Frequency-hopped generalized MC-CDMA for multipath and interference suppression
CDMA参数详解教程
Dingli Communications Inc.
CDMA关键参数-T_TDrop
导频去掉定时器长度,当激活集和候选集中导频 降低时间超过了T_TDrop计数器,导频将被去除 到相邻集;如果候选集满了,但是有新的导频满 足T_Add要求需要增加,那么就去除一个最接近 T_TDrop门限的导频。 取值范围:0~319s 推荐值:2~4s
鼎利通信 鼎力支持
Dingli Communications Inc.
CDMA关键参数-T_Drop
导频最低可用门限,当激活集或候选集中的导频的 Ec/Io 下降低于T_Drop 触发计数器T_TDrop;如 果导频 Ec/Io 超过T_Drop, 计数器中止;计数器满 时,对于候选集导频,手机将自发的将该导频转移 到相邻集中。对于激活集导频,手机将产生一条导 频强度测量消息PSMM报给BSC,提醒BSC应当 删除该导频。 取值范围:-31.5~0dB 推荐值:-16~-13dB T_Drop编码值除以2,然后在前面加个负号,就可 以转换为实际值;
1W
10 W
1000 mW/1mW=1000
10 000mW/1mW=10 000
30 dBm = 10 x Log10(1 000)
40 dBm = 10 x Log10(10 000)
鼎利通信 鼎力支持
Dingli Communications Inc.
CDMA关键参数-RxAGC
手机接收功率,指在所有前向信道接收到的功率 (包括周围各基站/扇区,外加噪声),反映了手 机当前的信号接收水平,RxAGC大的地方,即 信号覆盖好的区域, RxAGC只是简单的反映了路 测区域的信号覆盖水平,而不是信号覆盖质量的 情况。 RSSI,RxPower,RxAGC,Io意义相同
GSM Frequency Hopping
Information processing in the GSM, error-correcting codes was introduced; this code is built on the basis of redundancy, through the redundant processing of data, even if there are several errors, the original datacan bereconstructedfrom the rest of the receiving stream. And this redundancy is extended to several burst on, so hopping ways to ensure a message sent by a few frequencies, and thus to improve system performance.
Contents
1
In order to effectively improve system quality, improve the frequency utilization, GSM wireless interface uses a frequency-hopping technology, which was originally used for military transport system designed to ensure safety and prevent congestion. According to therelationshipofsignal modulation rate and the frequency hopping rate, frequency hopping can be divided into fast and slow frequency hopping. In the GSM system uses slow frequency hopping technology, its main feature is a fixed interval (4.615ms) used to change the frequency of a channel, andin a time slot burst frequency remains constant.
MC-CDMA
多载波码分多址MC -CDMA目前商用移动通信技术正在从2G(第二代移动通信技术)向3G 平滑过渡,而国内外已经把后3G 或4G 作为新的研发重点,移动通信的发展中出现了以下新趋势:(1)在现有的频谱资源限制下容纳更多的用户及提供更高的服务质量;(2)提供对多媒体视频及其他扩展业务的通用支持平台;(3)由于用户手机成为个性化消费品,淘汰速度加快,要求结构尽可能简单以降低系统成本。
随着社会进步及用户数量的急剧增长,频率资源日益紧张,要求第三代移动通信系统IMT-2000能提供更大的系统容量,更高的通信质量,并能提供2Mbit /s 数据业务,以满足人们对多媒体通信的要求并适应通信个人化的发展方向。
MC-CDMA 技术作为第三代移动通信系统的重要技术,是建立在CDMA 技术基础上,并有可能成为第三代数字蜂窝移动通信系统的两种标准。
标准的CDMA 是根据美国标准(IS-95)而设计的频率在900~1800MHz 范围的数字移动电话系统。
而MC-CDMA 的开发策略是对以IS -95标准为蓝本的cdmaOne (移动通信标准)系统的平滑升级,MC-CDMA 的英文全称为Multicarrier-code division multiple access ,中文含义为多载波分复用扩频调制技术,它是最先由美国推出的从窄带CDMA 技术发展而来的一种宽带技术。
这种技术与使用Time -Division Multiplexing (TDM)的竞争对手(如GSM)不同,它并不给每一个通话者分配一个确定的频率,而是让每一个频道使用所能提供的全部频谱。
MC-CDMA 为了兼容cdmaOne ,以原cdmaOne 的基本码片速率的三倍,即 3.6864 Mchip /s 作为MC-CDMA 的基本速率进行直接扩频调制。
同时,MC-CDMA 还定义了以原cdmaOne 系统3个基本信道(带宽 1.25 MHz )作频分复用的多载波扩频调制方式。
CDMA网络优化常用参数设置说明
本文主要结合呼叫流程、切换流程中涉及到的无线参数进行说明,同时对 双载频的优化设置做了介绍。通过本文的介绍,可以掌握呼叫、通话流程中的相 关参数的具体应用、设置范围、参数调整的影响等;对优化过程中涉及的参数设 置起到说明作用。
1.呼叫
接入成功率是评价系统性能的一个非常重要的指标, 反映系统接通呼叫的能 力。在本文中,将呼叫分为主叫、被叫两个部分。
1.2.2.1 登记的类型................................................................................................................ 9 1.2.3 登记参数设置........................................................................................................... 13 1.3 小结 ............................................................................................................................... 16 2.切换 ........................................................................................................................................ 17 2.1 切换过程 ....................................................................................................................... 19 2.2 切换信令 ....................................................................................................................... 20 2.3 切换参数设置............................................................................................................... 21 2.3.1 搜索窗参数............................................................................................................... 21 2.3.2 切换参数...................................................................................................................... 26 2.3.3 切换相关参数设置..................................................................................................... 32 3.双载频优化参数设置............................................................................................................... 33 3.1 两载频临界区的切换................................................................................................... 33 3.2 半软切换的理论........................................................................................................... 34 3.3 邻区配置....................................................................................................................... 36 3.4 双载频参数配置........................................................................................................... 36
通信行业英语中英对照手册(F)
