Birational geometry of terminal quartic 3-folds II the importance of beings Q-factorial

合集下载

Bicubic G1 interpolation of arbitrary quad meshes using a 4-split

Bicubic G1 interpolation of arbitrary quad meshes using a 4-split

Circulant Matrices
• Property: Let f(x)=a0+a1x +…+ an-1xn-1, ε = e 2π i / n then eigenvalues, eigenvectors and determinant of M are
Eigenvalues: Eigenvectors: Determinant:
i ' i i −1
Vertex Consistency Problem
• Matrix form
0 ⋯ 0 µ1 (0) ∂ 2 S 1 r1 v1 (0) µ (0) v (0) ⋯ 0 0 ∂u1∂u2 r2 2 2 ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ = ⋮ 2 1 ⋯ µn −1 (0) vn −1 (0) 0 ∂ S rn −1 0 0 µn (0) vn (0) ∂un ∂u1 rn ⋯ 0
• Research
CAGD Geometry Processing Scientific Visualization
Authors
Georges-Pierre Bonneau • Main Posts
Professor at Université Joseph Fourier Researcher at LJK
∂S i ∂2 S i ∂S i ∂S i −1 ' ' ri = Φ (0) (0, 0) + Φ i (0) (0, 0) − vi (0) (0, 0) − µi (0) (0, 0) ∂ui ∂ui ∂ui ∂ui +1 ∂ui −1
' i

OPTIMIZING GATE ASSIGNMENTS AT AIRPORT TERMINALS

OPTIMIZING GATE ASSIGNMENTS AT AIRPORT TERMINALS
Pergamon PII: S0965-8564(98)00005-6
Transpn Res.-A, Vol. 32, No. 6, pp. 437±454, 1998 # 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain 0965-8564/98 $19.00+0.00
OPTIMIZING GATE ASSIGNMENTS AT AIRPORT TERMINALS
Department of Civil Engineering, University of Maryland, College Park, MD 20742, U.S.A. (Received 8 July 1997; in revised form 14 November 1997) AbstractÐThe assignment of aircraft arriving on schedule to available gates is a major issue during the daily airline operations. The Gate Assignment Problem (GAP) is an easily-understood but dicult to solve problem. An important issue in GAP is to minimize the distance a passenger is required to walk inside the terminal to reach his or her departure gate. The total passenger walking distance is based on the passenger transfer volume between every pair of aircrafts and the distance between every pair of gates. Therefore, the problem of assigning gates to arriving and departing ¯ights at an airport is a Quadratic Assignment Problem (QAP), which is a dicult problem to solve. Recently, integer programming (IP), simulation, and expert systems have been applied to the GAP. A new integer programming formulation of the gate assignment problem is presented. An ecient heuristic solution procedure for solving the problem is also proposed. The performance of this solution approach is evaluated in a variety of test problems, and is compared to the optimal solutions obtained using CPLEX in certain test problems. The proposed heuristic solution approach proves to be an ecient method for obtaining good solutions for large scale gate assignment problems in a very reasonable computation time. # 1998 Elsevier Science Ltd. All rights reserved Keywords: gate assignment, quadratic assignment, walking distance, baggage transfer, apron time 1. INTRODUCTION

笛卡尔坐标系的英文

笛卡尔坐标系的英文

笛卡尔坐标系的英文The Cartesian Coordinate SystemIntroductionThe Cartesian Coordinate System, named after the renowned mathematician and philosopher René Descartes, is a fundamental framework for representing points and geometric objects in a two-dimensional or three-dimensional space. It serves as a cornerstone in various fields such as mathematics, physics, engineering, and computer science. This article aims to provide an overview of the Cartesian Coordinate System, explaining its principles, features, and applications without delving into political aspects.Definition and ComponentsThe Cartesian Coordinate System, also known as the Rectangular Coordinate System, consists of two or three perpendicular axes that intersect at a point called the origin. In a two-dimensional space, these axes are labeled as the x-axis and the y-axis, while in a three-dimensional space, the z-axis is added as the third axis. The x-axis represents the horizontal direction, the y-axis represents the vertical direction, and the z-axis represents the depth or height.Coordinates and QuadrantsEach point in the Cartesian Coordinate System can be uniquely identified by its coordinates, which indicate its distances from the origin along each axis. In a two-dimensional space, the coordinates of a point are denoted as (x, y), where x represents the horizontal distance and y representsthe vertical distance. Similarly, in a three-dimensional space, the coordinates are denoted as (x, y, z).The Cartesian Coordinate System is divided into four quadrants in a two-dimensional space, numbered from I to IV in a counterclockwise direction. The positive x-axis lies in Quadrants I and II, while the positive y-axis lies in Quadrants I and IV. The signs of the coordinates in each quadrant determine the location of the point relative to the origin and help in determining distances, angles, and relationships between geometric objects.Equations and GraphsThe Cartesian Coordinate System enables the representation of a variety of mathematical equations and functions through graphs. By plotting points based on their coordinates, lines, curves, and other geometric shapes can be visualized. The equation of a line in the Cartesian Coordinate System is often written in the form y = mx + b, where m represents the slope of the line and b represents the y-intercept, the point where the line intersects the y-axis.ApplicationsThe Cartesian Coordinate System finds extensive applications in numerous fields:1. Mathematics: It provides a foundation for algebra, geometry, and calculus, allowing for precise calculations, analysis, and proofs.2. Physics: The motion of objects, forces, and vectors can be described and analyzed using the Cartesian Coordinate System, facilitating the study of mechanics, electromagnetism, and quantum physics.3. Engineering: The Cartesian Coordinate System aids in engineering design and analysis, including architectural drawings, structural analysis, and circuit design.4. Computer Science: Graphics and visualization techniques heavily rely on the Cartesian Coordinate System, allowing for the creation of computer-generated images, game development, and data visualization.ConclusionThe Cartesian Coordinate System is an indispensable tool in the world of mathematics and sciences. Its establishment by René Descartes revolutionized geometry and laid the foundation for various branches of knowledge. By providing a systematic way to represent, analyze, and interpret data in a visual manner, it continues to play a vital role in advancing our understanding of the physical and abstract worlds.。

