分析】首先由题意可得,甲乙各走了一小时的路程.根据题意,得甲走的路程差4千米不到2x千米,即u=2x﹣4或2x﹣u=4;乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.【点评】此题的关键是用代数式表示甲、乙走一小时的路程,同时用到了路程公式,关键是能够根据题中的第三个条件得到甲、乙所走的路程分别和总路程之间的关系.三、解答题19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】观察本题可知x的系数的最小公倍数较小,应考虑消去x,具体用加减消元法.【解答】解:(1)×7+(2)×2得:﹣11y=66,y=﹣6,把y=﹣6代入(1)得:2x+18=8,x=﹣5,∴原方程组的解为.【点评】两个未知数系数的符号都相反,可考虑消去最小公倍数较小的未知数.20.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】在方程2中,y的系数为1,所以可用含x的式子表示y,即用代入消元法比较简单.【解答】解:由(2)变形得:y=3x+1,代入(1)得:x+2(3x+1)=9,解得:x=1.代入y=3x+1得:y=4.∴方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.21.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.【解答】解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.【点评】本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】根据建立方程组,先求到两种蔬菜种植的亩数,再求一共获的纯利润.【解答】解:设王大伯种了x亩黄瓜,y亩西红柿,根据题意可得.共获纯利润=2600×10+2800×15=68 000(元)答:王大伯一共获纯利润68 000元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题一共获的纯利润指黄瓜和西红柿的利润和.23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(2014春•惠山区校级期末)已知关于x、y的方程组与有相同的解,求a、b的值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:据题意得,解得,代入其他两个方程,可得方程组为,解得.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5乙种货车辆(辆) 3 6累计运货吨数(吨)15.5 35【考点】二元一次方程组的应用.【分析】应先算出甲种货车和乙种货车一次各运多少吨货物.等量关系为:2×每辆甲种车的载重+3×每辆乙种车的载重=15.5;5×每辆甲种车的载重+6×每辆乙种车的载重=35.【解答】解:设甲种车每辆装x吨,乙种车每辆装y吨.则解得,运费为30×(3×4+5×2.5)=735(元).答:货主应付运费735元.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.。

中考解方程组练习题

中考解方程组练习题

中考解方程组练习题解方程组是数学中的一种重要方法,它可以帮助我们求解未知数之间的关系。

解方程组练习题在中考中经常出现,掌握解方程组的方法对于中考数学考试来说至关重要。

本文将为大家提供一些中考解方程组的练习题,并演示解题过程。

【题目一】已知方程组:2x - y = 43x + y = 7求解方程组的解。

【解析】我们可以使用消元法来解方程组。

首先,将两个方程相加,可以将y的系数消去:(2x - y) + (3x + y) = 4 + 75x = 11接下来,我们再次将两个方程相减,可以求解出x的值:(3x + y) - (2x - y) = 7 - 4x + 2y = 3x = 3 - 2y将x的值代入到第一个方程中,可以求解出y的值:2(3 - 2y) - y = 46 - 4y - y = 4-5y = -2y = 2/5最后,将y的值代入到第一个方程中,可以求解出x的值:2x - (2/5) = 42x = 4 + 2/52x = 22/5x = 11/5所以,方程组的解为x = 11/5,y = 2/5。

【题目二】已知方程组:3x - 4y = 12x + 7y = 8求解方程组的解。

【解析】我们可以使用消元法来解方程组。

首先,将第一个方程乘以7,将第二个方程乘以4,可以消除y的系数:(3x - 4y) * 7 = 1 * 7(2x + 7y) * 4 = 8 * 421x - 28y = 78x + 28y = 32将两个方程相加,可以求解出x的值:(21x - 28y) + (8x + 28y) = 7 + 3229x = 39x = 39/29将x的值代入到第一个方程中,可以求解出y的值:3(39/29) - 4y = 1117/29 - 4y = 1-4y = 1 - 117/29y = -1/29所以,方程组的解为x = 39/29,y = -1/29。

通过以上两道练习题的解答,我们可以看到解方程组的方法是非常灵活的。

初三练习题方程及答案

初三练习题方程及答案

初三练习题方程及答案题目:初三练习题方程及答案一、方程的基础知识方程是数学中重要的概念之一,它表示了一个等式中未知量的关系。

在初三数学课程中,方程的学习是非常重要的。

下面我们来回顾一些方程的基础知识。

1. 方程的定义方程是一个等式,其中包含了一个或多个未知量。

这些未知量可以通过求解方程来确定其值。

2. 一元一次方程的解法一元一次方程是指只包含一个未知量且最高次数为一次的方程。

一元一次方程的通常形式为:ax + b = 0。

我们可以通过以下步骤来解一元一次方程:a) 将方程化为标准形式:ax = -b。

b) 求得未知量x的值:x = -b/a。

3. 一元一次方程的应用一元一次方程在实际问题中有广泛的应用。

例如,我们可以用一元一次方程来表示线性函数关系,计算直线的斜率等。

二、练习题及答案现在,让我们通过一些练习题来巩固学习过的方程知识。

每道题后面都附有答案,以供参考。

练习题1:解一元一次方程2x + 5 = 9解答:将方程化为标准形式:2x = 9 - 5计算得:2x = 4解得:x = 4/2答案:x = 2练习题2:解一元一次方程3(x + 2) = 5x - 1解答:将方程按照乘法分配律展开:3x + 6 = 5x - 1将未知量移到等式一边,常数移到等式另一边:3x - 5x = -1 - 6计算得:-2x = -7解得:x = -7/(-2)答案:x = 7/2练习题3:解一元一次方程组2x + 3y = 7x - 4y = -5解答:我们可以通过消元法来解决一元一次方程组。

第一步,将第一个方程乘以2,并将其与第二个方程相减消去x:4x + 6y = 14x - 4y = -5计算得:3x = 19解得:x = 19/3将x的值代入其中一个方程,求得y的值:19/3 - 4y = -5计算得:y = 4/3答案:x = 19/3,y = 4/3通过上述练习题的解答,我们可以发现方程在解决实际问题中具有重要的作用。