通信行业英语中英对照手册(F)F-CAPICH Forward-Common Auxiliary PIlot CHannel 前向公共辅助导频信道F-CPHCH Forward Common PHysical CHannel 前向公共物理信道F-DAPICH Forward Dedicated Auxiliary PIlot CHannel 前向专用辅助导频信道F-DCCH Forward Dedicated Control CHannel 前向专用控制信道F-DPHCH Forward Dedicated PHysical CHannel 前向专用物理信道F-EDFA Forward pumped EDFA 前向泵激励掺铒光纤放大器F-FCH Forward Fundemental CHannel 前向基本信道F-PCH Forward-Paging CHannel 前向寻呼信道F-PICH Forward-PIlot CHannel 前向导频信道F-RAMA Fair Resource Assignment Multiple Address 合理资源分配多址访问F-SCH Forward Supplemental CHannel 前向辅助信道F-SYNC Frame SYNChronizer 帧同步器F-SYNCH Forward-SYNchronous CHannel 前向同步信道FA Fiber Adaption 光纤适配FA Frame Aligner 帧定位器FA Frame Alignment 帧定位FAB Fiber Array Block 光纤阵列块FABM Fiber Amiplifier Booster Module 光纤放大器增强模块FAC Forward Acting Code 前向作用码FACCH Fast Associated Control CHannel 快速相关控制信道FACH Forward Access CHannel 前向接入信道FAITH Fiber Almost Into The Home 准光纤到家FAL Frame Alignment Loss 帧定位丧失FAL Frequency Allocation List 频率分配表FAM Frame Alignment Module 帧定位模块FAN Fiber in the Access Network 接入网光纤FAQ Frequently Asked Questions 常遇到的问题FART Frame Alighment Recovery Time 帧同步恢复时间FAS Fiber Access System 光纤接入系统FAS Flexible Access System 灵活接入系统FAS Frame Alignment Signal 帧定位信号FAST Fiber At Subscriber Terminal 用户端光纤FAT File Allocation Table 文件分配表FAT Flexible Access Termination 灵活接入终端FATDDL Frequency And Time Division Data Link 频分与时分数据链路FAW Frame Alignment Word 帧定位字FAXIWF FAX InterWorking Function 互通功能FB Fiber Booster 光纤增强器FB Fiber Bundle 光纤束FBB Fiber BackBone 光纤干线FBCN Fuzzy Backward Congestion Notification 模糊反向拥塞通知FBG Fiber Bragg Grating 光纤布拉格光栅FBGLS FBG Laser Sensor FBG激光传感器FBR Fiber Bragg Reflector 光纤布拉格反射器FBR Fixed Bit Rate 固定比特率FBS Flexible Bandwidth Sharing 灵活带宽共享FC Fiber Channel 光纤通道FC Forward Compatibility 前向兼容性FCA Fixed Channel Allocation 固定信道分配FCAL Fiber Channel Arbitrated Loop 光纤信道仲裁环路FCB File Control Block 文件控制块FCC Facsimile Conrol Channel 控制信道FCC Federal Communications Commission (美国)联邦通信委员会FCC Frequency Channel Code 频道编码FCCCH Forward Common Control CHannel 前向公共控制信道FCFS First Come First Served 先来先服务FCH Facsimile Channel Handling 信道处理FCLS First Come Last Served 先来后服务FCM Fuzzy Cognitive Map 模糊认知图FCN Frequency-Converting Network 变频网络FCN Full Connected Network 全连接网络FCP Frequency Control Program 频率控制程序FCS Fast Circuit Switching 快速电路交换FCS Fiber Channel Standard 光纤信道标准FCS Frame Check Sequence 帧校验序列FCT Fixed Celullar Terminal 固定蜂窝终端FD Fiber Duct 光纤管道FD Frame Disassembler 帧分解器FD-SS Frequency-Diversity Spread Spectrum 频率分集扩频FDCT Forward Discrete Consine Transform 前向离散余弦变量FDD Frequency Division Duplex 频分双工FDDI Fiber Distributed Data Interface 分布式光纤数据接口FDF Full-duplex Data Flow 全双工数据流FDI Feeder Distribution Interface 馈线分配接口FDL Fiber Delay Line 光纤延迟线FDM Frequency Division Mutiplexing 频分复用FDMA Frequency Division Multiple Access 频分多址接入FDP Fiber Distribution Point 光纤分布点FDR Forward Deflection Routing 前向改向路由选择FDX Full DupleX 全双工FE Function Element 功能单元FE Function Entity 功能实体FE-CDMA Frequency-Encoded CDMA 频率编码CDMAFEA Function Entity Action 功能实体作用FEAM Functional Entity Access Management 功能实体接入管理FEC Forward Error Conrol 前向过失控制FEC Forward Error Correction 前向纠错FEC Forwarding Equivalence Class 转发等价类型FECC-F Forward Error Correction Count-Fast data 前向纠错快速计数数据FECN Forward Explicit Congestion Notification 前向显式拥塞通知FED Forward Error Detection 前向检错FEFO First Ended First Out 先结束先送FEP Front-End Processor 前端处理器FER Frame Erasure Rate 帧删除率FER Frame Error Rate 误帧率FERF Far End Receive Failure 远端接收失效FES Fixed Earth Station 固定地球站FEXT Far-End CrosST alk 远端串音FFH Fast Frequency-Hopping 快速跳频FFP Fiber Fabry-Perot 光纤法布里-珀罗FFP-TF Fiber Fabry-Perot Tunable Filter 光纤法布里-珀罗可调滤波器FFPF Fiber Fabry-Perot Filter 光纤法布里-珀罗滤波器FFPI Fiber Fabry-Perot Interferometer 光纤法布里-珀罗干预仪FFRN Four-Fiber Ring Node 四纤环节点FFT Fast Fourier Transform 快速傅立叶变换FH Frame Handler 帧处理器FH Frame Header 帧头FH Frequency Hopping 跳频FH-CDMA Frequency-Hopped CDMA 跳频CDMAFHR Fixed Hierarchical Routing 固定等级选路FHSP Frame Handler SubPort 帧处理程序子端口FHSS Frequency Hopping Spread Spectrum 跳频扩频FI Format Identifier 格式标识符FIC Fiber Interface Card 光纤接口卡FICS Facsimile Intelligent Communication System 智能通信系统FIFO First In First Out 先进先出FIFS First In First Served 先进先服务FILO Firs In Last Out 先进后出FIM Fiber Interface Module 光纤接口模块FIM/CM Feature Interactive Management & Calling Management 特征交互管理与呼叫管理FIMS Feature Interaction in Multimedia System 多媒体系统特征交互FIN Full Interconnection Network 全互联网络FITL Fiber In The Loop 环路光纤FIU Facilities Interface Unit 设备接口单元FLAG Fiber Link Around the Globe 环球光纤链路FLL Fiber in the Local Loop 局域环路光纤FLM Fiber Loop Mirror 光环路镜像FM Facilities Management 设施管理FM Fault Management 故障管理FM Flexible Multiplexer 灵活复用器FM Forward Monitoring 前向监控FM Frequency Modulation 调频FM/FDMA Frequency Midulation / FDMA 调频/频分多址FM/TDMA Frequency Midulation / TDMA 调频/时分多址FMBS Frame Mode Bearer Service 帧模式承载业务FMC Fixed-Mobile Covergence 固定移动融合FMD Follow-Me-Diversion 跟我转移FMD Frame Mode Data 帧模式数据FMD Function Management Data 功能管理数据FMDI Function Management Data Interpreter 功能管理数据解释程序FMMS Fixed Media Mass Storage 固定媒体大容量存储器FMS File Management Subsystem 文件管理子系统FMS File Management System 文件管理系统FMSR FP-Mode Suppression Ratio 法布里-珀罗特模式抑制比FMUX Flexible MUltipleXer 灵活复用器FMV Full-Motion Video 全运动视频FN Fiber Node 光纤节点FN Functional Network 功能网络FNA Flexible Networking Architecture 灵活的网络结构FNA Free Network Address 空闲网络地址FNAE Free Network Address Element 空闲网络地址元素FNAS Frame relay Network Access Subsystem 帧中继网络接入子系统FNN Fuzzy Neural Network 模糊神经网络FNP Frontend Network Processor 前端网络处理机FO Fiber Optics 光纤FOA Fiber Optic Amplifier 光纤放大器FOAN Fiber Optic Access Network 光纤接入网络FOB FDM Output Buffer FDM输出缓冲器FOC Fiber Optic Cable 光缆FOC Fiber Optic Communication 光纤通信FOCC FOrward Control Channel 前向控制信道FOCN Fiber Optic Communication Network 光纤通信网FOCUS Fiber Optic Connection Universal System 光纤连接通用系统FOE Fiber Optic Extender 光纤延长器FOF Fluorescent Optical Fiber 发光光纤FOI Fiber Optic Isolator 光纤隔离器FOID Fiber Opitc Interface Device 光纤接口设备FoIP Fax over IP IPFOIRL Fiber Optic Inter-Repeater Link 中继器间光纤链路FOL Fiber Optic Laser 光纤激光器FOLAN Fiber Optic LAN 光纤局域网FOM Fiber Optic Modem 光纤调制解调器FOMAU Fiber Optic Medium Attachment Unit 光纤媒介附属单元FOP Failure Of