二 面 角 的 计 算

合集下载

(压轴题)高中数学必修二第一章《立体几何初步》测试题(包含答案解析)(3)

(压轴题)高中数学必修二第一章《立体几何初步》测试题(包含答案解析)(3)

一、选择题1.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QABQAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =,若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π2.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .263.已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是3O 的表面积是( ) A .28π3B .14π3C .56π3D .7π 34.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π5.在长方体1111ABCD A B C D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( ) A .728B .728-C .3714D .3714-6.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π27.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )为( )A .43B .2C .4D .68.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则( )A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 所成角的余弦值为24D .若AEB △是直角三角形,则BE ⊥平面ADE9.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .//MN 平面ABEB .//MN 平面ADEC .//MN 平面BDHD .//MN 平面CDE11.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.已知直线a 、b 都不在平面α内,则下列命题错误的是( ) A .若//a b ,//a α,则//b α B .若//a b ,a α⊥,则b α⊥ C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α二、填空题13.如图,已知直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,E 是棱AB的中点,设平面α经过直线1A E ,且α平面111,B BCC l α=⋂平面112C CDD l =,若α⊥平面11A ACC ,则异面直线1l 与2l 所成的角的余弦值为_______.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.点A 、B 、C 、D 在同一个球的球面上,3AB BC AC ===,若四面体ABCD 体积的最大值为32,则这个球的表面积为______. 16.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.17.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.18.如图,在三棱锥V ABC -中,22AB =VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是_____.19.已知扇形的面积为56π,圆心角为63π,则由该扇形围成的圆锥的外接球的表面积为_________.20.棱长为a 的正四面体的外接球的表面积为______.三、解答题21.在如图所示几何体中,平面PAC ⊥平面ABC ,//PM BC ,PA PC =,1AC =,22BC PM ==,5AB =.若该几何体左视图(侧视图)的面积为34.(1)画出该几何体的主视图(正视图)并求其面积S ; (2)求出多面体PMABC 的体积V .22.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,32,3,PB PD PA AD ====点,E F 分别为线段,PD BC 的中点.(1)求证://EF 平面ABP ; (2)求证:平面AEF ⊥平面PCD ; (3)求三棱锥C AEF -的体积23.如图所示,已知在三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D为PB 的中点,且PMB △为正三角形.(Ⅰ)求证://DM 平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若4,20BC AB ==,求三棱锥D BCM -的体积.24.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ; (2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .25.如图,在平面四边形A ABC '中,90CAB CA A '∠=∠=,M 在直线AC 上,A A A C ''=,AB AM MC ==,A AC '绕AC 旋转.(1)若A AC '所在平面与ABC 所在平面垂直,求证:A C '⊥平面A AB '. (2)若二面角A AC B '--大小为60,求直线A B '与平面ABM 所成角的正弦值.26.在三棱锥P ABC -中,G 是底面ABC 的重心,D 是线段PC 上的点,且2PD DC =.(1)求证:DG//平面PAB ;(2)若PAB △是以PB 为斜边的等腰直角三角形,求异面直线DG 与PB 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =6,3AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PAB AB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,93ABCS=所以21sin 60932ABCSAB =⨯⨯= 解得6,3AB AQ == 所以3,23,3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AO OQ AQ =+,即()(222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由1 2QAB QAC QBCPAB PAC PBCS S SS S S===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..2.A解析:A【分析】本题首先可通过将侧面11CDD C绕1DD逆时针转90展开得出当1A、M、2C共线时1A M MC+取得最小值,此时M为1DD的中点,然后根据11B A⊥平面11A D DA得出111B A A M⊥,最后根据221111M AB B A M=+即可得出结果.【详解】如图,将侧面11CDD C绕1DD逆时针转90展开,与侧面11ADD A共面,连接12A C,易知当1A、M、2C共线时,1A M MC+取得最小值,因为1AB AD==,12AA=,所以M为1DD的中点,12A M=因为11B A⊥平面11A D DA,1A M⊂平面11A D DA,所以111B A A M⊥,则222211111(2)3M B A A MB=+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M为1DD的中点时1A M MC+取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.3.A解析:A【分析】首先得到11AB A∠是1AB与底面111A B C所成的角,再通过三棱柱的体积得到三棱柱的底面等边三角形的边长,最后通过球的半径,球心到底面距离,底面外接圆半径的关系计算.【详解】因为侧棱1AA ⊥底面111A B C ,则11AB A ∠是1AB 与底面111A B C 所成的角,则1145AB A ∠=︒. 故由11111tan tan 451AA AB A A B ∠=︒==,得111AA A B =. 设111AA A B a ==,则111313323224ABC A B C a V a a a -=⨯⨯⨯==三棱柱, 解得2a =.所以球O 的半径22232722233R ⎛⎫⎛⎫+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝=⎭, 所以球O 的表面积22728π4π4π33S R ⎛⎫==⨯= ⎪ ⎪⎝⎭. 故选:A . 【点睛】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.4.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可. 【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ== 故选:B 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.5.C解析:C 【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案. 【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==,所以2211111122B D D C B C =+=213110B E =+=222415ED CE DC +=+==,所以222115914D E ED D D ==+=+,由余弦定理得,从而22211111111137cos 24214B D D E B E B D E B D D E +-∠===⨯⨯. 故选:C 【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.6.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1ACCC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.7.B解析:B 【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积. 【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD , 所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下: (1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.8.C解析:C 【分析】对A ,直角三角形的斜边大于直角边可判断;对B ,由>=EC EB DC 可判断;对C ,可得CDE ∠即异面直线DE 和AB 所成角,即可求出;对D ,EAB ∠(或EBA ∠)为直角时,BE 与平面ADE 不垂直. 【详解】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则22DE EC ==//AB CD ,则CDE ∠即异面直线DE 和AB 所成角,易求2cos 422CDE ∠==,故C 正确; 对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确. 故选:C. 【点睛】本题考查四棱锥的有关位置关系的判断,解题的关键是正确理解长度关系,正确理解位置关系的变化.9.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C 【分析】根据题意,得到正方体的直观图及其各点的标记字母,取FH 的中点O ,连接ON ,BO ,可以证明MN ‖BO ,利用BO 与平面ABE 的关系可以判定MN 与平面ABE 的关系,进而对选择支A 作出判定;根据MN 与平面BCF 的关系,利用面面平行的性质可以判定MN 与平面ADE 的关系,进而对选择支B 作出判定;利用线面平行的判定定理可以证明MN 与平面BDE 的平行关系,进而判定C ;利用M ,N 在平面CDEF 的两侧,可以判定MN 与平面CDE 的关系,进而对D作出判定.【详解】根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH的中点O,连接ON,BO,易知ON与BM平行且相等,∴四边形ONMB为平行四边形,∴MN‖BO,∵BO与平面ABE(即平面ABFE)相交,故MN与平面ABE相交,故A错误;∵平面ADE‖平面BCF,MN∩平面BCF=M,∴MN与平面ADE相交,故B错误;∵BO⊂平面BDHF,即BO‖平面BDH,MN‖BO,MN⊄平面BDHF,∴MN‖平面BDH,故C正确;显然M,N在平面CDEF的两侧,所以MN与平面CDEF相交,故D错误.故选:C.【点睛】本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN的平行线BO.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】-,由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A. 【点睛】方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.12.C解析:C 【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b 与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行,因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确; 在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误;在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.