Multi-Line Geometry of Qubit-Qutrit and Higher-Order Pauli Operators

Multi-Line Geometry of Qubit-Qutrit and Higher-Order Pauli Operators

1
Introduction
Although being central to topics such as the derivation of complete sets of mutually unbiased bases [1, 2], or to an in depth understanding of quantum entanglement [3, 4], the commutation relations between the generalized Pauli operators of finite-dimensional quantum systems are still not well understood. Recently, considerable progress has been made in this respect by employing finite geometries such as finite projective lines [4, 5], generalized quadrangles [6, 7, 8] and polar spaces [9, 10] to treat dimensions d = 2N and, most recently [11, 7], also the case of d = 9. In this paper, after introducing the basic notation about generalized Pauli operators and Pauli graphs and brief recalling the established results, we will first have a look at the smallest composite dimension, d = 6, as this is the first case where we expect to find serious departures from what is known about Hilbert spaces whose dimension is a power of a prime. We shall, indeed, find that the finite geometry here is more intricate, exhibiting more than one line sharing two distinct points. In light of this finding, we then revisit the d = 32 case and, finally, briefly address the case of d = 23 . A complete orthonormal set of operators in a p-dimensional Hilbert space (p a prime number) is of cardinality of p2 − 1. These operators can be derived from the shift and clock operators X and Z

Empirical processes of dependent random variables

Empirical processes of dependent random variables

2
Preliminaries
n i=1
from R to R. The centered G -indexed empirical process is given by (P n − P )g = 1 n
n
the marginal and empirical distribution functions. Let G be a class of measurabrocesses that have been discussed include linear processes and Gaussian processes; see Dehling and Taqqu (1989) and Cs¨ org˝ o and Mielniczuk (1996) for long and short-range dependent subordinated Gaussian processes and Ho and Hsing (1996) and Wu (2003a) for long-range dependent linear processes. A collection of recent results is presented in Dehling, Mikosch and Sorensen (2002). In that collection Dedecker and Louhichi (2002) made an important generalization of Ossiander’s (1987) result. Here we investigate the empirical central limit problem for dependent random variables from another angle that avoids strong mixing conditions. In particular, we apply a martingale method and establish a weak convergence theory for stationary, causal processes. Our results are comparable with the theory for independent random variables in that the imposed moment conditions are optimal or almost optimal. We show that, if the process is short-range dependent in a certain sense, then the limiting behavior is similar to that of iid random variables in that the limiting distribution is a Gaussian process and the norming √ sequence is n. For long-range dependent linear processes, one needs to apply asymptotic √ expansions to obtain n-norming limit theorems (Section 6.2.2). The paper is structured as follows. In Section 2 we introduce some mathematical preliminaries necessary for the weak convergence theory and illustrate the essence of our approach. Two types of empirical central limit theorems are established. Empirical processes indexed by indicators of left half lines, absolutely continuous functions, and piecewise differentiable functions are discussed in Sections 3, 4 and 5 respectively. Applications to linear processes and iterated random functions are made in Section 6. Section 7 presents some integral and maximal inequalities that may be of independent interest. Some proofs are given in Sections 8 and 9.

牛顿-拉夫逊潮流计算中检测雅可比矩阵奇异性和网络孤岛的新方法

牛顿-拉夫逊潮流计算中检测雅可比矩阵奇异性和网络孤岛的新方法

由 ( 式可得:I 【 0由于 D是对角矩 3 ) = 阵, , 因此 至少有一对角元 素为 0 。 因为 U= UL D D ,VL 设该潮流计算 是 n 节点 系统 。 所以( ) 2) 2 或( 工 a b弋有一个成立 , U 中有一 H子矩阵奇异 ,那 么 H矩阵各 个列向量线 性相 即 n 一1 零行 或 中有一零列 。 u 中行为零 , 是行相关 隋况 ;丰中列 为 关 , : 这 L 即 - = ( 不全为 0 q 0 ) 零, 这是列相关 隋况。 其 中: 是 H矩 阵的列 向量 ,1是相关 系 c T A矩 阵奇异 , 那么 A矩 阵行 向量 、 向量线 列 数 。由潮流雅可 比矩阵元素计算可知 : 性相关 , 即: 对 同一节点 , 素和 J 素的计 算具 有完 H元 元 全相似 的表达式 ,因此 ,矩 阵的各个列 向量也 J (a 4) 应满足( , 即:
中国新技术新产 品
一7

C ia N w T c n l ge n r d cs h n e e h oo isa d P o u t
高 新 技 术
新型停 水 自动关 闭阀结构 、 点及操作要 点 特
张金龙 曹 艳
( 西安航 空技 术高等专科学校机械 工程 系, 陕西 西安 7 0 7 ) 10 7
中图分 类 号 : 4 . 文献标 识 码 : G6 45 A

I 言 。在 日常生 活 中 , 前 由于停 水时 忘记 关 闭 阀门 , 水 时 也没 能及 时 关 闭 阀门 , 来 造成 水 资源 浪 费甚 至形 成安 全 隐 患 的情况 屡 见不 鲜 。 着全 民节 水 概念 不 断深入 人 心 , 一 问 随 这 题 引起 各方 关 注 。 因此 急 需设 计 一 款可 以在 停 水 时 自动关 闭 的水 阀 ,它 能够 在停 水 后 即 使 人们 忘记 关 闭 水 龙 头 也 能实 现 自动 关 闭 , 而再 次 来水 时 不 至于 出 现水 患 的情 况 ,能够 有 效 的节 约水 资源 。 要 实 现 自动 关 闭 功 能首 先 要 有 动 力 , 这 方 面可 以借 助 磁性 元件 的磁 力 、弹性 元 件 的 弹力 、 力 等外 力 , 时考 虑供 水 和停 水 时 的 重 同 水 压变 化 , 通过 联 动机 构实 现 。 2停 水 自动关 闭 阀 的结 构 及 特点 。利用 水 压 、 力 等 力 学 特 性 , 过 一 系 列 的实 验 、 重 经 改 进 , 发 出一 种 简单 、 行 的带 有 停水 自锁 研 可 机 构 的水 阀 。 款 水 阀为纯 机 械构 造 , 阀体 这 以 为 主体 框 架 , 有 阀 芯 、 封 圈 、 心 轮 以及 配 密 偏 手柄 , 无弹 性元 件 , 作状 况 不 受环 境 和时 间 工 的 限制 , 构 简 单 , 价 低 廉 并 方 便拆 换 , 结 造 整 体 可靠 性 高 。 停 水 自动关 闭 阀结 构 原 理 如 图 1 示 , 所 实 物 如 图 2所示 。序号 l 水 阀 的偏 心轮 , 为 2 为 0 型密 封 圈 , 为 V型 密封 圈 , 阀体 , 3 4为 5 为 阀芯 , 销 轴 , 手 柄 。 阀体 4是 主 框 6为 7为 架 , 来装 配其 它 元 件 , 进 水 口和 出 水 口; 用 有 阀芯 5的顶 端 与末 端分 别 装有 V 型密 封 圈 3 和 0 型 密 封 圈 2v 型 密 封 圈 3利 用 其 锥 面 , 与 阀体 4内部 锥 面 配合 实 现 停 水 时 密 封 , 而 0型密 封 圈 2与 阀体 4内壁 的接 触 实 现来 水 时对 水 阀末 端 的密 封 ,在 阀 芯 5的 中部 开两

