2003年北京市数学中考试题附答案

合集下载

2003年北京中考数学含答案

2003年北京中考数学含答案

北京市2003年数学中考试题一、选择题(共14个小题,每小题4分,共56分)1.-5的绝对值是(A) 5 (B) 15 (C) -15 (D) -52.3-2计算的结果是(A) -9 (B) -6 (C) - 19 (D) 193.计算a 3·a 4的结果是(A) a 12 (B) a (C) a 7 (D) 2a 34.2002年我国发现首个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为(A) 6×102亿立方米 (B) 6×103亿立方米 (C) 6×104亿立方米 (D) 0.6×104亿立方米5.下列图形中,不是中心对称图形的是(A) 菱形 (B) 矩形 (C) 正方形 (D) 等边三角形 6.如果两圆的半径分别为3cm 和5cm ,圆心距为10cm ,那么这两个圆的公切线共有(A) 1条 (B) 2条 (C) 3条 (D) 4条7.如果反比例函数y =kx 的图象经过点P(-2,3),那么k 的值是(A) -6 (B) - 32 (C) - 23(D) 68.在△ABC 中,∠C=90°,如果tanA =512 ,那么sinB 的值等于(A) 513 (B) 1213 (C) 512 (D) 1259.如图,CA 为⊙O 的切线,切点为A ,点B 在⊙O 上,如果∠CAB =55o,那么∠AOB 为(A) 55o(B) 90o(C) 110o(D) 120oABOC第9题图· BCDA O E第13题图10.如果圆柱的底面半径为4cm ,母线长为5cm ,那么它的侧面积等于(A) 20πcm 2 (B) 40πcm 2 (C) 20 cm 2 (D) 4 0 cm 211.如果关于x 的一元二次方程kx 2-6x +9=0有两个不相等的实数根,那么k 的取值范围是(A) k <1 (B) k ≠0 (C) k <1且k ≠0 (D) k >112.在抗击“非典”时期的“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数的记录如下表:在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是(A) 68,65 (B) 55,68 (C) 68,57 (D) 55,5713.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =10,CD =8,那么AE 的长为(A) 2 (B) 3 (C) 4 (D) 514.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升, 那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是二、填空题(共4个小题,每小题4分,共16分)15.在函数y =x +3 中,自变量x 的取值范围是___________.16.如图,在等边三角形ABC 中,点D 、E 分别在AB 、AC 边上,且DE ∥BC ,如果BC =8cm ,AD:AB =1:4,那么△ADE 的周长等于________cm .日 期 答题个数 5月8日 5月9日 5月10日 5月11日 5月12日 5月13日 5月14日 68555056544868h(米) O 106 13510 (A )t(天) t(天) h(米)O 106 13510 (B )h(米)t(天) O 106 13510 (C )h(米)t(天)O 10613510 (D )17.如图,B、C是河岸边两点,A是对岸岸边一点,测得∠ABC=45o,∠ACB=45o,BC=60米,则点A到岸边BC的距离是_______米.18.观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,…….猜想:第n个等式(n为正整数)应为____________________________.三、(共3个小题,共14分)19.(本小题满分4分)分解因式:x2-2xy+y2-920.(本小题满分4分)计算:12 +1-8 +( 3 -1)0ADB CE第16题图AB C第17题图21.(本小题满分6分)用换元法解方程:x2-3x+5+6x2-3x=0四、(本题满分5分)22.如图,在ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).⑴连结______________.⑵猜想:____________ = ____________.⑶证明:·DAB CF E五、(本题满分6分)23.列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.六、(本题满分7分)24.已知:关于x的方程x2-2mx+3m=0的两个实数根是x1,x2,且(x1-x2)2=16.如果关于x的另一个方程x2-2mx+6m-9=0的两个实数根都在x1和x2之间,求m的值.七、(本题满分8分)25.已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3.⑴求证:AF=DF;⑵求∠AED的余弦值;⑶如果BD=10,求△ABC的面积.AFMBD C E八、(本题满分8分)26.已知:抛物线y =ax 2+4ax +t 与轴的一个交点为A(-1,0).⑴ 求抛物线与x 轴的另一个交点B 的坐标;⑵ D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式; ⑶ E 是第二象限内到x 轴、y 轴的距离的比为5:2的点,如果点E 在⑵中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.2003北京市中考数学试题答案第I 卷 (机读卷 共56分) 一. 选择题(共14个小题,每小题4分,共56分) 1. A 2. D 3. C 4. B 5. D 6. D 7. A8. B 9. C10. B 11. C 12. A 13. A 14. B第II 卷(非机读卷 共64分)二. 填空题(共4个小题,每小题4分,共16分) 15. x ≥-3 16. 6 17. 30 18. 91109()n nn -+=-(或911011()()nn n -+=-+)三. (共3个小题,共14分)19. (本小题满分4分)分解因式:x x y y 2229-+-解:x x y y 2229-+-=--()xy 292分=-+--()()x y x y 33 4分20. (本小题满分4分)计算:1218310+-+-()解:1218310+-+-()=--+21221 3分 =-24分21. (本小题满分6分)用换元法解方程x x x x2235630-++-=解:设x x y23-=,1分则原方程化为y y++=562分∴++=y y 2560解得y y 1223=-=-,3分当y =-2时,x x 232-=-∴-+=x x 2320解得x x 1212==, 4分当y =-3时,x x 233-=-∴-+=xx 2330 ∆=-<9120,∴此方程无实数根。

往年北京市中考数学真题及答案

往年北京市中考数学真题及答案

往年北京市中考数学真题及答案一. 选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.9-的相反数是A.19-B.19C.9-D.92.首届中国(北京)国际服务贸易交易会(京交会)于往年年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A.96.01110⨯B.960.1110⨯C.106.01110⨯D.110.601110⨯3.正十边形的每个外角等于A.18︒B.36︒C.45︒D.60︒4.右图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A.16B.13C.12D.236.如图,直线AB,CD交于点O,射线OM平分AOC∠,若76BOD∠=︒,则BOM∠等于A.38︒B.104︒C.142︒D.144︒7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120 140 160 180 200 户数 2 3 6 7 2A.180,160 B.160,180 C.160,160 D.180,1808. 小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t ( 单位:秒),他与教练的距离为y ( 单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的 A .点MB .点NC .点PD .点Q二. 填空题( 本题共16分,每小题4分) 9. 分解因式:269mn mn m ++= .10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是 . 11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边40cm DE =,20cm EF =,测得边DF 离地面的高度1.5m AC =,8m CD =,则树高AB = m .12.在平面直角坐标系xOy 中,我们把横 . 纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部( 不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n ( n 为正整数)时,m = ( 用含n 的代数式表示.)三. 解答题( 本题共30分,每小题5分) 13.计算:()11π3182sin 458-⎛⎫-+-︒- ⎪⎝⎭.14.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,15.已知023a b =≠,求代数式()225224a ba b a b -⋅--的值.16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,.求证:BC ED =.17.如图,在平面直角坐标系xOy 中,函数()40y x x=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.( 1)求一次函数的解析式;( 2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足PAB △的面积是4,直接写出点P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四. 解答题( 本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC BD ,交于点E ,9045302BAC CED DCE DE ∠=︒∠=︒∠=︒=,,,,22BE =.求CD 的长和四边形ABCD 的面积.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE . ( 1)求证:BE 与O ⊙相切;( 2)连结AD 并延长交BE 于点F ,若9OB =,2sin 3ABC ∠=,求BF 的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:( 1)补全条形统计图并在图中标明相应数据;( 2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米? ( 3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.操作与探究:( 1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数北京市轨道交通已开通线路相关数据统计表(截至2010年底) 开通时间 开通线路 运营里程(千米) 1971 1号线 31 1984 2号线 23 2003 13号线 41 八通线 19 2007 5号线 28 20088号线 5 10号线 25 机场线 28 20094号线 28 2010房山线 22 大兴线22 亦庄线 23 昌平线 21 15号线20是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;( 2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每 个点的横. 纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位( 00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。

2003年中考数学试卷

2003年中考数学试卷

2003年中考数学试卷
2003年中考数学试卷指的是在2003年中考中使用的数学科目的试卷。

这份试卷将由当地教育部门或考试机构组织专家进行命题,并按照中考数学科目的要求进行设计。

以下是 2003年中考数学试卷具体的题目示例:
选择题1:若关于 x 的一元二次方程 x^2 + 4x + k - 1 = 0 有两个不相等的实数根,则 k 的取值范围是 ()
A. k < 5
B. k > 5
C. k < -5
D. k > -5
选择题2:下列图形中,是轴对称图形但不是中心对称图形的是 ()
A. 正三角形
B. 正方形
C. 正五边形
D. 正六边形
填空题1:计算:√4 + | -2| - (1/2)^(-1) = ___.
填空题2:若反比例函数 y = (m - 1)/x 的图象在每一个象限中,y随着x 的增大而减小,则m的取值范围是 ___.
计算题1:计算:(π - 3)^0 - 4sin 45° + | -2| + (1/3)^(-1).
计算题2:解方程组:{ 3x + y = 2, 4x - 3y = 15 }.
总结:2003年中考数学试卷指的是在2003年中考中使用的数学科目的试卷。

这份试卷旨在测试学生对数学基础知识的掌握程度和问题解决能力,通过选择题、填空题和计算题等多种题型进行考查。

考生需要通过系统的数学学习和复习,掌握基础知识和应试技巧,以提高自己的数学水平,应对这份试卷的挑战。

北京市历年中考数学试题(含答案)

北京市历年中考数学试题(含答案)