【分析】取的中点连接证明平面平面平面即平面然后分别取的中点证明平面平面可得可得异面直线与所成的角即与所成的角由余弦定理可得答案【详解】由直四棱柱的所有棱长均相等所以是菱形连接且所以因为平面平面所以且解析:910【分析】 取AD 的中点F ,连接1A F ,证明平面1A EF ⊥平面11A ACC ,平面1A EF 即平面α,然后分别取1111B C D C 、的中点M N 、,证明平面1//A EF 平面MNC ,可得//CM 1l ,//CN 2l ,可得异面直线1l 与2l 所成的角即CM 与CN 所成的角,由余弦定理可得答案.【详解】由直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,所以ABCD 是菱形,连接AC BD 、,1111AC B D 、,且ACBD O =,11111A C B D O ⋂=,所以BD AC ⊥,1111B D A C ⊥,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA BD ⊥,且1AA AC A =,所以BD ⊥平面11A ACC ,取AD 的中点F ,连接1A F ,连接EF 交AC 与G ,所以//EF BD ,且G 是AO 的中点,所以EF ⊥平面11A ACC ,所以平面1A EF ⊥平面11A ACC , 又1A E ⊂平面1A EF ,所以平面1A EF 即平面α,分别取1111B C D C 、的中点M N 、,连接MN 交11A C 与H 点,H 即为11O C 的中点, 所以1A H GC =,且1//A H GC ,所以四边形1A HCG 是平行四边形,所以1//A G HC ,1AG ⊄平面CMN ,CH ⊂平面CMN ,所以//A G 平面CMN , 又因为11//////EF BD B D MN ,EF ⊄平面CMN ,MN ⊂平面CMN , 所以//MN 平面CMN ,又1AG EF G =,所以平面1//A EF 平面MNC ,且平面11B C CB ⋂平面MNC MC =, 平面11D C CD平面MNC NC =,所以//CM 1l ,//CN 2l ,所以异面直线1l 与2l 所成的角即CM 与CN 所成的角,设2AB =, 则直四棱柱1111ABCD A B C D -的所有棱长均为2,由3BAD π∠=,所以112BD AB B D ===,11112MN D B ==,且CM CN ====,由余弦定理得222551922510CM CN MN MCN CM CN +-+-∠===⨯⨯.故答案为:910. 【点睛】本题考查了异面直线所成的角,关键点是作出平面α及找出异面直线所成的角,考查了学生分析问题、解决问题的能力及空间想象力.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认解析:22 【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案. 【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==, 所以DE AB ⊥,DE A E ⊥',3DE =30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED'平面EDCB DE =,所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=故答案为:2【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力..15.【分析】先由题意得到的面积以及外接圆的半径记的外接圆圆心为为使四面体体积最大只需与面垂直由此求出设球心为半径为根据为直角三角形由勾股定理列出等式求出球的半径即可得出结果【详解】根据题意知是一个等边三 解析:254π【分析】先由题意,得到ABC 的面积,以及ABC 外接圆的半径,记ABC 的外接圆圆心为Q ,为使四面体ABCD 体积最大,只需DQ 与面ABC 垂直,由此求出2DQ =,设球心为O ,半径为R ,根据AQO 为直角三角形,由勾股定理列出等式,求出球的半径,即可得出结果. 【详解】根据题意知,ABC 是一个等边三角形,其面积为()2213333322S ⎛⎫=-= ⎪ ⎪⎝⎭,ABC 外接圆的半径为1312sin 60r =⨯=,记ABC 的外接圆圆心为Q ,则1AQ r ==;由于底面积ABCS不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为133ABCS DQ ⋅=,2DQ ∴=,设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+, 即2221(2)R R =+-,54R ∴=, 则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭.故答案为:254π. 【点睛】 思路点睛:求解几何体与球外接问题时,一般需要先确定底面外接圆的圆心位置,求出底面外接圆的半径,根据球的性质,结合题中条件确定球心位置,求出球的半径,进而即可求解.16.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=,设1BC =,则AB ==ABCD 中,AC =3DM ==,3D M DM '==, 则22222212cos 22333332DD DM D M DM D M π⎛⎛⎛⎫'''=+-⋅=+-⨯-= ⎪ ⎝⎭⎝⎭⎝⎭,所以DD '=因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.17.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N ,可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===,1OH OM ON ===,所以HM HN ==tan tan NHO OHM ∠=∠=,11tan tan()1O HN O HO NHO ∠=∠-∠====+1184tan tan()631O HM O HO OHM +∠=∠+∠====, 所以tan θ的取值范围是44,33⎡+⎢⎣⎦,故答案为:⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.18.【分析】取的中点连接证明出可得出面角的平面角为计算出利用余弦定理求得由此可得出二面角的余弦值【详解】取的中点连接如下图所示:为的中点则且同理可得且所以二面角的平面角为由余弦定理得因此二面角的余弦值为解析:34【分析】取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值. 【详解】取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =V AB C --的平面角为VOC ∠,由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅,因此,二面角V AB C --的余弦值为34. 故答案为:34. 【点睛】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题.19.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积. 【详解】设扇形的长为l ,半径为R ,则22111656222S lR R παπ====,解得30R =l 为锥底面周长2r π,∴底面的半径5r =∴225R r -=.设外接球的半径为1R ,∴()222115(5)R R =-+,解得13R =,∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题.20.【分析】由正四面体性质可知球心在棱锥高线上利用勾股定理可求出半径R 即可求出球的面积【详解】正四面体的棱长为:底面三角形的高:棱锥的高为:设外接球半径为R 解得所以外接球的表面积为:;故答案为:【点睛】解析:232a π 【分析】由正四面体性质可知,球心在棱锥高线上,利用勾股定理可求出半径R ,即可求出球的面积. 【详解】正四面体的棱长为:a ,a =,=, 设外接球半径为R ,222)()33R a R a =-+,解得4R a =,所以外接球的表面积为:22342a ππ⎫⨯=⎪⎪⎝⎭; 故答案为:232a π. 【点睛】本题考查球的表面积的求法,解题的关键是根据球心的位置,在正四面体中求出球的半径.三、解答题21.(1)主视图(正视图)见解析,4S =;(2)4V =. 【分析】(1)根据侧视图计算出PAC △的边AC 上的高,进而可作出几何体PMABC 的主视图,利用梯形的面积公式可求得几何体的主视图的面积;(2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,推导出AN ⊥平面BCPM ,计算出AN 和梯形BCPM 的面积,利用锥体的体积公式可求得多面体PMABC 的体积V . 【详解】(1)在几何体PMABC 中,平面PAC ⊥平面ABC , 设PAC △的边AC 上的高为h ,则该几何体的侧视图的面积为1324AC h ⋅=,得32h =, 又因为22BC PM ==,所以,该几何体的主视图(正视图)如下图所示:由图可知,该几何体的主视图为直角梯形,其面积为()1233322S +⨯==⨯; (2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,如下图所示:PA PC =,O 为AC 的中点,所以,PO AC ⊥,由(1)可知,3PO h ==1122AO CO AC ===,由勾股定理可得221PC PA AO PO ==+=,所以,PAC △为等边三角形,N 为PC 的中点,AN PC ∴⊥,且3sin 602AN AC ==. 1AC =,2BC =,5AB =222AC BC AB ∴+=,BC AC ∴⊥,平面PAC ⊥平面ABC ,平面PAC平面ABC AC =,BC ⊂平面ABC ,BC ∴⊥平面PAC ,AN 、PC ⊂平面PAC ,BC AN ∴⊥,BC PC ⊥, PC BC C =,AN ∴⊥平面BCPM , //PM BC ,PM PC ∴⊥,所以,梯形BCPM 的面积为()322BCPM BC PM PC S +⋅==梯形,因此,1133333224BCPM V S AN =⋅=⨯⨯=梯形. 【点睛】方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.22.(1)证明见解析;(2)证明见解析;(3)98. 【分析】(1)取PA 的中点G ,连接,BG EG ,证明四边形EFBG 为平行四边形,得出//EF BG ,再由线面平行的判定定理证明即可;(2)先证明PA ⊥平面ABCD ,从而得出PA CD ⊥,再由等腰三角形的性质得出AE PD ⊥,最后由面面垂直的判定定理证明即可;(3)以AFC △为底,12PA 为高,由棱锥的体积公式得出答案.【详解】(1)如图,取PA 的中点G ,连接,BG EG .因为点,E G 分别为,PD PA 的中点,所以1//,2EG AD EG AD =又因为F 是BC 的中点,四边形ABCD 是正方形,所以//BF EG 且BF EG = 故四边形EFBG 为平行四边形,所以//EF BG 因为BG ⊂平面,ABP EF 不在平面ABP 内, 所以//EF 平面ABP .(2)由条件知32,3PB PD PA AD AB =====, 所以PAB △和PAD △都是等腰直角三角形,,PA AB PA AD ⊥⊥ 又因为,,ABAD A AB AD =⊂平面,ABCD 所以PA ⊥平面ABCD因为CD ⊂平面ABCD ,所以PA CD ⊥又因为,,AD CD PA AD A ⊥⋂=所以CD ⊥平面PAD ,所以CD AE ⊥因为E 是PD 的中点,所以AE PD ⊥又因为,,PD CD D PD CD ⋂=⊂平面PCD ,所以AE ⊥平面PCD 因为AE ⊂平面,AEF 所以平面AEF ⊥平面PCD . (3)由图可知C AEF E ACF V V --=,1111319333232228E ACF ACF V S PA -=⨯=⨯⨯⨯⨯⨯=△,即三棱锥C AEF -的体积为98【点睛】关键点睛:在证明线线平行时,关键是证明四边形EFBG 为平行四边形,从而得出//EF BG .23.(1)见详解;(2)见详解;(3)107 【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP ⊥平面PBC ,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC . (3)等积转换,由D BCM M DBC V V --=,可求得体积. 【详解】证明:因为M 为AB 的中点,D 为PB 的中点,所以MD 是ABP △的中位线,MD AP .又MD 平面APC ,AP ⊂平面APC , 所以MD 平面APC .(2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥.又MDAP ,所以AP PB ⊥.又因为AP PC ⊥,PB PC P =,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以⊥AP BC . 又因为BC AC ⊥,AC AP A ⋂=, 所以BC ⊥平面APC . (3)因为AP ⊥平面PBC ,MDAP ,所以MD ⊥平面PBC ,即MD 是三棱锥M DBC -的高. 因为20AB =,M 为AB 的中点,PMB △为正三角形,。

