余角和补角的教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余角和补角的教学设计(韩有)

指导思想与理论依据:

本节课以新课程理念为根本指导思想,本着“人人学习有用的数学”的观点,重视培养学生探索、发现知识和应用、解决问题的能力。课堂模式由单一的知识型向复合的应用、实践型转变,采用“引导——发现”的教学模式。这种模式的基本程序是“问题——猜想——验证——应用”。让学生体会到数学是来源于实际、应用于实际的工具。这种应用既体现在生活中又体现在整个知识网络中。教学手段由教师讲授的单一渠道拓展为多途径多手段的复合渠道,让学生的各个感知器官积极、协调的运转,达到事倍功半的效果。该操作的理论依据是布鲁纳的“发现学习”理论和杜威的“活动学习”理论。布鲁纳认为发现不仅限于寻求尚未知晓的事物,它包括用自己的头脑亲自获得知识的一切形式。学生在数学学习的过程中只有通过亲身的体验,才能掌握方法;他们在学习过程中应该是积极的探索者,教师要精心设置一个个问题链,以活动贯穿,创造一个适合学生探索的环境,通过不同的途径引导其自主探索。

教学背景分析:

余角和补角这节课知识点少,内容简单,往往被大多数教师视为没什么可讲的、枯燥的章节。所以在处理上大都是交待完概念,反复熟练便达到目的。但我们如果细心观察、注意联系总结会发现,互余和互补在生活中并不少见,而且这部分知识在今后解决综合性问题时也经常充当纽带和桥梁。所以在设计时充分考虑了实践性和操作性,重视知识纵深铺垫。所教学生数学基础比较扎实,但发散性思维、解决问题的灵活性和语言表述能力上有待于进一步训练。这与以往的数学课重在知识的“灌输”,重在知识系统的完整性和系统性,而忽视了学生创造性、探索精神的培养,造成了学生高分低能的现象不无关系。从这个角度上讲“人人学习有用的数学”的观点更适合培养创造性人才的需要。所以本节课把基础的落实设计得精准、有代表性,而在其它活动的设置上尽量采取开放型的提问方式,引导学生在多角度、灵活解决问题的同时,善于总结应用。为了多给学生交流的机会锻炼语言表述能力,和培养合作学习的意识和能力,有些环节设置成以四人小组为单位的学习单元,共同活动、讨论解决;对于学生们的分析结论鼓励其大胆陈述,好的成果利用视频展示给大家分享;对于抽象难懂的部分适当的运用多媒体手段使之表象化,生动化。

教学任务分析

课前准备

教学流程大致安排

具体教学过程设计:

教学效果评价设计:

为了综合考察学生的基本技能和能力水平,让不同层次的学生都有展示的机会,设计了一道多步骤评价方案:

(1)一个角的补角是它的余角4倍,求这个角 (2)画出这个角∠AOB

(3)想办法画一个角,使它等于∠AOB (也是教学环节的延伸)

结果预想:因为学生基础比较扎实,所以前两个问题属于最基本问题。第

一问经过课堂教学的几个练习,每个学生 都应该知道解决的方法,即便掌握的不牢固,也可通过复习重新理解、解决;第二问在第一问基础上用半圆仪和直尺就能画出;而第三问虽然不难,但做法上有灵活性,而且能体现出学生对本节知识的理解应用水平。大致学生的思路应该有度量法、尺规作图、同角的余角相等、同角的补角相等。而后两种思路的具体操作由于构造形式不唯一、作图工具不唯一又具有多样性。仅举几例的示意图:

结果分析:第一题采用方程的思想来解决,在学生设未知数,表示余角

和补角的过程中就能测评出学生对概念的理解,解题过程体现出对方程思想的领会运用程度;想到借助于同一个角的余角和补角的关系就更可贵;根据情况可分为了解、会用、灵活运用几等。而后两个问题通过学生作图方法的多少就能考察出学生是否有学以致用的意识,和应用的熟练灵活程度;根据情况可分为能画出、能多种方法画出和能把握实质灵活画出几等。通过学生的反馈我们就可以分析出课堂环节设置的是否合理,每一环节是否落实,哪里值得借鉴,哪里需要完善。