希尔伯特曲线 空间索引

希尔伯特曲线 空间索引

希尔伯特曲线空间索引希尔伯特曲线是一种用于空间索引的曲线。

它是由德国数学家David Hilbert在20世纪初提出的,并被广泛应用于计算机科学领域。

希尔伯特曲线具有压缩和空间局部性等优点,适合用于多维空间中的数据索引和查询。

希尔伯特曲线是一条连续的曲线,被用于将多维空间的坐标映射到一维空间中。

这种映射方式使得相邻的数据在一维空间中的位置尽可能接近,从而提高了数据的局部性。

希尔伯特曲线的构建是通过重复应用一种特定的模式来完成的。

具体来说,希尔伯特曲线是通过将二维平面中的点映射到一维空间中的一条曲线上。

在构造过程中,将平面分成四个等分,并按照特定的顺序连接这四个小块,形成一条分形曲线。

然后,再将每个小块按照同样的方式划分,重复上述过程,直到达到所需的精度。

通过这种方式,平面中的点可以被映射到曲线上,并保持它们在曲线中的相对邻近性。

希尔伯特曲线的具体构造方式可以通过迭代算法来实现。

在每一次迭代中,需要将平面分成四个等分,并根据特定的连接顺序将这四个小块连接起来。

通常,这种连接顺序可以由一个二进制编码来表示,其中每一位表示用于连接的小块的位置。

一旦构建完成了希尔伯特曲线,就可以将多维空间中的数据点映射到曲线上。

这种映射方式可以用于索引和查询多维空间中的数据。

例如,在二维空间中,可以将每个数据点的坐标映射到希尔伯特曲线上,并使用曲线上的位置来代表该数据点。

这样,相邻的数据点在曲线上也会相互靠近,从而提高查询效率。

希尔伯特曲线在计算机科学领域有广泛的应用。

一方面,它被用于提高空间数据的存储和查询效率。

例如,在地理信息系统中,可以使用希尔伯特曲线对地理空间数据进行索引,从而快速地查询特定区域内的数据。

另一方面,希尔伯特曲线也可以用于数据压缩和图像处理等领域。

通过将二维空间中的数据点映射到一维空间中,可以减少数据的维度,并提高处理效率。

总而言之,希尔伯特曲线是一种用于空间索引的有效工具。

它能够将多维空间中的数据点映射到一维空间中的曲线上,并保持它们在曲线上的相邻性。

Geometric Properties of Quantum Phases

Geometric Properties of Quantum Phases

a r X i v :m a t h -p h /0607052v 1 23 J u l 2006Geometric Properties ofQuantum PhasesPaul Bracken Department of Mathematics,University of Texas,Edinburg,TX 78541-2999Abstract The Aharonov-Anandan phase is introduced from a physical point of view.Withoutreference to any dynamical equation,this phase is formulated by defining an appropriate connection on a specific fibre bundle.The holonomy element gives the phase.By intro-ducing another connection,the Pancharatnam phase formula is derived following a different procedure.Keywords:Geometric phase,fibre bundle,connection,holonomy elementPACS:03.65Vf,02.40.-kThe discovery and subsequent interest in the Berry phase[1]has been relatively recent with respect to the actual period over which quantum mechanics has been in use.Beyond its physical significance,it has generated a great deal of interest into more geometric approaches to quantum mechanics as well as applications of many ideas from the area of differential geometry,in particular,fibre bundles and connections.General relativity and Yang-Mills gauge theories are also examples in which geometrical techniques enter into the study of these theories directly.In fact,quantum mechanics can be looked at geometrically.Here H will refer to a Hilbert space in general and any quantum system carries the structure of a K¨a hler manifold.Even so,the space H is not the quantum analog of a classical phase space.In what follows,elements of H will be denoted byψor|ψ ,but the bracket will always appear when the inner product is invoked.The Berry phase is known to depend on the geometric structure of the parameter space itself,so the phase is really a geometric property.The purpose here is to further explore the phase by looking for ways of formulating the ideas in a more intrinsic manner,and to present a different development of the integral formula for the Pancharatnam phase.Simon[2]interpreted this phase as the holonomy of the adiabatic connection in the bundle appropriate to the evolution of the adiabatic eigenstate and expressed it as an integral over a connection one-form.Aharonov and Anandan [3]defined a geometric phase during any cyclic evolution of a quantum system which depends only on the topological features and the curvature of the quantum state space.Wilczek and Zee have considered a nonabelian extension of the phase[4].Considered in this way,the origin of the geometric phase is due to the parallel transport of a state vector on the curved surface.This is a fundamental notion in modern differential geometry since it is directly related to the concept of a connection,and there are often several ways in which a connection may be defined[5].Some work which is related to the results here has been done by making use of geodesics[6],a related but different approach from this one.To see how the idea of a connection can arise physically in this context and to define a con-nection from a physical point of view,suppose a state vector|ψ is an element of a Hilbert spaceH which evolves according to the Schr¨o dinger equationi∂∂t|φ(t) =−h(t)|φ(t) +i exp(i th(τ)dτ)∂∂t|φ(t) =i[H(t)−h(t)]|φ(t) .(4) Since h(t)is the real part of ψ|H|ψ ,upon contracting with φ(t)|,the right-hand side must be real henceIm φ(t)|∂An element of the space P(H)may be denoted by[ψ]=Π(ψ).ThusΠmapsψto the ray on which it lies.ThefibresΠ−1([ψ])are one-dimensional,and this type of vector bundle is referred to as a complex line bundle.The unit sphere is a subset of H and is given byS(H)={ψ∈H| ψ|ψ =1}⊂H.(7)Thus,we can write equivalently P(H)=S(H)/∼.Suppose|φ(s) is a curve in H and define|m =dφ|φ .(9) A transformation acting on|φ(s) which has the form|φ(s) →|ˆφ(s) =exp(iα(s))|φ(s) hasthe structure of a gauge transformation.Differentiating the transformed|φ(s) ,with respect to s gives|ˆm =e iαd ds e iα|φ(s) .(10) From(10),the transformed functionˆA s can be obtained in the formˆA s =Im ˆφ|ˆmds.(11)Therefore,A s which is defined by expression(9)transforms like the vector potential in electrody-namics.The parallel transport law(5)then states that A s vanishes along the actual curve|φ(s) which is taken by the quantum system in the quantum space.Let|ψ(t) be a solution of the Schr¨o dinger equation which is cyclic.This means that it returns to the initial ray after a given timeτand as well specifies a curve in H.Under the mapΠthis curve is mapped to a closed curve in P(H).Given a closed curveσ(s)in P(H),let us consider the curve in H,which is traced out by the state vector|φ(s) .Using the parallel transport law, the curve is determined by the condition that A s=0holds along the actual curve.Define the integralγ= ΓA s ds.