2.四年级上册奥数 角的计算

2.四年级上册奥数 角的计算

四年级秋季尖子班第二讲角的计算角的计算主要是指求平面图形中未知角的度数,这是学习的重点,也是进一步学习平面图形的基础。

计算时要知道直角是90°,平角是180°,周角是360°,三角形的内角和是180°,四边形的内角和是360°。

典例精讲例1 分针从“12”走到“2”转动了多少度?形成的角是什么角?【思路点拨】钟面上的分针转动一周是360°,12个数字把钟面平均分成了12个大格,每个大格就是360°÷12=30°。

因此,分针从“12”走到“2”转动了2个大格,即30°×2=60°。

又因为60°<90°,所以形成的角是锐角。

【详细解答】例2 下面每个图中的∠1和∠2相等吗?为什么?【思路点拨】左图中,∠1+∠3是横着的长方形一个角,是90°,∠2+∠3是斜着的长方形的一个角,也是90°,那么,∠1=90°-∠3,∠2=90°-∠3,所以,∠1=∠2。

右图中,∠1+∠3=180°,∠2+∠3=180°,∠1=180°-∠3,∠2=180°-∠3,所以,∠1=∠2。

因此,每个图中的∠1和∠2相等。

【详细解答】达标练习1.从一点引出两条( )所组成的图形叫做角,这个点叫做角的( ),这两条射线叫做角的( )。

2.角的两边在一条直线上,这样的角叫做( )角,它有( )度。

3.量角的大小,要用到()、计量角的单位是( ),用符号()来表示。

把半圆平均分成()份,每一份所对的角的大小是(),记做(),五份表示()。

4.角的两条边在一条直线上,这样的角叫做()。

一条射线绕着它的端点旋转一周所成的角叫做()。

5.1周角=( )平角=( )直角=( )45°的角。

6.3时整,钟面上的时针与分针成()度的角;6时整成()度的角,钟面上()时,时针与分针所成的角度是150度的角。

高考数学考点回归总复习《第四十七讲 直线平面垂直的判定及其性质》课件 新人教

高考数学考点回归总复习《第四十七讲 直线平面垂直的判定及其性质》课件 新人教

A.4对
B.3对
C.2对
D.1对
答案:B
3.菱形ABCD中,∠BAD=60°,如图所示沿对角线BD将△BCD向上折起, 使AC=AB,则二面角C—BD—A的余弦值的大小为( )
A .1 3
答案:A
B .1 6
C .1 9
D .1 1 2
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/302022/1/302022/1/301/30/2022 •7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/302022/1/30January 30, 2022 •8、教育者,非为已往,非为现在,而专为将来。2022/1/302022/1/302022/1/302022/1/30
第四十七讲 直线、平面垂直的判定及其性质
回归课本
1.直线与平面所成的角
(1)平面的一条斜线和它在这个平面内的射影所成的锐角叫做这条直线和
这个平面所成的角.一条直线垂直于平面,就说它们所成的角是直角;一 条直线和平面平行或在平面内,就说它们所成的角是0°的角,可见,直
线和平面所成的角的范围是
0
,
ABC为 正 四 面 体 ,设 棱 长 为 a,则 AB1 3a,棱 柱 的 高A1O a2 AO 2

常州市某小学四年级数学上册第三单元角的度量第2课时角的度量教案新人教版

常州市某小学四年级数学上册第三单元角的度量第2课时角的度量教案新人教版

第2课时角的度量教材第40~41页的内容。

1.联系已有的学习经验,体会度量角的大小需要有统一的计量单位。

2.在操作探索中认识量角器和角的计量单位,会用量角器正确度量角的度数。

初步建立1度和几度角的表象,发展初步的空间观念。

3.通过观察、尝试、操作、交流等活动,培养学生自主探索、动手实践的能力。

4.能积极地参与学习活动,在探索量角方法的过程中获得成功的体验,产生发现数学规律的兴趣。

重点:认识量角器,以及用量角器量角。

难点:会用量角器正确度量角的度数。

课件、量角器、直尺。

师:前面,我们已经学习了角,那么怎样比较两个角的大小呢?师:今天我们就共同来学习角的度量。

(板书课题:角的度量)1.认识量角器。

课件出示量角器图片。

师:量角器将这个半圆形平均分成了多少份?引导学生得出量角器将这个半圆形平均分成了180份,每一份的大小就是1度。

度是角的计量单位,1度还有个简洁的写法,记作1°。

学生观察1°的角,并体验1°的角。

2.尝试量角。

(课件出示教材第40页主题图)让学生自主探究:估一估角1的大小。

尝试测量角1的度数。

把量角的方法讲给同桌听。

比一比,谁说得更完整。

(先估,后量)通过学生间的互相补充,逐步完善量角的方法。

练习:先估一估角2的度数,再来量一量。

学生说出自己读度数的方法,突出内圈刻度与外圈刻度的作用。

3.总结量角的步骤。

(1)把量角器放在角的上面,使量角器的中心点和角的顶点重合;(板书:点点重合)(2)零刻度线和角的一条边重合;(板书:线边重合)(3)角的另一条边所对量角器上的刻度,就是这个角的度数;(板书:读准度数)(4)与零刻度线重合的一条边指向哪个圈的0°,就读那个圈的刻度。

(板书:从0开始)1.教材第41页“做一做”第1题。

让学生在量角器上分别找到相应的刻度,观察它们的大小,注意刻度是内圈刻度,还是外圈刻度。

读出度数,然后小组检查。

2.教材第41页“做一做”第2题。

4.2角+第2课时+角的比较+课件++++2024-2025学年北师大版七年级数学上册

4.2角+第2课时+角的比较+课件++++2024-2025学年北师大版七年级数学上册

(2)量一量,验证你的估计。 F
E
D
用量角器量得∠AOB≈61°, ∠DEF≈106°
【对应训练】
【教材 P123随堂练习第1题】
1.如图,在点阵中有三个角。 (1)先估计每个角的大小,再用量角器量一量; (2)找出三个角之间的等量关系。
解:(1)估计这三个角的度数分别为 135°,45°,135°。再用量角器量 出这三个角的度数,验证估计准确。
∠AOC是∠AOB与∠BOC的和 记作 ∠AOC=∠AOB+∠BOC
C B
O
A
∠AOB是∠AOC与∠BOC的差 记作 ∠AOB=∠AOC-∠BOC
O ∠BOC是∠AOC与∠AOB的差 记作 ∠BOC=∠AOC-∠AOB
共顶点的几个角,可进行加减 O
C B
A C
B
A
【对应训练】 如图,用“>”“<”或“=”填空: (1)∠AOC__=__∠AOB+∠BOC; (2)∠AOC__>__∠AOB; (3)∠BOD-∠BOC__=__∠COD; (4)∠AOD_<___∠AOC+∠BOD; (5)若∠AOB=∠COD, 则∠AOC__=__∠BOD。
作法: ①作射线O′A′ ②以点O为圆心,以任意长为
半径作弧,交OA于点C ,交
OB 于点D
O
CA
O′
A′
③以点O′为圆心,以OC的长为半径作弧,交O′A′于点C′
④以点C′为圆心,以CD的长为半径作弧,交前面的弧
于点D′
⑤过点D′作射线O′B′ ∠A′O′B′ 就是所要作的角
作一个角等于已知角
D
3.如图,已知∠1和∠2,用尺规作出∠AOB=∠1+ ∠2(不写作法,保留作图痕迹)。

角度及角位移测量

角度及角位移测量

正弦规按正弦原理工 作,即在平板工作面 与正弦规一侧的圆柱 之间安放一组尺寸为 H的量块,使正弦规 工作面相对于平板工 作面的倾斜角度0 等于被测角(锥)度的 公称值,(如图所示)。 量块尺寸H由下式决 定
sin 0 H / L
将被测件安放在正弦规工作面上,用正弦规前挡板或侧 挡板正确定位,使被测角位于与正弦规圆柱轴线垂直的 平面内。若被测角的实际值。与公称值一致, 则角度块 表面或圆锥的上素线与平板工作面平行;若被测角有偏 差即
角度及角位移测量
角度单位及量值传递
• 前已述及,在长度测量中有长度基准及 其量值传递的问题。那么角度测量中是 否也有角度基准与量值传递的问题呢? 将被测角度与标准角度进行比较并确定 被测角度的量值,这是角度测量。而标 准角度则应事先用精度更高的角度标准 检定过。这种逐级用高精度角度标准检 定低精度角度标准的过程,就是角度量 值的传递过程.
1.用标准圆柱测量内燕尾槽 的斜角 测量内燕尾相的斜角 可用两对不等直径的标准圆柱 测量,也可用一对相等直径的 标准圆柱测量。 用两对不等 直径圆柱测量时,将半径为r1 和r2的圆柱先后塞进燕尾槽内, 并紧靠燕尾槽两内斜面,用量 块组试塞的方法确定或用测孔 径量具测定圆柱间的间距M1 和M2,内燕尾槽的斜角。可 由下式确定
测角仪
测角仪是角度计量工作中使用较广的一种测量 仪器,它主要用以测量如测量角度量块、多面棱体、 棱镜的角度、楔形镜(光楔)的楔角及平板玻璃两 平面的平行度等。用测角仪测量的工件一般用平行 于被测角平面的端平面定位,且要求构成被测角的 被瞄准平面具有较高的反射率。
图3所示为测角仪的结构示意图。测量时先用 瞄准器5瞄淮被测件6上组成被测角的第一个几 何要素(可能是点、线、面)(如图中ABC所示位 置),由读数装置2读得读数1 ,然后使圆分度 器件1、主轴3、工作台4及被测件6一起回转, 直至瞄准器瞄准组成被测角的第二个几何要素 (如图A’B’C’所示位置),读得读数2 。根据被 测角的定义作简单的数据处理,便可得被测角 度值。

立体几何之夹角、距离问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学(新高考通用)

立体几何之夹角、距离问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学(新高考通用)