中考数学练习试题 列方程(组)解应用题

中考数学练习试题 列方程(组)解应用题

义务教育基础课程初中教学资料课后强化训练8 列方程(组)解应用题一、选择题1.某商品的标价为200元,打八折销售后仍赚40元,则该商品的进价为(B ) A. 140元 B. 120元 C. 160元 D. 100元【解析】 设该商品的进价为x 元,则200×0.8-x =40,解得x =120.2.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2 kg ,求小亮妈妈两种水果各买了多少千克.设小亮妈妈买了甲种水果x (kg ),乙种水果y (kg ),则可列方程组为(A )A. ⎩⎪⎨⎪⎧4x +6y =28,x =y +2B. ⎩⎪⎨⎪⎧4y +6x =28,x =y +2 C. ⎩⎪⎨⎪⎧4x +6y =28,x =y -2 D. ⎩⎪⎨⎪⎧4y +6x =28,x =y -2 【解析】 由“甲种水果用钱+乙种水果用钱=28元”,得4x +6y =28;由“乙种水果比甲种水果少买了2 kg ”,得x =y +2.故选A.(第3题)3.如图,小李要在一幅长90 cm 、宽40 cm 的风景画四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整幅挂图面积的54%.若设金色纸边的宽度是x (cm ),根据题意所列的方程是(B )A. (90+x )(40+x )×54%=90×40B. (90+2x )(40+2x )×54%=90×40C. (90+x )(40+2x )×54%=90×40D. (90+2x )(40+x )×54%=90×40【解析】 挂图的长为(90+2x ) cm ,宽为(40+2x ) cm ,故可列方程(90+2x )(40+2x )×54%=90×40.4.为保证某高速公路在年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,则由题意列出的方程是(B )A.1x -10+1x -40=1x +14B.1x +10+1x +40=1x -14C.1x +10-1x +40=1x -14D.1x -10+1x +14=1x -40【解析】 由“甲、乙队单独完成的工作效率之和等于两队合作的工作效率”得1x +10+1x +40=1x -14. 5.某校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列方程正确的是(B )A.2401.5x -200x =4B.200x -2401.5x =4C.1.5×200x -240x =4D.1.5×200x +4=240x【解析】 由文学书的数量比科普书多4本, 得200x -2401.5x=4. 6.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数是(C ) A.25 B.36C.25或36D.-25或-36【解析】 设这个两位数的个位数字为x ,则十位数字为x -3.由题意,得10(x -3)+x =x 2,解得x 1=5,x 2=6.∴这个两位数是25或36. 二、填空题7.某市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x 支球队参赛,根据题意,可列出方程12x (x -1)=28,解这个方程,得x 1=8,x 2=-7W.合乎实际意义的解为x =8W. 8.今年“五一”节,A ,B 两人到商场购物,A 购3件甲商品和2件乙商品共支付16元,B 购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x 元/件,乙商品售价y 元/件,则可列出方程组⎩⎪⎨⎪⎧3x +2y =16,5x +3y =25W.(第9题)9.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根铁棒露出水面的长度是它总长的13,另一根铁棒露出水面的长度是它总长的15.已知两根铁棒的长度之和为55cm ,则此时木桶中水的深度是20cm.【解析】 设两根铁棒的长分别为x (cm )和y (cm ),由题意,得⎩⎪⎨⎪⎧x +y =55,23x =45y ,解得⎩⎪⎨⎪⎧x =30,y =25.∴木桶中水的深度是23x =23×30=20(cm ).10.有甲、乙、丙三种商品,如果购买甲3件、乙2件、丙1件共需315元,购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙三种商品各一件共需 150 元.【解析】 设购买甲、乙、丙1件分别需x 元,y 元,z 元,则⎩⎪⎨⎪⎧3x +2y +z =315,①x +2y +3z =285,② ①+②,得4x +4y +4z =600,∴x +y +z =150. 三、解答题11.有若干只鸡和兔关在同一个笼子里,从上面数,有30个头;从下面数,有84条腿,问:笼中有几只鸡?几只兔?【解析】 设这个笼中有x 只鸡,y 只兔,根据题意,得⎩⎪⎨⎪⎧x +y =30,2x +4y =84,,解得⎩⎪⎨⎪⎧x =18,y =12.答:笼中有18只鸡,12只兔.12.新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台,而当销售价每降50元时,平均每天就能多售出4台.若商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?【解析】 设每台冰箱降价x 元,由题意,得(2900-x -2500)×⎝⎛⎭⎫8+x50×4=5000, 整理,得x 2-300x +22500=0,(x -150)2=0,∴x 1=x 2=150.∴2900-150=2750(元).答:每台冰箱的定价应为2750元.13.某市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24 km.远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6 h ,求学生步行的平均速度.【解析】 设学生步行的平均速度是x (km/h ),则服务人员骑自行车的平均速度是2.5x (km/h ).由题意,得242.5x +3.6=24x,解得x =4. 经检验,x =4是原方程的解,且符合题意. 答:学生步行的平均速度是4 km/h.14.某电器超市销售每台进价分别为200元、170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:销售时段 销售数量 A 型号 B 型号 销售收入 第一周 3台 5台 1800元 第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A ,B 两种型号电风扇的销售单价.(2)若超市准备用不多于5400 元的金额再次采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30 台电风扇能否实现利润为1400 元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【解析】 (1)设A ,B 两种型号电风扇的销售单价分别为x 元,y 元,由题意,得⎩⎪⎨⎪⎧3x +5y =1800,4x +10y =3100,解得⎩⎪⎨⎪⎧x =250,y =210. 答:A ,B 两种型号电风扇的销售单价分别为250元,210元.(2)设最多能采购A 种型号的电风扇a 台,则采购B 种型号的电风扇(30-a )台.由题意,得200a +170(30-a )≤5400,解得a ≤10. 答:A 种型号的电风扇最多能采购10台. (3)不能.理由:由题意,得 (250-200)a +(210-170)(30-a )=1400,解得a =20.∵a ≤10,∴在(2)的条件下,超市不能实现利润为1400元的目标.15.某新建火车站站前广场需要绿化的面积为46000 m 2,施工队在绿化了22000 m 2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少平方米?(2)该项绿化工程中有一块长为20 m ,宽为8 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56 m 2,两块绿地之间及周边留有宽度相等的人行通道(如图所示).问:人行通道的宽度是多少米?(第15题)【解析】 (1)设该项绿化工程原计划每天完成x (m 2), 根据题意,得46000-22000x -46000-220001.5x =4,解得x =2000.经检验,x =2000是原方程的解且符合题意. 答:该绿化工程原计划每天完成2000 m 2. (2)设人行通道的宽度是x (m ),根据题意,得 (20-3x )(8-2x )=56,解得x 1=2,x 2=263(不合题意,舍去).答:人行通道的宽度是2 m. 16.某市为打造古运河风光带,将一段长为180 m 的河道整治任务交由A ,B 两个工程队先后接力完成.A 工程队每天整治12 m ,B 工程队每天整治8 m ,共用时20天.(1)根据题意,甲、乙两位同学分别列出了尚不完整的方程组如下:甲:⎩⎪⎨⎪⎧x +y = ,12x +8y = ;乙:⎩⎨⎧x +y = ,x 12+y 8= .根据甲、乙两名同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数;乙:x 表示A 工程队整治的河道长度,y 表示B 工程队整治的河道长度W. (2)A ,B 两个工程队分别整治河道多少米(写出完整的解答过程)?【解析】 (1)甲:⎩⎪⎨⎪⎧x +y =20,12x +8y =180;乙:⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20.(2)若解甲的方程组⎩⎪⎨⎪⎧x +y =20,12x +8y =180,得⎩⎪⎨⎪⎧x =5,y =15, ∴12x =60,8y =120.∴A ,B 两个工程队分别整治河道60 m 和120 m. 若解乙的方程组⎩⎪⎨⎪⎧x +y =180,x 12+y 8=20,得⎩⎪⎨⎪⎧x =60,y =120,∴A ,B 两个工程队分别整治河道60 m 和120 m.。

中考复习 :方程及方程组

中考复习 :方程及方程组

中考复习 :方程及方程组方程及方程组是每年必考的题目,常见题型选择题、 填空题 、解答 题 。

这类题难度不大, 只要大家认真去解答基本上是不丢分的,在应用方程思想解决实际问题时,要认真审题,建立方程这个数学模型,来解决实际问题。

一、填空题1. (2019.沈阳)二元一次方程组 3x-2y=3 的解是____________ X+2y=52. (2019.铁岭)若x ,y 满足方程组 3x+y=17, 则x+y=_7____ X-y=33.(2019.抚顺)若关于x 的一元二次方程kx 2+2x+1=0有实数根,则k 的取值范围是___k ≤1且k ≠_0____4.(2019.铁岭)若关于x 的一元二次方程ax 2-8x+4=0有两个不相等的实数根,则a 的取值范围是__a<4且a ≠0____5.(2019.本溪)如果关于x 的一元二次方程x 2-4x+k=0有实数根,那么k 的取值范围是___k ≤4_____6.(2019.鞍山)关于x 的方程x 2+3x+k-1=0有两个相等的实数根,则k 的值为__413__ 7.(2019.大连)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛。

问大小器各容几何。

”其大意为:今有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛3斛。

1个大桶加上5个小桶可以盛2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛x 斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为__5x+y=3______X+5y=28. (2019.鞍山)为了美化校园环境,某中学今年春季购买了A ,B 两种树苗在校园四周栽种,已知A 种树苗的单价比B 种树苗的单价多10元,用600元购买A 种树苗的棵数恰好与用450元购买B 种树苗的棵数相同。

若设A 种树苗的单价为x 元,则可列出关于x 的方程为 0x 450=x 600-1 11. (2019.丹东)某公司今年4 月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x ,则可列方程为_60(1+x)_2=100________12. (2019.盘锦)某班学生从学校出发前往科技馆参观,学校距离科技馆15km ,一部分学生骑自行车先走,过了15min 后,其余学生乘公交车出发,结果同时到达科技馆。