(12)The pathΓin(12)is traced out along the curve|φ(s) in the space H which has been made closed by the vertical curve joining|φ(τ) to|φ(0) .The segment along|φ(s) generates the actual evolution of the system,but by the parallel transport law(5),it is clear that A s=0along this segment.It is left to the vertical segment of the trajectory to contribute the phase difference between the states|φ(0) and|φ(τ) .The integral in(12)is gauge invariant on account of the transformation rule(11),and it can therefore be considered an integral on P(H).By Stokes theorem,γcan also be expressed in the formγ= S dA s= S F,(13) such that S is any surface in P(H)bounded by the closed curveσ(s)in P(H).Thefield strengthF which appears in(13)is a gauge invariant two-form as well.From this,it can be seen thatγin(12)and(13)is a geometrical quantity depending on the geometric curveσ(s).This is the version of Berry’s phase in a cyclic evolution of the quantum system.Let us formulate this in a more geometric way by looking for an appropriate connection in a principle U(1)-bundle,S(H)→P(H).To introduce a connection we have to define a sub-space of horizontal vectors.Identifying the tangent space TψS(H)as a linear subspace in H,a decomposition exists of the formTψS(H)=Vψ+Hψ.(14) Hence the subspaces of vertical and horizontal vectors are linear subspaces of H.AfibreΠ−1(ψ) consists of all vectors of the form e iλψ.The vertical subspace Vψin(14)can then be defined byVψ={iλψ|λ∈R},which can be identified with u(1).To define a natural connection,let X be a vector tangent to S(H)atψ.Then X is called a horizontal vector with respect to a natural connection ifψ|X =0.The set of horizontal vectors atψin(14)can be defined as followsHψ={X∈H| ψ|X =0}.A curve t→ψ(t)∈S(H)is horizontal ifψ(t)|˙ψ(t) =0.Since ψ|ψ =1,differentiating with respect to the parameter, ˙ψ|ψ + ψ|˙ψ =0which implies that Re ψ(t)|˙ψ(t) =0and so the horizontal condition can be expressed asIm ψ(t)|˙ψ(t) =0.A connection one-form A in a principal U(1)bundle S(H)→P(H)is a u(1)-valued one-form on S(H).Take an element X∈S(H)⊂H and define in u(1)Aψ(X)=i Im ψ|X .Therefore,X is horizontal at a pointψ∈S(H)if Aψ(X)=0.Consider now a local connection form A on P(H)such thatΨ:P(H)→S(H)is a local section.The pull back of AA=iΨ∗A,defines a local connection one-form on P(H).This implies the local connection A in gaugeψcan be writtenA=i ψ|dψ .(16) Once the connection has been defined as in(16),the corresponding holonomy element may be computed from A asΦ(C)=exp(i C A),(17) where C is a closed curve in P(H).Some additional information will be needed to show the remaining result.Take two nonorthog-onal vectorsψ1,ψ2∈S(H).The phase of their scalar product will be called the relative phase or phase difference betweenψ1andψ2.Thus ψ1|ψ2 =re iα12soα12is the phase difference between ψ1andψ2.Henceψ1andψ2are in phase or parallel if ψ1|ψ2 is real and positive.There is a relation then between any two nonorthogonal vectorsψ∼φif and only if they are in phase.Thisprocedure is yet another way of equipping a principal U(1)fibre bundle S(H)→P(H)with a connection.Furthermore,if p1and p2are two points in P(H),then letψ1andψ2be two arbitrary nonorthogonal state vectors in S(H)projecting down to p1and p2,respectively.A real plane in H can be defined by the pairψ1andψ2in the following way{ψ=ξ1ψ1+ξ2ψ2|ξ1,ξ2∈R}⊂H. This gives a natural way to obtain a geodesic since the intersection of any real plane with the unit sphere S(H)is a great circle.This defines a geodesic on S(H)with respect to the metric induced from H.A geodesic on the sphere S(H)projects to a geodesic on P(H),and hence each geodesic on P(H)is a closed curve since it is the projection of a closed curve.Thus,a geodesic joiningψ1 andψ2on S(H)is an arc of a great circle passing throughψ1andψ2and is parametrized by an angleθ∈[0,2π)such thatψ(θ)=ξ1(θ)ψ1+ξ2(θ)ψ2.(18) Now define the real parameter a=Re ψ1|ψ2 and suppose that a>0.The normalization condition ψ(θ)|ψ(θ) =1takes the formξ21+2aξ1ξ2+ξ22−1=0.(19) In terms of the angleθ,the coefficientsξ1andξ2can be written asξ1(θ)=cosθ−a1−a2sinθ,ξ2(θ)=11−a2sinθ,(20)which satisfy(19).Moreover,ψ(0)=ψ1andψ(θ0)=ψ2,where the angleθ0is defined by cosθ0=a such thatθ0∈[0,π/2).It is remarkable that the Pancharatnam phase can be expressed as a line integral of A s with the use of the geodesic rule.Let|φ1 and|φ2 be any two nonorthogonal states in H with phase differenceβ.Let|φ(s) be any geodesic curve connecting|φ1 to|φ2 so that|φ(0) =|φ1 and |φ(1) =|φ2 .Then the phase differenceβis given byβ= A s ds,(21) where A s is given by the natural connection(9).Consider two points p1,p2∈P(H),and letσbe the shorter arc of the geodesic which connects p1and p2.Suppose˜σ:t→ψ(t)∈S(H)is a horizontal lift ofσwith respect to the natural connection in the principalfibre bundle S(H)→P(H).Then a parallel transport ofψkeeps ψ(t)in phase withψ(0).To see this,let C be a geodesic in S(H)projecting toσin P(H).Any geodesic on the unit sphere S(H)is uniquely defined by a real plane in H spanned by two vectors ψ1andψ2.The shorter arc of the closed geodesic can be written as in(18)and is a horizontal lift ofσif and only if ψ1|ψ2 is real and positive.Thus,ψ1andψ2are in ing(18),we can work out ψ(θ1)|ψ(θ2) with ψ1|ψ2 =a and this isψ(θ1)|ψ(θ2) =ξ1(θ1)ξ1(θ2)+ξ2(θ1)ξ1(θ2) ψ2|ψ1 +ξ1(θ1)ξ2(θ2) ψ1|ψ2 +ξ2(θ1)ξ2(θ2)=cosθ1cosθ2+a21−a2sinθ1sinθ2−a21−a2sinθ1sinθ2=cos(θ1−θ2)>0,sinceθ1,θ2∈[0,θ0]andθ0is given by solving cosθ0=a.Therefore,any two points belonging to the horizontal lift˜σare in phase.Tofinish the proof of(21),carry out a gauge transformation|φ(s) =exp(iα(s))|˜φ(s) of the horizontal lift|˜φ(s) of the geodesic in P.whereα(s)is chosen such thatα(0)=0andα(1)=β. Then|φ(s) remains a geodesic curve,since the geodesic equation is gauge covariant and connects |φ1 to|φ2 .Thus since˜A s is zero on the horizontal curve,the right-hand side of(21)can be integrated to give 1dα(s)References[1]M.V.Berry,Proc.R.Soc.A392(1984)45.[2]B.Simon,Phys.Rev.Lett.51(1983)2167.[3]Y.Aharonov and J.Anandan,Phys.Rev.Lett.58,(1987)1593,Phys.Rev.Lett.65(1990) 1697.[4]F.Wilczek and A.Zee,Phys.Rev.Lett.52(1984)2111.[5]I.J.R.Aitchison and K.Wanelik,Proc.R.Soc.439,(1992)25.[6]A.K.Pati,Phys.Lett.202,(1995)40.[7]D.Chru´s ci´n ski and A.Jamiolkowski,Geometric Phases in Classical and Quantum Mechanics, Birkh¨a user,(2004).。