历年中考数学试题附参考答案(含答案)2010年北京市高级中等学校招生考试 数 学 试 卷一、选择题(本题共32分,每小题4分) 1、-2的倒数是 A. 21-B. 21C. -2D. 22、2010年6月3日,人类首次模拟火星载人航天飞行试验“火星―500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的“火星之旅”.将12480用科学计数法表示应为A. 31048.12⨯ B. 5101248.0⨯ C. 410248.1⨯ D. 310248.1⨯ 3、如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,若AD :AB=3:4,AE=6,则AC 等于A. 3B. 4C. 6D. 8 4、若菱形两条对角线长分别为6和8,则这个菱形的周长为 A. 20 B. 16 C. 12 D. 105、从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是 A.51 B. 103C. 31D. 21 6、将二次函数322+-=x x y 化成的k h x y +-=2)(形式,结果为A. 4)1(2++=x y B. 4)1(2+-=x y C. 2)1(2++=x y D. 2)1(2+-=x y 7、10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x 、乙x ,身高的方差依次为2甲S 、2乙S ,则下列关系中完全正确的是A. 甲x =乙x ,2甲S >2乙S B. 甲x =乙x ,2甲S <2乙S C. 甲x >乙x ,2甲S >2乙S D. 甲x <乙x ,2甲S <2乙S 8、美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下列四个示意图中,只有一个....符合上述要求,那么这个示意图是二、填空题(本题共16分,每小题4分)9、若二次根式12-x 有意义,则x 的取值范围是____________. 10、分解因式:m m 43-=________________.11、如图,AB 为⊙O 直径,弦CD ⊥AB ,垂足为点E ,连结OC ,若OC =5,CD =8,则AE =______________.12、右图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_____________;当字母C 第201次出现时,恰好数到的数是____________;当字母C 第12+n 次出现时(n 为正整数),恰好数到的数是_______________(用含n 的代数式表示). 三、解答题(本题共30分,每小题5分) 13、计算:60tan 342010)31(01--+--14、解分式方程 212423=---x x xA BC DE15、已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC . 求证:∠ACE =∠DBF .16、已知关于x 的一元二次方程0142=-+-m x x 有两个相等的实数根,求m 的值及方程的根.17、列方程或方程组解应用题2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.18、如图,直线32+=x y 与x 轴交于点A ,与y 轴交于点B . (1)求A ,B 两点的坐标;(2)过点B 作直线BP 与x 轴交于点P ,且使OP =2O A ,求△ABP 的面积.AD四、解答题(本题共20分,每小题5分)19、已知:如图,在梯形ABCD 中,AD ∥BC ,AB =DC =AD =2,BC =4.求∠B 的度数及AC 的长.20、已知:如图,在△ABC 中,D 是AB 边上一点,⊙O 过D 、B 、C 三点,∠DOC =2∠ACD =90°. (1)求证:直线AC 是⊙O 的切线;(2)如果∠ACB =75°,⊙O 的半径为2,求BD 的长.21、根据北京市统计局公布的2006―2009年空气质量的相关数据,绘制统计图如下:220230 240250290280270 260 2006―2009年北京全年市区空气质量达到二级和好于二级的天数统计图 . ... 241 246 274285(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是_______年,增加了_____天;(2)表1是根据《中国环境发展报告(2010)》公布的数据绘制的2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%);表1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计图(3)根据表1中的数据将十个城市划分为三个组,百分比不低于95%的为A 组,不低于85%且低于95%的为B 组,低于85%的为C 组.按此标准,C 组城市数量在这十个城市中所占的百分比为_________%;请你补全右边的扇形统计图.22、阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,AD =8cm ,BA =6cm.现有一动点P 按下列方式在矩形内运动:它从A 点出发,沿着与AB 边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当P 点碰到BC 边,沿着与BC 边夹角为45°的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹角为45°的方向作直线运动,…,如图1所示,问P 点第一次与D 点重合前...与边相碰几次,P 点第一次与D 点重合时...所经过的路径总长是多少. 小贝的思考是这样开始的:如图2,将矩形ABCD 沿直线CD 折叠,得到矩形CD B A 11.由轴对称的知识,发现E P P P 232=,E P A P 11=.请你参考小贝的思路解决下列问题:2009年十个城市空气质量达到二级和好于二级的天数占全年 天数百分比分组统计图A 组 20%(1)P 点第一次与D 点重合前...与边相碰_______次;P 点从A 点出发到第一次与D 点重合时...所经过的路径的总长是_______cm ;(2)进一步探究:改变矩形ABCD 中AD 、AB 的长,且满足AD >AB ,动点P 从A 点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上,若P 点第一次与B 点重合前...与边相碰7次,则AB :AD 的值为______. 五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23、已知反比例函数xky =的图象经过点A (3-,1). (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由;(3)已知点P (m ,63+m )也在此反比例函数的图象上(其中0<m ),过P 点作x 轴的垂线,交x 轴于点M .若线段PM 上存在一点Q ,使得△OQM 的面积是21,设Q 点的纵坐标为n ,求9322+-n n 的值.24、在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x mx m y 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上. (1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).若P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.25、问题:已知△ABC 中,∠BAC =2∠ACB ,点D 是△ABC 内一点,且AD =CD ,BD =BA .探究∠DBC 与∠ABC 度数的比值. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1)当∠BAC =90°时,依问题中的条件补全右图. 观察图形,AB 与AC 的数量关系为________________;当推出∠DAC =15°时,可进一步推出∠DBC 的度数为_________; 可得到∠DBC 与∠ABC 度数的比值为_______________.(2)当∠BAC ≠90°时,请你画出图形,研究∠DBC 与∠ABC 度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.2011年北京市高级中等学校招生考试 数 学 试 卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的1.34-的绝对值是A .43-B .43C .34-D .342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人,将665 565 306用科学记数法表示(保留三个有效数字)约为A .766.610⨯B .80.66610⨯C .86.6610⨯D .76.6610⨯ 3.下列图形中,既是中心对称图形又是轴对称图形的是 A .等边三角形 B .平行四边形 C .梯形D .矩形4.如图,在梯形ABCD 中,AD BC ∥,对角线AC 、BD 相交于点O ,若1AD =,3BC =,则AOCO 的值为A .12B .13C .14D .19则这10个区县该日气温的众数和中位数分别是 A .32,32 B .32,30 C .30,32 D .32,316.一个不透明的盒子中装有2个白球、5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为A .815B .13C .215D .1157.抛物线265y x x =-+的顶点坐标为 A .(34)-,B .(34),C .(34)--,D .(34)-,8.如图,在Rt ABC △中,90ACB ∠=︒,30BAC ∠=︒,2AB =,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设A D x =,CE y =,则下列图象中,能表示y 与x 的函数关系的图象大致是OD CBACE DBADCBA二、填空题(本题共16分,每小题4分)9.若分式8x x -的值为0,则x 的值等于_____________.10.分解因式:321025a a a -+=____________.11.若右图是某几何体的表面展开图,则这个几何体是_________. 12.在右表中,我们把第i 行第j 列的数记为i j a,(其中i ,j 都是不大于5的正整数),对于表中的每个数i ja ,规定如下:当i j ≥时,1i j a =,;当i j <时,0i j a =,.例如:当2i =,1j =时,211i j a a ==,,.按此规定,13a =,_______;表中的25个数中,共有______个1;计算111122133144155i i i i i a a a a a a a a a a ⋅+⋅+⋅+⋅+⋅,,,,,,,,,,的值为__________.三、解答题(本题共30分,每小题5分)13.计算:()1012cos30272π2-⎛⎫-+- ⎪⎝⎭。

2024年北京市中考真题数学试卷含答案解析

2024年北京市中考真题数学试卷含答案解析

2024年北京市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的判断是解题的关键.【详解】解:A 、是中心对称图形,但不是轴对称图形,故不符合题意;B 、既是轴对称图形,也是中心对称图形,故符合题意;C 、不是轴对称图形,也不是中心对称图形,故不符合题意;D 、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B .2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒【答案】B【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒-︒-=︒,故选:B .3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .5.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .14共有4种等可能的结果,其中两次都取到白色小球的结果有∴两次都取到白色小球的概率为故选:D .6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯【答案】D【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】17184105210m =⨯⨯=⨯,故选D .7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等【答案】A【分析】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,解答即可.本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是边边边原理是解题的关键.【详解】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,故选A.8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

2003年全国中考数学压轴题精选及解答-

2003年全国中考数学压轴题精选及解答-

2003年全国中考数学压轴题精选11、(2003年安徽省) (本题满分14分)如图,这些等腰三角形与正三角形的形状有差异,我们把这与正三角形的接近程度称为“正度”。

在研究“正度”时,应保证相似三角形的“正度”相等。

设等腰三角形的底和腰分别为a 、b ,底角和顶角分别为α、β。

要求“正度”的值是非负数。

同学甲认为:可用式子|a -b |来表示“正度”,|a -b |的值越小,表示等腰三角形越接近正三角形;同学乙认为:可用式子|α-β|来表示“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形。

探究:(1)他们的方案哪个较合理,为什么?(2)对你认为不够合理的方案,请加以改进(给出式子即可); (3)请再给出一种衡量“正度”的表达式β ααb b第24题图(2003年安徽省)附加题:(共两小题,每小题10分,共20分)报考理科实验班的学生必做,不考理科实验班的学生不做)1、要将29个数学竞赛的名额分配给10所学校,每所学校至少要分到一个名额。

(1)试提出一种分配方案,使得分到相同名额的学校少于4所; (2)证明:不管怎样分配,至少有3所学校得到的名额相同;(3)证明:如果分到相同名额的学校少于4所,则29名选手至少有5名来自同一学校。

如图12所示,已知A、B两点的坐标分别为(28,0)和(0,28),动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动。

动直线EF从x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于E、F点。

连结EP,设动点P与动直线EF同时出发,运动时间为t秒。

(1)当t=1秒时,求梯形OPFE的面积。

t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE的面积等于三角形APF的面积时.求线段PF的长;(3)设t的值分别取1t、2t时(1t≠2t),所对应的三角形分别为△AF1P1和△AF2P2。

试判断这两个三角形是否相似,请证明你的判断。

2003年中考试题精选

2003年中考试题精选

2003年中考试题精选1、某种空调器经3次降价,价格比原来下降了30%。

则其平均每次下降的百分比(精确到0.1%)应该是()A、26.0%B、33.1%C、8.5%D、11.2%2、北京故宫的占地面积约为721000m2,用科学记数法表示其结果是()A、7.21×105m2B、7.21×104m2C、721×103m2D、0.721×106m23、计算机是将信息转换成二进制进行处理的。

二进制即“逢二进一”如(1101)2表示二进制数,将它转化成十进制形式是321121202113⨯+⨯+⨯+=,那么将二进制的数(1111)2转化成十进制形式的数是()A、8B、15C、20D、304、下列运算正确的是()5A、1个B、2个C、3个D、4个6、若▲表示最小的正整数,●表示最大的负整数,■表示绝对值最小的有理数,则(▲+●)×■=。

7、回收废纸用于造纸可以节约木材,据专家估计,每回收1吨废纸可节约3立方米木材,那么回收a吨废纸可以节约立方米木材。

页脚内容1页脚内容28、有一大捆粗细均匀的电线,现要确定其长度的值,从中先取出1米长的电线,称出它的质量为a ,再称其余电线的总质量为b ,则这捆电线的总长度是米。

9、下表给出的是2003年6月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程的思想来研究,你发现这三个数的和不可能是()A 、69B 、54C 、40D 、27 10、如果分式方程11x m x x =++无解,则m 等于() A 、1B 、0C 、-1D 、-211、花果山景区某一景点改造工程要限期完成,甲工程队独做可提前1天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x天,则下面所列方程正确的是()12、不等式组1413422xx x->-⎧⎪⎨≥-⎪⎩的解集在数轴上表示为13、2002年世界杯足球赛的积分方法如下:赢一场得3分,平一场得1分,输一场得0分,某小组四个队进行单循环赛,其中一队积7分,该队赢了x场,平了y场,则(x,y)是()A、(1,4)B、(2,1)C、(0,7)D、(3,1)14、解方程组7,(1)12(2)x yx y+=⎧⎪⎨=⎪⎩g有两种方法:第一种方法是把方程(1)化为y=(或x=),代入(2)转化为一元二次方程解之;第二种方法是根据一元二次方程根与系数的关系,把x,y看作是方程的两个根,通过解这个方程得原方程的解。

2003年北京中考数学(含答案)

2003年北京中考数学(含答案)
五.(本题满分6分)
23.列方程或方程组解应用题:
在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:
甲同学说:“二环路车流量为每小时10000辆”;
乙同学说:“四环路比三环路车流量每小时多2000辆”;
10.如果圆柱的底面半径为4cm,母线长为5cm,那么它的侧面积等于
(A) 20πcm2(B) 40πcm2(C) 20 cm2(D) 4 0 cm2
11.如果关于x的一元二次方程kx2-6x+9=0有两个不相等的实数根,那么k的取值范围是
(A) k<1(B) k≠0 (C) k<1且k≠0 (D) k>1
(A) 2 (B) 3 (C) 4 (D)5
14.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h(米)随时间t(天)变化的是
二、填空题(共4个小题,每小题4分,共16分)
15.在函数y= 中,自变量x的取值范围是___________.
(1)求证:
(2)求 的余弦值;
(3)如果BD=10,求 的面积。
解法一:
(1)证明: 平分
DE是半圆C的直径
2分
(2)解:连结DM
是半圆C的直径
可设 ,由勾股定理,得DE=5x
由切割线定理的推论,得
4分
在 中
5分
(3)解:过A点作 于N