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题21立体几何之夹角、距离问题目录一览一、典型例题讲解二、梳理必备知识三、基础知识过关四、解题技巧实战五、跟踪训练达标(1)面面夹角(2)线面夹角(3)点到线的距离(4)点到面的距离六、高考真题衔接1.空间中的角(1)异面直线所成角公式:设 a , b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅== a b a b a bθ.(2)线面角公式:设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为二、梳理必备知识l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,= n n θ或12,- n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅= n n n n θ.2.空间中的距离求解空间中的距离(1)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为 n ,这时分别在,a b 上任取,A B 两点,则向量在 n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅= n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(2)点到平面的距离A 为平面α外一点(如图), n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||n n ⋅⋅=⋅=⋅<>=⋅ AB AB AH AB AB AB n AB AB θ,||||⋅= AB n d n 三、解题技巧实战1.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB 的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.在△CDO 中,易得222OC CD DO =+-又23PC =,∴222OC PO PC +=,∴PO则D (0,0,0),()22,0,0A ,(0,22,0B ∴()22,2,2CP =- ,()22,0,0CE = ,∵BD ⊥平面APD ,∴平面APD 的一个法向量为则2200n CP n CE ⎧⋅=⎪⎨⋅=⎪⎩ ,得22220220x y z x ⎧-+=⎪⎨=⎪⎩,取∴1212cos ,212n n ==⨯ ,∴平面APD 和平面CEP 的夹角的余弦值为【点睛】方法点拨利用向量法求二面角的方法主要有两种:(平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的范围;两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.2.如图,已知多面体111ABC A B C -中,111,,A A B B C C 均垂直于平面ABC ,120ABC ∠= ,14A A =,111,2C C AB BC B B ====.请用空间向量的方法解答下列问题:求直线1AC 与平面1ABB 所成的角的正弦值.由题意知()(0,3,0,1,0,0A B -设直线1AC 与平面1ABB 所成的角为可知()(10,23,1,1,AC AB == 设平面1ABB 的法向量(,n x = 则10,0,n AB n BB ⎧⋅=⎪⎨⋅=⎪⎩ 即30,20,x y z ⎧+=⎪⎨=⎪⎩令1y =,则3,0x z =-=,可得平面111sin cos ,AC AC n AC θ⋅∴==⋅ ∴直线1AC 与平面1ABB 所成的角的正弦值是3.在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,M 为BB 1的中点,N 为BC 的中点.(1)求点M 到直线AC 1的距离;(2)求点N 到平面MA 1C 1的距离.则A(0,0,0),A1(0,0,(1)直线AC1的一个单位方向向量为故点M 到直线AC1的距离(2)设平面MA1C1的法向量为则1111·0·0n A C n A M ⎧=⎪⎨=⎪⎩ ,即202y x z =⎧⎨-=⎩不妨取x =1,得z =2,故因为N(1,1,0),所以MN 故N 到平面MA1C1的距离222102102MN n d n -+-==++ 四、跟踪训练达标面面夹角1.(2023·全国·浮梁县第一中学校联考模拟预测)如图,在四棱锥P ABCD -中,E 为棱AD 上一点,,PE AD PA PC ⊥⊥,四边形BCDE 为矩形,且13,,//4BC PE BE PF PC PA ==== 平面BEF .(1)求证:PA ⊥平面PCD ;(2)求二面角F AB D --的大小.因为//PA 平面BEF ,平面PAC 又//BE CD ,所以AF AF DE BC GC ==则(1,0,0),(0,3,0),(3,0,0),A B D F -设平面ABF 的一个法向量为(m = 则7330444030AF m x y AB m x y ⎧⎧⋅=-++⎪⎪⇒⎨⎨⋅=⎪⎪⎩-+=⎩又平面ABD 的一个法向量为(0,0,1)n = 故二面角F AB D --的大小为π4.2.(2023·辽宁大连·校联考模拟预测)已知多面体ABCDEF 中,AD BC EF ∥∥,且4AD CD DE ===,2BC EF ==,π3BCD FED ∠∠==(1)证明:AD BF ⊥;(2)若BF =C AF B --的余弦值.在BCD △中,4DC =,2BC =2222cos BD BC DC BC DC =+-⋅⋅同时AD ∥BC ,可得DB AD ⊥因为BD AD ⊥,DF AD ⊥,且所以AD ⊥平面BDF ;又因为BF ⊂平面BDF ,所以AD (2)在BDF V 中,2BD FD ==即222BD FD BF +=,所以BD ⊥以D 为原点,,,DA DB DF 的方向分别为建立空间直角坐标系如图.其中(4,0,0),(0,23,0),(0,0,23),(2,23,0)A B F C -,所以()()()4,23,0,4,0,23,6,23,0AB AF AC =-=-=- 设向量(,,)n x y z = 为平面ABF 的法向量,满足0423004230n AB x y n AF x z ⎧⎧⋅=-+=⎪⎪∴⎨⎨⋅=-+=⎪⎪⎩⎩ ,不妨令3x =,则2y z ==,故(3,2,2)n = ,设向量(,,)m p q r =为平面ACF 的法向量,满足0423006230m AF p r m AC p q ⎧⎧⋅=-+=⎪⎪∴⎨⎨⋅=-+=⎪⎪⎩⎩ 不妨令3p =,则2,3r q ==,故(3,3,2)m = 131311cos ,||||44114m n m n m n ⋅〈〉===⨯ 由图可知二面角为锐角,所以二面角C AF B --的余弦值为131144.3.(2023·云南昆明·统考一模)如图,直四棱柱1111ABCD A B C D -中,ABC 是等边三角形,AB AD ⊥(1)从三个条件:①AC BD ⊥;②120ADC ∠=︒;③2BD AD =中任选一个作为已知条件,证明:1BC DC ⊥;(2)在(1)的前提下,若13AB AA =,P 是棱1BB 的中点,求平面1PDC 与平面1PDD 所成角的余弦值.【答案】(1)证明见详解(2)710对②:∵180ADC ABC ∠+∠=又∵AB AD ⊥,即90BAD ∠=可得90BCD ∠=︒,即BC CD ⊥又∵1CC ⊥平面ABCD ,BC ∴1BC CC ⊥,且1CD CC =I 故BC ⊥平面11CDD C ,注意到1DC ⊂平面11CDD C ,故对③:∵AB AD ⊥,即BAD ∠在Rt BAD 中,则sin ABD ∠故30,ABD CBD AB ∠=∠=︒=故90BCD BAD ∠=∠=︒,即BC 又∵1CC ⊥平面ABCD ,BC4.(2023·辽宁·鞍山一中校联考模拟预测)刍甍(chúméng)是中国古代数学书中提到的一种几何体,《九章算术》中对其有记载:“下有袤有广,而上有袤无广”,可翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.”,如图,在刍甍ABCDEF中,四边形ABCD是正方形,平面BAE和平面CDE交于EF.(1)求证://AB EF ;(2)若平面CDE ⊥平面ABCD ,4AB =,2EF =,ED FC =,AF =,求平面ADE 和平面BAE 所成角余弦值的绝对值.5.(2023·山西·校联考模拟预测)如图,直三棱柱111ABC A B C -的所有棱长均相等,D 为1AA 的中点.(1)证明:11B D BC ⊥;(2)设,M N 分别是棱,AC BC 上的点,若点1,,,B D M N 在同一平面上,且ABC 的面积是CMN 的面积的3倍,求二面角1A B M N --的正弦值.【答案】(1)证明见解析(2)217【分析】(1)方法一:延长B 11B C BC ⊥可证得1BC ⊥平面方法二:结合垂直关系可以C 得结论;AB 设2AB = ,则()3,1,1D ,(0,2,0B ()13,1,1DB ∴=- ,(10,2,2BC =- 方法三:1AA ⊥ 平面ABC ,AB 10AA AB ∴⋅= ,10AA AC ⋅= ;则()3,1,0A ,232,,033M ⎛⎫ ⎪ ⎪⎝⎭,31,,033MA ⎛⎫∴= ⎪ ⎪⎝⎭ ,12MB ⎛=- ⎝ 设平面1AMB 的法向量(1,m x y = 则11111131033234233MA m x y MB m x y z ⎧⋅=+=⎪⎪⎨⎪⋅=-++⎪⎩设平面1B MN 的法向量(2,x n y =,线面夹角6.(2023·北京·校考模拟预测)如图,在三棱柱111ABC A B C-中,D,E,G分别为11,,AA AC BB的中点,11A C 与平面1EBB交于点F,AB BC==,12AC AA==,1C C BE⊥.(1)求证:F为11A C的中点;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线FG与平面BCD所成角的正弦值.条件①:平面ABC⊥平面1EBB;条件②:13BC=.注:如果选择条件①和条件②分别解答,按第一个解答计分.由题意得()()(0,2,0,1,0,0,1,0,1B C D -()()2,0,1,1,2,0CD CB ∴== .设平面BCD 的法向量(),,n a b c = ,020,200n CD a c a b n CB ⎧⋅=+=⎧⎪∴∴⎨⎨+=⋅=⎩⎪⎩ ,2a =,则1,4b c =-=-,∴平面BCD 的法向量(2,1,4)n =-- 又()0,2,1FG =- ,设直线FG 与平面BCD 所成的角为则2105sin cos ,105n FG θ== ,所以直线FG 与平面BCD 所成角的正弦值为选条件②,因为5AB BC ==,AC由题意得()()(0,2,0,1,0,0,1,0,1B C D -()()2,0,1,1,2,0CD CB ∴== .设平面BCD 的法向量(),,n a b c = ,020,200n CD a c a b n CB ⎧⋅=+=⎧⎪∴∴⎨⎨+=⋅=⎩⎪⎩,2a =,则1,4b c =-=-,∴平面BCD 的法向量(2,1,4)n =-- 又()0,2,1FG =- ,设直线FG 与平面BCD 所成的角为则2105sin cos ,105n FG θ== ,所以直线FG 与平面BCD 所成角的正弦值为7.(2023·全国·模拟预测)如图,在几何体ABCDEF 中,四边形CDEF 是边长为2的正方形,AD DE ⊥,AB CD ∥,6AE =,1AB BD ==.(2)求直线BC与平面BEF所成角的正弦值.则()0,0,0D ,()1,0,0B ,E所以()0,2,0= EF ,(1,0,BE =- 设平面BEF 的法向量为n = 取1z =,得2x =,所以可取设直线BC 与平面BEF 所成的角为则sin cos ,BC BC n BC θ⋅== 所以直线BC 与平面BEF 所成角的正弦值为8.(2023春·甘肃张掖·高三高台县第一中学校考阶段练习)如图,在四棱锥P ABCD -中,PAD 为等边三角形,四边形ABCD 为平行四边形,PAB PDC ∠=∠.(1)证明:四边形ABCD 为矩形;(2)若2PA AB ==,当四棱锥P ABCD -的体积最大时,求直线PB 与平面PDC 所成角的正弦值.