1_6贝努里概型

1_6贝努里概型

概率论的奠基人
Jacob Bernoulli 1654-1705 瑞士数学家
下页
1695年提出著名的贝努里方程
dx / dy p( x) y q( x) y
n
此外贝努里对对数螺线深有研究, 发现对数螺线经过 各种变换后, 结果还是对数螺线,在惊叹此曲线的奇妙之余, 遗言把对数螺线刻在自己的墓碑上, 并附以颂词:
En: 可看成将 E 重复了n次, 这是一个n重 贝努里试验. 设在n次试验中,A恰好出现 k 次的概率为:
k Pn ( k ) Cn p k (1 p) nk
下页
(1) 采用三局二胜制,甲最终获胜, 至少需比赛 2 局,
且最后一局必需是甲胜, 而前面甲需胜1 局.
胜局情况可能是:
“甲甲”, “乙甲甲”,
下页
三、贝努里概型应用举例
例1.有一批棉花种子,出苗率为0.67,现每穴播六粒, 求解下列问题:①至少有一粒出苗的概率;②要保证出苗率 为98% ,每穴应至少播几粒? 解:这是一个贝努里概型问题. ① 至少有一粒出苗的概率为
0 P6 (k ) 1 P6 (0) 1 C6 (0.67)0 (0.33)6 0.9987 .
Bayes公式
i 1
条件概率 P ( A | B )
P ( AB) P( B)
P ( Bi | A ) P ( Bi ) P ( A | B i )
P( B j ) P( A | B j )
j 1
n
下页
• 不确定性; 试验的每个• 可重复性. 可能的结果 基本事件 —— 不能再分解 随机事件 复合事件 —— 多于一个的基本事件构成 基本概念 必然事件 P( )=1,反之不真! 不可能事件 P( )=0, 反之不真! 样本空间 —— 所有样本点(基本事件)构成的集合 事件的关系及运算 —— 四种关系和三种运算

米尔格罗姆―罗伯茨的Kruskal算法的应用

米尔格罗姆―罗伯茨的Kruskal算法的应用

⽶尔格罗姆―罗伯茨的Kruskal算法的应⽤2019-10-10【摘要】⽶尔格罗姆和罗伯茨的垄断限制性定价模型是信号传递博弈在产业组织中的第⼀个应⽤。

Kruskal算法是⼀个贪⼼算法,它每⼀次从剩余的边中选⼀条权值最⼩的边,然后加⼊到⼀个边的集合A中,从⽽逼近垄断限制极限。

其最优产量和最⼤持续利润,平衡阻挠博弈竞争模式。

【关键词】Kruskal算法;垄断限制性定价模型;最优化阻挠博弈⽶尔格罗姆和罗伯茨的垄断限制性定价模型是信号传递博弈在产业组织中的第⼀个应⽤,是市场进⼊阻挠博弈的简单模型,Milgrom and Robert 提出解释,垄断限价可能反映这样⼀个事实,即其他企业不知道垄断者的⽣产成本,垄断者试图⽤低价格来告诉其他企业⾃⼰是低成本,进⼊⽆利可图。