在 中
解得 7分
8分
解法二:
(1)证明:同解法一(1)
(2)解:过A点作 于N

北京市2003年中考试卷

北京市2003年中考试卷

北京市2003年中考试卷一、选择题(共14个小题,每小题4分,共56分.在每个小题给出的四个备选答案中,只有一个是符合题目要求的) 1.-5的绝对值是( ). A .5 B .51 C .51- D .-52.计算23-的结果是( ).A .-9B .-6C .91-D .91 3.计算43a a⋅的结果是().A .12a B .a C .7a D .32a4.2002年我国发现首个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为( ). A .2106⨯亿立方米 B .3106⨯亿立方米 C .4106⨯亿立方米 D .4100.6⨯亿立方米 5.下列图形中,不是中心对称图形的是( ).A .菱形B .矩形C .正方形D .等边三角形6.如果两圆的半径分别为3 cm 和5 cm ,圆心距为10 cm ,那么这两个圆的公切线共有( ).A .1条B .2条C .3条D .4条7.如果反比例函数x ky =的图象经过点P (-2,3),那么k 的值是( ). A .-6 B .23- C .32- D .68.在△ABC 中,∠C =90°.如果 125tan =A ,那么sin B 的值等于( ).A .135B .1312C . 125D .5129.如图,CA 为⊙O 的切线,切点为A ,点B 在⊙O 上.如果∠CAB =55°,那么∠AOB等于( ).A .55°B .90°C .110°D .120°10.如果圆柱的底面半径为4 cm ,母线长为5 cm ,那么它的侧面积等于( ). A .20π2cm B .40π2cm C .20 2cm D .402cm11.如果关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,那么k 的取值范围是( ).A .k <1B .k ≠0C .k <1且k ≠0D .k >112.在抗击“非典”时期的“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数的记录如下表:在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是( ). A .68,55 B .55,68 C .68,57 D .55,5713.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E .如果AB =10,CD =8,那么AE 的长为( ).A .2B .3C .4D .514.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是( ).二、填空题(共4个小题,每小题4分,共16分)15.在函数3+=x y 中,自变量x 的取值范围是________.16.如图,在等边三角形ABC 中,点D 、E 分别在AB 、AC 边上,且DE ∥B C .如果BC =8 cm ,AD ∶AB =1∶4,那么△ADE 的周长等于________ cm .17.如图,B 、C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是________米.18.观察下列顺序排列的等式: 9×0+1=1, 9×1+2=11, 9×2+3=21, 9×3+4=31, 9×4+5=41, ……猜想:第n 个等式(n 为正整数)应为________.三、(共3个小题,共14分) 19.(本小题满分4分)分解因式:9222-+-y xy x .20.(本小题满分4分) 计算:0)13(8121-+-+21.(本小题满分6分) 用换元法解方程0365322=-++-xx x x四、(本题满分5分)22.如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE =CF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连结________.(2)猜想:________=________. (3)证明:五、(本题满分6分)23.列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下: 甲同学说:“二环路车流量为每小时10000辆.” 乙同学说:“四环路比三环路车流量每小时多2000辆.” 丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.” 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.六、(本题满分7分)24.已知:关于x 的方程0322=+-m mx x 的两个实数根是1x 、2x ,且16)(221=-x x .如果关于x 的另一个方程09622=-+-m mx x 的两个实数根都在1x 和2x 之间,求m 的值.七、(本题满分8分)25.已知:在ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B =∠CAE ,FE ∶FD =4∶3.(1)求证:AF =DF ; (2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积.八、(本题满分8分)26.已知:抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0).(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(每小题4分,共56分)1.A 2.D 3.C 4.B 5.D 6.D 7.A 8.B 9.C 10.B 11.C 12.A 13.A 14.B二、填空题(每小题4分,共16分)15.x ≥-3 16.6 17.30 18.9(n -1)+n =10n -9(或9(n -1)+n =10(n-1)+1) 三、(共14分)19.解:9222-+-y xy x9)(2--=y x …………………………………………………………………2分 )3)(3(--+-=y x y x ………………………………………………………4分20.解:0)13(8121-+-+ 12212+--=………………………………………………………… …3分 =2-.…………………………………………………………………………4分21.解:设y x x =-32,…………………………………………………………………1分 则原方程化为065=++yy .………………………………………………………2分∴ 0652=++y y .解得21=-y ,32=-y ……………………………………………………………3分 当y =-2时,232=--x x . ∴ 0232=+-x x .解得11=x ,22=x .…………………………………………………………………4分 当y =-3时,332=--x x . ∴ 0332=+-x x∵ △=9-12<0,∴ 此方程无实数根.………………………………………………………………5分经检验,11=x ,22=x 都是原方程的根.…………………………………………6分 ∴ 原方程的根为11=x ,22=x . 四、(本题满分5分)22.答案一:(1)BF ……………………………………………………………………1分 (2)BF ,DE ……………………………………………………………………………2分(3)证法一:∵ 四边形ABCD 为平行四边形, ∴ AD =BC ,AD ∥BC .∴ ∠DAE =∠BCF .……………………………………………………………………3分 在△BCF 和△DAE 中,⎪⎩⎪⎨⎧=∠∠,,,AE CF DAE BCF AD CB ==∴ △BCF ≌△DAE .……………………………………………4分∴ BF =DE .……………………………………………………………………………5分证法二:连结DB 、DF ,设DB 、AC 交于点O . ∵ 四边形ABCD 为平行四边形, ∴ AO =OC ,DO =OB .∵ AE =FC ,∴ AO -AE =OC -FC .∴ EO =OF .……………………………………………………………………………3分 ∴ 四边形EBFD 为平行四边形.………………………………………………………4分∴ BF =DE .……………………………………………………………………………5分答案二:(1)DF …………………………………………………………………………1分 (2)DF ,BE ……………………………………………………………………………2分 (3)证明:略(参照答案一给分). 五、(本题满分6分)23.解法一:设高峰时段三环路的车流量为每小时x 辆,…………………………1分 则高峰时段四环路的车流量为每小时(x +2000)辆.………………………………2分 根据题意,得3x -(x +2000)=2×10000.…………………………………………4分 解这个方程,得 x =11000. …………………………………………………………5分 x +2000=13000.答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. …………………………………………………………………………………………………6分 解法二:设高峰时段三环路的车流量为每小时x 辆,四环路的车流量为每小时y 辆. …………………………………………………………………………………………………1分根据题意,得⎩⎨⎧⨯-.2000,1000023+==x y y x ……………………………………………………………………4分 解这个方程组,得 ⎩⎨⎧.13000,11000==y x ……………………………………………………………………………5分答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. …………………………………………………………………………………………………6分 六、(本题满分7分) 24.解:∵ 1x ,2x 是方程0322=+-m mx x ①的两个实数根, ∴ m x x 221=+,m x x 321=⋅.∵ 16)(221=-x x ,∴ 164)(21221=-+x x x x . ∴ 161242=-m m . 解得 11=-m ,42=m ………………………………………………………………3分 (ⅰ)当m =-1时,方程①为0322=-+x x .∴ 31=-x ,12=x . 方程09622=-+-m mx x ②为01522=-+x x . ∴ 51=-x ',32=x '. ∵ -5、3不在-3和1之间,∴ m =-1不合题意,舍去.…………………………………………………………5分 (ⅱ)当m =4时,方程①为01282=--x x .∴ 21=x ,62=x . 方程②为01582=+-x x .∴ 31=x ',52=x '. ∵ 2<3<5<6,即2211x x x x <<<'',∴ 方程②的两根都在方程①的两根之间.∵ m =4.………………………………………………………………………………7分 综合(ⅰ)(ⅱ),m =4.注:利用数形结合解此题正确的,参照上述评分标准给分. 七、(本题满分8分) 25.解法一:(1)证明:∵ AD 平分∠BAC , ∴ ∠BAD =∠DAC . ∵ ∠B =∠CAE ,∴ ∠BAD +∠B =∠DAC +∠CAE .∵ ∠ADE =∠BAD +∠B ,∴ ∠ADE =∠DAE . ∴ EA =ED .∵ DE 是半圆C 的直径,∴ ∠DFE =90°.∴ AF =DF .……………………………………………………………………………2分(2)解:连结DM .∵ DE 是半圆C 的直径,∴ ∠DME =90°. ∵ FE ∶FD =4∶3,∴ 可设FE =4x ,则FD =3x . 由勾股定理,得DE =5x .∴ AE =DE =5x ,AF =FD =3x .由切割线定理的推论,得AF ·AD =AM ·AE .∴ 3x (3x +3x )=AM ·5x .∴ x AM 518=. ∴ x x x AM AE ME 575185=-=-=. 在R t △DME 中,257557cos ===x xDE ME AED ∠.………………………………………………………5分(3)解:过A 点作AN ⊥BE 于N .由257cos =AED ∠,得2524sin =AED ∠. ∴ x AE AN 5242524==.在△CAE 和△ABE 中,∵ ∠CAE =∠B ,∠AEC =∠BEA , ∴ △CAE ∽△ABE .∴ AECEBE AE =. ∴ CE BE AE ⋅=2.∴ x x x 25)510()5(2⋅+=.解得x =2. ∴ 548524==x AN , 1522510=+=+⨯=DC BD BC . ∴ 72548152121===⨯⨯⋅∆AN BC S ABC .…………………………………………8分解法二:(1)证明:同解法一(1).(2)解:过A 点作AN ⊥BE 于N . 在R t △DFE 中,∵ FE ∶FD =4∶3,∴ 可设FE =4x ,则FD =3x . 由勾股定理,得DE =5x .∴ AE =DE =5x ,AF =FD =3x .∵ AN DE EF AD S ADE ⋅⋅∆2121==, ∴ AN DE EF AD ⋅⋅=.∴ AN x x x x ⋅⋅=54)33(+.∴ .524x AN = ∴ 由勾股定理,得x EN 57=. ∴ 257557cos ===x xAE EN AED ∠.…………………………………………………5分(3)解:在△CAE 和△ABE 中, ∴ ∠CAE =∠B ,∠AEC =∠BEA , ∴ △CAE ∽△ABE .∴AECEBE AE =. ∴ CE BE AE ⋅=2∴ x x x 25)510()5(2⋅+=. 解得x =2.∴ 548524==x AN , 1522510=+=+⨯=DC BD BC .∴ 72548152121===⨯⨯⋅∆AN BC S ABC .…………………………………………8分 八、(本题满分8分)26.解法一:(1)依题意,抛物线的对称轴为x =-2. ∵ 抛物线与x 轴的一个交点为A (-1,0),∴ 由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0). …………………………………………………………………………………………………2分(2)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0),∴ 0)1(4)1(2=+-+-t a a .∴ t =3a . ∴ a ax ax y 342++=. ∴ D (0,3a ).∴ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++=上, ∵ C (-4,3a ). ∴ AB =2,CD =4.∵ 梯形ABCD 的面积为9,∴ 9)(21=OD CD AB ⋅+. ∴ 93)42(21=+a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342---ax x y =…………………5分(3) 设点E 坐标为(0x ,0y ) 依题意,00<x ,00<y ,且2500=x y .∴ 0025x y =-.①设点E 在抛物线342++=x x y 上,∴ 340200++=x x y .解方程组⎪⎩⎪⎨⎧34,25020000++==-x x y x y 得 ⎩⎨⎧-;=,=15600y x ⎪⎪⎩⎪⎪⎨⎧'-'.=,=452100y x ∵ 点E 与点A 在对称轴x =-2的同侧,∴ 点E 坐标为(21-,45).设在抛物线的对称轴x =-2上存在一点P ,使△APE 的周长最小.∵ AE 长为定值,∴ 要使△APE 的周长最小,只须P A +PE 最小.∴ 点A 关于对称轴x =-2的对称点是B (-3,0), ∴ 由几何知识可知,P 是直线BE 与对称轴x =-2的交点.设过点E 、B 的直线的解析式为n mx y +=,∴ ⎪⎩⎪⎨⎧-.03,4521=+-=+n m n m 解得⎪⎪⎩⎪⎪⎨⎧.23,21==n m ∴ 直线BE 的解析式为2321+=x y . ∴ 把x =-2代入上式,得21=y . ∴ 点P 坐标为(-2,21). ②设点E 在抛物线342---x x y =上,∴ 340200---x x y =. 解方程组⎪⎩⎪⎨⎧---.34,25020000x x y x y ==- 消去0y ,得03x 23x 020=++. ∴ △<0∴ 此方程无实数根.综上,在抛物线的对称轴上存在点P (-2,21),使△APE 的周长最小.…………8分解法二:(1)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0), ∴ 0)1(4)1(2=+-+-t a a .∴ t =3a . ∴ a ax ax y 342++=.令 y =0,即0342=++a ax ax .解得 11=-x ,32=-x .∴ 抛物线与x 轴的另一个交点B 的坐标为(-3,0). 2分(2)由a ax ax y 342++=,得D (0,3a ). ∵ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++=上,∴ C (-4,3a ).∴ AB =2,CD =4.∵ 梯形ABCD 的面积为9,∴ 9)(21=+OD CD AB . 解得OD =3.∴ 33=a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342--=-x x y .…………………5分(3)同解法一得,P 是直线BE 与对称轴x =-2的交点.∴ 如图,过点E 作EQ ⊥x 轴于点Q .设对称轴与x 轴的交点为F .由PF ∥EQ ,可得EQPF BQ BF =. ∴45251PF =.∴ 21=PF . ∴ 点P 坐标为(-2,21). 以下同解法一.。

2003年北京海淀区中考数学试题答案

2003年北京海淀区中考数学试题答案

北京市海淀区2003年高级中等学校招生考试数学试题【参考答案】一、选择题:(本题共78分,每小题3分)1. C2. B3. D4. B5. A6. C7. C8. A9. D 10. D11. C 12. B 13. B 14. C 15. A16. A 17. D 18. A 19. A 20. A21. D 22. D 23. B 24. C 25. B26. C填空题:(本题共21分,每空3分)27. 20 28. ()()a b a b -++129. 113<<a 30. 14,不合理31. 192 32. <1><3><4>解答题:(本题共21分,第33题5分,第34题7分,第35题9分)33. 解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元 根据题意,得48452x x -+= ……1分解这个方程,得x =92484928360x -=⨯-=答:该同学看中的随身听单价为360元,书包单价为92元。