评课材料

“余角和补角”是一节探究性活动课,采用了“提出问题——猜想结论——验证结论——应用结论”这样一个基本模式,课堂设计流畅,学生充分思考、活动,课堂气氛活跃。

(一)创设情境,引入概念。

以往在教授这一课时,教师往往平铺直叙的引入余角、补角概念,而韩有老师通过比萨斜塔这一学生熟知的著名建筑引出概念,不但使学生能充分理解概念,并且可以充分引起学生的有意注意,一下子把学生吸引到课堂上来。

(二)落实双基

做课不仅是一种展示,更重要的是让学生掌握必要的知识。活动二的设计充分体现了这一点,并且在解题过程中渗透了方程思想的应用,既是对上一章知识的应用和巩固,也为今后的学习打下基础。

(三)活动设计,训练学生灵活解题能力。

活动五的设计引导学生利用三角板构造满足互余情况的特殊位置关系的图形,了解特殊位置关系与特殊数量关系的对应,在活动中充分运用新学的知识,培养学生的创造性和探索精神,充分调动了学生积极思考。

(四)评价方案设计合理,具有综合性

为了综合考察学生的基本技能和能力水平,让不同层次的学生都有展示的机会,设计了一道多步骤评价方案,通过此问题既能检验学生上课的质量,同时也给学有余力的学生提供了一个提高的机会。

整节课一气呵成,达到了提高学生素质及培养学习几何兴趣的目的,也使学生看到了数学来源于生活、应用于生活的实质。

《余角和补角》说课稿

1、说教材的地位和作用

我今天说课的内容是浙教版七年级数学上册第七章第六节内容《余角和补角》,本节课是在认识直角、平角的基础上,通过数量关系和图形关系学习两角互余、互补的概念和性质以及利用用方程的思想来解决几何中涉及求某个角的度数的问题。

《图形的初步知识》这一章节是学生进入平面几何大厦的“门槛”。《余角和补角》是《图形的初步知识》的重要组成部分,从线段的概念引出射线的概念进而引入角的概念,在认识了直角、平角,比较角的大小后,就引进了余角、补角的概念及性质;是实验几何逐渐向证明几何的过渡,为以后证明角的相等作铺垫,也是为培养和发展学生的逻辑思维能力、观察分析能力、演绎归纳能力打基础。

2、说教学目标

2.1 教学目标

根据上述教学内容地位和作用以及初一学生现有认知水平确定,我制定如下教学目标:知识目标:在具体情境中了解余角与补角,理解余角与补角的性质,通过练习掌握其概念及性质,并能运用他们解决一些简单实际问题。

能力目标:经历、观察、操作,探究等过程,发展学生几何概念,培养学生推理能力和表达能力。

情感目标:培养学生乐于探究、合作的习惯,体验探索成功,感受到成功的乐趣,进一步体会“数学就在我的身边”,增强学生用数学解决实际问题的意识。

2.2 教学重点和难点

重点:余角和补角的概念和性质,教学时可运用文字语言、图形语言、符号语言三结合的训练方法强调概念的本质特征,突出教学重点。难点:关于余角和补角的性质的应用常常需要说理,或综合运用代数知识,特别是用代数的方法来计算角的度数,由于学生缺乏经验,是教学中的难点。可通过由浅入深、讨论比较、归纳小结等方法及变化训练突破上述难点。

3、说教法

3.1教法分析

针对初一学生的年龄特点和心理特征,以及他们的知识水平,采用启发式、发现法教学等教学方法,让学生始终处于主动学习的状态,课堂上教师起主导作用,让学生有充分的思考机会,使课堂气氛活泼,有新鲜感。

3.2学法指导

在教师的启发下,让学生成为行为主体。正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流”。

3.3教学手段

采用多媒体辅助教学,增加课堂容量,提高教学效果。

4.、说设计:

一、导入设计

由数字入手向学生提问:90°和180°在几何中表示哪两个角的度数?然后请学生画出这两个角。并与书上合作学习作比较得出课题。

(让学生说出自己的方法:可以测量,也可以剪下来拼等等,学生的方法只要合理就应鼓励)

相关文档
最新文档