【答案】(1)证明见解析(2)64【分析】(1)取AD 的中点线面垂直,再证得线线垂直即可建立空间直角坐标系,利用空间向量法求(2)由题意知,当平面PAD ⊥平面(1)知AB AD ⊥,所以以O 为原点,空间直角坐标系,因为2PA AB ==,则()0,0,0O ,B 设平面PDC 的法向量为(,,n x y z = 令3x =,则()3,0,1n =- .又()1,2,3PB =- ,设直线PB 与平面则sin cos ,23n PB n PB n PBθ⋅=== 所以直线PB 与平面PDC 所成角的正弦值为9.(2023·四川凉山·二模)如图,在直三棱柱111ABC A B C -中,点E ,F 分别是BC ,11A C 中点,平面11ABB A平面AEF l =.(1)证明:l EF ∥;(2)若AB AC ==,平面11ACC A ⊥平面11ABB A ,且1AB EF ⊥,求直线l 与平面11A B E 所成角的余弦值.∵E ,G 分别是BC ,AB 又∵1A F AC ∥且112A F AC =∴四边形1EGA F 为平行四边形,∴又EF ⊄平面11ABB A ,1AG ∵EF ⊂平面AEF ,平面(2)由三棱柱为直棱柱,∴平面设1AA a =,则1(0,22,0)B ,F 所以1(0,22,)AB a =- ,(0,EF = 又1AB EF ⊥,则10AB EF ⋅= ,解得所以(2,2,2)E ,(0,0,2)A ,则设平面11A B E 法向量为(,,n x y = 所以11100n A B n A F ⎧⋅=⎪⎨⋅=⎪⎩ ,即2222x ⎧⎪⎨+⎪⎩由(1)知直线EF l ∥,则l 方向向量为设直线l 与平面11BCC B 所成角为则sin cos ,n EF n EF n EF α⋅===⋅ 所以直线l 与平面11BCC B 所成角的余弦值为10.(2023·江苏·统考一模)在三棱柱111ABC A B C -中,平面11A B BA ⊥平面ABC ,侧面11A B BA 为菱形,1π3ABB ∠=,1AB AC ⊥,2AB AC ==,E 是AC 的中点.(1)求证:1A B⊥平面1AB C;(2)点P在线段1A E上(异于点1A,E),AP与平面1A BE所成角为π4,求1EPEA的值.点到线的距离11.(2022·全国·高三专题练习)如图,在四棱锥P −ABCD 中,AD BC ,190 1.2ADC PAB BC CD AD ∠=∠==== ,E 为棱AD 的中点,异面直线PA 与CD 所成的角为90︒.(1)在平面PAB 内是否存在一点M ,使得直线CM 平面PBE ,如果存在,请确定点M 的位置,如果不存在,请说明理由;(2)若二面角P −CD −A 的大小为45︒,求P 到直线CE 的距离.点E 为AD 的中点,AE ED ∴=1,2BC CD AD ED BC ==∴= ,AD BC ∥ ,即ED BC ∥,∴四边形BCDE 为平行四边形,即,,AB CD M M CD CM ⋂=∴∈∴ BE ⊂ 平面,PBE CM ⊂平面PBE CM ∴ 平面PBE ,,M AB AB ∈⊂ 平面PAB ,M ∴∈平面PAB ,故在平面PAB 内可以找到一点M (2)如图所示,ADC PAB ∠∠= 且异面直线PA 与CD 所成的角为又,,AB CD M AB CD ⋂=⊂平面AD ⊂ 平面,ABCD PA AD ∴⊥,又,,AD CD PA CD AD PA ⊥⊥⋂=CD \^平面PAD ,PD ⊂ 平面,PAD CD PD ∴⊥.因此PDA ∠是二面角P CD A --PA AD ∴=.因为112BC CD AD ===.以A 为坐标原点,平行于CD 的直线为⎫⎪⎭12.(2023·全国·高三专题练习)如图,已知三棱柱111ABC A B C -的棱长均为2,160A AC ∠=︒,1A B =(1)证明:平面11A ACC ⊥平面ABC ;(2)设M 为侧棱1CC 上的点,若平面1A BM 与平面ABCM 到直线11A B 距离.轴,建立空间直角坐标系,-中,底面四边形ABCD 13.(2022秋·天津河东·高三天津市第七中学校考阶段练习)如图,在四棱锥P ABCD为菱形,E为棱PD的中点,O为边AB的中点.(1)求证:AE //平面POC ;(2)若侧面PAB ⊥底面ABCD ,且3ABC PAB π∠∠==,24AB PA ==;①求PD 与平面POC 所成的角;②在棱PD 上是否存在点F ,使点F 到直线OD 的距离为21,若存在,求DF DP 的值;若不存在,说明理由.(2)①在平面PAB 内过点O 作Oz 菱形ABCD 中3ABC π∠=,则OC ⊥以O 为原点,分别以,,OB OC Oz 所在直线为()()(1,0,3,0,23,0,4,23,0P C D --(1,0,3)OP =- ,(0,23,0)OC = ,设平面POC 的一个法向量为(,n x y = 则30230n OP x z n OC y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取=3x ,得设直线PD 与平面POC 所成的平面角为n PD ⋅ 4②设[],0,1DF DP λλ=∈14.(2022秋·山东青岛·高三统考期中)如图,已知长方体1111ABCD A B C D -的体积为4,点A 到平面1BC D 的.(1)求1BC D 的面积;(2)若2AB BC ==,动点E 在线段1DD 上移动,求1AEC 面积的取值范围.则(2,0,0)A ,1(0,2,1)C 设(0,0,)(01)E t t ≤≤,则(2,0,EA = 则直线1AC 的单位方向向量为u =r 则点E 到直线1AC 的距离为d EA = 所以1AEC 的面积1112AEC S AC =⋅△所以1AEC 面积的取值范围为32⎡⎢⎣15.(2022·全国·高三专题练习)在滨海文化中心有天津滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1AC 与平面1A ED 所成角的正弦值;(2)求二面角1E A D F --的余弦值;(3)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.则1(2A ,0,2),(0C ,4,0),(2E ,1,所以11(2,4,2),(2,0,2),(2,1,0)A C DA DE =--==设平面1A ED 的法向量为(,,)n x y z = ,则有100n DA n DE ⎧⋅=⎨⋅=⎩,即22020x z x y +=⎧⎨+=⎩,令1x =,则=2y -,1z =-,故(1,n =- 所以111||2|cos ,|3||||A C n A C n A C n ⋅<>== ,故1AC 与平面1A ED 所成角的正弦值为23点到面的距离16.(2022秋·四川·高三四川省岳池中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ⊥平面,120,3,ABC AB BC ABC PA D ∠==== 为线段PC 上一点,且BC BD ⊥.(1)在线段AC 上求一点M ,使得平面BPC ⊥平面BDM ,并证明;(2)求点C 到平面ABD 的距离.则33(0,,0),(,0,0),(0,22A B C -设PD PC λ= ,其中01λ≤≤,则BD BP PD BP PC λ=+=+ 因为BC BD ⊥,所以BC BD ⋅ 设平面BPC 的法向量为m = 则33022330m BC x y m PC y z ⎧⋅=-+=⎪⎨⎪⋅=-=⎩ 设33(0,,0),22M b b -≤≤,MB17.(2023春·广东揭阳·高三校联考阶段练习)如图所示的四棱锥P ABCD -中,底面ABCD 为直角梯形,AB CD ,AD AB ⊥,22DC AD a ===,PA PD =,二面角P AD B --的大小为135︒,点P 到底面ABCD 的距离为2a .(1)过点P 是否存在直线l ,使直线l ∥平面ABCD ,若存在,作出该直线,并写出作法与理由;若不存在,请说明理由;(2)若2PM MC = ,求点M 到平面PAD 的距离.平面,建立空间直角坐标系,由条件(2)取线段AD 的中点为O ,线段连接,OE OP ,因为ABCD 为直角梯形,AB CD 所以//OE AB ,又AD AB ⊥,所以AD OE ⊥,因为PA PD =,所以PO AD ⊥,又PO OE O = ,,PO OE ⊂平面POE 所以AD ⊥平面POE ,过点O 在平面POE 内作直线ON ⊥则直线,,OA OE ON 两两垂直,以O 为原点,,,OA OE ON 为,,x y z 过点P 作//PF NO ,交直线OE 于点因为,ON OA ON OE ⊥⊥,,OA OE 所以ON ⊥平面ABCD ,故PF ⊥平面又点P 到底面ABCD 的距离为2a ,所以因为OE AD ⊥,OP AD ⊥,18.(2023·云南红河·统考二模)如图,在几何体ABCDEF中,菱形ABCD所在的平面与矩形BDEF所在的平面互相垂直.(1)若M 为线段BF 上的一个动点,证明:CM ∥平面ADE(2)若60BAD ∠=︒,2AB =,直线CF 与平面BCE F 到平面BCE 的距离.()3,1,0B ,()0,2,0C ,(0,0,E a19.(2023·北京·北京市八一中学校考模拟预测)如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A CD E --为60°,DE CF ∥,CD DE ⊥,2AD =,3DE DC ==,6CF =.(1)求证:CD AE ⊥;(2)求直线DE 与平面AEF 所成角的正弦值.(3)直接写出λ的值,使得CG CF λ=,且三棱锥B ACG -【答案】(1)证明见解析CD AD ⊥ ,CD DE ⊥,ADE ∴∠即为二面角A CD F --的平面角,即∴(0,1,3)A ,(0,0,0),(0,3,0),(3,6,0)D E F ∴(0,2,3),(3,5,3),AE AF DE =-=-设平面AEF 的法向量为(,,)n x y z =,230,3530.n AE y z n AF x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩ 令2z =,则所以(3,3,2)n =-,∴3330cos ,10310DE n DE n DE n ⋅===20.(2023·江西九江·统考二模)如图,在三棱柱111ABC A B C -中,AC ⊥平面11AA B B ,13ABB ∠=,1AB =,12AC AA ==,D 为棱1BB 的中点.(1)求证:AD ⊥平面11AC D ;(2)若E 为棱BC 的中点,求三棱锥1E AC D -的体积.则()0,0,0A ,1,1,02E ⎛⎫⎪⎝⎭,1,0,2D ⎛ ⎝所以1,1,02AE ⎛⎫= ⎪⎝⎭ ,1,0,2AD ⎛= ⎝ 设(),,n x y z =r为平面1AC D 的一个法向量,则10n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即1302223x z x y ⎧+=⎪⎨⎪-++⎩所以点E 到平面1AC D 的距离d =则三棱锥1E AC D -的体积13S V =1.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 五、高考真题衔接的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.则()2,0,0A 、()2,2,0B 、(2,0,2C 则10,,12EF ⎛⎫= ⎪⎝⎭,易知平面ABC 的一个法向量为EF ⊄ 平面ABC ,故//EF 平面2.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩ 可取()1,0,1m =-,3.(2021·天津·统考高考真题)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F 为棱CD 的中点.(I )求证:1//D F 平面11A EC ;(II )求直线1AC 与平面11A EC 所成角的正弦值.(III )求二面角11A A C E --的正弦值.4.(2021·全国·统考高考真题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.。