……2分 解法二:设书包的单价为x 元,随身听的单价为y 元根据题意,得x y y x +==-⎧⎨⎩45248 ……1分解这个方程组,得x y ==⎧⎨⎩92360 答:该同学看中的随身听单价为360元,书包单价为92元。

……2分(2)在超市A 购买随身听与书包各一件需花费现金:45280%3616⨯=.(元)因为3616400.<,所以可以选择超市A 购买。

……3分在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:3602362+=(元)因为362400<,所以也可以选择在超市B 购买。

……4分因为3623616>.,所以在超市A 购买更省钱。

……5分34. (1)证法一:连结OD 、DBAB 是⊙O 的直径∴∠=︒ADB 90∴∠=︒CDB 90E 为BC 边上的中点∴==CE EB DE∴∠=∠12 ……1分OB OD =∴∠=∠34∴∠+∠=∠+∠1423 ……2分在Rt ABC ∆中,∠=∠+∠=︒ABC 2390∴∠=∠+∠=︒EDO 1490D 为⊙O 上的点∴DE 是⊙O 的切线 ……3分证法二:连结OD 、OE OA OD=∴∠=∠12 E 为BC 边上的中点,O 为AB 边上的中点∴OE AC //∴∠=∠∠=∠1324,∴∠=∠34 ……1分OD OB OE OE ==,∴≅∆∆E D OEBO ∴∠=∠EDO EBO……2分∆ABC 为直角三角形 ∴∠=︒∴∠=︒EBO EDO 9090 D 为⊙O 上的点∴DE 是⊙O 的切线……3分 (2)解:∠=︒CAB 45 ……4分s i n ∠=C A E 1010 ……7分35. 解:(1)解法一:连结ACDE 为⊙A 的直径,DE BC ⊥∴=BO COD E ()0301,,(,)- ∴=--==∴===DE OE AO AC DE |()|31411122,, 在Rt AOC ∆中,AC AO OC 222=+∴=∴-OC C B 33030()(),,,设经过B 、E 、C 三点的抛物线的解析式为y a x x =-+()()33,则-=-+10303a ()()解得a =13 ∴=-+=-y x x x 13331312()() ……2分 解法二: DE 为⊙A 的直径,DE BC ⊥∴=∴=⋅-∴==BO COOC OD OED E DO OE 2030131(),,(,),∴=⨯=∴=∴-OC OC C B 231333030(,),(,)以下同解法一(2)解法一:过点P 作PF y ⊥轴于F ,过点Q 作QN y ⊥轴于N∴∠=∠=︒PFA QNA 90,F 点的纵坐标为tN 点的纵坐标为y ∠=∠=∴≅∴==∴∴|-=-PAF QAN PA QAPFA QNAFA NAAO A t y ,,∆∆10111()|||动切线PM 经过第一、二、三象限观察图形可得1311<<-<<t y ,∴-=-t y 11即y t =-+2∴y 关于t 的函数关系式为y t t =-+<<213() ……5分解法二:(i )当经过一、二、三象限的切线PM 运动到使得Q 点与C 点重合时,y =0 连结PBPC 是直径∴∠=︒PBC 90 ∴⊥PB x 轴 ∴=PB tPA AC BO OC AO PB AO t ===∴==∴=,,1222即t =2时,y =0(ii )当经过一、二、三象限的切线PM 运动使得Q 点在x 轴上方时,y >0观察图形可得12<<t过P 作PS x ⊥轴于S ,过Q 作QT x ⊥轴于T则PS//AO//QT点A为线段PQ的中点∴点O为线段ST的中点∴AO为梯形QTSP的中位线∴=+∴=+∴=-+∴=-+<<AOQT PSy ty ty t t2122212()(iii)当经过一、二、三象限的切线PM运动使得Q点在x轴下方时,y<0,观察图形可得23<<t过P作PS x⊥轴于S,过Q作QT x⊥轴于T,设PQ交x轴于R则QT//PS∴∴=∆∆Q R T PRSQTPSQRPR~设AR m=,则-=-+ytmm221()又 AO x⊥轴,∴AO PS//∴∆∆ROA RSP~∴=∴=+AOPSRARPtmm122()由(1)、(2)得y t=-+2∴=-+<<y t t223()综上所述:y与t的函数关系式为y t t=-+<<213()……5分(3)解法一:当y=0时,Q点与C点重合,连结PBPC 为⊙A 的直径∴∠=︒PBC 90即PB x ⊥轴∴=-s 3将y =0代入y t t =-+<<213(),得02=-+t∴=t 2∴-P ()32,设切线PM 与y 轴交于点I ,则AP PI ⊥∴∠=︒API 90在∆API 与∆AOC 中∠=∠=︒∠=∠API AOC PAI OAC 90, ∴∴=∴=∴=∴=∆∆API AOCAP AO AI ACAI AI OI ~21245∴I 点坐标为(0,5)设切线PM 的解析式为y kx k =+≠50()P 点的坐标为()-32,∴=-+235k解得k =3∴切线PM 的解析式为y x =+35 ……7分 设切线PM 与抛物线y x =-1312交于G 、H 两点 由y x y x =-=+⎧⎨⎪⎩⎪131352可得 x x 12333112333112=-=+, 因此,G 、H 的横坐标分别为333112333112-+、根据图象可得抛物线在切线PM 下方的点的横坐标x 的取值范围是 333112333112-<<+x ……9分解法二:同(3)解法一可得P ()-32,直线PM 为⊙A 的切线,PC 为⊙A 的直径∴⊥PC PM在Rt CPM ∆与Rt CBP ∆中cos ∠====∴===PCM PC CM CB PCCB PC CM PC CB 23416238332, 设M 点的坐标为(m ,0)则CM m =-=3833 ∴=-m 533即M ()-5330, 设切线PM 的解析式为y kx b k =+≠()0,得053323=-+=-+⎧⎨⎪⎩⎪k b k b 解得k b ==⎧⎨⎩35∴切线PM 的解析式为y x =+35 ……7分以下同解法一。