在分离均衡中,进⼊者能够推断出在位者的真实成本,从⼀家企业的情况做起:只有⼀家企业时,⽬标收益函数u=Q(a-b*Q),针对maxu 的解为Q0=a/2b,u0=a2/4b当有两家企业时,设产量分别为Q1,Q2,则p=a-b(Q1+Q2)u1(Q1,Q2)=p*Q1=Q[a-b(Q1+Q2)]u2(Q1,Q2)=p*Q2=Q[a-b(Q1+Q2)]纳什均衡点Q1,Q2为⽅程组:Q1/QQ1=0(1)Q2/QQ2=0(2)的解。

整理,得到:2bQ1+bQ2=a (3)bQ1+2bQ2=a (4)解得 Q1=Q2=a/3b,对应的u1=u2=a2/9b纳什均衡点是⼀个极值点,⼀旦达到该点时双⽅都没有率先改变的动机。

(1)式表⽰⼚商1的最优函数,在给定对⽅产量Q时它根据(1)来使⾃⼰收益最⼤,由(3)式,⼚商最优函数为Q1=(a-bQ2)/2b同样(2)式表⽰⼚商(2)的最优函数,由(4)式,⼚商2的最优函数为Q2=(a-bQ1)/2b这是两条直线,如图,交点E为纳什均衡点。

AB为⼚商1的最优函数,CD为⼚商2的最优函数,当双⽅的初始选择点为A,即Q1=0,Q2=a/b,A在⼚商1最优函数上,故⼚商1不会改变,但⼚商2针对Q1=0的最有效点为C,于是双⽅的决策点转移到C,在C点⼚商1会调整⾃⼰的产量时双⽅决策点到F,然⼚商2⼜会调整策略到CD上,以此类推,最后将到达E点,在第⼀象限的任何初始选择点,按以上分析双⽅都能经过⼀系列调整到达E点。

黎曼曲面几何学

黎曼曲面几何学
感谢观看
黎曼曲面几何学
汇报人:刘老师
2023-11-29
目录
• 黎曼曲面基本概念 • 黎曼曲面上的微分学 • 黎曼曲面上的积分学 • 紧致性及其性质 • 模空间与Teichmüller空间简介 • 黎曼曲面在物理学中应用举例
01
黎曼曲面基本概念
黎曼曲面定义与性质
01 黎曼曲面定义
黎曼曲面是一类具有复结构的一维流形,在局部 上与复平面同胚,且存在全局定义的复坐标函数 。
06

弦论中紧致化额外维度模型构建
01
紧致化额外维度
在弦论中,通过将额外维度紧致化为黎曼曲面, 解决了高维时空的物理实现问题。
02
Calabi-Yau空间
黎曼曲面的复杂结构为构建Calabi-Yau空间提供 了可能,进而实现了弦论的紧致化。
共形场论中关联函数计算方法
关联函数
共形场论中,利用黎曼曲面的共形不变性,可以方便地计算关联函数,揭示物理现象的内在联 系。
共形映射
通过共形映射方法,可以将复杂物理问题转化为黎曼曲面上的数学问题,简化计算过程。
量子引力中黑洞熵计算
黑洞熵
在量子引力中,黎曼曲面的拓扑性质被用于计算黑洞熵,揭示了黑洞内部微观状态的信息。
AdS/CFT对偶
黎曼曲面在AdS/CFT对偶中扮演重要角色,为研究黑洞物理和量子引力提供了有力工具。
THANKS
全纯映射
黎曼曲面之间的全纯映射是保持局部坐标卡之间转移函数全纯性质的映射。它们构成了一类重要的几何对象,用于研 究黎曼曲面的性质和结构。
覆盖空间与基本群
黎曼曲面的覆盖空间是另一个黎曼曲面,它与原曲面之间存在全纯映射,且满足一定的性质。基本群是 描述黎曼曲面拓扑结构的重要工具,它与覆盖空间之间存在密切的关联。

L-M激励相容思想在拉姆齐定价模型中应用论文

L-M激励相容思想在拉姆齐定价模型中应用论文

L-M激励相容思想在拉姆齐定价模型中的应用中图分类号:f270 文献标识:a文章编号:1009-4202(2011)06-000-02摘要地铁属于公共产品,公共产品的定价受到社会的广泛关注,目前应用较多的定价模型拉姆齐模型,但是拉姆齐模型的信息不对称的问题,限制了其在现实中的应用,本文通过运用l—m模型中的激励相容思想来修正拉姆齐模型的缺陷,力图构筑适合地铁定价的新模型。

关键词地铁定价拉姆齐模型 l—m模型一、导论目前,我国正处于地铁建设的高速发展时期,国内有33个城市正在规划或者建设地铁,已有28个城市得到批复,初步统计近期规划1700公里,投资近6000亿。

而地铁建成之后,其票价将会成为政府、企业和居民所关注的问题。

拉姆齐(ramsey)模型作为非线性定价(nonlinear pricing)领域的一个重要模型,在国外已经广泛的应用于电信、电力行业。

但是拉姆齐定价模型却由于其在成本和需求信息方面的不对称,使其在实践中的应用受到了限制。

本文就着眼于拉姆齐定价模型信息不对称的问题,通过引入l-m模型中的激励相容思想,来修正拉姆齐模型。

二、拉姆齐定价模型拉姆齐定价模型也称为次优定价法或差别价格模型,是以求取社会福利最大化为目标函数,以经营者获得合理利润为限制条件所得的定价方法,其主要思路是既要考虑企业的收支平衡,又要实现资源的最优分配。

地铁属于具有固定投资大,投资回收期长,自然垄断和网络效用等特点。

根据经济学原理,如果一个企业的固定投资非常高,边际成本递减,那么按照边际成本定价的话,企业无法收回成本,也不会愿意投资,因而社会福利的最大化就不可能实现。

如果采用平均成本定价,其票价会大大超出居民的经济承受力,以至于地铁无法吸引到适量的客流,同时也不能发挥其作为公共事业和缓解城市交通压力的作用,在这种情况下,企业只能接受略高于边际成本的价格同时低于平均成本的价格,从而使盈亏至少相抵。

若假设企业生产多种产品,在企业不亏损的限制条件下求解社会福利的最大化,得到一组称之为次优的价格。

非圆截面托卡马克等离子体边缘磁场的解析解及重构方法

非圆截面托卡马克等离子体边缘磁场的解析解及重构方法

非圆截面托卡马克等离子体边缘磁场的解析解及重构方法非圆截面托卡马克等离子体边缘磁场的解析解及重构方法一、引言在研究等离子体物理学中,非圆截面托卡马克等离子体边缘磁场是一个重要而复杂的问题。