上海奥数精讲 第3讲 几何中的计数问题(一)(教师版)

上海奥数精讲 第3讲 几何中的计数问题(一)(教师版)

教具准备1、课件:
2、flash动画。

3、板书。

教学难点图形的计数方法
教学重点图形的计数方法
教学目标
1、认识几何中的计数问题;
2、掌握分类的方法有规律地去计算
几何中的计数问题;
3、帮助学生养成按照一定顺序去观
察、思考问题的良好习惯,逐步学会
通过观察、思考探寻事物规律的能力.
第3讲几何中的计数问题(一)
1、 计算一类对象所含个体的数目叫做计数
问题。

2、 解决计数问题的一般方法是:先分类,然
后逐类分步;综合运用加法原理和乘法原理来求解。

4、注意做到不重复、不遗漏。

内1、 几何中的计数问题包括:数线段、数角、
数长方形、数正方形、数三角形、数综合图形等;
2、 线段计数方法:1)按照线段的端点顺
序去数;2)按照基本线段多少的顺序后分类计算包含1,2,3…个基本角的角
的个数;
4、 三角形的计数方法:先数基本三角形的
个数,然后分类计算包含1,2,3…个基本三角形的三角形的个数。

环节一:
教学目标:由简单的线段数的求解激发学生对几何中的计数问题的学习兴趣。

引入
环节二:
教学目标:学习并掌握
例1

例2
【讲解过程】
环节三:
教学目标:学习并掌握例3
环节四:
例5
例6
环节五:
教学目标:整理全课思路,巩固收获
巩固目标:熟练应用规律解决几何中的计数问题。

【练习1】数一数下图中,各有多少条线段?
方法总结体现之处
趣味性体现之处
板书设计
课后总结较为成功之处:有待改进之处:。

认识角和直线的关系及计算方法

认识角和直线的关系及计算方法

认识角和直线的关系及计算方法角是几何学中的重要概念,它是由两条射线公共端点形成的。

而直线是一种无限延伸、宽度可以忽略不计的长度。

在几何学中,角和直线之间有着密切的联系,本文将详细介绍认识角和直线的关系以及计算方法。

一、角的基本概念在几何学中,角是由两条射线所形成的,其公共端点称为顶点。

射线成角的两条边,分别称为角的边。

例如,在图形中可绘制一个角ABC(∠ABC),其中AB和BC是该角的边,B为顶点。

二、角的分类根据角的大小和位置,可以将角分为三类:锐角、直角和钝角。

1. 锐角:其度数小于90度,内部较为尖锐。

2. 直角:其度数等于90度,由两条互相垂直的直线形成。

3. 钝角:其度数大于90度,内部较为扁平。

三、角与直线的关系直线与角有以下几种关系:1. 夹角:夹角是由两条直线在同一平面内以公共端点所形成的角。

如图中∠BOC即为直线AC和BD所形成的夹角。

夹角可以通过角度来度量,一般以度数为单位。

2. 对顶角:对顶角是由两条交叉直线之间的内部角所形成的,这两个角互为对顶角。

例如,在直线EF和GH的交点处形成的∠EGF和∠HGE是对顶角。

3. 同位角:同位角是指直线与其他直线相交所形成的角。

在同一直线上的两对同位角互为补角,其度数之和为180度。

例如,在直线IJ 和KL相交的点M处,∠IMK和∠LMI是同位角。

四、角的计算方法在几何学中,我们常需要计算角的度数。

以下是一些常用的角度计算方法:1. 使用直尺和量角器:直尺可以帮助我们测量角的边,而量角器则可以帮助我们测量角的度数。

2. 使用三角函数:三角函数是一种常用的计算角度的方法。

例如,正弦、余弦和正切等三角函数可以帮助我们计算角度的大小。

3. 利用三角形的性质:在一些特殊的三角形中,我们可以利用三角形的性质计算角的度数。

例如,在等边三角形中,三个角的度数都是60度;在等腰三角形中,底角是顶角的一半。

五、总结通过本文的介绍,我们了解了角的基本概念和分类,并详细了解了角与直线的关系以及计算方法。

倒计时24天-----二面夹角,三面可解

倒计时24天-----二面夹角,三面可解

倒计时24天-----二面夹角,三面可解浙大附中—叶保松学一招备考秘籍:二面角的计算是高中立体几何的一大难点,一般有定义法,三垂线法,向量法等一方法,对于一般空间想象力不足的同学来说,是一大挑战。

如果和动态立体几何结合二面角, 那么它就是很多同学的噩梦。

现在我们介绍开发一个简单易懂的方法给大家,帮助大家提高处理二面角的能力。

如图,CM α⊥,MN AN ⊥,设1MAC θ∠=,2MAN θ∠=,3NAC θ∠=,4MNC θ∠=,其中 4θ为二面角。

特殊的三面角定理:123423cos cos cos cos sin sin θθθθθθ-⋅=⋅证明:在上图三棱锥C MNA -中的每个面都是直角三角形,很容易用边长表示出上面的三角式即可证明。

一般的三面角定理:如图三棱锥D ABC -中,我们把二面角D AB C --的平面角设为4θ,1DAC θ∠=,2DAB θ∠=,3CAB θ∠=则有:123423cos cos cos cos sin sin θθθθθθ-⋅=⋅证明:由于证明过于复杂,在这里略去。

典例精析:例1.((2015•浙江)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 折成△A ′CD ,所成二面角A ′﹣CD ﹣B 的平面角为α,则( )讲解:在二面角A′﹣CD ﹣B 中以D 为顶点采用三面角定理,(设BDC β∠=),得:()()cos cos cos cos sin sin A βπβαβπβ'∠-⋅-=⋅-,整理得21cos sin 11cos A DBβα'+∠=≤+1cos 1cos A DB α'+∠≤+, 根据单调性所以∠A′DB≥α。

评注:本题为2015年浙江高考压轴选择题,看似简单,实在真正的搞懂并不容易。

而且大 家还发现D 是AB 的中点这个条件实则多余。

有兴趣的同学可以拿我这个解答对照标准答案, 对比学习才能有进步。

异面直线所成的二面角的求法

异面直线所成的二面角的求法

一、空间角说明:以下涉及的点均为所属线或面上的任意点。

在可以建立空间坐标系的前提下,以下的点的坐标可求出。

1.异面直线所成的角点A ,B 直线a,C ,D 直线b 。

构成向量。

∈∈CD AB ,所对应的锐角或直角即为直线a(AB)与><CD AB CDAB CD AB ,,cos b(CD)所成的角。

例1.如图,已知直棱柱ABC-A 1B 1C 1,在ABC 中,∆CA=CB=1,,棱AA 1=2,求异面直线90=∠BCA BA 1,CB 1所成的角。

2.线面所成的角与的角所对应的锐角的余角或直角即为直线AP 与平面所成的角,所以AP n αθAP与的角的余弦值的绝对值为直线AP 与平面所成的角的正弦值。

n α><=∴n AP ,cos arcsin θ例2.棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为C 1D 1、B 1C 1的中点,(1)求证:E 、F 、B 、D 共面;(2)求点A 1D 与平面EFBD 所成的角。

3.二面角的求法二面角,平面的法向量,平面的法向量。

,则二面βα--l αm βn θ>=<n m ,QQQD QQQQ1Q11EF角的平面角为或π。

βα--l θθ-所以,(不要选择起点在棱上),nm n m <,cos 当两个法向量的方向都向二面角内或外时,则为二面角的平面角的补角;当><n m ,两个法向量的方向一个向二面角内,另一个向外时,则为二面角的平面角。

><n m ,例2.如图,平面ABCD ,ADE 是等边三角形,ABCD ∆是矩形,F 是AB 的中点,G 是AD 的中点,EC 与平面ABCD 成300的角。

(1)求证:EG 平面ABCD ;⊥(2)若AD=2,求二面角E-FG-G 的度数;(3)当AD 的长是多少时,点D 到平面EFG 的距离为2,请说明理由。

二、1.点到面的距离点P 北京佳尚财税http://101.1.28.35/到面的距离可以看成在平面的法向量的方向上αd AP αn 的射影的长度。

高中数学北师大版选修21课件:第二章5 夹角的计算

高中数学北师大版选修21课件:第二章5 夹角的计算

所以P→A·D→A=P→A·A→B=P→A·B→C=0,
因为 AB⊥AD,所以A→B·D→A=0,
因为 AB⊥BC,所以A→B·B→C=0,
所以P→B·D→C=
(P→A+A→B)·(D→A+A→B+B→C
)=A→B2=
→ |AB
|2

1,
又因为|P→B|= 2,|C→D|= 2,
所以 cos〈P→B,D→C〉=P→→B·→D→C= |PB||DC|
小.( × )
2.已知直线 l1 的一个方向向量为 a=(1,-2,1),直线 l2 的 一个方向向量为 b=(2,-2,0),则两直线所成角的余弦值为
(D )
A.1
B. 6 3
C. 3 3
解析:选设两直线夹角为 θ,
则 cos θ= |a·b| = 2+4 = 3.
|a|·|b| 6·2 2 2
BD⊥b,且AB=2,CD=1,则a与b所成的角是__6_0_°___.
解析:A→B=A→C+C→D+D→B,
所以A→B·C→D=(A→C+C→D+D→B)·C→D
=A→C·C→D+C→D2+D→B·C→D=
0+
12+
0=
1,又
|A→B|=
2,
→ |CD|
=1.
所以 cos〈A→B,C→D〉=A|→A→BB·||C→C→DD|=2×1 1=12.
第二章 空间向量与立体几何
§5 夹角的计算
5.1 直线间的夹角 5.2 平面间的夹角 5.3 直线与平面的夹角
1.问题导航 (1)两异面直线的夹角与两异面直线方向向量的夹角有什么关 系? (2)两平面的夹角与两平面法向量的夹角有什么关系? (3)直线与平面的夹角和该直线的方向向量与该平面的法向量 的夹角有什么关系?