2003年数学中考试题分类汇编

2003年数学中考试题分类汇编

2003年数学中考试题分类汇编方程与不等式:一、选择题:1. (甘肃毕)方程1242=+-x x 的根是 ( ) A 、x 1=-2,x 2=3 B 、 x 1=2,x 2=-3 C 、 x=3 D 、 x=-32.(荆门市)已知实数x 满足x 2+21x+ x +x 1 =0,那么x +x 1的值为 ( ) A 、1或-2 B 、-1或2 C 、1 D 、-23.(大连市)一元二次方程x 2-4=0的解是 ( )A 、x = 2B 、x =-2C 、x 1 = 2 ,x 2 = -2D 、x 1= 2,x 2 =-2,4.(龙江市)二元一次方程组⎩⎨⎧=+-=-1012y x y x 的解是( )A 、 ⎩⎨⎧==37x y B 、 ⎪⎩⎪⎨⎧==311319x y C 、⎩⎨⎧==28x y D 、⎩⎨⎧==73x y5.(娄底市)二元二次方程组⎩⎨⎧=-=+1522y x y x 的一个解是 ( )A 、⎩⎨⎧-=-=21y xB 、⎩⎨⎧=-=21y xC 、⎩⎨⎧-==21y xD 、⎩⎨⎧==21y x 6.(郴州市)一元二次方程x 2-2x =x 的根是( )A 、x 1=0 x 2=2B 、x 1=0 x 2=1C 、x 1=0 x 2=3D 、x 1=0 x 2=47.(金华市)方程x 3-4x=0的解是( )A 、-2,2B 、0,-2C 、0,2D 、0,-2,28.(大连市)一元二次方程x 2+2x -1=0的根的情况是( )A 、有两个不相等的实数根B 、有两个相等的实数根C 、没有实数根D 、不能确定9.(常州市)一元二次方程0422=-+y y 的根的情况是 ( )A 、有两个相等的实数根B 、有两个不相等的实数根,且两根同号C 、有两个不相等的实数根,且两根异号D 、没有实数根10.(龙江市)一元二次方程2x 2-4x +1=0根的情况是 ( )A 、有两个不相等的实数根B 、有两个相等的实数根C 、没有实数根D 、无法确定11.(常德市)对于一元二次方程3y 2 +5y —1=0,下列说法正确的是( )A 、方程无实数根B 、方程有两个相等的实数根C 、方程有两个不相等的实数根D 、方程的根无法确定12.(广西省)关于x 的方程02)13(22=-+-+m m x m x 的根的情况是( )A 、有两个相等的实数根B 、有两个不相等的实数根C 、没有实数根D 、有两个实数根13.(烟台市)对于方程022=-+bx x ,下面观点正确的是( )A 、方程有无实数根,要根据b 的取值而定B 、无论b 取何值,方程必有一正根、一负根C 、当b >0时.方程两根为正:b <0时.方程两根为负D 、∵ -2<0,∴ 方程两根肯定为负14.(黄石市)方程2x 2+4x -a 2=0的根的情况是A 、有两个相等的实根B 、无实根C 、有两个不相等的实根D 、只有正根15. (岳阳市)已知a 、b 、c 是△ABC 三边长的长,则方程04)(2=+++a x c b ax 的根的情况是 ( )A 、没有实数根B 、有两个不相等的正实数根C 、有两个不相等的负实数根D 、有两个异号的实数根16. (海淀区)方程x x 220-+=根的情况是( )A 、 只有一个实数根B 、 有两个相等的实数根C 、有两个不相等的实数根D 、 没有实数根17. (四川省)一元二次方程04322=-+x x 的根的情况是( )A 、有两个相等的实数根 A 、有两个不相等的实数根C 、无实数根D 、不能确定18. (青岛市) 方程12+-x x =0 的根的情况是( ).A 、有两个相等的实数根B 、有两个不相等的实数根C 、两个实数根的和与积都等于1D 、无实数根19.(武汉市)不解方程,判别方程05752=+-x x 的根的情况是( )A 、有两个相等的实数根B 、有两个不相等的实数根C 、只有一个实数根D 、没有实数根20. (黄冈市)关于x 的方程()011222=+-+x k x k 有实数根,则下列结论正确的是( ).A 、当k =21时方程两根互为相反数 A 、当k =0时方程的根是x =-1 C 、当k =士1时方程两根互为倒数 D 、当k ≤41时方程有实数根 21. (甘肃)方程3x 2+4x =0 ( ) A 、只有一个根x 2=-34 B 、只有一个根x 2=0 C 、有两个根x 1=0,x =34 D 、有两个根x 1=0,x =-342003年数学中考试题分类汇编 方程与不等式第 3 页 共 18 页 整理 刘立武22. (河南B )如果关于x 的方程mx 2-2(m -1)x +m =0只有一个实数根,那么方程mx 2-(m+2)x +(4-m )=0的根的情况是( )A 、没有实数根B 、有两个不相等的实数根C 、有两个相等的实数根D 、只有一个实数根23.(武汉市)一元二次方程012=-x 的根为( )A 、x =1 A 、x =-1 C 、x 1=1,x 2=-1 D 、x 1=0,x 2=124.(随州市)下列一元二次方程中无实数解的方程是( )A 、0232=-+x xB 、0322=+-x xC 、1)1(2=-xD 、02=-x x25.(重庆市)下列一元二次方程中,没有实数根的是( )A 、0122=-+x xB 、02222=++x xC 、0122=++x xD 、022=++-x x26. (甘肃省)下列方程中,关于x 的一元二次方程是( )A 、 ()()12132+=+x x ; B 、 02112=-+x x ; C 、 02=++c bx ax ; D 、 1222-=+x x x ;27.(绍兴市)一元二次方程0132=--x x 的两根为1x ,2x ,则1x +2x 的值是( )A 、3B 、-3C 、-1D 、128.(舟山市)若x 1,x 2是一元二次方程3x 2+x ―1=0的两个根,则2111x x +的值是( ) A 、2 B 、1 C 、―1 D 、329. (泉州市)一元二次方程x 2-5x +2=0的两个根为x 1 , x 2 ,则x 1+x 2等于( )A 、 –2B 、 2C 、 –5D 、 530. (太原市)设方程x 2+x -1=0的两个实数根分别为x 1、x 2,则2111x x +的值为( ) A 、1 B 、-1 C 、5 D 、55 31. (青海省)设1x 、2x 是方程03622=+-x x 的两个根,那么2221x x +的值为( ) A 、3 B 、-3 C 、6 D 、-632.(宁夏)一元二次方程032=--x x 的两个根的倒数和等于( ) A 、31-B 、-3C 、31 D 、3 33. (南京市)如果一元二次方程0232=-x x 的两个根是x 1,x 2,那么x 1·x 2等于( ) A 、2 B 、0 C 、32 D 、-32 34. (甘肃)如果关于x 的方程2x 2+6kx +5k 2+2=0有两个相等的实数根,那么k 为 ( ) A 、2 B 、-3 C 、4 D 、-535. (海南省)已知x =-1是一元二次方程012=++mx x 的一个根,那么 m 的值是( ).A 、0B 、1C 、2D 、一236.(仙桃市)如果方程x 2+2x +m =0有两个同号的实数根,则m 的取值范围是( )A 、 m <1B 、0<m ≤1C 、0≤m <1D 、m >037.(黄埔区)已知关于x 的方程022=++a x x 的两个根的差的平方等于16,那么a 的值为( )A 、-3B 、-6C 、3D 、638.(泰州市)一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是( )A 、2>kB 、12≠<k k 且C 、2<kD 、12≠>k k 且39. (岳阳市)设方程2x 2-(k +1)x +k +3=0的两根之差为1,则k 的值是( )A 、9和-3B 、9和3C 、-9和3D 、-9和-340.(湖州市)已知关于x 的方程022=+-m x x 有实数根,则m 的取值范围是 ( )A 、m ≤-1B 、m ≥-1C 、m ≤1D 、m ≥141. (北京市) 如果关于x 的一元二次方程kx 2-6x +9=0有两个不相等的实数根,那么k 的取值范围是A 、 k <1B 、 k ≠0C 、 k k <≠10且D 、 k >142.(辽宁省)已知2是关于x 的方程02232=-a x 的一个根,则2a -1的值是( ) A 、3 B 、4 C 、5 D 、643.(辽宁省)关于x 的方程x 2+2k x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1B .k ≥-1C .k >1D .k ≥044. (吉林省)关于x 的一元二次方程()02222=+--m x m x 有两个不相等的实数根,则m的取值范围是( ).A 、m >1B 、m <1C 、m >lD 、m <-l45. (陕西省) 方程()912=+x 的解是( ). A 、x =2 B 、x =一4 C 、x 1=2,x 2=-4 D 、x 1=-2,x 2=-446. (甘肃省)已知3是关于x 的方程012342=+-a x 的一个解,则2a 的值是( ) A 、11 B 、12 C 、13 D 、1447. (青岛市)已知012=-+αα,012=-+ββ,且α≠β,则βααβ++的值为( ).A 、2B 、一2C 、一1D 、048.(福州市)已知α、β满足α+β=5且αβ=6,以α、β为两根的一元二次方程是( )A 、0652=++x x A 、0652=+-x xC 、0652=--x xD 、0652=-+x x49. (杭州市)设1x ,2x 是关于x 的方程02=++q px x 的两根,11+x ,12+x 是关于x 的方程02=++p qx x 的两根,则p ,q 的值分别等于( ) A 、1,-3 A 、1,3 C 、-1,-3 D 、-1,32003年数学中考试题分类汇编 方程与不等式第 5 页 共 18 页整理 刘立武50. (桂林市)如果关于x 的一元二次方程02=++q px x 的两根分别为1x =3、2x =1,那么这个一元二次方程是( ).A 、0432=++x x A 、0342=+-x xC 、0342=-+x xD 、0432=-+x x51.(南宁市)已知一元二次方程0232=+-a x x 有实数根,则a 的取值范围是( )A 、a ≤31 A 、a <31 C 、a ≤31- D 、 a ≥31 52.(深圳市)已知一元二次方程2x 2-3x -6=0有两个实数根x 1、x 2,直线l 经过点A (x 1+x 2,0)、B (0,x 1·x 2),则直线l 的解析式为A 、y=2x -3B 、y=2x +3C 、y=-2x -3D 、y=-2x +3 53.(南宁市)二元一次方程组⎩⎨⎧=+-=+522y x y x 的解是 ( ) A 、⎩⎨⎧==61y x A 、⎩⎨⎧=-=41y x C 、⎩⎨⎧=-=23y x D 、⎩⎨⎧==23y x 54.(宁波市)已知x -y=4,| x|+| y|=7,那么x +y 的值是( )A 、±23B 、±211 C 、±7 D 、±11 55.(盐城市)如果分式方程1x m 1x x +=+无解,则m=( ) A 、1 B 、0 C 、-1 D 、-256.(杨州市)已知a -b =3,b +c =5,则代数式ac -bc +a 2-ab 的值是( )A 、-15B 、-2C 、-6D 、657、(黄埔区)若代数式7322++y y 的值为8,那么9642-+y y 的值是( )A 、2B 、-17C 、-7D 、758. (烟台市)若3x -2y =0,则yx 等于( ) A 、32 B 、23 C 、32- D 、32或无意义 59.(烟台市)已知x 为实数,且()033322=+-+x x x x ,那么x x 32+的值为( ) A 、1 B 、-3或1 C 、3 D 、-1或360.(温州市)方程2x +1=5的根是( )A 、4B 、3C 、2D 、161.(金华市)下列各个方程中,无解的方程是( )A 、12-=+xB 、3(x -2)+1=0C 、x 2-1=0D 、21=-x x 62. (南京市)已知⎩⎨⎧==12y x 是方程kx -y=3的解,那么k 的值是( ) A 、2 B 、-2 C 、1 D 、-163. (南京市)如果2)2(-x =x -2,那么x 的取值范围是( )A 、x ≤2B 、x <2C 、x ≥2D 、x >264.(广东省)关于x 的方程2(x -1)-a =0的根是3,则a 的值为( )A 、4B 、-4C 、5D 、-565.(广州市)将方程132142+-=+-x x x 去分母并化简后得到的方程是( ) A 、0322=--x x B 、0522=--x xC 、032=-xD 、052=-x 66、(黄埔区)用换元法解方程用换元法解方程31221122=++-++x x x x 时,下列换元方法中最适宜的是( ) A 、 y x =+12B 、 y x =+112C 、 y x =+11D 、 y x x =++112 67. (郴州市)解方程526222=+-+x x x x 时,令x x y 22+=,原方程可化为( ) A 、y 2-5y -6=0 B 、y 2-6y -5=0 C 、y 2+5y -6=0 D 、y 2+6y -5=068. (三明市)如果将方程32)2(22222=+++++x x x x 变形为32=+y y ,下列换元正确的是( )A 、y x =+212B 、y x x =+222C 、y x x =+22D 、y x x =++222 69.(海淀区)用换元法解方程()()x x x x +-+=2212,设y x x =+2,则原方程可化为( ) A 、 y y 210--=B 、 y y 210++=C 、 y y 210+-=D 、 y y 210-+= 70. (南京市)用换元法解方程x 2+x +1=xx +22,如果设x 2+x =y ,那么原方程可变形为( ) A 、y 2+y +2=0 B 、y 2-y -2=0C 、 y 2-y +2=0D 、y 2+y -2=071.(武汉市)用换元法解方程061512=+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-x x x x 时,设y x x =-1,则原方程化为关于y 的方程是( )A 、0652=++y y A 、0652=+-y yC 、0652=-+y yD 、0652=--y y2003年数学中考试题分类汇编 方程与不等式第 7 页 共 18 页整理 刘立武72.(昆明市)解分式方程032222=+---x x x x 时,设y x x =-22,则原方程变形为( ) A 、0132=++y y A 、0132=+-y y C 、0132=--y y D 、0132=-+y y73.(淮安市)用换元法解方程:0132322=++-+xx x x .若设y x x =+32,则原方程可变形为( )A 、y 2-2y +1=0B 、y 2+2y -1=0C 、y 2-y +2=0D 、y 2+y -2=074.(龙江市)我省为了解决药品价格过高的问题,决定大幅度降低药品价格,其中将原价为a元的某种常用药降价40%,则降价后此格为 ( )A 、元4.0aB 、 元6.0a C 、60%a 元 D 、40%a 元 75.(淮安市)某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为( )A 、205.0420420=--x x B 、204205.0420=--xx C 、5.020420420=--x x D 、5.042020420=--x x 76.(泰安市)一种商品每件进价为a 元,按进价增加25%定出售价,后因库存积压降价,按售价的九折出售,每件还能盈利( )A 、0.125a 元B 、0.15a 元C 、0.25a 元D 、1.25a 元77.(河北省)赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平均每天要多读21页才能在借期内读完,他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )A 、1421140140=-+x xB 、1421280280=++x xC 、1421140140=++x xD 、1211010=++x x78. (江西省) 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米、结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( ).A 、2115115=-+x x A 、2111515=+-x x C 、 2115115=--x x D 、2111515=--x x 79. (杭州市) 某种型号的空调器经过3次降价,价格比原来下降了30%,则其平均每次下降的百分比(精确到1%)应该是( )(A )26.0% (B )33.1% (C )8.5% (D )11.2%80.(福州市)不等式组⎩⎨⎧>+≥0342x x 的解集是( )A 、x >-3 A 、x ≥2 C 、-3<x ≤2 D 、x <-381. (长沙市)不等式组⎩⎨⎧<->+01042x x 的解集为( ).A 、 x >1 或x <-2 A 、 x >1 C 、 -2<x <1 D 、 x <-282. (盐城市) 若0<a <1,则下列四个不等式中正确的是A 、a 11a << B 、 1a 1a << C 、 1a a 1<< D 、 a a 11<<83.(闵行区)下列不等式组无解的是( )A 、⎩⎨⎧<+<-0201x x B 、⎩⎨⎧>+<-0201x x C 、⎩⎨⎧<+>-o x x 201 D 、⎩⎨⎧>+>-0201x x 84. (太原市)不等式组的解集是 ( )A 、无解B 、x ≤2C 、x ≥-3D 、-3≤x ≤285.(随州市)若a <0,关于x 的不等式1+ax >0的解集是( )A 、a x 1-< B 、a x 1-> C 、a x 1< D 、a x 1>86. (岳阳市)若代数式52-x的值大于-5且小于1,则x 的取值范围是( )A 、x <0B 、0<x <12C 、x >12D 、x <0或x >1287.(金华市)不等式3x -2≥0的解是( )A 、x ≥32B 、x >32C 、x <32D 、x ≤3288.(泰安市)关于x 的不等式组⎪⎩⎪⎨⎧+〉++-〈ax x x x 4231)3(32,有四个整数解,则a 的取值范围是()A 、411-<a ≤25-B 、411-≤a <25-C 、411-≤a ≤25-D 、411-<a <25-89.(青海省)如图2,不等式组⎩⎨⎧〉+≤0212x x 的解集在数轴上可表示为( )A 、B 、C 、D 、90.(宁夏)不等式2-x <1的解集是( )A 、x >-1B 、x >1C 、x <1D 、x <-191. (四川省)不等式组⎩⎨⎧〈-≤-321x x 的解集是( )A 、x ≥-1 A 、x <5 C 、-1≤x <5 D 、x ≤-1或x >592. (厦门市)不等式32-x ≥0的解集是( ).A 、x ≥23B 、x >23C 、x <32D 、x ≤232003年数学中考试题分类汇编 方程与不等式第 9 页 共 18 页整理 刘立武93. (海淀区)不等式组⎩⎨⎧->+<-35062x x 的解集是( ) A 、 23<<xB 、 -<<-83xC 、 -<<83xD 、 x <-8或x >394. (陕西省) 把不等式组⎩⎨⎧<-≥+0101x x 的解集表示在数轴上,正确的是( ).95.(桂林市)不等式组⎩⎨⎧><35x x 的解集在数轴上表示,正确的是( ).96、(常州市)已知关于x 的不等式32->-m x 的解集如图所示,则m 的值为( ) A 、2 B 、1 C 、0 D 、-197.