Protocol 协议失效FOPMA Fiber Optic Physical Medium Attachment 光纤物理媒体装置FOS Fiber Optic Sensor 光纤传感器FOTC Fiber Optic Trunk Cable 干线光缆FOTIC Fiber Optic Transmitter Integrated Circuit 光纤发射机集成电路FOTN Fiber Optic Transmission Network 光纤传输网络FOTS Fiber Optic Temperature Sensor 光纤温度传感器FOX Fiber Optic eXtender 光纤扩展器FP Function Processor 功能处理机FPAD Facsimile Packet Assembly / Disassembly 分组组合/拆卸FPBS Fiber Polarization Beam Spliter 光纤偏振分束器FPGA Field Programmable Gate Array 现场可编程门阵列FPH FreePHone 免费(被叫集中付费)FPLL Frequency and Phase Locked Loop 锁频/锁相环FPLMTS Future Public Land Mobile Telecommunication Systems 未来公用陆地移动通信系统FPM Four Photon Mixing 四光子混合FPS Fast Packet Switching 快速分组交换FPSLA Fabry-Perot Semiconductor Laser Amplifier 法布里-珀罗半导体激光放大器FPT/FPS Fast Packet Transfer / Switching 快速分组传送/交换FR Frame Relay 帧中继FR Full Rate 全速率FRA File Relative Address 文件相关地址FRA Fixed Radio Access 固定无线接入FRAD Frame Relay Access Device 帧中继接入设备FRDTS Frame Relay Data Transmission Services 帧中继数据传输业务FRI Frame Relaying Information 帧中继信息FRMR FRaMe Reject 帧拒绝FRP Fast Reservation Protocol 快速保留协议FRP Fast Resolution Protocol 快速分辨协议FRP/DT Fast Reservation Protocol with Delayed Transmission 具有延迟传输的快速保留协议FRPH Frame Relay Packet Handler 帧中继分组处理程序FRS Frame Relay Service 帧中继业务FRS Frame Relay Switch 帧中继交换机FRSE Frame-Relay Switching Equipment 帧中继交换设备FRSF Frame Relay Service Function 帧中继业务功能FRT Frame Relay Terminal 帧中继终端FRTE Frame-Relay Terminal Equipment 帐中继终端设备FRTT Fixed Round-Trip Time 固定往返时间FS Fax Server 服务器FS Fiber Sensor 光纤传感器FS Frame Start signal 帧起始信号FS Frame State 帧状态FS Frame Switching 帧交换FS Frame Synchronizer 帧同步器FSAN Full Service Access Network 全业务接入网FSK Frequency Shift Keying 频移键控FSL Flexible System Link 灵活系统链路FSM FDDI Switching Module FDDI交换模块FSM FDM-channel Selector Module FDM信道选择器模块FSN Full Service Network 全业务网FSS Fixed Satellite Service 固定卫星业务FSS Flying Spot Scanner 飞点扫描器FSS Frame Synchronous Scrambling 帧同步扰码FSU Fixed Subscriber Unit 固定用户单元FSW Frame Synchronization Word 帧同步字FSYN Frame SYNchronization signal 帧同步信号FT Fiber Termination 光纤终端FT Fixed radio Terminal 固定式无线电终端FTAM File Transfer Access and Management 文件传送存取和管理FTAMS File Transfer Access and Management Services 文件传递访问及管理服务FTC Facsimile Transport Channel 传送信道FTC Fault Tolerant Computer 容错电脑FTC Fault-Tolerant Computing 容错计算FTF Fiber Termination Frame 光纤终端架FTLA Fiber-T o-the-Last Amplifier 光纤到末级放大器FTM FDM Transmitter Module FDM发送器模块FTM Fiber Terminal Module 光纤终端模块FTM Fiber Transfer Module 光纤传送模块FTM File Transfer Manager 文件传送管理器FTN Facsimile Transmission Network 传输网FTN Four-Terminal Network 四端网络FTP File Transfer Protocol 文件传送协议FTR Full Text Retrieval 全文检索FTS Fast Track Selector 快速磁道选择器FTS Frame Transport System 帧传送系统FTSA Fiber-To-the-Service Area 光纤到服务区FTSMSTR Frame Transport System MaSTeR 帧传送系统主程序FTTA Fiber To The Apartment 光纤到公寓FTTB Fiber To The Bridge 光纤到桥梁FTTB Fiber To The Building 光纤到楼宇FTTC Fiber To The Curb 光纤到路边FTTCa Fiber To The Cabinet 光纤到机箱FTTD Fiber To The Desk 光纤到桌面FTTF Fiber To The Feeder 光纤到馈送器FTTF Fiber To The Floor 光纤到楼层FTTH Fiber To The Home 光纤到户FTTK Fiber To The Kerb 光纤到路边FTTN Fiber To The Node 光纤到节点FTTO Fiber To The Office 光纤到办公室FTTP Fiber To The Pedestal 光纤到人行道FTTR Fiber To The Remote module 光纤到远端模块FTTR Fiber To The Rural 光纤到农村FTTS Fiber To The Subscriber 光纤到用户FTTSA Fiber To The Service Area 光纤到服务区FTTV Fiber To The Village 光纤到村FTTx Fiber To The… 光纤到…FTTZ Fiber To The Zone 光纤到小区FUNI Frame User Network Interface 帧用户网络接口FWA Fixed Wireless Access 固定无线接入FWAN Fixed Wireless Access Network 固定无线接入网FWC Frequency and optical Wavelength Converter 频率和光波长变换器FWM Four Wave Mixing 四波混频FWPCS Future Wireless PCS 未来无线个人通信系统FWS Fast-Wavelength-Switched 快速波长交换。
通信工程专业英语词汇
通信工程专业英语词汇动态范围: Dynamic range频率偏值:Frequency offset符号率: Symbol rate码域功率:code domain power频分多址:Frequency Division Multiple Access码分多址:Code Division Multiple Access时分多址: Time Division Multiple Access沃什码:Walsh code误码率:Bit Error Rate,BER帧误码率:Frame Error Rate,FER循环冗余码:Cyclic Redundancy Code,CRC时序分析: timing analyze门限:threshold非同步模式:Asynchronous Mode同步模式:Synchronous Mode邻道功率:ACP D―― Adjacent Channel Power先进移动电话业务:AMPS——-Advanced Mobile Phone Service组织协会:ANSI -—- American National Standard Institute 美国国家标准局BPT -—- British Post and Telecommunication Standard 英国邮政与电信标准CCIR -——International Radio Consultative Committee 国际无线电咨询委员会CCITT -—- International Telegraph and Telephone Consultative Committee国际/电报咨询委员会CEPT -——Conference of European Post and Telecommunication Administrations欧洲邮电行政会议EIA ———Electronic Engineers Association 电子工业协会美ETSI —-- European Telecommunication Standards Institute欧洲电信标准委员会FCC -—- Federal Communications Commission联邦通信委员会美IEC —-—International Electrotechnics Committee国际电工委员会IEE --—Institution of Electrical Engineers电气工程师协会英IEEE-——Institution of Electrical and Electronics Engineers,INC电气与电子工程师协会美ITU -—- International Telecommunication Union 国际电信联盟联合国MPT ——- Ministry of Post and telecommunications邮政与电信部英TIA -—- Telecommunications Industries Association电信工业协会美WARC -—- World Administrative Radio Conference世界无线电行政大会ZVEI --—Zentralverband der Electechnischen Industrie电气工业中央协会德ACP ——- Adjacent Channel Power邻道功率AMPS --- Advanced Mobile Phone Institute先进移动电话业务APOC —-—Advanced Paging Operator Code先进寻呼操作码AVL ———Average Voice Level平均话音电平BSC --- Base Site Controller基站控制器CDMA —-- Code Division Mulitiple Code码分多址CDPD —-—Cellular Digital Packet Data蜂窝分组数据系统CSC --—Cell Site Controllor小区控制器DCCH ———Digital Control Channel数字控制信道DECT -——Digital Enhanced Cordless Telecommunications数字增强无绳电话EDACS —-—Enhanced Digital Access