中考数学《方程与不等式》专题训练50题含答案

中考数学《方程与不等式》专题训练50题含答案

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.关于x ,y 的方程组24x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⎩■,其中y 的值被■盖住了,但不影响求出m 的值,则m 的值是( ) A .12B .12-C .13D .13-2.已知关于x 的方程290x a +-=的解是x =-2,则a 的值是( ) A .5 B .-5C .12D .13【答案】D【分析】把方程的解2x =-代入方程290x a +-=可得到关于a 的方程,解关于a 的方程即可.【详解】解:∵2x =-是方程290x a +-=的解, ∵2(2)90a ⨯-+-=. 解得:13a =. 故选:D .【点睛】本题考查了一元一次方程的解的应用,正确得到新的方程是解题关键. 3.已知关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0,则它的另一个根和m 的值分别是( ) A .3和1 B .2和3C .3和4D .4和1【答案】A【分析】先根据方程有一根为0,代入方程求出m 的值,然后把m 的值代入方程解一元二次方程即可.【详解】解:关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0, ∵-m =-1, ∵m =1,把m =1代入方程得()()()()211311x x x x -+=+-, 整理得:230x x -=, 因式分解得()30x x -=, 解得x x 1203,,∵另一个为3x =,m =1, 故选A .【点睛】本题考查方程的解,与解一元二次方程,掌握解方程的解概念,与一元二次方程的解法是关键.4.已知关于x 的一元二次方程:220x x m -+=有两个不相等的实数根,则m 的取值范围是( ) A .1m > B .1m < C .m>2 D .2m <【答案】B【分析】由方程有两个不相等的实数根,利用根的判别式可得出关于m 的一元一次不等式,解之即可得出结论.【详解】解:∵方程220x x m -+=有两个不相等的实数根, ∵()2240m ∆=-->, 解得:1m <, 故选:B .【点睛】本题考查了根的判别式,牢记“当方程有两个不相等的实数根时,0∆>”是解题的关键.5.甲乙两工程队共同参与一项筑路工程,规定x 天内完成任务.甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,甲、乙两队合作,可比规定时间提前14天完成任务,依题意列方程为( ) A .111104014x x x +=--+B .111104014x x x +=++- C .111104014x x x -=++- D .111104014x x x +=-+-6.若(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11,则m 的值为( ) A .4 B .5C .6D .7【答案】D【分析】先根据同底数幂的乘法法则把左侧化简,然后列出关于m 的方程求解即可. 【详解】∵(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11, ∵(a ﹣b )m +4=(a ﹣b )11, ∵ m +4=11, 解得:m =7, 故选:D .【点睛】本题考查了同底数幂的乘法,以及一元一次方程的解法,根据题意列出一元一次方程是解答本题的关键.7.若m 是关于x 的方程2420x nx m ++=的根()0m ≠,则4m n +的值为( ) A .-1 B .1C .-2D .2【答案】C【分析】根据一元二次方程的根的定义代入即可求解,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.【详解】m 是关于x 的方程2420x nx m ++=的根()0m ≠, ∴2420m mn m ++=,0m ≠,420m n ∴++=,即42m n +=-, 故选C .【点睛】本题考查了一元二次方程的根的定义,将方程的解代入求解是解题的关键. 8.方程3214x y +=在自然数范围内的解共有_____个 A .1 B .2C .3D .4【答案】C【分析】根据二元一次方程3x+2y=14,可知在自然数范围内的解有哪几组,从而可以解答本题.【详解】解:二元一次方程3x+2y=14在自然数范围内的解是:24x y =⎧⎨=⎩,41x y =⎧⎨=⎩,7x y =⎧⎨=⎩, 即二元一次方程3x+2y=14在自然数范围内的解的个数是3个. 故选C .【点睛】本题考查二元一次方程的解,解题的关键是明确什么是自然数,可以根据题意找到二元一次方程3x+2y=14在自然数范围内的解有哪几组.9.从正方形的铁片上,截去2cm 宽的一个长方形,余下的面积是248cm ,则原来的正方形铁片的面积是( ) A .281cm B .264cmC .254cmD .252cm【答案】B【分析】可设正方形的边长是x cm ,根据余下的面积是248cm ,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x -2,根据矩形的面积公式即可列出方程求解. 【详解】解:设正方形的边长是x cm , 根据题意得()248x x -=, 解得16x =-(舍去),28x =, ∵原正方形铁片的面积是8×8=64cm². 故选B .【点睛】本题考查了一元二次方程的应用,找到等量关系准确的列出方程是解决问题的关键,解题过程中要注意根据实际意义进行值的取舍.10.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ) A .13x y -= B .12y x += C .253x y -=D .213x y --=11.方程247236x x ---=-去分母得( ) A .22(24)(7)x x --=-- B .122(24)7x x --=-- C .12(24)(7)x x --=-- D .122(24)(7)x x --=--122247,x x 从而可得答案.122247,x x【点睛】本题考查的是解一元一次方程的步骤,去分母,掌握12.下列方程一定是一元二次方程的是( )A .3x 2+2x﹣1=0B .5x 2﹣6y ﹣3=0C .ax 2﹣x +2=0D .3x 2﹣2x ﹣1=0【答案】D【详解】解:A 、是分式方程,故A 错误; B 、是二元二次方程,故B 错误; C 、a =0时,是一元一次方程,故C 错误; D 、是一元二次方程,故D 正确; 故选:D .【点睛】本题考查一元二次方程的识别,熟知一元二次方程的定义是解题的关键. 13.一元二次方程()371x x x +=-化为一般形式为( ) A .2470x x --= B .2270x x --=C .2470x x -+=D .2270x x -+=【答案】A【分析】根据一元二次方程的一般形式判断即可. 【详解】解:∵()371x x x +=-, ∵237x x x +-=, ∵2370x x x ---=, ∵2470x x --=,一元二次方程()371x x x +=-化为一般形式为:2470x x --=,故A 正确. 故选:A .【点睛】本题考查了一元二次方程的一般形式,熟练掌握一元二次方程的一般形式是解题的关键.14.不等式364x x -+≤-的解集在数轴上表示正确的是( ) A . B .C .D .【答案】A【分析】首先移项、合并同类项、未知数系数化1解不等式,再在数轴上表示解集即可.【详解】解:364x x -+≤-346x x -+≤-22-≤-x1x ≥,在数轴上表示为:,故选:A .【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:∵去分母;∵去括号;∵移项;∵合并同类项;∵化系数为1.15.随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( ) A .()2500014050x += B .()2405015000x += C .()2500014050x -= D .()2405015000x -=【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x ,根据题意得:()25000-x =40501 故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.16.将二次三项式267x x ++进行配方,正确的结果应为( ) A .2(3)2x ++ B .2(3)2x -+ C .2(3)2x +- D .2(3)2x --【答案】C【分析】x 2+6x+7中x 2+6x+9即是(x+3)2,因而x 2+6x+7=(x+3)2-2 【详解】解:∵x 2+6x+7=x 2+6x+9-9+7, x 2+6x+7=(x+3)2-2. 故选C .【点睛】此题考查了配方法,解题时要注意常数项的确定方法,若二次项系数为1,则二次项与一次项再加上一次项系数的一半的平方即构成完全平方式,若二次项系数不为1,则可提取二次项系数,将其化为1. 17.已知2x =是关于x 的方程()112a x a x +=+的解,则a 的值是( )A.15B.25C.35D.4518.若一元二次方程式241211470x x+-=的两根为a、b,且a b>,则3a b+之值为何?()A.22B.28C.34D.4019.若关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,则k的取值范围是()A.k≠0B.k≥﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0【答案】C【分析】根据二元一次方程的根的判别式列出不等式进行求解即可.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,∵0k 0∆⎧⎨≠⎩,即4400k k +⎧⎨≠⎩,解得:k ≥﹣1且k ≠0. 故答案为C .【点睛】本题考查了一元二次方程根的判别式,解题的关键在于:∵当∵=0时,方程有两个相等的实数根;∵当∵>0时,方程有两个不相等的实数根;∵当∵<0时,方程没有实数根. 20.若关于x 的方程244x ax x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题21.不等式﹣3x >6的解是_______. 【答案】x <﹣2【分析】系数化为1并根据不等式的性质:∵不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,进行解答即可.【详解】解:系数化为1得:x <﹣2, 故答案是:x <﹣2.【点睛】本题主要考查不等式的性质,根据不等式的性质转换不等式的符号是解题的关键.22.方程2150b ax x -+=是关于x 的一元一次方程,则2a b +=____________. 【答案】2【详解】根据一元一次方程的定义可知x 的次数为1, 则ax 2=0且b-1=1,即a=0且b=2, 则2a+b=2×0+2=2. 故答案为2.23.某种商品原价每件40元,经两次降价,现售价每件32.4元,则该种商品平均每次降价的百分率是______. 【答案】10%【分析】设降价百分率为x ,根据售价从原来每件40元经两次降价后降至每件32.4元,可列方程求解.【详解】解:设降价百分率为x , 列方程:40(1﹣x )2=32.4.解得x 1=0.1,x 2=1.9(不合题意舍去). 故答案为:10%.【点睛】本题主要考查一元二次方程的实际应用,找准等量关系,根据题意列出方程是解题的关键.24.某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为2600m 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m ,另外三面用69m 长的篱笆围成,其中一边开有一扇1m 宽的门(不包括篱笆).则这个茶园的AB 的长为_________.【答案】20m【分析】设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据茶园的面积为2600m ,列出方程并解答即可.【详解】解:设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据题意,得:()6912600x x +-=,整理,得:2353000x x -+=,解得115x =,220x =,当15x =时,70240>35x -=,不符合题意舍去;当=20x 时,70230x -=,符合题意,故这个茶园的AB 为20m .故答案为:20m .【点睛】本题考查了一元二次方程的应用,根据数量关系列出方程是解题的关键. 25.甲、乙二人分别从相距20km 的A ,B 两地出发,相向而行.