(烟台市)不等式ax >b 的解集是x <ab ,那么a 的取值范围是( ) A 、a ≤0 B 、a<0 C 、a ≥0 D 、a >0二、填空题:1.(荆州市)方程组⎩⎨⎧=+=++224)2(2y x y x x 的解是2.(常州市)已知一元二次方程0132=--x x 的两个根是1x ,2x ,则=+21x x ,=21x x ,=+2111x x . 3. (杨州市)x=-2是方程2x +k -1=0的根,则k .4. (甘肃省)方程031322=--x x 的根是__________. 5.(常州市)请写出一个根为1=x ,另一根满足11<<-x 的一元二次方程 .6. (无锡市)若⎩⎨⎧==12y x 是关于x 、y 的方程2x -y +3k =0的解,则k = . 7.(宁波市)若方程2x 2-3x -4=0的两根为x l ,x 2,则x 1·x 2= .8.(泰州市)以3 和-2为根的一元二次方程是______________________. A 、B 、C 、D 、 A 、 B 、 C 、D 、9. (徐州市)如果方程032=+-m x x 有实数根,则m 的取值范围是 ;若方程有一个根为2,则另一个根为 ,m = ; 10.(泉州市)在方程01314312=+⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+-x x x x 中,如果设31+-=x x y ,那么原方程可以化为关于y 的整式方程是 .11. (海南省)已知x 1、x 2是关于x 的一元二次方程()013222=+--x a x a 的两个实数根,如果21122-=+xx ,那么a 的值是 . 12.(闵行区)如果x 1、x 2是方程x 2-5x +6=0的两个根,那么x 1·x 2= .13.(广西省)如果方程02=++q px x 的两根分别为12-,12+,那么p = ,q= .14.(南通市)若关于x 的方程()0471222=-+-+k x k x 有两个相等的实数根,则k = . 15. (太原市)方程xx -=7143的解为_________. 16.(温州市)已知x l 和x 2是一元二次方程x 2-3x -l =0的两根,那么x 1x 2= .17. (温州市)已知x +y +z =0,则222222222111yx z x z y z y x -++-++-+=__. 18. (龙岩市)已知方程04422=--+-xx x x ,令x 2-x =t ,则原方程可化为关于t 的一元二次方程是______________.19. (三明市)方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是_____.20.(贵阳市)若x =1是方程2x +a =0的根,则a = .21. (贵阳市)若关于x 的一元二次方程()()0112122=++-+x m x m 有实数根,则m 的取值范围是 .22. (湖州市)已知1x ,2x 是方程0172=--x x 的两个实数根,则1x +2x = .23.(荔湾区)当=a _____时,方程02=++a x x 必有两个相等实数根.24.(随州市)已知1x ,2x 是方程0132=--x x 的两根,则)1)(1(21++x x 的值等于 .25. (泰安市)已知实数x 、y 满足0624422=-++++y x y xy x ,则x +2y 的值为 .27.(泰安市)已知关于x 的方程022222=+-+-a a ax x 的两个实数根1x 、2x 满足22221=+x x ,则a 的值为 . 28.(常德市)方程X 2-3X =0的根为________.29.(重庆市)已知1x 、2x 是关于x 的方程01)1(22=-++-a x x a 的两个实数根,且1x +2x2003年数学中考试题分类汇编 方程与不等式第 11 页 共 18 页整理 刘立武=31,则21x x ⋅= . 30.(辽宁省)若方程x 2+x -1=0的两根分别为x 1、x 2,则2221x x +2212x x +=____.31.(上海市)方程x x -=++22的根是________________.32.(闵行区)方程3-x =2的解是______________. 33.(辽宁省)用换元法解方程8320322=+-+xx x x ,若设x 2+3x =y ,则原方程可化成关于y的整式方程为 .34. (吉林省)已知一元二次方程0652=--x x 的两个根分别为x 1,x 2,则2221x x += ;35. (黑龙江)写出满足方程92=+y x 的一对整数值 .36.(河北省)在解方程322122-=+-x x x x 时,如果设x x y 22-=,那么原方程可化为关于y 的一元二次方程的一般形式是 .37.(郑州市)若关于x 的一元二次方程02=++n mx x 有两个实数根,则符合条件的一组m 、n 的实数值可以是m=______,n=________. 38.(郑州市)若0)1(32=+-+-y x x ,计算4322y xy y x ++=_______________. 39.(郑州市)一元二次方程032=--a ax x 的两根之和为2a -1,则两根之积为_________. 40. (河南B )若二元一次方程组⎩⎨⎧=-=+7233y x y x 的解是某个一元二次方程的两个根,则这个一元二次方程是_____________ .41. (甘肃省) 关于x 的一元二次方程0122=++kx x 有两个相等的实根,则k= ;42. (甘肃省)已知抛物线c bx ax y ++=2的图象与x 轴有两个交点,那么一元二次方程02=++c bx ax 的根的情况是 ;43.(四川省)已知关于x 的一元二次方程8x 2+(m +1)x +m -7=0有两个负数根,那么实数m 的取值范围是_________________________;44.(建设兵团)不解方程,判别方程5(2x -1)-x =0的根的情况是 . 45. (建设兵团) 已知方程022=+-k x x 的两根的倒数和是38,则k = .46. (呼和浩特)解方程06)2(5)2(2=++-+x x x x ,其解为_________.47. (呼和浩特)若m 是实数,则关于x 的方程x 2-mx +22m +m +23=0的根的情况是_________.48.(昆明市)如果一元二次方程022=+-k x x 有两个不相等的实数根,那么大的取值范围是 .49. (长沙市)关于x 的方程042=+-k x x 有两个相等的实数根,则实数a 的值为 ;50. (肇庆市)某种货物的零售价为每件110元,若按八折(零售价的80%)出售,仍可获利10%,则该货物每件和进价为_____________元.51. (龙岩市)某项工程,甲乙两队合做6天可以完成,若甲独做需x 天完成,乙独做比甲多作4天,要求出x 的值,可列出只含x 的方程求解,则列出的方程是_______.52.(山东省)某工厂2002年的年产值为_26_948万元,比_2001年增长8.2%,若年增长率保持不变,预计2005年该厂的年产值为_________________万元(结果精确到万元),53.(烟台市)某工厂2002年的年产值为26948万元,比2001年增长8.2%,若年增长率保持不变,预计2005年该厂的年产值为_________万元(结果精确到万元).54.(黄石市)抗击“SARS ”期间,某“SARS ”高发在区平均每天投入资金1800万元,用科学记数法表示这一地区60天投入资金总额约为____________万元. 55.(大连市)某房屋开发公司经过几年的不懈努力,开发建设住宅面积由2000年4万平方米,到2002年的7万平方米.设这两年该房屋开发公司开发建设住宅面积的年平均增长率为x _,则可列方程为______________;56.(泉州市)一种商品每件成本100元,按成本增加20%定出价格,则每件商品的价格是_____元.57.(娄底市)某种商品的标价为220元,为了吸引顾客,按9折出售,这时仍可盈利10%,则这种商品的进价是_____元. 58.(青海省)一年定期的存款,年息为1.98%,到期取款时需扣除利息的20%作为利息税上缴国库,假如某人存入一年的定期储蓄2000元,到期后可得本息和是___元.59.(吉林省)某商品的标价是1100元,打八折(按标价的80%)出售,仍可获利10%,则此商品的进价是____________元.60.(荆门市)不等式1≤3x -7<5的整数解是 . 61.(郴州市)不等式:2x >x +3的解集是_________.62. (杨州市)不等式组⎪⎩⎪⎨⎧-><xx x 3214的解集是_________.63.(徐州市)不等式组⎩⎨⎧<->-0102x x 的解集是 ;64.(娄底市)不等式⎩⎨⎧<->+0102x x 的解集是_________ .65.(广西省)不等式组⎩⎨⎧≥->-0301x x 的整数解是 .2003年数学中考试题分类汇编 方程与不等式第 13 页 共 18 页整理 刘立武66. (天津市)不等式组⎩⎨⎧-≤-->+2334)1(223x x x x ,的解集是________________.67、(重庆市)已知关于x 的不等式组⎩⎨⎧>--≥-0125a x x 无解,则a 的取值范围是 .68.(河北省)不等式组⎩⎨⎧-<+>-148012x x x 的解集为 .69. (吉林省)不等式组⎩⎨⎧<-<-0120x x 的解集是 ;70.(贵阳市)不等式组:⎩⎨⎧-><-43x x 的解集为 .71.(嘉兴市)不等式组⎩⎨⎧>+<0342x x 的解是_________.72.(河南C )不等式组⎪⎪⎩⎪⎪⎨⎧+<->--21312,221x x x x 的整数解是___________________________. 73.(广东省)不等式组⎩⎨⎧≥++〈x x xx 1443的解集为 .三、解答题:1. (盐城市)解方程:xx 21x x 22-=--.2. (杨州市)解方程:113162=---x x 3.(宁波市)解方程:x+4-x =4. 4.(泰州市)用换元法解方程 xx x x +=++2221.5. (徐州市)解方程:0314122=--+⎪⎭⎫⎝⎛-x x x x 6.(闵行区)解方程:412)2(3212=-+++-x x x x 7. (仙桃市)解方程 0312)1(22=----x xx x8. (南通市)解方程:2121222=-+-x xx x ; 9.(湖州市) 解方程:128822=+++x x x x10、(嘉兴市)解方程22=+-x x11.(荔湾区)解分式方程:153142-+=-+x x x 12. (肇庆市)解方程:223011x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭13. (北京市)用换元法解方程x 2-3x+5+2603x x=-14. (天津市)解方程1622++=+x x xx15.(郑州市)解方程1622-+-=x xx x 16.(河南C )解方程31234222=----x x x x . 17.(河南C )解方程:1622++=+x x xx 18. (陕西省)用换元法解方程081212=-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x ;19. (甘肃省)用换元法解方程:()()7136312=-+++-x x x x ; 20.(安徽省)解方程:312122=+++x x x x21.(建设兵团)用配方法解方程 0762=++x x22.(哈尔滨) 用换元法解方程:253322=-+-x x x x23. (黄冈市)解方程:()()122216=---+x x x 24. (昆明市)解方程:2223--=-x xx 25、(舟山市)解方程组:⎩⎨⎧=+=+11322y x y x26. (甘肃省)解方程组⎩⎨⎧=----=0123122x y x x y 27、(黄埔区)解方程组:⎩⎨⎧-=+=+38131322xy x x y28.(温州市)解方程组⎪⎩⎪⎨⎧==x -41-y 1y 1-x2003年数学中考试题分类汇编 方程与不等式第 15 页 共 18 页整理 刘立武29. (岳阳市)解方程组⎩⎨⎧=+=+17522y x y x 30.(金华市)解方程组:⎩⎨⎧=-=-21622y x y x31.(随州市)解方程组:⎩⎨⎧=-++=0162322y xy x xy 32. (青岛市)解方程组:⎩⎨⎧==+127xy y x33. (南京市)解方程组⎪⎩⎪⎨⎧=+=-12202xy x y x .34. (杭州市)解方程组:⎪⎩⎪⎨⎧=+=-++12512y x y x35.(广州市)解方程组⎩⎨⎧=++=--03201222y xy x y x 36. (长沙市)解方程:12212=++-x x 37. (上海市)解方程组:⎪⎩⎪⎨⎧=+-=-.04,04222xy x y x38.(大连市)解方程组.⎩⎨⎧-=-=+124y x y x39.(常州市)解方程组:⎩⎨⎧=---=-01023122y x x y x40. (龙岩市)已知,x 1,x 2是关于x 的方各x 2-kx +k -1=0的两个实根,求:y =(x 1-2x 2)(2x 1-x 2)25. (盐城市)已知关于x 的方程x 2+2(2-m )x +3-6m =0⑴求证:无论m 取什么实数,方程总有实数根;⑵如果方程的两个实数根x 1、x 2满足x 1=3x 2,求实数m 的值.41.(荔湾区)已知关于未知数x 的方程01322=-+-m x x ,⑴求使原方程有实数根的m 的取值范围.⑵试写出一个m 值,使原方程两根中一个大于2,一个小于2,并解这个方程. 42. (黑龙江)关于x 的方程()0412=+++kx k kx 有两个不相等的实数根. ⑴求 k 的取值范围;⑵是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出 k 的值;若不存在,说明理由.43.(河南C )已知关于x 的方程012)14(2=-+++k x k x .⑴求证:该方程一定有两个不相等的实数根;⑵若x 1、x 2是两个实数根,且32)2)(2(21-=--k x x ,求k 的值. 44、(福州市)已知关于x 的方程()0141122=+++-k x k x .⑴k 取什么值时,方程有两个实数根; ⑵如果方程的两个实数根1x 、2x 满足21x x =,求k 的值.45.(杨州市)已知关于x 的方程x 2-(2k -3)x +k 2+1=0, ⑴ 当k 为何值时,此方程有实数根;⑵ 若此方程的两实数根x 1,x 2满足:|x 1|+|x 2|=3,求k 的值.46. (绍兴市)已知关于x 的方程0122=-+-k x x 有两个不相等的实数根,求k 的取值范围.47. (南通市)设方程组⎩⎨⎧-==--1202x y y x x 的解是⎩⎨⎧==11y y x x ;⎩⎨⎧==22y y x x .求2111x x +和21y y ⋅的值.48.(太原市)正数m 为何值时,方程组⎩⎨⎧+-==+2222mx y y x 只有一个实数解?并求出这时方程组的解.49.(龙岩市)已知:关于x ,y 的方程组⎩⎨⎧-=+=-133k y x k y x 的解满足⎩⎨⎧<>0y x 求k 的取值范围.50. (济南市)已知方程组⎩⎨⎧=+-=++-01022y x a y x 的两个解为⎩⎨⎧==11y y x x 和⎩⎨⎧==22y y x x 且1x 、2x 是两个不相等的实数,若116832212221--=-+a a x x x x , ⑴ 求a 的值;⑵ 不解方程组判断方程组的两个解能否都是正数,为什么? 51. (呼和浩特)已知关于x 、y 的方程组⎩⎨⎧=++=-ay x a y x 523的解满足x >y >0,化简|a |+|3-a |52.已知方程组⎩⎨⎧+==mx y x y 22有两个实数解⎩⎨⎧==11y y x x 和⎩⎨⎧==22y y x x ,且231121=+x x ,求m 的值53. (肇庆市)已知关于x 的方程22(2)(23)10k x k x ++-+=,其中k 为常数,试分析此方程的根的情况.2003年数学中考试题分类汇编 方程与不等式第 17 页 共 18 页整理 刘立武54.(重庆市)已知x =3是方程1210=++xkx 的一个根,求k 的值和方程其余的根.55. (陕西省)设x 1,x 2是关于x 的方程()012=---m x m x (m ≠0)的两个根,且满足0321121=++x x ,求m 的值. 56. (北京市)已知:关于x 的方程x 2-2mx+3m=的两个实数根是x 1,x 2,且(x 1-x 2)2=16.如果关于x 的另一个方程x 2-2mx+6m-9=0的两个实数根都在x 1和x 2之间,求m 的值. 57. (江西省)已知关于x 的方程x m x 22=-有两个不相等的实数根,求m 的取值范围. 58. (南昌市)已知关于x 方程m x mx =--11有实数根,求m 的取值范围.59.(广东省)已知1x ,2x 为方程02=++q px x 的两根,且1x +2x =6,202221=+x x ,求p 和q 的值.60..(广东省)在公式h b a S )(21+=中,已知h 、s 、b .求a . 61.(无锡市)解不等式:35123->--x x 62.(镇江市)解不等式:12123x x ++≥ 63.(常州市)解不等式组:⎪⎩⎪⎨⎧>-+<+02)8(21042x x64. (盐城市)解不等式组⎪⎩⎪⎨⎧+<-≥--21x 51x 24)2x (3x ,并把解集在数轴上表示出来.65.(龙江市)解不等式组⎩⎨⎧<-<+-0520)1(2x x x 并解集在数轴上表示出来.66.(常德市)解不等式组:⎪⎩⎪⎨⎧-≤--->+ ⑵ ⑴1)3(2531222x x x x 并把它的解集在数轴上表示出来.67.(泉州市)解不等式组:⎪⎩⎪⎨⎧<+>-3)4(21012x x68.(淮安市)解不等式组:⎪⎩⎪⎨⎧>->+321052x x x69. (三明市)解不等式组⎪⎩⎪⎨⎧-<+≤+ ② ①3128)2(3x x x x70.(十堰市)解不等式组⎪⎩⎪⎨⎧-≤-+xx x x 9963449323 并把它的解集在数轴上表示出来.71.(安徽省)解不等式组:()⎪⎩⎪⎨⎧<--<-3221121x x72. (三明市)已知两个 和等于2,积等于-1,求这两个数.73. (太原市)我市某购物中心今年三月份的营业额为500万元,四月份的营业额比三月份减少10%,从五月份起逐月上升,六月份达到648万元,求五、六月份营业额的月平均增长率.74.(大连市)某工厂贮存240吨煤,由于改进炉灶木结构和烧煤技术,每天能节约2吨煤,使贮存的煤比原计划多用4天.问原计划每天烧煤多少吨?75.(荆州市)一自行车队进行训练,训练的路程是55千米,出发后所有队员都保持相同的速度前进,行进一段路程后,1号队员将速度提高10千米超出队伍,当其余队员又前进20千米后,2号队员的速度也提高了10千米,结果2号队员比1号队员晚101小时到达终点,问车队从出发至最后的队员到达终点所花的时间是多少?76.(舟山市)如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S 米2, ⑴求S 与x 的函数关系式⑵如果要围成面积为45米2的花圃,AB 的长是多少米?⑶能围成面积比45米2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由77.(常德市)学校存煤50吨,由于改进炉灶结构和烧煤技术后,每天能节约煤100千克,已知所存的煤比原计划多烧25天,问原计划每天烧煤多少千克?78.(大连市)某地区现在有果树12000棵,计划今后每年栽果树2000棵. ⑴求果树总数y(棵)与年数x(年)的函数关系式; ⑵预计到第5年该地区有多少棵果树?。