角度的认识与计算

角度的认识与计算

角度的认识与计算角度作为几何学中的重要概念,对于我们认识和理解空间和形状非常关键。

通过正确的角度认识和计算,我们可以完成各种几何问题的解答和应用。

本文将介绍角度的基本概念、角度的计量单位、角度的计算方法以及角度在日常生活和工作中的应用。

一、角度的基本概念在几何学中,角度是描述物体或者空间的两条线或者两个面之间的旋转程度的度量。

角度由两条直线(射线)共同围成,其中一条直线称为始边,另一条直线称为终边。

始边不动,终边按照规定的方向旋转所经过的路径就构成了一个角度。

二、角度的计量单位常用的角度计量单位有度(°)和弧度(rad)。

度是角的基本单位,一个圆周等分为360度,每一度又可以进一步等分为60分,每一分可以再等分为60秒。

弧度是指从圆心处到圆上某一点所对应的圆心角所对应的弧长与半径的比值。

一个圆的圆心角为360度或2π弧度。

三、角度的计算方法1. 利用直尺和量角器:将量角器始边放在角的始边上,然后按照角的终边方向固定量角器的位置,最后读取量角器上指示的数值,即为角度的度数。

2. 利用三角函数:三角函数是计算角度的重要工具,其中最常见的三角函数有正弦(sin)、余弦(cos)和正切(tan)。

通过这些三角函数的计算和运用,可以求解各种复杂的角度问题。

四、角度在日常生活和工作中的应用1. 建筑与设计:角度的准确计算在建筑和设计领域具有重要意义。

建筑师和设计师需要准确测量和计算角度,以确保建筑物和设计产品的准确性和稳定性。

2. 地理和导航:地理和导航中的方位和角度计算对于人们的旅行和导航至关重要。

通过地图和指南针等工具,我们可以根据角度计算和确定前进方向和目的地的位置。

3. 机械工程:在机械工程领域,角度计算是设计和制造机械零件和装置的基础。

合适的角度计算和设计可以提高机械设备的效率和性能。

4. 物理学和工程学:在物理学和工程学领域,角度的概念和计算方法是解决各种物理和工程问题的重要手段。

光学、力学和电子学等学科都需要角度的准确计算和应用。

初一地理地图计距离方法

初一地理地图计距离方法

初一地理地图计距离方法地理是关于地球的研究科学,而地图则是地理学中常用的工具。

通过地图,我们可以更好地理解和分析地球上的各种现象和关系。

而在地理学习的过程中,计算距离是一项非常重要的技巧。

本文将介绍初一地理学习中常用的几种计算距离的方法。

一、比例尺计算比例尺是地图上显示距离与实际距离之间的比例关系。

在地图上通常有一个比例尺尺度的指示,如1:10000。

这意味着地图上的1cm实际上相当于10000cm(或100m)的实际距离。

通过比例尺,我们可以简单地计算地图上两点之间的距离。

例如,如果地图上两点的距离为5cm,而比例尺为1:10000,则实际距离为5cm × 10000 = 50000cm = 500m。

因此,两点之间的实际距离是500m。

二、使用经纬度计算经纬度是地球表面上一个点的坐标。

经度表示东西方向的位置,以子午线为基准,最大值为180度,分别用E表示东经和W表示西经。

纬度表示南北方向的位置,以赤道为基准,最大值为90度,分别用N 表示北纬和S表示南纬。

通过经纬度,我们可以计算两个点之间的距离。

这种方法通常适用于全球范围内的距离计算。

常用的经纬度计算距离的公式有球面三角法和海卡公式。

通过这些公式,我们可以准确地计算两点之间的球面距离。

三、使用方位角和距离计算方位角和距离计算适用于地图上的直线距离。

方位角是从一个点指向另一个点的方向角度,通常以北为参考。

通过方位角和距离,我们可以计算直线距离。

首先,确定两点之间的方位角。

然后,使用三角关系计算直线距离。

这种方法适用于地图上近距离的两点计算。

四、使用网格计算网格是地图上的方格,用于帮助确定位置和测量距离。

通过网格计算,我们可以估算两点之间的距离。

首先,确定两点所在的方格。

然后,通过计算两点在方格中的行数和列数之差,以及每个方格的大小,可以估算出两点之间的距离。

总结:初一地理学习中,我们可以通过比例尺计算、使用经纬度计算、方位角和距离计算以及网格计算等方法来计算距离。

使用角度计进行准确测量的方法

使用角度计进行准确测量的方法

使用角度计进行准确测量的方法导语:角度计是一种常用的测量工具,在很多领域都有着重要的应用。

通过合理的使用角度计,我们可以准确地测量出物体之间的夹角,从而解决很多实际问题。

本文将探讨使用角度计进行准确测量的方法,希望能对大家有所启发。

一、使用角度计之前的准备工作在使用角度计进行准确测量之前,我们需要进行一些准备工作。

首先,确保角度计的表面平整,没有损坏或划痕,以免影响测量的准确性。

其次,保持测量环境的稳定,避免强风或外力的干扰。

最后,校准角度计,在使用之前进行校正,以保证测量结果的准确性。

二、使用角度计的基本步骤使用角度计进行准确测量的基本步骤如下:1. 将角度计放置在待测量物体上,并确保其与物体表面平行。

2. 调整角度计的刻度,使其与参考线对齐。

3. 通过目视或观察读取角度计上的刻度数值。

4. 将读取到的刻度数值记录下来,作为测量结果。

三、使用角度计测量垂直角测量垂直角是角度计的常见应用之一。

在建筑工程中,测量两面墙壁之间的垂直角可以确保建筑物的竖直度。

使用角度计进行垂直角测量的方法如下:1. 将角度计的底部与一面墙壁接触,并调整刻度,使其与水平线对齐。

2. 慢慢将角度计转动至另一面墙壁,同时观察读取刻度数值。

3. 读取刻度数值后,可以通过简单的几何计算得到墙壁之间的垂直角度。

四、使用角度计测量倾斜角角度计也可以用于测量物体的倾斜角度。

在建筑工程中,测量屋顶的倾斜角度可以帮助工人计算出正确的坡度。

使用角度计进行倾斜角测量的方法如下:1. 将角度计的底部与待测量物体的底部接触,并调整刻度,使其与水平线对齐。

2. 慢慢将角度计沿着物体表面转动至顶部,同时观察读取刻度数值。

3. 读取刻度数值后,可以通过几何计算得到物体的倾斜角度。

五、使用角度计进行复杂测量除了测量垂直角和倾斜角之外,角度计还可以进行更复杂的测量。

在机械加工中,我们常常需要测量零件之间的角度,以确保装配的精度。

在这种情况下,我们可以使用角度计的参考刻度线和零件表面进行测量。

角的测量教案二:说明如何通过工具进行角的测量

角的测量教案二:说明如何通过工具进行角的测量

角的测量教案二:说明如何通过工具进行角的测量角是几何学中非常重要的一个概念,从初中开始我们就要学习如何计算角的大小和角所对的弧长等问题,而角的测量是入门的基础。

在马克思主义基本原理概论中,列宁曾经说过:“没有科学实践的理论,就会变得无根据;而没有合乎辩证法要求的理论指导,科学实践就会变得盲目。

”本文将从实践中入手,说明如何通过工具进行角的测量。

第一部分:工具介绍进行角的测量,得了解角度计和量角器两个工具。

1.角度计角度计是一种可以测量角度大小的仪器。

它的结构是由一条标尺和一个可以向两边旋转的半圆形组成。

半圆形一般被分为360个单位,当它被旋转到某一角度时,我们就可以读出角度。

角度计可以分为两种:一种是普通角度计,是用来测量平面内的角度的;另一种是测量斜面上的角度的倾角计。

2.量角器量角器是另一种可以测量角度大小的工具。

量角器通常是由一个半圆形和一根刻度尺组成。

半圆形被分为180个单位,当我们将它放在一个角上时,我们可以用刻度尺读出角度大小。

第二部分:如何使用工具我们就来学习如何使用角度计和量角器这两个工具进行角的测量。

1.使用角度计来测量角度(1)准备工作在使用角度计时,需要确定拍印点,即将角度计的两个腿放在测量对象的两个边上,并通过拍印点将角度计压紧。

(2)测量方法将角度计放在需要测量的角上,并通过拍印点将角度计压紧。

同时,通过目测和感受手感来确定半圆形旋转到了合适的角度。

读出角度。

2.使用量角器来测量角度(1)准备工作在使用量角器时,同样需要确定拍印点,将量角器的两条“腿”各放在角的两个端点上,并通过拍印点将量角器与直线对齐。

(2)测量方法将量角器放在需要测量的角上,并通过拍印点与直线对齐。

利用刻度尺读出角度大小。

第三部分:注意事项在进行角的测量时,我们需要注意以下几点:1.测量的居中使用角度计和量角器进行角的测量时,需要注意要将测量工具放正,同时角的两条腿和测量工具要在同一平面内。