Communications System加强的数字接入通信系统ERMES ———European Telecommunications Standards Institute欧洲无线电信息系统ESN -——Electronics Serial Number电子串号FDR --—Frequency Domain Reflectometry频域反射计FLEX ———Flexible Paging System可变速寻呼系统FOCC ———Forward Control Channel前向控制信道FVC —-—Forward Voice Channel前向话音信道GSC ——- Golay Sequential Coding格雷码GSM -—- Global System for Mobile Communications全球移动通信系统IBASIC ———Instrument BASIC仪器BASIC语言IDC --- Instantaneous Deviation Control瞬时频偏控制IMSI ———International Mobile Station Identify国际移动台识别号码LNA ——- Low Noise Amplifier低噪声放大器LPF/HPF ———Low/High Pass Filter低通/高通滤波器LSB/USB ——- Lower/Upper Side Band下/上边带MCC --- Mobile Country Code移动业务国家号码MCS --- Mobile Control Station移动控制站MIN -——Mobile Identification Number移动识别码MNC ———Mobile Network Code移动电话网号码MSC —--Mobile Switching Center移动交换中心MSIN -—- Mobile Station Identification Number移动台识别码MTSO -—- Mobile Telephone Switching Office移动电话交换局NMSI -——National Mobile Station Identify国内移动台识别号码NMT ——- Nordic Mobile Telephone北欧移动电话系统OTP —-—One Time Programmable一次性编程PDC --—Personal Digital Cellular个人数字蜂窝系统PHS —-—Personal Handy—Phone System个人手持电话系统PSTN --- Public Switching Telephone Network公用交换电话网RECC --- Reverse Control Channel反向控制信道RVC --- Reverse Voice Channel反向话音信道RSSI —-—Receiced Signal Strength Indicator接收信号场强指示SCC -—- Signalling Channel Controller信令信道控制器SCM -——Station Class Mark移动台级别标志SID ———Syste Indentification Number系统识别号TACS —-- Total Access Communications System全选址通信系统TDMA —-- Time Division Multiple Access时分多址UUT ———Under Unit Test被测单元VCC --—Voice Channel Controller话音信道控制器VSWR --- Voltages Standing Wave Ratio电压驻波比1997年,爱立信公司向ETSI(欧洲电信标准委员会)提出了EDGE的可行性研究方案,并在同年得到认可.EDGE(Enhanced Data Rates for GSM)的全称为GSM演进增强型数据速率,是一种标准的空中接口。
微秒基于双频同步的时钟同步模块说明书
1Features•Two independent clock channels•Frequency and Phase Sync over Packet Networks •Frequency accuracy performance for WCDMA-FDD, GSM, LTE-FDD and femtocell applications •Frequency performance for ITU-T G.823 and G.824 synchronization interface, as well as G.8261 PNT PEC and CES interfaces•Phase Synchronization performance forWCDMA-TDD, Mobile WiMAX, TD-SCDMA and CDMA2000 applications•Client holdover and reference switching between multiple Servers•Server, client and boundary clock operation•Any input clock rate from 1kHz to 750MHz •Automatic hitless reference switching and digital holdover on reference fail•Digital PLLs filter jitter at 5.2 Hz, 14 Hz, 28 Hz, 56 Hz, 112 Hz, 224 Hz, 448 Hz or 896 Hz•Operates from a single crystal resonator or clock oscillator•Electrical phase alignment to input 1 Hz frame pulse with associated reference clock (ref/sync pairing)•Programmable synthesizers •Any output clock rate from 1Hz to 750MHz •Low output jitter for 10G PHYs•Six LVPECL outputs and six LVCMOS outputs•Field programmable via SPI/I 2C interfaceApplications•OTN muxponders and transponders •10Gigabit line cards•Synchronous Ethernet, SONET/SDH, Fibre Channel, XAUIMarch 2014Figure 1 - Functional Block DiagramZL30367Dual Channel IEEE 1588 & SynchronousEthernet Clock Line Card TranslatorShort Form Data SheetOrdering Information:ZL30367GDG2144 Pin LBGATraysPb Free Tin/Silver/Copper-40o C to +85o CPackage size: 13 x 13 mmDetailed FeaturesGeneral•Two independent clock channels•Operates from a single crystal resonator or clock oscillator•Configurable via SPI or I2C interfaceTime Synchronization Algorithm•External algorithm controls software digital PLL to adjust frequency & phase alignment•Frequency, Phase and Time Synchronization over IP, MPLS and Ethernet Packet Networks•Frequency accuracy performance for WCDMA-FDD, GSM, LTE-FDD and femtocell applications, with target performance less than ± 15 ppb.•Frequency performance for ITU-T G.823 and G.824 synchronization interface, as well as G.8261 PNT EEC, PNT PEC and CES interface specifications.•Phase Synchronization performance for WCDMA-TDD, Mobile WiMAX, TD-SCDMA and CDMA2000 applications with target performance less than ± 1 s phase alignment.•Time Synchronization for UTC-traceability and GPS replacement.•Client reference switching between multiple Servers•Client holdover when Server packet connectivity is lostElectrical Clock Inputs•Nine input references configurable as single ended or differential and two singled ended input references •Synchronize to any clock rate from 1kHz to 750MHz on differential inputs•Synchronize to any clock rate from 1kHz to 177.75MHz on singled-ended inputs•Synchronize to sync pulse and clock pair•Flexible input reference monitoring automatically disqualifies references based on frequency and phase irregularities•LOS•Single cycle monitor•Precise frequency monitor•Coarse frequency monitor•Guard soak timer•Per input clock delay compensationElectrical Clock Engine•Flexible two-stage architecture translates between arbitrary data rates, line coding rates and FEC rates •Internal state machine automatically controls mode of operation (free-run, locked, holdover)•Automatic hitless reference switching and digital holdover on reference fail•Physical-to-physical reference switching•Physical-to-packet reference switching•Packet-to-physical reference switching•Packet-to-packet reference switching•Selectable phase slope limiting•Supports ITU-T G.823, G.824 and G.8261 for 2048kbit/s and 1544kbit/s interfacesElectrical Clock Generation•Three programmable synthesizers•Six LVPECL outputs•Two LVPECL outputs per synthesizer•Generate any clock rate from 1Hz to 750MHz•Low output jitter for 10G PHYs•Meets OC-192, STM-64, 1 GbE & 10 GbE interface jitter