2003年北京中考卷经典题

2003年北京中考卷经典题

1.生铁和钢都是铁合金,生铁中碳的含量在2.0%——4.3%之间,钢中碳的含量在0.03%——2.0%之间。

将一块质量为10.0g的铁合金放入锥形瓶中,再向锥形瓶中加入100g稀H2SO4,恰好使铁合金中的铁完全反应(碳不溶于稀H2SO4;铁合金中其他元素含量很低,可忽略不计),测得生成H2的体积为4.00L(H2在该条件下的密度为0.0880g/L)。

试根据计算回答:(计算结果保留三位有效数字)(1)该铁合金是生铁还是钢?(2)反应后所得溶液的溶质质量分数。

2.如图所表示物质的用途与选项中所描述的该物质的性质不一致的是( )A.氧气具有助燃性 B.氢气具有可燃性 C.二氧化碳具有酸性 D.熟石灰具有碱性3.研究性学习小组的同学为了解我市狼山的地质情况,从实地取回两块样品A和B,进行如图所示的实验(图中部分反应产物被略去)。

(1)根据上述实验结果,可以推断:样品A,B的主要成分分别是(用化学式表示)_______、(2)写出上述实验过程中部分反应的化学方程式:①E→C:_______________________。

②C→D:_________________________。

③A十G:________________________。

(3)所加试剂X可能是氧化物、酸、碱、盐中的_______________。

4.甲、乙、丙三种物质在不同温度下的溶解度见下表:下列有关说法正确的是()0 30 60 90甲13.3 45.8 110 202乙35.5 36.0 37.1 38.1丙0.18 0.16 0.12 0.08 A.甲、乙、丙三种物质的溶解度大小顺序是甲>乙>丙B.30℃时,三种物质的饱和溶液溶质质量分数甲>乙>丙C.降低温度可使丙的不饱和溶液变为饱和溶液D.使乙物质从一定温度下的饱和溶液中析出,一般采用蒸发溶剂的方法5.铅蓄电池是一种电压稳定,使用方便、安全、可靠,又可以循环使用的化学电源,广泛应用于国防、交通、生产和生活中。

2024年北京市中考数学试题+答案详解

2024年北京市中考数学试题+答案详解

2024年北京市中考数学试题+答案详解(试题部分)考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。

满分100分。

考试时间120分钟。

2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A. 29︒B. 32︒C. 45︒D. 58︒3. 实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. 1b >−B. 2b >C. 0a b +>D. 0ab > 4. 若关于x 的一元二次方程240x x c −+=有两个相等的实数根,则实数c 的值为( )A. 16−B. 4−C. 4D. 165. 不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( ) A. 34 B. 12 C. 13 D. 146. 为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A. 16810⨯B. 17210⨯C. 17510⨯D. 18210⨯7. 下面是“作一个角使其等于AOB ∠”的尺规作图方法.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A. 三边分别相等的两个三角形全等B. 两边及其夹角分别相等的两个三角形全等C. 两角及其夹边分别相等的两个三角形全等D. 两角分别相等且其中一组等角的对边相等的两个三角形全等8. 如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论: ①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

北京市历届中考数学试卷(含答案)

北京市历届中考数学试卷(含答案)

历届高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54 4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80°5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。

若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于 A. 60m B. 40m C. 30m D. 20m 6. 下列图形中,是中心对称图形但不是轴对称图形的是7. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9. 分解因式:a ab ab 442+-=_________________10. 请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________ 12. 如图,在平面直角坐标系x O y 中,已知直线:1--=x t ,双曲线xy 1=。

北京市2001-2012年中考数学试题分类解析专题4:图形的变换

北京市2001-2012年中考数学试题分类解析专题4:图形的变换

一、选择题1. (2003年北京市4分)如果圆柱的底面半径为4cm ,底面为5cm ,那么它的侧面积等于【 】A. 220cm πB. 240cm πC. 20cm 2D. 40cm 22. (2004年北京市4分)如果圆锥的底面半径为3cm ,母线长为4cm ,那么它的侧面积等于【 】(A )24πcm 2 (B )12πcm 2 (C )12cm 2 (D )6πcm 23. (2006年北京市课标4分)将如图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是【 】4. (2007年北京市4分)下图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是【】5. (2008年北京市4分)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如左图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是【】6. (2009年北京市4分)若下图是某几何体的三视图,则这个几何体是【】7. (2010年北京市4分)美术课上,老师要求同学们将下图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下列四个示意图中,只有一个....符合上述要求,那么这个示意图是【】8. (2012年北京市4分)下图是某个几何体的三视图,该几何体是【】二、填空题1. (2001年北京市4分)如果圆柱的母线长为3cm,底面半径为2cm,那么这个圆柱的侧面积是▲ cm2.2. (2002年北京市4分)如果圆锥母线长为6cm,底面直径为6cm,那么这个圆锥的侧面积是▲ cm2.3. (2002年北京市4分)一种圆筒状包装的保鲜膜,如图所示,其规格为20cm×60m,经测量这筒保鲜膜的内径Φ1、外径Φ的长分别为3.2cm,4.0cm,则该种保鲜膜的厚度约为▲ cm(π取3.14,结果保留两位有效数字).4. (2006年北京市大纲4分)如图,圆锥的底面半径为2cm,母线长为4cm,那么它的侧面积等于▲ cm2。