为了深入了解其磁场特性,研究人员一直在寻求解析解和重构方法。

本文将围绕这一主题展开探讨,从基础概念到先进技术,为读者呈现支撑着现代等离子体研究的关键内容。

二、非圆截面托卡马克等离子体边缘磁场的基本概念1. 托卡马克等离子体的特点托卡马克等离子体是一种磁约束聚变装置,其磁场形状通常是非圆截面的。

这导致了边缘磁场的研究面临更高的复杂性和挑战性。

2. 非圆截面托卡马克等离子体边缘磁场的物理特性非圆截面托卡马克等离子体边缘磁场具有复杂的几何形状和磁场拓扑,其磁场线密度分布不规则,磁场强度和方向变化大,给研究和控制带来了很大的困难。

3. 国内外研究现状当前,国内外研究人员通过实验、数值模拟和理论分析等手段,尝试寻找非圆截面托卡马克等离子体边缘磁场的解析解和重构方法,以期更好地理解和控制其磁场行为。

三、非圆截面托卡马克等离子体边缘磁场的解析解方法1. 基于磁场模型的解析解研究人员可以通过建立合适的磁场模型,尝试推导出非圆截面托卡马克等离子体边缘磁场的解析解。

这需要考虑到等离子体密度、温度、形状等多个因素,是一项复杂而艰巨的任务,但成功地实现了会为研究提供重要的理论指导。

2. 数学方法的应用另一种解析解方法是运用数学工具,比如复杂函数论、边值问题求解等,来探索非圆截面托卡马克等离子体边缘磁场的解析解。

这种方法通常需要跨学科合作,将数学建模与物理建模相结合,挖掘更深层次的磁场内在规律。

四、非圆截面托卡马克等离子体边缘磁场的重构方法1. 基于实验数据的重构方法一种直接而有效的方法是通过实验测量,利用反问题求解技术重构非圆截面托卡马克等离子体边缘磁场的三维分布。

通过采集大量的磁场数据,结合数学建模和计算机仿真,可以还原出准确的磁场形态,为后续的实验和理论研究提供依据。

Ideal triangle groups, dented tori, and numerical analysis

Ideal triangle groups, dented tori, and numerical analysis

Abstract We prove the Goldman-Parker Conjecture: A complex hyperbolic ideal triangle group is discretely embedded in PU(2, 1) if and only if the product of its three standard generators is not elliptic. We also prove that such a group is indiscrete if the product of its three standard generators is elliptic. A novel feature of this paper is that it uses a rigorous computer assisted proof to deal with difficult geometric estimates.
∗ Supported by a National Science Foundation research grant and an Alfred P. Sloan research fellowship.
534
RICHARD EVAN SCHWARTZ
1.1. The Goldman-Parker conjecture. In [GP], Goldman and Parker took one of the first steps on the road to a theory of complex hyperbolic quasifuchsian groups. They defined and partially classified the complex hyperbolic ideal triangle groups, which are representations ρs : Γ → Is(CH2 ). Here Γ is the free product Z/2 ∗ Z/2 ∗ Z/2. The representation ρs maps the standard generators of Γ to distinct, order-two, complex reflections, such that any product of two distinct generators is parabolic. A complex reflection is an isometry which has, for a fixed point set, a complex line in CH2 . (See §2.3 for more information.) Modulo conjugation, there is a one-parameter family {ρs | s ∈ R} of such representations. The indexing parameter, s, is the tangent of the angular invariant of the ideal triangle formed by the three complex lines fixed by the generators. The angular invariant measures the extent to which the vertices of the triangle fail to lie in a totally real subspace. (See §2.5 for a definition.) The representation ρ0 is the complexification the familiar real ideal triangle group generated by reflections in the sides of an ideal triangle in H2 . Let s = (105/3)1/2 and s = (125/3)1/2 . According to Goldman-Parker: Theorem [GP]. If |s| > s then ρs is not a discrete embedding. If |s| ≤ s then ρs is a discrete embedding. Here is a sketch of the first half of this result. Let gs be the product of all three generators of ρs (Γ), taken in any order. In [GP] it is shown that gs is loxodromic for |s| ∈ [0, s), parabolic for |s| = s, and elliptic for |s| > s. (See §2.1 for a classification of isometries.) If gs is elliptic, with finite order, then ρs is not an embedding. If gs is elliptic, with infinite order, then ρs is not discrete. The theorem above is not sharp. For |s| > s the analysis in [GP] breaks down, but Goldman and Parker conjecture that ρs remains a discrete embedding for |s| ∈ (s, s]. The significance of the result/conjecture combination is that it proposes the first complete description of a complex hyperbolic deformation problem. 1.2. Results and methods. The purpose of this paper is to prove a sharp version of the Goldman-Parker conjecture. Main Theorem. ρs is a discrete embedding if and only if gs is not elliptic. Also, ρs is indiscrete if gs is elliptic. Our indiscreteness proof uses some Galois theory to show that gs must have infinite order when it is elliptic. For our discreteness proof, let Γs = ρs (Γ). Let ∂ CH2 be the ideal boundary of CH2 . We construct a surface-like set Z(s) ⊂ ∂ CH2 , which we call a dented torus . We then prove that the orbit Γs Z(s) consists of (essentially) disjoint surface-like sets. This phenomenon feeds into a variant of the Klein combination theorem to prove that ρs is a discrete embedding.