requirements•Six LVCMOS outputs•Two LVCMOS outputs per synthesizer•Generate any clock rate from 1 Hz to 177.75MHz•Programmable output advancement/delay to accommodate trace delays or compensate for system routing paths•Outputs may be disabled to save powerAPI Software•Interfaces to 1588-capable PHY and switches with integrated timestamping•Abstraction layer for independence from OS and CPU, from embedded SoC to home-grown•Fits into centralized, highly integrated pizza box architectures as well as distributed architectures with multiple line cards and timing cardsInformation relating to products and services furnished herein by Microsemi Corporation or its subsidiaries (collectively “Microsemi”) is believed to be reliable. However, Microsemi assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any suchinformation, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Microsemi or licensed from third parties by Microsemi, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Microsemi, or non-Microsemi furnished goods or services may infringe patents or other intellectual property rights owned by Microsemi.This publication is issued to provide information only and (unless agreed by Microsemi in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Microsemi without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded.Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical and other products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Microsemi’s conditions of sale which are available on request.Purchase of Microsemi’s I 2C components conveys a license under the Philips I 2C Patent rights to use these components in an I 2C System, provided that the system conforms to the I 2C Standard Specification as defined by Philips.Microsemi, ZL, and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are trademarks of Microsemi Corporation.TECHNICAL DOCUMENTATION - NOT FOR RESALEFor more information about all Microsemi productsvisit our Web Site at/timing-and-synchronization。
Chapter I Introduction(PDF高清完整版本)
李瑞芳
liruifang@ QQ:87118461
武汉理工大学 信息工程学院
1
Course Overview
one of the compulsory courses The previous course related:
messages
PDA 个人数字助理 • graphical displays • character recognition • simplified WWW
Laptop/Notebook • fully functional • standard appld controllers
效区人为噪声
市区人为噪声
dB
3×105
Ta
30
Fa=10 lg T0
Ta / K
3×104
20
3×103
10
银河噪声
典型接收机热噪声
T0=290 3×10
0
太阳噪声
(安静期)
-10
f / MHz
2
4 68
2
100
4 6 18000 2
4 6 180 000
23
干扰
邻道干扰
相邻的或邻近频道的信号相互干扰。
Knowing the several well-known mobile communication standards
4
Books and References
《移动通信》 Mischa Schwartz. 许希斌, 李云洲,电子工 业出版社,2013
Stuber, Gordon L. Principles of Mobile Communication,
MC-CDMA信号子载波参数盲估计
BlindestimationofsubcarrierparametersforMCCDMAsignal
YANG Kai,ZHANGTianqi,ZHAOLiang,ZHANGTing
(ChongqingKeyLaboratoryofSignalandInformationProcessing(CQKLS&IP),ChongqingUniversity ofPostsandTelecommunications(CQUPT),Chongqing400065,China)
数很重要。由于 OFDM 信号的参数估计已经被深入研究, 并且 MCCDMA 信号和 OFDM 信号在结构和功能上存在相 似之处,所以我们可以把估计 OFDM 信号参数的相关算法 运用于 MCCDMA 信号中。文献 [6,7]用四阶循环累积 量方法在频率选择性衰落信道条件下对采用 BPSK 调制的 OFDM 信号的载波参数进行估计;文献 [8]对分别采用 BPSK、QAM 调制的 OFDM 信号的子载波参数进行估计;
2018年2月 第39卷 第2期
计算机工程与设计
COMPUTERENGINEERING ANDDESIGN
Feb.2018 Vol.39 No.2
犕犆犆犇犕犃 信号子载波参数盲估计
杨 凯,张天骐,赵 亮,张 婷
收稿日期:20161226;修订日期:20170222 基金项目:国家自然科学基金项目 (61671095、61371164);信号与信息处理重庆市市级重点实验室建设基金项目 (CSTC2009CA2003); 重庆市教育委员会科研基金项目 (KJ130524、KJ1600427、KJ1600429) 作者简介:杨凯 (1990 ),男,河北石家庄人,硕士研究生,研究方向为通信信号处理;张天骐 (191 ),男,四川眉山人,博士后,教 授,研究方向为语音信号处理、通信信号的调制解调、盲处理、神经网络实现以及 FPGA、VLSI实现等;赵亮 (1991 ),男,河南洛 阳人,硕士研究生,研究方向为信道编码参数盲识别;张婷 (1991 ),女,河南舞钢人,硕士研究生,研究方向为通信信号处理。 Email:1192540281@qq.com
mc-cdma原理 -回复
mc-cdma原理-回复CDMA(Code Division Multiple Access,码分多址)是一种常用的数字通信技术,其中的一种变体是MC CDMA(Multi-Carrier Code Division Multiple Access,多载波码分多址)。
本文将详细介绍MC CDMA的原理,并一步一步回答有关该原理的问题。
第一步:引言为了满足日益增长的无线通信需求,研究人员一直在寻找能够提高频谱利用率的技术。
MC CDMA就是这样一种技术,它允许多个用户同时使用同一频带进行通信,从而大大提高了频谱利用效率。
MC CDMA是在传统CDMA技术的基础上发展而来,它将多个脉冲展宽序列与多个子载波相乘,并通过正交码的运算形成了一个复合的码序列。
这种复合的码序列使得不同用户的信号在频域上可以被区分开来,进而实现了多用户并行传输的目的。
第二步:MC CDMA的基本原理MC CDMA是一种混合多址技术,它结合了频分多址(FDMA)和码分多址(CDMA)的优点。
在传统的CDMA系统中,不同用户的信号使用不同的序列码进行调制,以实现用户间的区分;而在MC CDMA系统中,引入了多个子载波,每个子载波负责传输不同用户的信号。
每个用户的信息先经过符号调制,然后通过正交码的运算与多个子载波相乘,最后通过连续小波变换得到时域信号。
CDMA码的引入使得不同用户的信号在频域上可以被区分开来,从而实现了多用户并行传输。
第三步:MC CDMA的信号处理在MC CDMA系统中,信号处理是一个关键的环节。
首先,用户的数据经过源编码和信道编码后生成比特流。
然后,比特流经过交织器进行交织处理,以减小误码率。
接下来,交织后的比特流通过调制器进行调制,将其转换为模拟信号。
调制后的信号经过IQ调制器进行无线电频率转换,形成用于传输的通信信号。
第四步:MC CDMA的信道复用与解复用在MC CDMA系统中,信道复用与解复用是一个重要的步骤。
频段受限信道的一些基本定义
频段受限信道的一些基本定义频段受限信道是指信号传输中受到频率范围的限制的信道。
在这种信道中,信号的传输受到频率的限制,只能在特定的频段内进行传输。
这种限制可能是由于信号传输介质的特性,也可能是由于通信系统的设计要求。
在频段受限信道中,存在一些基本的定义和概念,包括:1. 带宽(Bandwidth),带宽是指信号在频率范围内所占据的频谱宽度。
在频段受限信道中,带宽通常是受到限制的,只能在特定的频段内进行信号传输。
2. 信噪比(Signal-to-Noise Ratio,SNR),信噪比是指信号与噪声功率之比,是衡量信号质量的重要指标。
在频段受限信道中,由于受到限制的频段内可能存在噪声干扰,因此信噪比的大小对信号传输质量有重要影响。
3. 信道容量(Channel Capacity),信道容量是指在特定的频段受限信道中,能够传输的最大信息速率。
受限的频段将限制信道的容量,因此需要设计合适的调制编解码技术来提高信道利用率。
4. 多径效应(Multipath Effects),在频段受限信道中,由于信号传播路径的复杂性,可能会出现多径效应,导致信号衰减、多径干扰等问题,影响信号传输质量。
5. 衰落(Fading),频段受限信道中,由于信号传播路径的不确定性,可能会出现衰落现象,包括大尺度衰落和小尺度衰落,需要采用合适的衰落补偿技术来提高信号传输的可靠性。
综上所述,频段受限信道是指信号传输受到频率范围的限制的信道,其中涉及到带宽、信噪比、信道容量、多径效应和衰落等基本定义和概念。
在设计和实现通信系统时,需要充分考虑这些因素,以提高信号传输的可靠性和效率。
cdma 射频系统介绍
在LNA的设计中,主要考虑噪声系数、增益和动态范围3个指标间的折中,一般采用CAD设计方法,对设计的性能进行仿真。
2.3.8.2.1.3.
双工器的功能是实现收发射频信号的共用,以减少天线的数目,节省成本;同时滤除通道外的信号。对接收通道而言相当于接收滤波器,选择带内信号,抑制带外干扰;对发射通道而言相当于发射滤波器,防止带外信号对邻近通道产生干扰。
图17 单载频三扇区射频前端实现框图
2载频中,RFE由6个完全相同的RFE-DUP组成,每一路都实现一个频率的收发共用和另一频率的分集接收。
图18RFE-DUP原理框图
2.3.8.2.1.2.
LNA的功能是对接收的小信号进行低噪声放大,以提高系统的灵敏度。LNA由3级放大器及一个4分路器组成,原理图如下:
互调杂散响应衰减
2个单音干扰源距中心频率±1.25kHz、±2.05MHz,幅度比有用信号高70dB时,测量保持链路FER为1.5%时带内所需发射机,在频谱仪分辨率带宽30kHz,在接收端测试时,要求极限如下图10所示。
图10 接收机杂散要求
辐射杂散发射
发射机加额定功率如20W,终端接负载,频谱仪分辨率带宽30kHz时,在接收机端口测量杂散值,极限不超过传导杂散的值。
码域功率:非激活信道的码域功率应小于总输出功率27dB以上
传导杂散发射和辐射杂散发射抑制:
在的任意CDMA信道,RBW 30kHz,-45dBc@885kHz
1930MHz1990MHz频带外,取-13dBm或-60dBc之中的较大者。
输出功率:暂定功放输出功率20W
2.3.7
2.3.7.1
RFS子系统的基带接口是指TRX与RFCM的前向或反向基带信号接口。
通信工程专业外文翻译--瑞利衰落环境下单蜂窝多载波DS-CDMA系统的频谱效率
外文原文Spectral efficiency of a single-cell multi-carrierDS-CDMA system in Rayleigh fadingP. Varzakas, G .S. TombrasLaboratory of Electronics, Department of Physics, University of Athens, GR-157 84 Athens, GreeceReceived 8 June 2005; received in revised form 12 September 2005; accepted 11 March 2006Abstract: The spectral efficiency of a multi-carrier direct-sequence code-division multiple-access (MC/DSCDMA) system operating in a Rayleigh fading environment is investigated and evaluated in terms of the theoretically achievable channel capacity (in the Shannon sense) per user, estimated in an average sense.。
This short paper covers operation of the considered system over broadcast communication randomly time-varying channels as applicable to wireless radio networks and single-cell indoor mobile systems and leads to the derivation of a closed-form expression for the achieved spectral efficiency. Furthermore, the relation between the number of the employed sub-carriers and the achieved spectral efficiency is revealed.Keywords: Spectral efficiency; Channel capacity; Multi-carrier modulation; Code-division multiple access; Rayleigh fading;1. IntroductionBased on orthogonal frequency-division multiplexing (OFDM), multi-carrier direct sequence code-division multiple-access (MC/DS-CDMA) has been proposed and investigated in the context of high data rate communication over time-variant channels [1]. In such a MC/DS-CDMA system, the data sequence, multiplied by a spreading sequence, modulates a set of N orthogonal frequency carriers rather than a single one, as it is the case in conventional DS-CDMA. In this paper, we consider the operation of a single-cell MC/DS-CDMA system in a Rayleigh fading environment and evaluate its spectral efficiency in terms of the theoretically achievable channel capacity (in the Shannon sense) per user, on the condition that this is estimated in an average sense. Such an approach is justified by the fact that the spectral efficiency achieved by any multiple access communication system depends on the physical model of the fading radio environment, i.e., on what is known about the particular fading channels. For example, if nothing is known for the fading statistics of a channel then its countable capacity (in bits/s) will be dictated by the minimum fade signal-to-noise ratio (SNR), min g , and will, thus, tend to zero as min g on the other hand, if fading statistics is known, then average capacity formula can be derived afterthe distribution of the fading SNR g for a fixed transmission rate [2-4].The presented analysis refers to the downlink transmission (broadcast channel) for a fixed number K of simultaneous users, reflecting a static model of operation. Then, following the method described in [5-7], channel capacity is estimated assuming an equal power case, meaning that all users receive equal average signal power when an appropriate power control scheme is applied, in combination to the path-diversity achieved by a conventional coherent maximal-ratio combining (MRC) RAKE receiver and the physical frequency diversity potential provided by frequency-division multiplexing on a set of orthogonal carriers. However, this approach does not deal with the problem of the “capacity region”, i.e., the set of information rates at which simultaneously reliable communication of each user messages is possible [8,9]; it is merely based on estimating the average channel capacity per user, considering the system’s inherent diversity potential in conjunction to the path -diversity obtained by MRC RAKE reception. Hence, the derived spectral efficiency expression does not indicate the system’s maximum value in (bits/s/Hz), but it represents an optimistic upper bound, in average sense, for practical modulation and coding schemes [5-7].2. System description and channel capacity per userIn MC/DS-CD MA, each user’s data symbol is transmitted in parallel over N orthogonal carrier frequencies (sub-carriers), multiplied by a spreading sequence unique to each user. Then, the received signal will be the output sum of all these N “branches”, while the total ly allocated system bandwidth, MC/DS W , assuming noguard band between adjacent frequency bands and a strictly band-limited “chip” sequence with bandwidth MC/DS W =P,mc/ds G W will be equal toMC/DS W =mc/ds NW =p,mc/ds NG W (1)Where p,mc/ds G is the processing gain applied for direct-sequence (DS) spreadtransmission and W is the user unspread signal bandwidth.However, reliable transmission of each user signal over each of the N sub-carriers clearly depends on the level of cooperation among the K users of the system, i.e., the multiple access interference (MAI) power, while inter-carrier interference (ICI) is considered minimum. Thus, the nth channel capacity per user, i,n C , i.e. each user’s (1i k #) conditional channel capacity (in the Shannon sense)over the nth sub-carrier, (1n N #), will be given by the Shannon Hartley theorem when arbitrarily complex coding and delay is applied and the total MAI power, caused