下图是小华绘制的甲、乙二人运动两次的情形,设甲的速度是x km/h ,乙的速度是y km/h ,根据题意所列的方程组是______,1.5x y +=______.【答案】 ()20.52201120x y x y ⎧++=⎨++=⎩11 【分析】设甲的速度是x km/h ,乙的速度是y km/h ,根据路程=速度×时间结合两次运动的情形,即可得出关于x ,y 的二元一次方程组,两式相加即可得解.【详解】解:设甲的速度是x km/h ,乙的速度是y km/h ,依题意,得:()20.52201120x y x y ⎧++=⎨++=⎩, 两式相加得:1.511x y +=,故答案为:()20.52201120x y x y ⎧++=⎨++=⎩,11. 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.26.关于x 的方程(m +5)x 2﹣2mx ﹣4=0是一个一元二次方程,那么m 的取值范围是___. 【答案】m ≠﹣5【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程,其中二次项系数不为0,可得m 的取值范围.【详解】解:因为(m +5)x 2﹣2mx ﹣4=0是关于x 的一元二次方程,所以m +5≠0,解得:m ≠﹣5,故答案为:m ≠﹣5.【点睛】本题考查了一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.27.对于x ,y 定义一种新运算“* ”,xy ax by =+,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,则11*的值为______. 【答案】11- 【分析】根据3515*=,4728*=列出二元一次方程组35154728a b a b +=⎧⎨+=⎩①②,求得a 、b ,再根据新运算的定义求解即可.【详解】解:根据题中的新定义化简得:35154728a b a b +=⎧⎨+=⎩①②, ∵4⨯-∵3⨯得:24b -=-,解得:24b =,把24b =代入∵得:35a =-,则1111a b *=+=-.故答案为:11-.【点睛】此题主要考查了二元一次方程组的求解,理解题意列出二元一次方程组和加减法解二元一次方程组是解决此题的关键.28.若213111x M N x x x -=+-+-则M =_______ ,N =_______ .∵31M N N M +=-⎧⎨-=⎩, 解得:21M N =-⎧⎨=-⎩. 故答案为:-2,-1.【点睛】本题考查分式的混合运算,解二元一次方程组.掌握分式的混合运算法则是解题关键.29.若2m +1 的值同时大于 3m -2和 m+2的值,且m 为整数,则 3m -5 =____. 【答案】1【分析】先根据题意列出不等式组求出m ,再求出代数式的值.【详解】依题意得2132212m m m m +-⎧⎨++⎩>> 解得31m m ⎧⎨⎩<> ∵m 为整数,∵m=2∵3m -5=6-5=1故答案为:1.【点睛】此题主要考查不等式组的应用,解题的关键是根据题意求出m 的值.30.不等式组11327x x x -≥+⎧⎨-<⎩的解集是______. 【答案】20x -<≤【分析】先分别求出两个不等式的解集,再找出解集的公共部分即可.【详解】解:11327x x x -≥+⎧⎨-<⎩①② 解不等式∵得,0x ≤,解不等式∵得,2x >-,则原不等式组的解集为:20x -<≤.故答案为:20x -<≤.【点睛】本题考查了解不等式组,要掌握解不等式组的步骤和方法是解题的关键. 31.如图,一块长为m a 宽为m b 的长方形土地的周长为16m ,面积为215m .现将该长方形土地的长、宽都增加2m ,则扩建后的长方形土地的面积是____________.【答案】35m 2【分析】根据题意列出关于a ,b 的方程,用含有a 的式子表示b ,可得关于a 的一元二次方程,求出a ,b 的值,即可得出答案.【详解】根据题意,得2()1615a b ab +=⎧⎨=⎩①②, 由∵得8b a =-∵,将∵代入∵,得(8)15a a -=,即28150a a -+=, 解得5a =或3a =(舍),将5a =代入∵,得3b =.长和宽都增加2m ,得7m ,5m ,所以扩建后的长方形土地的面积是7×5=35(cm 2).故答案为:35 cm 2.【点睛】本题主要考查了一元二次方程的应用,确定等量关系是解题的关键. 32.熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止,2分钟后熊大以熊二1.2倍速度跑过去,结果它们同时到达,如果设熊二的速度为x 米/分钟,那么可列方程为_________________.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.33.已知A ∠是ABC 的一个内角,并且方程24sin 102A x x -+=1,则A ∠=______.【答案】90︒##90度 sin 12A x +=)1sin 102A +=, 34.已知355x y a b +-和7332y x a b -是同类项,则x +y 的值是______. 【详解】-35.已知2x =是不等式ax-3a+2≥0的解,且1x =不是这个不等式的解,那么a 的取值范围是__________.【答案】12a <≤【分析】根据x=2是不等式ax-3a+2≥0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【详解】解:∵x=2是不等式ax-3a+2≥0的解,∵2-a≥0,解得:a≤2,∵x=1不是这个不等式的解,∵1-a<0,解得:a>1,∵1<a≤2,故答案为:1≤a≤2.【点睛】本题考查了解一元一次不等式,不等式的解集,解决本题的关键是求不等式的解集.36.规定11a ba b⊕=+,若232(1)(1)1xx xx++⊕-=-,则x的值是_____.37.阅读下面计算113⨯+135⨯+157⨯+…+1911⨯的过程,然后填空.解:∵113⨯=12(11-13),135⨯=12(13-15),…,1911⨯=12(19-111),∴113⨯+135⨯+157⨯+…+1911⨯=12(11-13)+12(13-15)+12(15-17)+…+12(19-111)=12(11-13+13-15+15-17+…+19-111)=12(11-111)=5 11.以上方法为裂项求和法,请参考以上做法完成:(1)124⨯+146⨯=______;(2)当113⨯+135⨯+157⨯+ (x)613时,最后一项x=______.38.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为________.39.已知点C、D是线段AB上两点(不与端点A、B重合),点A、B、C、D四点组成的所有线段的长度都是正整数,且总和为29,则线段AB的长度为__________________ .【答案】8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∵3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∵AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.三、解答题40.解不等式组()101432x x ->⎧⎪⎨+<⎪⎩.41.某商场某型号的计算机2018年销售量为2880台,2020年受疫情影响,年销售量下降为2000台,求销售量的年平均下降率.(结果保留整数)42.解不等式组:102132x x x -≤⎧⎪⎨+-<⎪⎩①②,并把解集在数轴上表示出来.【答案】21x -<≤,见解析【分析】先分别解两个不等式 ,在数轴上标出解集,然后写出解集即可.【详解】解:解不等式∵得,1x ≤,解不等式∵得,2x >-,在数轴上分别表示这两个不等式的解集如图∵不等式组的解集为:21x -<≤.【点睛】本题考查不等式组的解集,准确掌握解集的求法是解题的关键. 43.已知:23231A x xy y =++-,2B x xy =-.(1)计算:3A B -;(2)若()()25A B A B +-+的值与y 的取值无关,求x 的值.44.x 的一元二次方程()2420x m x m +++=.(1)求证:方程总有两个不相等的实数根;(2)若1x 、2x 是方程的两个实根,且212124x x x x m m ++=-,求m 的值.)证明:(m ∆=+方程总有两个不相等的实数根;)解:根据题意得12x x +=12x x ++(4m ∴-+解得=1m 即m 的值为【点睛】本题考查了根与系数的关系:若45.(1)解方程:11322x x x-+=-- (2)解不等式组:1,2263 2.x x x x ⎧+≥⎪⎨⎪++⎩> 【答案】(1)无解;(2)24x -<【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)去分母得:13(2)1x x +-=-,解得:2x =,检验:把2x =代入得:20x -=,2x ∴=是增根,分式方程无解;12632x x +>+①2x -,4x <,不等式组的解集为24x <.【点睛】此题考查了解分式方程,以及解一元一次不等式组,解题的关键是熟练掌握各自的解法.46.用配方法解方程:212302x x --= 2210=-【分析】根据配方法解一元二次方程即可47.解方程:35136x x -=-. 48.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金840元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金1380元.(1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预计用不多于5520元且不少于5280元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若甲型口罩的售价为每箱450元,乙型口罩的售价为每箱420元.为了促销,无论采取哪种进货方案,公司决定每售出一箱乙型口罩,返还顾客现金a 元,而甲型口罩售价不变,要使(2)中所有方案获利相同,直接写出a 的值. 【答案】(1)甲、乙型号口罩每箱的进价分别为300元,240元(2)有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱;方案二:购进甲型口罩9箱,则购进乙型口罩11箱;方案三:购进甲型口罩10箱,则购进乙型口罩10箱;方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)a =30【分析】(1)设甲型号口罩每箱进价为m 元,乙型号口罩每箱进价为n 元,根据题意建立方程组求解就可以求出答案;(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意建立不等式组,求出其解就可以得出结论;(3)由题意得出w =(a -30)x + 3600- 20a ,根据“(2)中所有方案获利相同”知w 与a 的取值无关,据此解答可得.(1)设甲、乙型号口罩每箱的进价分别为m 元,n 元,由题意得:2840321380m n m n +=⎧⎨+=⎩解得:300240m n =⎧⎨=⎩ 答:甲、乙型号口罩每箱的进价分别为300元,240元(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意得:300240(20)5520300240(20)5280x x x x +-≤⎧⎨+-≥⎩解得:812x ≤≤x 非负整数∴x =8或9或10或11或12∵有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱方案二:购进甲型口罩9箱,则购进乙型口罩11箱方案三:购进甲型口罩10箱,则购进乙型口罩10箱方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)设获得的总利润为ww =(450- 300)x +(420-240-a )(20-x )=150x +(180-a )(20-x )= 150x + 20(180-a ) -(180-a )x=(150-180+a )x + 3600-20a=(a -30)x + 3600- 20a要使(2)中所有方案获利相同∵a -30=0即a =30∵当a =30时,(2)中所有方案获利相同即w =3600-20×30=3600-600= 3000(元)【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,整式的加减无关类型,根据题意列出方程组,不等式组,代数式是解题的关键.49.解二元一次方程(1)3728x y x y -=⎧⎨+=⎩; (2)()()3212158y x x y ⎧-=+⎪⎨-=-⎪⎩.。