2003年普通高等学校招生全国统一考试(北京卷)数学(文)及答案

2003年普通高等学校招生全国统一考试(北京卷)数学(文)及答案

绝密★启用前2003年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅周长,l 表示斜高或母线长. )]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232cos -=α”是“Z k k ∈+=,1252ππα”的 ( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分又非必要条件 4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( )A .若m ∥α,α∩β=n ,则m//nB .若m ∥n ,α∩β=n ,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.如图,直线022:=+-y x l 过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为 ( )A .51 B .52C .55 D .552 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.若数列{}n a 的通项公式是 ,2,1,23)1(3=-+=--n a nn n n ,则)(lim 21n n a a a +++∞→ 等于( )A .241 B .81 C .61 D .21 9.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( ) A .24种 B .18种 C .12种 D .6种10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令 ⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .kk a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为12.函数x tg x h x x g x x f 2)(|,|2)(),1lg()(2=-=+=中, 是偶函数.13.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是 14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值、最小值. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(3R x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AB=a.(Ⅰ)求证:直线A1D⊥B1C1;(Ⅱ)求点D到平面ACC1的距离;(Ⅲ)判断A1B与平面ADC的位置关系,并证明你的结论.CBC B118.(本小题满分15分)如图,A 1,A 为椭圆的两个顶点,F 1,F 2为椭圆的两个焦点. (Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA 上异于O ,A 的任一点K 作OA 的垂线,交椭圆于P ,P 1两点,直线 A 1P 与AP 1交于点M.求证:点M 在双曲线192522=-y x 上.19.(本小题满分14分)有三个新兴城镇,分别位于A,B,C三点处,且AB=AC=13km,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处,(建立坐标系如图)(Ⅰ)若希望点P到三镇距离的平方和为最小,点P应位于何处?(Ⅱ)若希望点P到三镇的最远距离为最小,点P应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件: (i );0)1()1(==-f f(ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)判断函数⎩⎨⎧∈--∈+=]1,0[,1)0,1[,1)(x x x x x g 是否满足题设条件;(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数)(x f y =,且使得对任意的 .|)()(|],1,1[,v u v f u f v u -=--∈都有若存在,请举一例:若不存在,请说明理由.绝密★启用前2003年普通高等学校招生全国统一考试 数学试题(文史类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.A 5.D 6.B 7.C 8.B 9.B 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.3 12.)();(x g x f 13.)4(362--=x y 14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为),42cos(2)(π+=x x f 所以)(x f 的最大值为2,最小值为-216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a所以.2n a n=(Ⅱ)解:由,323n n n nn a b ==得,323)22(343212n n n n n S ⋅+-+⋅+⋅=- ①.323)22(34323132+⋅+⋅-++⋅+⋅=n n n n n S ②将①式减去②式,得 .32)13(332)333(22112++⋅--=⋅-++-=-n n n n n n n S所以.32)31(31+⋅+-=n nnn S17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力.满分15分.(Ⅰ)证法一:∵点D 是正△ABC 中BC 边的中点,∴AD ⊥BC ,又A 1A ⊥底面ABC ,∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.证法二:连结A 1C 1,则A 1C=A 1B. ∵点D 是正△A 1CB 的底边中BC 的中点, ∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.(Ⅱ)解法一:作DE ⊥AC 于E , ∵平面ACC 1⊥平面ABC ,∴DE ⊥平面ACC 1于E ,即DE 的长为点D 到平面ACC 1的 距离. 在Rt △ADC 中,AC=2CD=.23,a AD a =∴所求的距离.43a AC AD CD DE =⋅=CC 1解法二:设点D 到平面ACC 1的距离为x , ∵体积111ACC D ACD C V V --= .21318331112x CC a CC a ⋅⋅⋅=⋅⋅∴,43a x =∴即点D 到平面ACC 1的距离为a 43. (Ⅲ)答:直线A 1B//平面ADC 1,证明如下:证法一:如图1,连结A 1C 交AC 1于F ,则F 为A 1C 的中点,∵D 是BC 的中点,∴DF ∥A 1B , 又DF ⊂ 平面ADC 1,A 1B ⊄平面ADC 1,∴A 1B ∥平面ADC 1. 证法二:如图2,取C 1B 1的中点D 1,则AD ∥A 1D 1,C 1D ∥D 1B ,∴AD ∥平面A 1D 1B ,且C 1D ∥平面A 1D 1B ,∴平面ADC 1∥平面A 1D 1B ,∵A 1B ⊂平面A 1D 1B ,∴A 1B ∥平面ADC 1.图(2)图(1)C 11C18.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分. (Ⅰ)解:由图可知,.3a b ,4,522=-===c c a 所以该椭圆的方程为,192522=+y x准线方程为.425±=x(Ⅱ)证明:设K 点坐标)0,(0x ,点P 、P 1的坐标分别记为),(),,(0000y x y x -, 其中,500<<x 则,19252020=+y x ……① 直线A 1P ,P 1A 的方程分别为:),5()5(00+=+x y y x ……② ).5()5(00-=-x y y x ……③ ②式除以③式得,555500-+=-+x x x x 化简上式得,250x x =代入②式得,50x y y =于是,直线A 1P 与AP 1的交点M 的坐标为).5,25(0x y x 因为.1)251(2525)5(91)25(25120202020020=--=-x x x x y x所以,直线A 1P 与AP 1的交点M 在双曲线上192522=+y x .19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解:设P 的坐标为(0,y ),则P 至三镇距离的平方和为 .146)4(3)12()25(2)(222+-=-++=y y y y f所以,当4=y 时,函数)(y f 取得最小值. 答:点P 的坐标是).4,0((Ⅱ)解法一:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 因为225y +在[),*+∞y 上是增函数,而]y ,(-|12|*∞-在y 上是减函数. 所以*y y =时,函数)(y g 取得最小值. 答:点P 的坐标是);24119,0(解法二:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当 由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 函数)(y g x =的图象如图)(a ,因此,当*y y =时,函数)(y g 取得最小值.答:点P 的坐标是);24119,0(解法三:因为在△ABC 中,AB=AC=13,且,(b).,4,51222如图π=∠=>=-ACB OC OC AC 所以△ABC 的外心M 在线段AO 上,其坐标为)24119,0(, 且AM=BM=CM. 当P 在射线MA 上,记P 为P 1;当P 在射线MA 的反向延长线上,记P 为P 2,这时P 到A 、B 、C 三点的最远距离为P 1C 和P 2A ,且P 1C ≥MC ,P 2A ≥MA ,所以点P 与外心M重合时,P 到三镇的最远距离最小.答:点P 的坐标是);24119,0( 20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)证明:由题设条件可知,当]1,1[-∈x 时,有,1|1||)1()(||)(|x x f x f x f -=-≤-= 即.1)(1x x f x -≤≤-(Ⅱ)答:函数)(x g 满足题设条件.验证如下:).1(0)1(g g ==- 对任意的]1,1[,-∈v u ,当|;||)1()1(||)()(|,0,1][,u v u v u v g u g v -=---=-∈有时当|;||)()(|,,0]1-[,u v u v g u g v -=-∈同理有时 当0,u <⋅v不妨设],1,0(),0,1[∈-∈v u 有.|||||)1()1(||)()(|u v v u v u v g u g -≤+=--+=-所以,函数)(x g 满足题设条件.(Ⅲ)答:这样满足的函数不存在.理由如下:假设存在函数)(x f 满足条件,则由,0)1()1(==-f f 得,0|)1()1(|=--f f ①由于对任意的]1,1[,-∈v u ,都有.|||)()(|v u v f u f -=-所以,.2|)1(1||)1()1(|=--=--f f ② ①与②矛盾,因此假设不成立,即这样的函数不存在.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市2003年数学中考试题一、选择题(共14个小题,每小题4分,共56分) 1.-5的绝对值是(A) 5 (B) 15 (C) -15 (D) -52.3-2计算的结果是(A) -9 (B) -6 (C) - 19 (D) 193.计算a 3·a 4的结果是(A) a 12 (B) a (C) a 7 (D) 2a 34.2002年我国发现首个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为(A) 6×102亿立方米 (B) 6×103亿立方米 (C) 6×104亿立方米 (D) 0.6×104亿立方米5.下列图形中,不是..中心对称图形的是 (A) 菱形 (B) 矩形 (C) 正方形 (D) 等边三角形6.如果两圆的半径分别为3cm 和5cm ,圆心距为10cm ,那么这两个圆的公切线共有 (A) 1条 (B) 2条 (C) 3条 (D) 4条7.如果反比例函数y =kx 的图象经过点P(-2,3),那么k 的值是(A) -6 (B) - 32 (C) - 23(D) 68.在△ABC 中,∠C=90°,如果tanA =512 ,那么sinB 的值等于(A)513 (B) 1213 (C) 512 (D) 1259.如图,CA 为⊙O 的切线,切点为A ,点B 在⊙O 上,如果∠CAB =55o ,那么∠AOB 为 (A) 55o (B) 90o (C) 110o (D) 120o10.如果圆柱的底面半径为4cm ,母线长为5cm ,那么它的侧面积等于 (A) 20πcm 2 (B) 40πcm 2 (C) 20 cm 2 (D) 4 0 cm 2C第9题图BA 第13题图11.如果关于x 的一元二次方程kx 2-6x +9=0有两个不相等的实数根,那么k 的取值范围是(A) k <1 (B) k ≠0 (C) k <1且k ≠0 (D) k >112.在抗击“非典”时期的“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数的记录如下表:在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是 (A) 68,65 (B) 55,68 (C) 68,57 (D) 55,5713.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =10,CD =8,那么AE 的长为(A) 2 (B) 3 (C) 4 (D) 514.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升, 那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是二、填空题(共4个小题,每小题4分,共16分)15.在函数y =x +3 中,自变量x 的取值范围是___________.16.如图,在等边三角形ABC 中,点D 、E 分别在AB 、AC 边上,且DE ∥BC ,如果BC =8cm ,AD :AB =1:4,那么△ADE 的周长等于________cm .(A )) )(B )) (C ))(D )17.如图,B、C是河岸边两点,A是对岸岸边一点,测得∠ABC=45o,∠ACB=45o,BC=60米,则点A到岸边BC的距离是_______米.18.观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,…….猜想:第n个等式(n为正整数)应为____________________________.三、(共3个小题,共14分)19.(本小题满分4分)分解因式:x2-2xy+y2-920.(本小题满分4分)计算:12 +1-8 +( 3 -1)0C 第16题图AB C第17题图用换元法解方程:x2-3x+5+6x2-3x=0四、(本题满分5分)22ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).⑴连结______________.⑵猜想:____________ =____________.⑶证明:BC23.列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.六、(本题满分7分)24.已知:关于x的方程x2-2mx+3m=0的两个实数根是x1,x2,且(x1-x2)2=16.如果关于x的另一个方程x2-2mx+6m-9=0的两个实数根都在x1和x2之间,求m的值.25.已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC 的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3.⑴求证:AF=DF;⑵求∠AED的余弦值;⑶如果BD=10,求△ABC的面积.AFMBC26.已知:抛物线y=ax2+4ax+t与轴的一个交点为A(-1,0).⑴求抛物线与x轴的另一个交点B的坐标;⑵D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;⑶E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在⑵中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.北京市中考数学试题答案第I卷(机读卷共56分)一. 选择题(共14个小题,每小题4分,共56分)1. A2. D3. C4. B5. D6. D7. A8. B9. C10. B 11. C 12. A 13. A 14. B第II卷(非机读卷共64分)二. 填空题(共4个小题,每小题4分,共16分)15. 16. 6 17. 3018. (或)三. (共3个小题,共14分)19. (本小题满分4分)分解因式:解:2分4分20. (本小题满分4分)计算:解:3分4分21. (本小题满分6分)用换元法解方程解:设,1分则原方程化为2分解得3分当时,解得4分当时,,此方程无实数根。

5分经检验,都是原方程的根6分原方程的根为四. (本题满分5分)22. 如图,在平行四边形ABCD中,点E、F 在对角线AC上,且AE=CF。

请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可)。

(1)连结____________。

(2)猜想___________=___________。

(3)证明:答案一:(1)连结BF 1分(2)猜想:BF = DE 2分(3)证法一:四边形ABCD为平行四边形在和中,4分5分证法二:连结DB、DF,设DB、AC交于点O四边形ABCD为平行四边形3分四边形EBFD为平行四边形4分5分答案二:(1)连结DF 1分(2)猜想:DF = BE 2分(3)证明:略(参照答案一给分)五. (本题满分6分)23. 列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:"二环路车流量为每小时10000辆";乙同学说:"四环路比三环路车流量每小时多2000辆";丙同学说:"三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍"。

请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少。

解法一:设高峰时段三环路的车流量每小时x辆,1分则高峰时段四环路的车流量为每小时辆。

2分根据题意,得4分解这个方程,得5分答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。

6分解法二:设高峰时段三环路的车流量为每小时x辆,四环路的车流量为每小时y辆。

1分根据题意,得4分解这个方程组,得5分答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。

6分六. (本题满分7分)24. 已知:关于x的方程的两个实数根是,且。

如果关于x的另一个方程的两个实数根都在和之间,求m的值。

解:是方程(1)的两个实数根解得3分(i)当时,方程(1)为方程(2)为不在和1之间不合题意,舍去。

5分(ii)当时,方程(1)为,即方程(2)的两根都在方程(1)的两根之间。

7分综合(i)(ii),注:利用数形结合解此题正确的,参照上述评分标准给分。

七. (本题满分8分)25. 已知:在中,AD为的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且。

(1)求证:(2)求的余弦值;(3)如果BD=10,求的面积。

解法一:(1)证明:平分DE是半圆C的直径2分(2)解:连结DM是半圆C的直径可设,由勾股定理,得DE=5x由切割线定理的推论,得4分在中5分(3)解:过A点作于N由得在中解得7分8分解法二:(1)证明:同解法一(1)(2)解:过A点作于N在中,可设FE=4x,则FD=3x由勾股定理,得由勾股定理,得5分(3)解:在中解得8分八. (本题满分8分)26. 已知:抛物线与x轴的一个交点为A(-1,0)(1)求抛物线与x轴的另一个交点B的坐标;(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E是第二象限内到x轴,y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使的周长最小?若存在,求出点P的坐标,若不存在,请说明理由。

解法一:(1)依题意,抛物线的对称轴为抛物线与x轴的一个交点为A(-1,0)由抛物线的对称性,可得抛物线与x轴的另一个交点B的坐标为(-3,0)2分(2)抛物线与x轴的一个交点为A(-1,0)梯形ABCD中,AB//CD且点C在抛物线上,梯形ABCD的面积为9,所求抛物线的解析式为或5分(3)设点E坐标为(),依题意,,且(1)设点E在抛物线上,解方程组得点E与点A在对称轴的同侧点E坐标为()设在抛物线的对称轴上存在一点P,使的周长最小。

相关文档
最新文档