by even a small number of interfering users, tends to be Gaussian distributed[10]. In this respect, considering the profound resemblance to the operation of a spread spectrum system with K simultaneous users transmitting with the same average power and the channel capacity per user expression in a non-fading additivewhite Gaussian noise (AWGN) environment [4,6],it can be readily written thati,ni,n mc/ds 20mc/ds n,MAI p C W log (1),1i k;1n N n W P =+##+ (2)Where 0n is the noise power spectral density, i,n P is the average received powerover the considered nth channel, andkn,MAI j,n i,n i i p p (k 1)p ¹=-å (3)is the Gaussian distributed MAI power (for i,n P p =,1i k #,1n N #) over this channel. Then, considering the total of the N sub-carriers over which, the user i information data (spread by p,mc/ds G ) is transmitted, we conclude that the totally assigned by the MC/DSCDMA system channel capacity per each user i will beN i,n i,MC/DS i,n mc/ds 2n 10mc/ds i,n p C C NW log (1)n w (k 1)p ===++-å (4)中文译文瑞利衰落环境下单蜂窝多载波DS-CDMA系统的频谱效率希腊·雅典大学物理系电子实验室收稿日期:2005 年6月8 日;收到修改稿日期:2005 年9月12 日;接受日期:2006 年3月11 日摘要:对运行在瑞利衰落环境下的多载直接序列码分多址(MC/DSCDMA)系统的频谱效率进行了研究,以及在一般意义下,对理论上单用户可达到的信道容量(香农意义)进行了评价。
03.第三讲CDMA信令专题二
CDMA移动通信系统RF优化培训讲义(第三讲:CDMA信令专题二)
相关信令
ቤተ መጻሕፍቲ ባይዱ
(接上页) PSIST(11):接入过载类11的持续值。 PSIST(12):接入过载类12的持续值。 PSIST(13):接入过载类13的持续值。 PSIST(14):接入过载类14的持续值。 PSIST(15):接入过载类15的持续值。 MSG_PSIST:用于消息请求时的持续值计算。 REG_PSIST:用于登记请求时的持续值计算。 PROBE_PN_RAN:用于计算PN随机时延。 ACC_TMO:用于计算等待响应时延TA。 PROBE_BKOFF;用于计算探针间补偿时延RT。 BKOFF:用于计算序列间补偿时延RS。 (未完,接下页)
TA
RT
TA
RT
TA
RT (Probe Backoff)
TA
Select Access Channel (RA) initialize transmit power
CDMA移动通信系统RF优化培训讲义(第三讲:CDMA信令专题二)
10
时延参数
PN随机时延:导频相对原PN码的偏置,它是0~2^probe_pn_ran范 围内的某个随机数。 它有效地增加了从移动台到基站的视在范围(apparent range)。这 增加了基站在同一个接入信道时隙内分别解调多个移动台发出的消 息的概率,尤其是当移动台工作在与基站很近的地方。 TA:等待响应时延,TA=80×(2+acc_tmo)ms 。 移动台发了一个Access Probe后,将在TA时间内等待接收来自基站 的确认信息。 RT:探针间补偿时延,为1~1+probe_bkoff范围内的某个随机值。 如果移动台在TA时间内没有收到基站的确认消息,并且移动台还可 以发送Access Probe,它将在延时RT后发送新的Access Probe。 RS:序列间补偿时延,为1~1+bkoff范围内的某个随机值。 如果移动台发完了一个Access Probe Sequence还没有收到基站的确 认消息,它将在延时RS后再考虑发送新的Access Probe Sequence。
应用于水声MC-CDMA系统的一种自适应调制算法
应用于水声MC-CDMA系统的一种自适应调制算法方荟;胡晓毅【摘要】自适应调制技术能有效地利用系统有限的功率和频谱资源,改善系统的误码率性能.针对资源受限的水声MC-CDMA系统提出一种自适应的调制算法.采用该方案的自适应水声MC-CDMA系统在获得有效频谱效率和分集增益的同时,还能获得很好的误码率性能.分析了提出的自适应调制算法的性能,并通过MATLAB系统仿真,表明自适应调制算法较非自适应调制可以使系统性能有明显的提高,说明了自适应调制技术在水声MC-CDMA中的有效性.%Adaptive modulation techndogy can improve the system performance with finite power and high spectral efficiency. In this paper, a combining scheme of UWAC MC-CDMA and adaptive modulation is proposed in order to achieve the spectral efficiency and the frequency diversity without loss of much BER performance. The performance of the adaptive modulation algorithm is analyzed. MATLAB simulation resuits also indicate that the adaptive modulation algorithm can obviously improve the system performance compared with non-adaptive one. The affectivity of adaptive modulation has been verified in UWA MC- CDMA.【期刊名称】《闽江学院学报》【年(卷),期】2012(033)002【总页数】4页(P73-76)【关键词】MC-CDMA;水声通信;自适应调制【作者】方荟;胡晓毅【作者单位】闽江学院计算机科学系,福建福州350108;厦门大学信息科学与技术学院,福建厦门361005【正文语种】中文【中图分类】TP309自适应调制技术是下一代移动通信技术的关键技术之一.不同子载波可根据各自的信道增益情况使用不同的编码调制方式,分配不同的比特数,分配不同的发射功率,达到功率的最小化或速率的最大化.近年来,众多学者已就MC-CDMA自适应调制技术[1-3]展开了一些有益的探讨.Tang和Stolpman[4]提出了等效子载波的概念,用于速率最大化的自适应分配策略,但是只适用于接收端采用正交恢复合并的系统.曾国燕[2]提出了一种选择简单分块的动态载波分配方案,该方案对信噪比估计的要求很高.Chatterjee[5]提出采用连续相位调制的星座映射方式,获得了比非连续相位调制优越的性能.但在水声通信领域关于自适应调制技术的研究还比较少.在水声通信中可用频带较窄,频带资源宝贵,水声设备发射功率有限,采用自适应调制技术可以最大限度地利用水声信道资源,降低发射功率.本文提出一种自适应的贪婪分配算法[1,6],将其应用于水声MC-CDMA系统.假设系统的用户数为U,第u个用户发送时域信号的复等效低通形式为:(m*SF+n)Δf(t-i*T)),其中,bu,i为第u个用户要发送的数据比特流,Cu,n(n=0,1,…,SF-1)为分配给第u个用户的扩频码.SF为扩频码增益.Nc为系统子载波的个数,且Nc=K*SF,即子载波数Nc为扩频增益SF的整数倍.T为符号周期,Δf为OFDM子载波间隔.水声信道是一个水声通信仿真系统不可或缺的组成部分.根据射线声学理论[7],假设水声信道中有这样几条路径,信号通过这些路径从发射机到达接收机,称这些路径为本征路径.每一个本征路径信号包含一个稳定的主分量和许多随机分布的子分量,每一个本征路径信号都可以用一定的信噪比、传播时延、传播衰减以及多普勒频移来共同描述.一个本征路径用数学式子可以表示为:rs(t) =Scos(2πfct-θ)+x(t)cos(2πfct)+y(t)sin(2πfct).式中,Scos(2πfct-θ)为信号的主分量.x(t)cos(2πfct)+y(t)sin(2πfct)为随机的子分量,主分量和多径分量的的振幅和相位是慢变化的,x(t)、y(t)是零均值的窄带高斯过程.θ为本征路径的传播时延.当在浅海信道中且发射机和接收机相距较远时,本征路径上的本征信号减弱,使得在接收端没有一条本征路径的分量是占主要成分的.因而可以将接收端的信号包络看作近似服从瑞利(Rayleigh)分布[8].接收信号r是所有用户信号的叠加,其中可能包含用户0到用户U-1之间任意多个用户的信号,假设U个用户传播时延分别为:τ0,τ1,…,τu,…,τU-1,且0≤τ0<τ1<…<τu<…<τU-1,那么接收信号可以表示为:式中,Su(t)为第u个用户的发送信号,⊗表示卷积操作,hu(τu,t)为第u个用户所经历信道的信道冲激响应,n(t)为信道噪声.如果各用户是同时达到接收机的,假设传播时延均为τ,式(1)可以修改为:为了减小多用户干扰的影响,接收信号解扩解调前进行基于并行干扰抵消的多用户检测[9].鉴于水声信道资源受限,在保证传输速率的前提下,提高传输的有效性成为当务之急.由于系统采用MC-CDMA多载波技术,因此传输速率是可以保证的.自适应调制算法分为速率最大化和功率最小化两种[6].本文采用的是适用于固定数据速率的比特和功率自适应分配算法[1,6],以最小化发送功率.该方法能达到最优的比特和功率分配结果.其主要思想:首先设置所有子载波的比特数为零,然后把所有待分配的比特依次分配给子载波.每一轮分配,首先找到所需增加功率最小的那个子载波,然后给该子载波分配若干个比特.每次分配的比特数(分配步长)由系统调制方式决定.这样循环下去,直到所有的比特得到分配.最后计算各个子载波保证一定的误码率时所需要的发射功率.对于MC-CDMA,我们采用了“等效子载波”的概念[2-3],即Nc个子载波首先被连续划分为若干个扩频支路,每个扩频支路生成一个“等效子载波”.为了简化问题,设定每个扩频支路中的各子载波实行等功率分配,同时由于这些子载波上所分配的比特数也相同,所以这个“等效子载波”的分配信息就可以完全代表此扩频支路中每个子载波的分配情况.为了分析方便,假设理想信道估计,且信道状态信息能及时准确地反馈给发射机.此算法的优化目标为,约束条件为,其中bu,j是用户u第j个“等效子载波”所分配的比特数,Pj是传送bu,j比特所需要的发送功率,Rb是一次分配中要分配给各“等效子载波”的总的信息比特数,D={0,1,2,3,…M}是bu,j的取值范围,M是最高调制阶数.第j组扩频支路的平均接收信噪比为:考虑正交比合并系数,所以合并系数:Gn=Cu,n/|Hn|2,平均接收信噪比可以简化为:因为QAM的误比特率为:其中erfc为误差函数.经过等量变换得到,并令发射功率系数:可以看到系数S和BER是一一对应的.考虑到水声通信对误码率水平的要求较无线通信要低,修正S值[1],使之与相应的BER的数值对应.自适应调制分配算法执行过程如下:1)进行初始化,设置所有“等效子载波”当前被分配的比特数为0.即令bu,j=0,j=1,2,…K.2)分别计算每个“等效子载波”增加d个比特时,所需要增加的平均发射ΔPj(这里d为比特分配的步长,由实际系统所采用的调制方式决定),计算按下式进行:其中m为每个“等效子载波”所能被分配的比特数目的最大值(由实际系统中采用的最高阶的调制方式决定),而发射功率的计算式子为:其中,S如前所述,由对应的BER得到.3)比较所有的ΔPj,找到功率增量值最小、且不为零的“等效子载波”j,将该“等效子载波”当前被分配的比特数增加d.