中考数学总复习《方程(组)与不等式(组)》专项测试卷(带有答案)

中考数学总复习《方程(组)与不等式(组)》专项测试卷(带有答案)

中考数学总复习《方程(组)与不等式(组)》专项测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________1.下列方程变形中①方程3-2x 3-x -22=1去分母,得2(3-2x)-3(x -2)=1 ②方程3x +8=-4x -7移项,得3x +4x =7-8③方程7(3-x)-5(x -3)=8去括号,得21-7x -5x +15=8 ④方程37x =73,得x =1 错误的有( )A .4个B .3个C .1个D .0个2.(2023·无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =2,y =0C.⎩⎪⎨⎪⎧x =0.5,y =3 D.⎩⎪⎨⎪⎧x =-2,y =4 3.二元一次方程x +3y =7的非负整数解的个数是( )A .1B .2C .3D .44.(2023·南充)关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =2m -1,x -y =n 的解满足x +y =1,则4m÷2n 的值是( )A .1B .2C .4D .85.(2023·温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( )A.52x +y =30 B .x +52y =30 C.32x +y =30 D .x +32y =30 6.(2023·齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150 cm 的导线,将其全部截成10 cm 和20 cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共 有( )A .5种B .6种C .7种D .8种7.(2023春·合川区期末)已知⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =23,nx -my =-2的解,则5m +n 的平方根为( )A .-4和4B .-5和5C .-13和13D .-27和27 8.(2023·绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A.⎩⎪⎨⎪⎧x +5y =3,5x +y =2 B.⎩⎪⎨⎪⎧5x +y =3,x +5y =2 C.⎩⎪⎨⎪⎧5x =y +3,x =5y +2 D.⎩⎪⎨⎪⎧5x =y +2,x =5y +39.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数有多少.设有x 人,则可列方程为 .10.(2023·丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝 斤.11.解方程:x -x -12=x +23+1.12.(2023·辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2 500元,那么最多可购买甲种驱蚊手环多少个?13.(2023·宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,表格列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270小乐妈妈 30 20 230①根据表格,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B 两种包装中分别有m 个豆沙粽,m 个肉粽,A 包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A ,B 两种包装的销量分别为(80-4m)包,(4m +8)包,A ,B 两种包装的销售总额为17 280元.求m 的值.参考答案1.下列方程变形中①方程3-2x 3-x -22=1去分母,得2(3-2x)-3(x -2)=1 ②方程3x +8=-4x -7移项,得3x +4x =7-8③方程7(3-x)-5(x -3)=8去括号,得21-7x -5x +15=8④方程37x =73,得x =1 错误的有( B )A .4个B .3个C .1个D .0个2.(2023·无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( D )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =2,y =0C.⎩⎪⎨⎪⎧x =0.5,y =3D.⎩⎪⎨⎪⎧x =-2,y =4 3.二元一次方程x +3y =7的非负整数解的个数是( C )A .1B .2C .3D .44.(2023·南充)关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =2m -1,x -y =n 的解满足x +y =1,则4m÷2n 的值是( D )A .1B .2C .4D .85.(2023·温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( A ) A.52x +y =30 B .x +52y =30 C.32x +y =30 D .x +32y =30 6.(2023·齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150 cm 的导线,将其全部截成10 cm 和20 cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共 有( C )A .5种B .6种C .7种D .8种7.(2023春·合川区期末)已知⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =23,nx -my =-2的解,则5m +n 的平方根为( B )A .-4和4B .-5和5C .-13和13D .-27和27 8.(2023·绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( B )A.⎩⎪⎨⎪⎧x +5y =3,5x +y =2 B.⎩⎪⎨⎪⎧5x +y =3,x +5y =2 C.⎩⎪⎨⎪⎧5x =y +3,x =5y +2 D.⎩⎪⎨⎪⎧5x =y +2,x =5y +3 9.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数有多少.设有x 人,则可列方程为8x -3=7x +4.10.(2023·丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝 967斤. 11.解方程:x -x -12=x +23+1. 解:去分母,得6x -3(x -1)=2(x +2)+6去括号,得6x -3x +3=2x +4+6移项合并,得x =7.12.(2023·辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2 500元,那么最多可购买甲种驱蚊手环多少个?解:(1)设每个甲种驱蚊手环的售价是x 元,每个乙种驱蚊手环的售价是y 元根据题意,得 ⎩⎪⎨⎪⎧3x +y =128,x +2y =76, 解得⎩⎪⎨⎪⎧x =36,y =20,答:每个甲种驱蚊手环的售价是36元,每个乙种驱蚊手环的售价是20元;(2)设购买甲种驱蚊手环m 个,则购买乙种驱蚊手环(100-m)个根据题意,得36m +20(100-m)≤2 500解得m ≤1254又∵m 为正整数∴m 的最大值为31.答:最多可购买甲种驱蚊手环31个.13.(2023·宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,表格列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270 小乐妈妈 30 20 230①根据表格,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B 两种包装中分别有m 个豆沙粽,m 个肉粽,A 包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A ,B 两种包装的销量分别为(80-4m)包,(4m +8)包,A ,B 两种包装的销售总额为17 280元.求m 的值. 解:(1)设豆沙粽的单价为x 元,肉粽的单价为2x 元由题意,得10x +12×2x =136解得x =4∴2x =8(元)答:豆沙粽的单价为4元,肉粽的单价为8元;(2)①设豆沙粽优惠后的单价为a 元,肉粽优惠后的单价为b 元由题意,得⎩⎪⎨⎪⎧20a +30b =270,30a +20b =230, 解得⎩⎪⎨⎪⎧a =3,b =7,答:豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②由题意,得[3m +7(40-m)]·(80-4m)+[3(40-m)+7m]·(4m +8)=17 280解得m =19或m =10∵m ≤12(40-m) ∴m ≤403∴m =10.。

初中数学中考方程方程组单元测试题

初中数学中考方程方程组单元测试题

方程与方程组测试题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),满分150分,考试时间120分钟。