2. BIRATIONAL GEOMETRY OF LOG SURFACES

2. BIRATIONAL GEOMETRY OF LOG SURFACES
Typeset by AMS-TEX 1
2
JANOS KOLLAR AND SANDOR KOVACS
x2.1 Cone Theorem for Log Surfaces
The aim of this section is to prove the Cone Theorem for log surfaces. (In higher dimensions further assumptions are needed cf. (2.1.5).) 2.1.1 Cone Theorem for Log Surfaces. Let (X; B ) be a projective log surface, f : Y ! X a minimal resolution of singularities of X , H an ample divisor on X and " > 0. Then (2.1.1.1)
dim Y > 2). Then
NE (Y ) = NE (Y ) M 0 + K +"H 0
Y Y
X
C is extremal C (KY +"HY )<0
R+
C ]+im NE (Supp D) ! NE (Y )
Proof. The right hand side is a closed cone, so it is enough to show, that it contains the sets P and N . It contains N trivially, so assume that C is an irreducible curve such that C (M ? D) = C (KY + "HY ) 0 and C M < 0. Then C D < 0, which implies, that C ] 2 im NE (Supp D) ! NE (Y ) . Now we are ready to prove (2.1.3). (X; B ) is a log surface, f : Y ! X a minimal resolution of singularities of X , H an ample divisor on X and " > 0. There are E1 , E2 and E3 e ective Q -divisors on Y such that
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
MASS ordinary double points corresponding to points where the rank is 2. Thus a general determinantal quartic threefold has only ordinary double points and it is rational. From the pliability point of view this is discouraging. Minimal Model Theory requires to look at terminal Q-factorial 3-folds and ordinary double points are the simplest possible terminal singularities. It would be unpleasant if a bunch of ordinary double points were to change a rigid structure to a rational variety. The point I want to stress in this paper is that the rationality of a determinantal quartic is due to the lack of Q-factoriality and not to the presence of singularities. Theorem 2. Let X4 ⊂ P4 C be a Q-factorial quartic 3-fold with only ordinary double points as singularities. Then X is neither birationally equivalent to a conic bundle nor to a fibration in rational surfaces. Every birational map χ : X Y to a Fano 3-fold is a self map, that is Y ∼ = X , in particular X is not rational. This is to say that X is birationally rigid. Remark 3. The case of a general quartic with one ordinary double point has been treated by Pukhlikov, [Pu]. Observe that in this case X is automatically Q-factorial. More recently Grinenko studied the case of a general quartic containing a plane. A variety is said to be Q-factorial if every Weil divisor is Q-Cartier. Such an innocent definition is quite subtle when realized on a projective variety. It does depend both on the kind of singularities of X and on their position. To my knowledge there are very few papers that tried to shed some light on this question, [Cl] [We]. In the case of a Fano 3-fold, Q-factorial is equivalent to dim H 2 (X, Z) = dim H4 (X, Z), a global topological property, invariant for diffeomorphic Fano 3-folds. A recent paper of Ciliberto and Di Gennaro, [CDG], deals with hypersurfaces with few nodes. The general behavior is that the presence of few nodes does not break Q-factoriality. This is not true even for slightly worse singularities, as the following example shows. Example 4 (Koll´ ar). Consider the linear system Σ, of quartics spanned by the fol2 2 3 3 2 4 lowing set of monomials {x4 0 , x1 , (x4 x3 + x2 )x0 , x3 x1 , x4 x1 }. Then a general quartic X ∈ Σ has a unique singularity P at (0 : 0 : 0 : 0 : 1) and the quadratic term is a general quadric in the linear system spanned by {x3 x0 , x2 1 }, so that analytically P ∈ X ∼ (0 ∈ (xy + z 2 + tl = 0)) and P is a cA1 point. The 3-fold X is not Q-factorial since the plane Π = (x0 = x1 = 0) is contained in X . The idea is that a general quartic containing a plane has 9 ordinary double points, the intersection of the two residual cubics. In the above case the two cubics intersect just in the point P. There is a slightly stronger version of Theorem 2. Theorem 5. Let X4 ⊂ P4 k be a Q-factorial quartic 3-fold with only ordinary double points as singularities over a field k , not necessarily algebraically closed, of characteristic 0. Then P (X ) = {X }. If one considers non algebraically closed fields then peculiar aspects of factoriality and its relation with birational rigidity appear. Theorem 5 and its significance in this contest, were suggested by J´ anos Koll´ ar. Example 6. Consider the following quartic Z
Date : December 2003. 1991 Mathematics Subject Classification. Primary 14E07; Secondary 14J30, 14E30. Key words and phrases. Mori Fiber spaces, Sarkisov program, birational rigidity, pliability. Partially supported by EAGER and “Geometria sulle Variet` a Algebriche”(MIUR).
arXiv:math/0402258v1 [math.AG] 16 Feb 2004
BIRATIONAL GEOMETRY OF QUARTIC 3-FOLDS II: THE IMPORTANCE OF BEING Q-FACTORIAL
MASSIMILIANO MELLA Abstract. The paper explores the birational geometry of terminal quartic 3-folds. In doing this I develop a new approach to study maximal singularities with positive dimensional centers. This allows to determine the pliability of a Q-factorial quartic with ordinary double points, and it shows the importance of Q-factoriality in the context of birational geometry of uniruled 3-folds.
Introduction Let X be a uniruled 3-fold, then X is generically covered by rational curves. It is a common belief that both biregular and birational geometry of X are somehow governed by these families of rational curves. In this paper I am interested in birational geometry of these objects. The Minimal Model Program states that such a X is birational to a Mori fiber Space (Mfs). Roughly saying after some birational modification either X can be fibered in rational surfaces or rational curves or it becomes Fano. For a comprehensive introduction to this realm of ideas as well as for the basic definitions and results see [CR] and [Co2]. In the attempt to tidy up the birational geometry of 3-fold Mori fiber Spaces we introduced the notion of pliability, [CM]. Definition 1 (Corti). If X is an algebraic variety, we define the pliability of X to be the set P (X ) = Mfs Y → T | Y is birational to X /square equivalence. We say that X is birationally rigid if P (X ) consists of one element. It is usually quite hard to determine the pliability of a given Mori Space, and not many examples are known. The first rigorous result dates back to Iskovskikh and Manin, [IM]. The main theorem of [IM] states, in modern terminology, that any birational map χ : X Y from a smooth quartic X ⊂ P4 to a Mori fiber space is an isomorphism. This means that P (X ) = {X } and X is birationally rigid. On the other hand consider a quartic threefold X ⊂ P4 defined by det M = 0, where M is a 4 × 4 matrix of linear forms. One can define a map f : X P3 by the assignment P → (x0 : x1 : x2 : x3 ), where (x0 , x1 , x2 , x3 ) is a solution of the system of linear equations obtained substituting the coordinates of P in M . For M sufficiently general such a map is well defined and birational. In this case f gives a rational parameterization of X . The singularities of X correspond to points where the rank drops. It is not difficult to show that, for a general M , the corresponding
相关文档
最新文档