2.测量垂直合理用量角器测量直角时,两条腿应该接近120度,否则误差会大。

角的作用教案二

角的作用教案二

角的作用教案二!一、角的定义角,是由两条射线共同确定的一个平面内的图形部分。

线称为角的两边,它们的公共端点称为角的顶点。

我们可以根据不同的度数来划分不同类型的角。

二、角的作用1.计量角度角是计量角度的重要工具。

我们经常用角来计算各种度数,例如:一个平面内,从0°到90°有多少角度?这个角度是多少度?其实,这些计算都离不开角这个基本概念。

另外,当我们需要分成不同的几份时,也可以通过角来计算。

例如:在一个平面内,如何将它分成四份?通过画出45° 的角,就可以轻松地划分出四等分的平面。

2.指引方向在日常生活中,角还有一个非常重要的作用。

它可以指引我们前进的方向。

例如,当我们在驾驶时,通过转动车辆的方向盘,也就是改变车轮角度的大小和方向,从而改变车辆的行驶方向。

同时,当我们需要规划航班的飞行路线时,也需要根据角度的大小和方向进行测算。

这些角度的准确测量,对于飞行安全起着至关重要的作用。

3.工程设计在架构和设计建筑物时,角也扮演着至关重要的角色。

通过使用角度和角的重要作用,我们可以计算出需要的角度和角的大小,从而决定建筑物的结构安全性。

在桥梁或建筑物的建设中,角度的准确计算可以决定着最终建筑物的稳定和可靠性。

4.游戏娱乐角也常常被用来作为娱乐游戏的重要元素。

例如,在棋类游戏中,棋子移动的路线以及走法方向,均需要根据角度的大小来计算。

此外,在一些益智类游戏中,计算角度和角的大小也成为游戏的难点之一。

三、角的种类根据度数的范围,我们可以将角分为以下五种类型:1.锐角:锐角的度数在0°到90° 之间。

2.直角:直角的度数为90°。

3.钝角:钝角的度数在90°到180° 之间。

4.平角:平角的度数为180°。

5.全角:全角的度数为360°。

四、如何准确计算角的大小在进行角度计算时,我们可以采用多种方法。

下面介绍两种常用的方法:1.直接测量法直接测量法是较为简单的方法。

沪教四年级上册数学角的度量与计算

沪教四年级上册数学角的度量与计算

角的度量与计算【知识点】1、角的特征角有一个顶点,两条边,如下图角通常用符号“∠”来表示上图中的两个角表示为:∠1 ,∠2;读作:角 1 ,角22、角的大小比较:角的计量单位是“度”,符号“°”,把半圆平分成180 等份,每一份所对的角的大小是l 度。

记做1°。

角大小的测量借助量角器,如下图。

测量方法:1)量角注意两对齐:量角器的中心和角的顶点对齐;量角器的0刻度线和角的一条边对齐。

2)做到两对齐后看角的另一条边对着刻度线几,这个角就是几度。

3)看刻度要分清内外圈。

这里我教大家一个小窍门:分清内外圈,紧跟0刻度;0刻度在外圈就看外圈的刻度。

0刻度在内圈就看内圈的刻度。

牢牢记住不忘记。

注意:角的大小与角的两边画出的长短没关系。

角的大小要看两条边叉开的大小,叉开得越大,角越大。

5、角的分类:锐角<90°,直角=90°,90°<钝角<180°,平角=180°=2个直角,周角=360°=2个平角=4个平角6、画角步骤:以画65°的角为例(1)画一条射线,使量角器的中心和封线的端点重合,0 刻度线和射线重合。

(2)在量角器65°刻度线的地方点一个点。

(3)以画出的射线的端点为端点,通过刚画的点,再画一条射线。

【课堂练习】一、我会填。

(1)钟面上的时针和分针2时成()角,3时成()角,6时成()角。

(2)我们学过的角有()角、()角、()角、()角、()角。

1平角=()度=()直角1周角=()度=()平角=()直角(3)∠1与∠2的和是184°,∠2=54°,那么∠1=( )。

∠1+∠2+∠3=180°,其中∠1=52°,∠2=46°,那么∠3=( )。

∠1是∠2的3倍,∠1=120°,∠2=( )。

(4)从一点引出两条()所组成的图形叫做角,这一点叫做角的(),这两条射线叫做角的()。

小学四年级数学上册第二单元角

小学四年级数学上册第二单元角

小学四年级数学上册第一单元——角盐城市第一小学江苏省特级教师嵇宪长知识梳理难点剖析例1下图中,已知∠1=30°,那么∠2、∠3、∠4分别是多少度?思维流程:∠1+∠2=180°→∠2=180°-∠1→∠2=150°∠1+∠4=180°→∠4=180°-∠1→∠4=150°∠1+∠2=180°→∠2+∠3=180°→∠1=∠3=30°解:∠2=180°-∠1→∠2=150°∠4=180°-∠1→∠4=150°∠1=∠3=30°小结:请注意总结上面四个角的度数规律,并在解题中熟练运用。

例2 数一数,图中有多少个三角形。

思维流程:→5+4+3+2+1=15(个)→5(个)→5+4+3+2+1=15(个)解:(5+4+3+2+1)×2+5=15×2+5=35(个)答:图中共有35个三角形。

小结:数较复杂的图形个数时,可先把图形进行合理的分解,计数出每一部分图形的个数,再相加就可以了。

小学四年级数学上册第二单元《角》测试卷一、填空。

(每空1分,计25分)1.在线段、射线、直线中,()能量出它的长度,()没有端点,()有一端可以无限延长。

2.我们用的一副三角尺是由两个不一样的三角形组成。

其中一个三角尺三个角的度数分别是()、()、(),另一个三角尺的三个角的度数分别是()、()、()。

我们戴的的红领巾上有一个()角,两个()角。

3.从4:00到4:15,分针转动了()度。

6时整,时针和分针形成()角。

4.在一张纸上,经过一点可以画()条直线,经过两点可以画()条直线。

连接A、B两点的线段长叫做A、B两点间的()。

5.把序号填在括号里。

()是直线,()是射线,()是线段。

6.角的大小要看两条边()的大小,和所画的边的长短()。

7.数一数,图中一共有()个三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二面角的计算
1、三棱锥A-BCD中,AC=AB=BD=DA=2,BC=CD=3,
(1)二面角A-BD-C所成角的余弦值为
(2)二面角B-AC-D所成角的余弦值为
2、在四棱锥P-ABCD中,ABCD是正方形,
PA⊥平面ABCD,PA=AB=a,求二面角D
PC
B-
-的
大小。

3、如图,在棱长为a的正方体ABCD—A1B1C1D1中,求
(1)面A1ABB1与面ABCD所成角的大小;
(2)二面角C1—BD—C的正切值。

4、在四棱锥P-ABCD中,ABCD是平行四边形,
PA⊥平面ABCD,a
AB
PA=
=,∠ABC=30°,求二面角
P-BC-A的正切值。

5、在直角梯形ABCD中,∠D=∠BAD=90°,
AD=DC=
2
1
AB=a,将△ADC沿AC折起,使D到D’。

若二
面角D’―AC―B为直二面角,求二面角A―BC―D’的大小。

6、如图,在底面为直角梯形的四棱锥,
//
,BC
AD
ABCD
P中
-
,
90︒
=
∠ABC PA⊥平面ABCD,3
2
,2
,3=
=
=AB
AD
PA,BC=6.
(1)求证:;
PAC
BD平面

(2)求二面角A
BD
P-
-的大小.
1
2
P A A D D C
==
=
7、直二面角D—AB—E中,四边形ABCD是边长为2的正方形,
AE=EB,F为CE上的点,且BF⊥平面ACE。

(1)求证:AE⊥平面BCE;
(2)求二面角B—AC—E所成角的正弦值;
8、三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,
AB=BC,D是PB上一点,且CD⊥平面PAB.
(1) 求证:AB⊥平面PCB;
(2) 求二面角C-PA-B的正弦值.
9、已知四棱锥ABCD
P-的底面为直角梯形,//
A B D C,

=
∠PA
DAB,
90 底面A B C D,且,
1
AB=,M是P B的中点
(1)证明:面P A D⊥面PC D;
(2)求二面角B
MC
A-
-所成角的余弦值
(3)求二面角B
AC
M-
-所成角的正切值
10、如图,平面P C B M⊥平面ABC,90
P C B
∠=︒,
//
PM BC,直线A M与直线P C所成的角为60°,
又1
A C=,22
B C P M
==,90
A C B
∠=︒.
(1)求证:A C B M
⊥;
(2)求二面角M A B C
--所成角的正切值
(3)求多面体PM ABC的体积.
Q
O N P
E
D
C
B
A
M 11、三棱柱ABC —A 1B 1C 1中,侧棱与底面垂直,∠ABC=90°,
AB=BC=BB 1=2,M ,N 分别是AB ,A 1C 的中点。

(1)求证:MN//平面BCC 1B 1; (2)求证:MN ⊥平面A 1B 1C 1;
(3)求二面角M —B 1C —A 1的余弦值。

12、如图所示的几何体ABCDE 中,⊥DA 平面EAB ,
DA CB //,CB AB DA EA 2===,AB EA ⊥,M 是EC 的中点. (1)求证:EB DM ⊥;
(2)求二面角A BD M --的余弦值.
13、已知在四棱锥P A B C D -中,底面A B C D 是矩形,且2AD =,
1AB =,P A ⊥平面A B C D ,E 、F 分别是线段A B 、B C 的中
点.
(1)证明:PF FD ⊥;
(2)判断并说明P A 上是否存在点G ,使得E G ∥平面PFD ; (3)若P B 与平面A B C D 所成的角为45 ,
求二面角A PD F --的
余弦值.。

相关文档
最新文档