第Ⅰ卷(选择题,共40分)一、精心选一选(本题满分40分,共有10道小题,每小题4分。

下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将各小题所选答案的标号填写在题后面的括号内.) 1.是方程ax-y=3的解,则a 的取值是 ( )A.5 B.-5 C.2 D.12.分式方程2221---x x =0的根是 ( ) A.-3 B.0 C.2 D.无解3.若方程x 2-4x +c =0有两个不相等的实数根,则c 的值可以是 ( )A.6 B.5 C.4 D.34.方程(m+2)x |m|+3mx+1=0是关于x 的一元二次方程,则 ( )A.m=±2 B.m=2C.m=-2 D.m≠±25.两个连续偶数的积是168,则这两个偶数分别是 ( )A.12,14 B.12,14或-12,-14C.16,18 D.16,18或-16,-186.中央电视台2套“开心辞典”栏目中,有一期的题目如右图所示,两个天平都平衡,则三个球 体的质量等于几个正方体的质量 ( )7.已知方程组的解为则2a-3b 的值为 ( )A.6 B.4 C.-4 D.-68.用配方法解关于x 的一元二次方程x 2+px+q=0,此方程可变形为 ( )A. B.C. D.9.已知⊙O 1与⊙O 2半径的长x 、y 满足|2x-6|+(y-4)2=0,且O 1O 2=21,则⊙O 1与⊙O 2的位置关系是 ) A.相交 B.内切 C.内含 D.外切 10.《九章算术》是我国东汉初年编订的一部数学经典著作,在它的“方程”一章里,一次方程组是由算筹布置而成的,《九章算术》中的算筹图是竖排的,为看图方便,我们把它改成横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是类似地,图2所示的算筹图我们呆以表述为( )A.B. C. D.第Ⅱ卷(非选择题部分,共110分)二.细心的填一填(本题有10个小题, 每小题4分, 共40分)11.一元二次方程x 2+4x=5的负根是 .12.使分式262+--x x x 的值为零的x 的值是 . 13.若关于x 的方程x 2+mx -6=0,有一个根是2,则m 的值为___________.14.已知x 1、x 2是方程2x 2-x -7=0的两根,则的值是_________.15.若方程x +y =3,x -y =1和x -2my =0有公共解,则m 的取值为__________.16.蔬菜种植专业户王先生要办一个小型蔬菜加工厂,分别向银行申请甲、乙两种贷款,共13万元,王先生每年需付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲、乙两种贷款分别是 .17.用换元法解分式方程x 2+x+1=xx +22时,如果设y=x 2+x ,那么原方程可化为关于y 的一元二次方程的一般形式是 .18.写出一个有实数根的一元二次方程.19. 如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是.20.曙光中学计划组织学生观看爱国主义教育影片,包场费1500元,后来实验中学的200名师生一同观看了影片,商定包场费1500元由两校按人数均摊,这样曙光中学人均比原来少支付2元钱,曙光中学有____人观看了影片.三、解答题(共70分)21、(10分)解方程组:2536x yx y+=-=⎧⎨⎩,.22、(10分)解方程23、(14分)已知关于x的一元二次方程x2+4x+m-1=0.(1)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根.(2)设α、β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值.24、(10分)据统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市,其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍,求严重缺水城市有多少座?25、(10分)扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.26、(16分)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.参考答案1.A ;提示:把x=1,y=2代入ax-y=3,得a=52.D ;提示:去分母得,方程无解3.D ;提示:由求根公式知b 2-4ac >0时有两实根,解之可得c =3符合题意.4.B ;提示:本题的m 满足两个条件:|m|=2且m+2≠0,所以m=2.5.B ;提示:连续偶数也包括负整数情况.6.D ;提示:解答本题的关键是将实际问题转化为数学问题,可设每个球、圆柱、正方体的质量分别为x 、y 、z ,则可列方程组得由①得y =x 52③,把③代入②得x x 5232⨯=,所以3x=5z. 7.A ;提示:把代入方程组,得①+②,得4a=6, ∴ a=23,②-①,得2b=-2. ∴ b=-1. ∴ 2a-3b=2×23-3×(-1)=6. 8.A ;提示:对二次项系数为1的一元二次方程配方时,方程两边都加上一次项系数一半的平方. 9.C ;提示:由|2x-6|+(y-4)2=0,得2x-6=0,y-4=0,解得x=3,y=4,又因为4-3>21即两圆半径之差大于两圆 圆心距,所以两圆内含.10.A ;提示:只要正确识别算筹数及对应关系即可选对.二、 11.-5.提示:移项,得x 2+4x-5=0,用公式法得x=2)5(4442-⨯-±-=-2±3,所以x 1=1,x 2=-5,因为本题求负根,所以x=-5.12.3.提示:由题意,得解得x=3,请勿忽视分母不为0的条件. 13. 1.14.429.提示:可先把变形为,然后求解.15.1.提示:先通过x +y =3,x -y =1列方程组可求得x 、y 的值,然后代入x -2my =0可求得m 的值.16. 6.1万元、6.9万元.提示:设甲种贷款为x 万元,则乙种贷款为(13-x )万元,根据题意,得 6%x+3.5%(13-x )=0.6075. 解得x=6.1.所以13-x=13-6.1=6.9.说明:本题也可列二元一次方程组求解,列方程或方程组时注意要统一单位.17. y 2+y-2=018.一元二次方程的概念是等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程.此题还要注意列出的方程要有解,如x 2+1=0就无解.解:x 2-1=0.19.两个一次函数图象的交点表示与之对应的二元一次方程组的解. 解:20.【分析】 由题意我们可得到这样的关系:“两校均摊前的人均花费=两校均摊后的人均花费+2”,这样可列方程求解.解:设曙光中学有x 人观看了影片,根据题意,得200150021500++=x x . 化简得 x 2+200x-15000=0.解得x 1=300,x 2=-500.经检验,x 1,x 2都是分式方程的解,但x 2=-500不合题意,应舍去.所以 x=300答:曙光中学有300人观看了影片.三、21、解:25,3 6.x yx y+=-=⎧⎨⎩①×3,得 6x+3y=15.③②+③,得7x=21,x=3.把x=3代入①,得2×3+y=5,y=-1.∴原方程组的解是31 xy==-⎧⎨⎩,.22、解得x=20.经检验,x=20是原方程的解.23、解:(1)b2-4ac=42-4(m-1)=20-4m.∵原方程有两个不相等的实数根.∴ 20-4m>0,解得m<5.又∵ m为整数∴ m取4.(2)由(1)得,当m=4时,方程变为x2+4x+3=0.解这个方程,得 x1=-3,x2=-1.又∵α、β是此方程的两个实数根,∴不妨设α=-3,β=-1,α2+β2+αβ=(-3)2+(-1)2+(-3)×(-1)=9+1+3=13.24、解:设严重缺水城市有x座,依题意,得4x-50+2x+x=664.解这个方程,得 x=102.答:严重缺水城市有102座.25、解:设这种药品包装盒的宽为xcm,高为ycm,则长为(x+4)cm,根据题意得解这个方程组,得因此长为9cm,宽为5cm,高为2cm,体积V=9×5×2=90(cm3).答:这种药品包装盒的体积为90cm3.26、解:(1)设甲种型号手机要购买x部,乙种型号手机要购买y部,丙种型号手机要购买z部,根据题意,得不合题意,舍去.答:有两种购买方法:甲种型号手机购买30部,乙种型号手机购买10部或甲种型号手机购买20部,丙种型号手机购买20部.(2)由题意,得解得答:若甲种型号手机购买26部,则乙种型号手机购买6部,丙种型号手机购买8部;若甲种型号手机购买27部,则乙种型号手机购买7部,丙种型号手机购买6部;若甲种型号手机购买28部,则乙种型号手机购买8部,丙种型号手机购买4部.。

解方程组练习题初三

解方程组练习题初三

解方程组练习题初三在初三的数学学习中,解方程组是一个重要的内容。

通过解方程组,我们可以求解多个未知数之间的关系,使得方程组成立。

下面,我们来练习几道解方程组的题目,锻炼我们的解题能力。

题目一:求解方程组已知方程组:x + y = 72x - y = 1解:首先,我们可以通过消元法解方程组。

将第二个方程的两边同时乘以2,得到:4x - 2y = 2现在我们将两个方程相加,消去y的项:(x + y) + (4x - 2y) = 7 + 25x - y = 9现在我们得到了一个新的方程,方程为5x - y = 9。

接下来,我们将这个方程和原来的第一个方程相加:5x - y + x + y = 9 + 76x = 16最后,我们将方程两边同除以6,解出x的值:x = 16/6x = 8/3将x的值代入第一个方程,求解y的值:8/3 + y = 7y = 16/3 - 21/3y = -5/3所以,方程组的解为x = 8/3,y = -5/3。

题目二:解方程组的唯一解已知方程组:2x + y = 10x - 3y = -7解:首先,我们可以使用消元法解方程组。

将第二个方程的两边同时乘以2,得到:2x - 6y = -14现在我们将这个方程和第一个方程相加,消去x的项:(2x + y) + (2x - 6y) = 10 + (-14)4x - 5y = -4现在我们得到了一个新的方程,方程为4x - 5y = -4。

接下来,我们将这个方程和原来的第一个方程相减:(4x - 5y) - (2x + y) = -4 - 102x - 6y = -14现在我们得到了一个新的方程,方程为2x - 6y = -14。

可以发现,这个方程与原来的第二个方程是等价的。

也就是说,方程组的两个方程实际上是同一个方程。

因此,方程组的解为无穷多个,可以用参数表示。

我们将y表示为一个任意的变量t,那么x的值可以通过t来表示:x = (7 + 3t) / 2所以,方程组的解为x = (7 + 3t) / 2,y = t,其中t为任意实数。

【新】九年级数学 人教版 中考专题复习-方程和方程组篇(知识点讲解+练习题)

【新】九年级数学 人教版 中考专题复习-方程和方程组篇(知识点讲解+练习题)

中考复习-方程和方程组篇内容讲解【学生总结】等式的性质:①性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b (c≠o )那么ac=二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的组3、 叫做解方程4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程【解一元一次方程】一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。

2、解一元一次方程的一般步骤: 1。

2。

3。

4。

5。

概念考点:(1)若关于x 的方程22(2)10()a a x x ---+=是一元一次方程,求a 的值.(2)若关于x 的方程5413524n x -+=是一元一次方程,求n 的值.解方程:(1) 3131=+-x x (2)x x x -=--+22132(3)53210232213+--=-+x x x (4)32116110412xx x --=+++*带小数方程4x 1.55x 0.8 1.2x0.50.20.1----=【二元一次方程组】二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法例1 解方程组: 213211x y x y +=⎧⎨-=⎩①②.对应训练(1)解方程组: 2()134123()2(2)3x y x yx y x y -+⎧-=-⎪⎨⎪+--=⎩.3(2)3814x y x y -=⎧⎨-=⎩23(3)253s t t s =⎧⎪+⎨=⎪⎩356(4)415x y x y -=⎧⎨+=-⎩43(1)4(4)(5)(6)35115(1)3(5)7525x x y x y y x y x +-⎧-=-=⎧⎪⎨⎨-=+⎩⎪=+⎩152343(1)4(4)(4)(5)(6)3532115(1)3(5)7525x x yx y x y x y y x y x +-⎧+=-=-=⎧⎧⎪⎨⎨⎨-=-=+⎩⎩⎪=+⎩*含参方程组.已知关于x、y的方程组52111823128x y ax y a+=+⎧⎨-=-⎩①②的解满足x>0,y>0,求实数a的取值范围.【一元一次不等式组】掌握有关概念的含义,并能翻译成式子.(1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.例题:用不等式表示:①a为非负数,a为正数,a不是正数解:②(2)8与y的2倍的和是正数;(3)x与5的和不小于0;(5)x的4倍大于x的3倍与7的差;【学生总结:】基本性质1、不等式两边都加上(或减去)同一个 或同一个 不等号的方向 ,即:若a <b,则a+c b+c(或a-c b-c)基本性质2:不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c>0则a c b c (或acb c )基本性质3、不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c <0则a c b c (或acb c )例题:①解不等式 31(1-2x )>2)12(3 x②一本有300页的书,计划10天内读完,前五天因各种原因只读完100页.问从第六天起,每天至少读多少页? 解:(1) 在数轴上表示解集:“大右小左”“” (2) 写出下图所表示的不等式的解集3、不等式组:求解集口诀:同大取大,同小取小,交叉中间,分开两边例题:①不等式组⎩⎨⎧-<<,3,2x x ⎩⎨⎧->>,3,2x x ⎩⎨⎧-<>,3,2x x ⎩⎨⎧-><,3,2x x 数轴表示解集考点二:在数轴上表示不等式(组)的解 例2 把不等式组1215x x >⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .对应训练 2.不等式组2(5)65212x x x+≥⎧⎨->+⎩的解集在数轴上表示正确的是( )A .B .C .D .考点三:不等式(组)的解法例3 不等式2x-1>3的解集是 . 例4 解不等式组23 120x x +>⎧⎨-≥⎩,并把解集在数轴上表示出来.对应训练3.不等式2x-4<0的解集是.4.解不等式组2 11 00x xx+>⎧⎨-<⎩①②,并把它的解集在数轴上表示出来.考点四:不等式(组)的特殊解例5 不等式组21312xx-<⎧⎪⎨-≤⎪⎩的整数解有()个.A.1 B.2 C.3 D.4 对应训练5.求不等式组21025xx x+>⎧⎨>-⎩的正整数解.考点五:确定不等式(组)中字母的取值范围例6 若不等式组122x ax x+≥⎧⎨->-⎩有解,则a的取值范围是.对应训练6.已知x=3是关于x的不等式3x-22ax+>23x的解,求a的取值范围.课堂总结:针对练习【分式方程】1.解分式方程1x -1-2=31-x,去分母得( )A .1-2(x -1)=-3B .1-2(x -1)=3C .1-2x -2=-3D .1-2x +2=32. 分式方程x x -1-1=3(x -1)(x +2)的解为( )A .x =1B .x =-1C .无解D .x =-23. 分式方程2x +13-x =32的解是___________ __.4. 分式方程4x -3-1x=0的根是____________.5. 关于x 的分式方程m x 2-4-1x +2=0无解,则m =_____________.解方程:=0.6.①解方程:2﹣=1;②利用①的结果,先化简代数式(1+)÷,再求值.。

中考解方程公式练习题初中

中考解方程公式练习题初中

中考解方程公式练习题初中解方程是数学中的重要内容之一,也是中考数学考试的重点部分。

通过解方程,可以解决实际问题,培养学生的逻辑思维和数学推理能力。

下面将给大家提供一些中考解方程公式的练习题,希望能够帮助大家更好地理解和掌握解方程的方法和技巧。

一、一元一次方程1. 已知某数字的6倍加上5等于11倍该数字的8倍减去7,求这个数字。

解:设这个数字为x,根据题意可以列出方程:6x + 5 = 11 * 8x - 7化简得:6x + 5 = 88x - 7移项得:82x = 12解得:x = 12 / 82 = 6 / 412. 一个数的十分之一减去7的结果等于这个数的四分之一加上13,求这个数。

解:设这个数为x,根据题意可以列出方程:x / 10 - 7 = x / 4 + 13化简得:4x - 280 = 10x + 520移项得:6x = 800解得:x = 800 / 6 = 400 / 3二、一元二次方程1. 某数平方的4倍减去5倍某数再加上6等于0,求这个数。

解:设这个数为x,根据题意可以列出方程:4x^2 - 5x + 6 = 0通过求根公式解得:x = (-(-5) ± √((-5)^2 - 4 * 4 * 6)) / (2 * 4)化简得:x = (5 ± √(25 - 96)) / 8解得:x = (5 ± √(-71)) / 8由于方程无实根,所以无解。

2. 某数平方的3倍减去2倍这个数再减去15等于0,求这个数。

解:设这个数为x,根据题意可以列出方程:3x^2 - 2x - 15 = 0通过因式分解或求根公式解得:x = (-(-2) ± √((-2)^2 - 4 * 3 * -15)) / (2 * 3)化简得:x = (2 ± √(4 + 180)) / 6解得:x = (2 ± √184) / 6三、带有绝对值的方程1. |2x - 1| = 5,求x。

初三解方程100道及答案

初三解方程100道及答案

初三数学解方程练习题及答案解方程是初中数学中重要的内容之一,也是提高学生运用数学知识解决实际问题的能力的关键。

在初三阶段,学生需要掌握解一元一次方程和解一元二次方程的方法。

本文将为大家提供100道初三解方程练习题及答案,帮助大家巩固解方程的知识点。

一、解一元一次方程1.解方程2x + 5 = 15。

解:首先将方程化简为2x = 15 - 5,得到2x = 10。

然后再将2x除以2得到x = 5。

所以方程的解为x = 5。

2.解方程3(x - 4) = 15。

解:首先将方程化简为3x - 12 = 15。

然后将方程两边的常数项移动到一边,得到3x = 15 + 12,即3x = 27。

最后将方程两边除以3,得到x = 9。

所以方程的解为x = 9。

3.解方程4x + 7 = 23。

解:首先将方程化简为4x = 23 - 7,得到4x = 16。

然后将方程两边除以4,得到x = 4。

所以方程的解为x = 4。

4.解方程5(x + 2) = 35。

解:首先将方程化简为5x + 10 = 35。

然后将方程两边的常数项移动到一边,得到5x = 35 - 10,即5x = 25。

最后将方程两边除以5,得到x = 5。

所以方程的解为x = 5。

5.解方程6x - 8 = 10。

解:首先将方程化简为6x = 10 + 8,得到6x = 18。

然后将方程两边除以6,得到x = 3。

所以方程的解为x = 3。

二、解一元二次方程1.解方程x^2 + 5x + 6 = 0。

解:首先我们可以尝试因式分解。

将方程因式分解为(x + 2)(x + 3) = 0,然后分别令x + 2 = 0和x + 3 = 0,得到x = -2和x = -3。

所以方程的解为x = -2和x = -3。

2.解方程2x^2 + 3x - 2 = 0。

解:我们可以使用求根公式来解这个方程。

根据求根公式,方程的解可以表示为x = (-b ± √(b^2 - 4ac)) / (2a)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、方程和方程组1.某河上游的A地,为改善流域环境,把一部分牧场改为林场。

改变后,林场与牧场共有162公顷,牧场面积是林场面积的20%,问退牧还林后林场面积为多少公顷?2.某队伍长450m,以1.5m/s的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是3m/s,那么往返需要多少时间?3.一个容器盛满酒精20L,倒出一部分后又用水加满;第二次又倒出与第一次相同体积的酒精溶液,再用水加满,这时容器内的水是纯酒精的3倍,求每次倒出溶液的体积。

4.某厂以500万元资金投入生产,在一年中可以得到一定的利润,第二年又以这500万元资金和上年的利润一并投入生产,结果得利润42.2万元。

已知第二年的利润比第一年增加2.5%,求第一年的利润是投产资金的百分之几?5.一水池装有A、B两水管,单独打开A管比单独打开B管注满水池多用10小时,现在先打开B管10小时后,再打开A管,共同注水6小时将水池注满。

问同时打开两管注满水池需要几小时?6.一船由A港到B港顺流需行6小时,由B港逆流需行8小时。

一天船从早晨6点由A港出发顺流行到B港时,发现一救生圈在途中掉落在水中,立刻返回,1小时后找到救生圈。

问:(1)若船按水流速度由A港漂流到B港需要多少小时?(2)救生圈是何时掉入水中的?7.甲、乙两人分别骑摩托车从A、B两地相向而行。

甲行1小时后,乙才出发,又经过4小时两人在途中的C地相遇。

相遇后两人按原来的方向继续前进。

乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟。

已知乙比甲每小时多行驶4km,求甲、乙两车的速度。

8.某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40km,摩托车的速度为45km/h,运货汽车的速度为35km/h,?”请将这道作业题补充完整,并列方程解答。

9.某校参加数学竞赛的有120名男生,80名女生;参加英语竞赛的有120名女生,80名男生。

已知该校总共有260名学生参加了竞赛,其中有75名男生两科竞赛都参加了,那么参加数学竞赛而没有参加英语竞赛的女生人数是多少人?10.果品公司购进苹果5.2万千克,每千克的进价是0.98元,付运费的开支1840元,预计损耗为1%。

如果希望全部销售后能获利17%,问每千克苹果零售价应当定为多少元?11.某种商品因换季准备打折出售。

如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元,这种商品的定价是多少元?12.一批货物用载重4.5吨的汽车比用载重12吨的大卡车要多运15次才能运完,设这批货物的吨数为x, 则可列方程 。

13.一个两位数,两个数位上的数字之和等于7,如果这个数加上9所得到的两位数的十位数字、个位数字分别是原来两位数的个位数字和十位数字,那么原来的两位数是 。

14.甲步行上午6时从A 地出发,于下午5时到达B 地,乙骑自行车上午10时从A 地出发,于下午3时到达B 地,问乙在什么时间追上甲?15.一通讯员骑摩托车需要在规定的时间内,把文件送到某地,若每小时走60km,就早到12分钟,若每小时走50km ,则要迟到7分钟,求路程是多少千米?16.一个学生用5km/h 的速度行进,可以按时从学校回到家里,走了全程的31,他搭上了速度是20km/h 的汽车,因此,比规定时间早2小时到家,求他家距离学校多远?(用两种方法求解)17.某人计划在15天内加工420个零件,开始3天每天只加工24个零件,问以后每天至少加工多少个零件,才能在规定日期完成任务?18.一个蓄水池装有A 、B 两个进水管和C 一个排水管,单独开放A 管,1小时可以注满全池,单独开放B 管,1.5小时可以注满全池,单独开放C 管,45分钟可以放完全池的水,现在全池蓄有31的水,如果三管一齐开放,多少分钟可以注满全池? 19.甲、乙二人共同加工零件180个,甲每小时加工零件10个,乙每小时加工零件15个,请按下述要求编一道应用题:(1)甲、乙不能同时开始加工零件;(2)所列方程是一元一次方程;(3)把编出的应用题完整地叙述表达出来,语言要准确无误;(4)对编出的应用题只列方程,不必求解。

20.有含盐15%的盐水80g ,要使盐水含盐20%,需加盐xg ,则下述所列方程中错误的是( )A 、80%15)80%(20⨯=+xB 、%)201)(80(%)151(80-+=-⨯xC 、)80(%2080%15x x +∙=+⨯D 、%1580)80%(20=-+x x 21.两种铜块分别含铜60%和80%,试问这两种铜块各取多少克熔化后,才能得到含铜74%的铜块500g ?22.某班有学生45人,选举2人作学生会干部候选人,结果有40人赞成甲,有37人赞成乙,对甲、乙都不赞成的人数是都赞成人数的91。

问都赞成和都不赞成的人数各是多少? 23.某校初二(1)班有40名学生,其中参加数学竞赛的有31人,参加物理竞赛的有20人,有8人没有参加任何一项竞赛,则同时参加两项竞赛的学生共有多少人?24.一项工程由甲队单独做要10天完成,由乙队单独做要30天完成。

现甲、乙两队合做完成这项工程,已知甲队休息了2天,乙队休息了8天,且甲、乙两队没有在同一天休息过,两队合这项工程要多少天完成?25.一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的51,求这个两位数是多少? 26.某商店购进一批水果共600千克,测定含水量为98%,存放一段时间后,再测得含水量为97%,求这批水果现在的质量?27.据中国教育报报道:1997年是我国实施“九五”计划的第二年,在这一年里,教育事业取得显著成绩,就高中阶段的教育来雨,1996年全国普通高中和中专(含职业高中)共招生668万人,而1997年普通高中比上年多招了14.3%,中专(含职业高中)多招了7.6%,这样高中阶段招生总人数比1996年增加了10.5%。

根据上述资料,1996年普通高中和中专(含职业高中)各招生 人和 人(精确到1万人)28.某厂制造并出售商品P 、商品Q 和商品R ,前一阶段结束时结算,商品R 的售出金额高达总金额的60%,目前阶段,商品P 和商品Q 的售出金额比前一阶段减少5%,因而商品R 更加是重点。

要想使这一阶段售出总金额比前一阶段增长10%,必须努力使商品R 的售出金额比前阶段增加百分之几?29.某公司为了尽快解决职工住房问题,集资建了一栋每平方米售价1188元的新房,5年后公司将全部购房款还给房主,也就是“5年还本售房”。

王工程师筹款购买了一套70m 2的住房,如果公司收到他的购房款后,拿出一部分存5年定期储蓄,以便到期如数还本给王工程师,那么公司最后得到的钱款是多少?(精确到个位,不计物体上涨因素,5年期存款年利率4.5%)30.彩票发行者预计将彩票发行额的42%作为奖金。

若奖金总数为92400元,彩票每张5元,问应卖出多少张彩票,方能兑现这笔奖金?31. 一商店将每台彩电先按进价提高40%标出售价, 然后在广告中宣传将以80%的优惠价出售,结果每台彩电赚了300元,那么每台彩电进价是多少元?32.某质量检测部门抽取甲、乙两厂相同数量的产品进行质量检测,测得甲厂有合格产品48件,乙厂有合格产品45件,甲厂的合格率比乙厂的合格率高5%,问甲厂的合格率是多少?33.某商店将某种超级VCD 按进价提高35%,然后打出“九打酬宾、外送50元打的费”的广告,结果每台超级VCD 仍获利208元,那么每台超级VCD 的进价是多少元?34.某市居民生活用电基本价格为每度0.40元,若每月用电量超过60度,超出部分按基本电价的70%收费,若某户六月份的电费平均为每度0.36元,求六月份共用电多少度?应交电费多少元?35.李明以两种形式分别储蓄了2000元和1000元。

一年后全部取出,扣除利息所得税后可得利息43.92元。

已知这两种储蓄利率的和为3.24%。

问两种储蓄的年利率各为百分之几? 36.7月1日,红花岗中学初三师生270人准备到息烽集中营接受革命传统教育。

若租一辆45座小客车租金为250元,租一辆60座大客车租金为300元。

已知租用的大客车比租用的小客车我一辆,问租用的大小客车名多少辆?应付租金多少元?37.某商店将甲、乙两种糖果混合销售,并按公式:单价=212211m m m a m a ++(元/千克)。

其中m 1,m 2分别为甲、乙两种糖果的质量(千克),a 1,a 2分别为甲、乙两种糖果的单价(元),已知甲种糖果单价为20元/千克,乙种糖果单价为16元/千克。

现在将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,又在混合糖果中加入5千克乙种糖果,再售出时,混合糖果的单价为17.5元/千克。

问这箱甲种糖果有多少千克?38.买一种商品,大包装的比小包装的合算。

如蓝天牙膏60g 装的每支1.15元,150g 装的每支2.50元,两者单位质量的价格比是1.15:1。

牙膏的价格是由生产牙膏的成本、包装成本及运输成本等决定。

忽略运输成本,并假设生产成本与牙膏质量(不包括牙膏质量)成正比,包装成本与牙膏壳的表面积成正比。

请你制定一支180g 装的蓝天牙膏的合理价格。

39.某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利( )A 、25%B 、40%C 、50%D 、66.7%40.有四种原料:50%的酒精溶液150g ;90%的酒精溶液45g ;纯酒精45g ;水45g 。

请你设计一种方案,只选取三种原料(各取若干或全量)配制成60%的酒精溶液200g 。

(1)选取哪三种原料?各取多少克?(2)设未知数,列方程(组)并解之,说明你配制方法的正确。

41.一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,第二次又倒出同样多的药液,再用水加满。

这时容器剩下的纯药液是28L ,每次倒出液体多少升?42.一桶中装满含盐量为20%的盐水40kg ,若倒出一部分盐水后,再加入一部分水,倒入水的质量是倒出盐水质量的一半,此时盐水的含盐量是15%,求倒出盐水多少千克?43.某工厂今年一月份的产值为60万元,二月份由于种种原因,经营不善,产值下降10%,以后加强管理,节能增效,月产值又大幅度上升,到四月份产值猛增到96万元。

求三、四月份平均每月增长的百分率是多少?(精确到0.1%)44.某工厂以2001年的产值为基数,计划到2003年产值翻一番,并且要求第二年提高的百分数是第一年提高的百分数的两倍,求第二年提高的百分数(精确到1%)45.将进价单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销售量就要减少10个,为了赚8000元利润,售价应定为多少元,这时应进货多少个?46.甲、乙两人完成某项工作,甲的工作效率是乙的2倍。

相关文档
最新文档