即bu,j=bu,j+d.4)计算当前分配的比特总数,如果Rtotal<Rb,跳至3).如果Rtotal=Rb,则比特分配结束.可见,所有子载波的比特分配是个迭代的过程.以最小化发射功率作为优化目标,在分配比特时,增加的比特数就取决于功率的增量,而功率的计算恰恰与等效子载波的信噪比有关,信噪比反映了各个子信道的状态.在理想信道估计的情况下,能够获取准确的各子信道的信息,子信道条件好的,衰落小的,需要增加的发射功率就小,就可以优先增加比特数;反之,子信道条件不好的,衰落大的,暂缓或不增加比特数.至于增加多少比特,取决于采取的具体调制方式和误码率要求的水平.经过自适应调制之后,比特分配在信道条件好的子载波上,而且分配的过程始终遵循发射功率最小的原则.在恶劣的水声信道条件下,传输比特可以避开深衰落区域.在发送相同的比特数时.可以最大限度地降低发射的功率.对采用自适应调制算法的MC-CDMA水声系统与传统的水声MC-CDMA系统进行MATLAB仿真比较.仿真参数如下:瑞利水声信道,用户数u=8;子载波为385.可选的调制方式为0、QPSK、16QAM、64QAM,对应调制后的符号内包含的比特数为0、2、4、6,比特分配的步长均为2,每个子信道最大比特数为6,发射功率系数S取3.3,对应误码率.测试信噪比4、8和12dB.图1-3给出了在信噪比4、8和12dB条件下,调制方式分别为模式1{0、QPSK},模式2{0、QPSK、16QAM},模式3{0、QPSK、16QAM,64QAM}.且不同用户接入数的情况下系统误码性能的比较.从图中可以看出,无论是用户数和信噪比如何,采用模式1{0、QPSK}的自适应调制方式的水声MC-CDMA系统性能优于传统的未采用自适应调制方式的水声MC-CDMA系统.而采用模式2和模式3自适应调制方式,其系统的误码性能反而差于传统的水声MC-CDMA系统,且误码出现了严重的平台.这主要是因为:模式2和模式3采用了高阶调制的方式,在进行相干解调时,判决空间减小,加之在多用户接入的条件下,尽管采用了一定的多用户检测,但多用户干扰仍然存在,使得误码性能大大降低,恶劣到无法接受的地步.而模式1采用的是低阶调制和不传比特方式,在进行相干解调时,判决空间较大.显然不同用户会根据各自不同的信道增益条件,自适应调制不同的比特数在各自的子载波上进行传输,也在一定程度上减少了多用户干扰的几率.提出针对水声MC-CDMA系统的一种自适应调制算法,并通过瑞利水声信道下的理论分析和仿真,结果表明,此改进的水声MC-CDMA系统较传统的水声MC-CDMA系统的误码性能有很大的提高.尽管如此,自适应调制技术要应用于实际的水声领域,还有相当的挑战.如自适应调制需要信道状态信息的准确反馈[6,10],在恶劣的水声信道条件下,准确的信道估计是很难做到的.特别在多用户干扰存在的条件下,如何能做到精确的信道估计,甚至在信道估计不准确的条件下,如何进行较优的自适应调制,还有待进一步的研究.因此,在下一步的工作中,还需要在实际的水池或海洋实验中验证和调整算法的参数选择,以获得水声MC-CDMA系统较优的自适应调制方案.【相关文献】[1]尹斐斐.MC-CDMA系统自适应调制算法的研究[D].北京:北京邮电大学,2006.[2]曾国燕,郑侃,黄琳,等.MC-CDMA系统中自适应调制算法的性能分析[J].电子与信息学报,2005,27(6):1005-1008.[3]李娜.MC-CDMA系统中动态资源分配算法的研究[D].北京:北京邮电大学.2009.[4]Tang C,Stolpman V J.Multiple users adaptive modulation schemes for MC-CDMA[C].IEEE Communication Society Globecom,2004:3 823-3 827.[5]Chatterjee S,Fernando W A C,Wasantha M K.Adaptive modulation based MC-CDMA systems for 4G wireless consumer applications[J].IEEE Transactions on Consumer Electronics,2003,49(4):995-1 003.[6]孙群龙.多载波系统中的自适应资源分配研究[D].合肥:中国科技大学,2009.[7]凃峰,黄瑞光.水声信道的建模与仿真研究[J].微计算机信息,2003,19(5):55-60.[8]许俊.水声语音通信研究[D].厦门:厦门大学,2001.[9]方荟,胡晓毅.MC-CDMA水声通信系统并行干扰抵消多用户检测技术研究[D].厦门:厦门大学,2010.[10]李翠然,谢健骊,李承恕.改进的多载波CDMA系统性能分析[J].信号处理,2006,22(3):445-448.。
中英对照 频谱效率
中美对照频谱效率频谱效率频谱效率fSpectral efficiency. Spectrum efficiency)是指在数核通信余统中的带宽F艮制下,可以传送的密料总量。
在有限的波频谱下,物理层通信彷议可以达到的使用效率有一定的F 艮度。
> 链路频谱效率数字通信系统的链路频谱效率CLink spectral efficiencyJ的单住是bit/s/Hz, 或(bit∕s)∕Hz (较少用,但更准确)。
其定义为净比特率(侑*用信息速率,不包括纠错玛)或最4大春吐量除以通信信道或数据昼路的带宽(单住:赫兹人调制效率定义为净比特率(包括纠错码)除以带宽。
频谱效率通常被用于分析数学调制方式的效率,有时也考虑前■向纠错玛(forward eσor correction, FECj和其他物理层开销。
在后一种情况下,1个"比特”特指一个用户比特,FEC 的开编称是不包括在内的。
例1: IkHZ带宽中可以传送每抄IoOobil的技术,其频谱效率或调制效率均为1 bit/s/Hzo例2:也话网的V.92调制斛调舞在横拟也话网上以56,000 bit/s的下行速率和48,000 bit/s的上行速率传输。
经由也话交换机的滤波,频率限制在300HZ到3,40OHZ之间,带宽相应为3400-300 = 3100 Hz。
频谱效率或调制效率为56,000/3,100= 18.1 bit/s/Hz(下行人48,000/3,100= 15.5 bit/s/Hz (上行J。
使用FEC的架空调变方式可达到录大的频谱效率可以利用标本化定理来求得,信号的字母袅(计算机科学)利用符号数量M来组合、各符号使用N = log2 M bit来表示。
此情况下频谱效率若不使用编码间干涉的话,无法越过2N bit/s/Hz的效率。
率例来说,符号种类有8种、每个各有3bit的话,频谱效率最高不短过6 bit/s/Hz。
在使用前•向错误更正编码的情形时频谱效率会降低。
CDMA网络优化中的几个重要参数
CDMA网络优化中的几个重要参数CDMA网络优化中的几个重要参数接通率、掉话率切换率Aggregate Ec/IoRx PowerTx PowerTx AdjAggregate Ec/Io这是一个综合的导频信号情况,是手机接收到的所有导频的矢量加之和。
Ec是手机可用导频的信号强度,而Io是手机接收到的所有信号的强度。
手机的Ec/Io水平,反映了手机在这一点上多路导频信号的整体覆盖水平。
Rx PowerRx Power是手机接收功率,是手机接收到的总的信号的强度。
Rx Power反映了手机当前的信号接收水平Rx Power小的区域,肯定属于弱覆盖区域反之,属于覆盖好的区域。
Rx Powe只是简单的反映了路测区域的信号覆盖水平,而不是信号覆盖质量的情况。
F-FERF-FER是前向误帧率(Forward Frame Error Rate).FER跟EcIo是紧密相联系的,FER越小说明手机所处的前向链路越好,接收到的信号好,这个时候EcIo也应该比较好。
FER越大,说明手机接收到的信号差,这个时候EcIo也比较差。
FER越大,也可能是由于相邻的小区切换参数配置错误引起的。
FER反映了通话质量的好坏,反映了路测区域的信号覆盖水,而不信号覆盖强度水平。
有些地区虽然属于弱覆盖地区,但信号比较干净(杂乱的信号少、干扰少),则FER会一样良好。
Tx PowerTx Power是手机的发射功率。
手机的发射功率水平,反映了手机当前的上行链路损耗水平和干扰情。
上行链路损耗大、或者存在严重干扰,手机的发射功率就会大,反之手机发射功率小。
路测中的Tx Power水平,反映了基站覆盖区域的反向链路质量和上行干扰水平。
Tx AdjTx Adj反映了上下形链路的一个平衡状况。
本值是由于计算得出的,而不是测量得出的。
800M CDMA系统的计算公式是:Tx_adjust=73dB+ Tx_power+Rx_power1900M CDMA系统的计算公式是:Tx_adjust=76dB+Tx_power+Rx_power.如果Tx Adj很大,说明前向链路好于反向链路,Tx Adj很小,说明此时反向链路好于前向链路。
自动调制识别代码
自动调制识别代码自动调制识别(Automatic Modulation Classification,AMC)是无线通信领域中的一个重要问题。
在无线通信系统中,信号的调制方式对于信号的传输效率和抗干扰能力有着至关重要的影响。
因此,准确地识别接收到的信号的调制方式对于实现可靠的通信具有重要意义。
自动调制识别的目标是根据接收到的信号波形,通过算法自动判断出信号所采用的调制方式。
在无线通信系统中,常见的调制方式包括调幅(Amplitude Modulation,AM)、调频(Frequency Modulation,FM)和调相(Phase Modulation,PM)等。
而在现实的通信环境中,信号可能受到多路径传播、多径干扰、噪声等多种因素的影响,使得信号的波形发生变化,给调制识别带来了一定的挑战。
为了实现自动调制识别,研究人员提出了多种算法和方法。
其中,基于特征提取和分类器的方法是较为常用的一种。
此方法首先从接收到的信号中提取一组特征,例如信号的能量、频谱、时域特性等。
然后,利用这些特征训练一个分类器模型,例如支持向量机(Support Vector Machine,SVM)、K最近邻(K-Nearest Neighbor,KNN)等。
最后,通过将测试信号的特征输入到已训练好的分类器中,即可得到信号的调制识别结果。
在特征提取方面,常用的方法包括时域特征提取、频域特征提取和时频域特征提取等。
时域特征提取主要是通过对信号的波形进行分析,提取出信号的均值、方差、波形的峰值等信息。
频域特征提取则是通过对信号进行傅里叶变换,得到信号的功率谱密度,进而提取出信号的频谱特性。
时频域特征提取则是结合了时域和频域的特征,例如通过小波变换等方法,提取出信号在不同时间和频率上的能量分布情况。
在分类器的选择上,不同的算法具有不同的特点和适用场景。
例如,支持向量机是一种常用的分类器,其通过构建超平面来实现对不同调制方式的分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FREQUENCY-HOPPED GENERALIZED MC-CDMA FOR MULTIPATH AND INTERFERENCE SUPPRESSIONShengli Zhou,Georgios B.GiannakisDept.of ECE,Univ.of Minnesota,200Union Street SE,Minneapolis,MN55455Emails:georgios,szhou@Ananthram SwamiArmy Research Laboratory,AMSRL-IS-TA,2800Powder Mill Rd,Adelphi,MD20783Email:aswami@ABSTRACTGeneralized multi-carrier(GMC)CDMA transceivers equipped with frequency hopping are developed in this pa-per.Through judicious code design,multiuser interference (MUI)is eliminated deterministically and symbol recovery is guaranteed,relying on a minimum number of redundant subcarriers.This,together with subcarrier frequency hop-ping(FH),improves BER performance in the presence of frequency-selective multipath fading channels and enhances resistance to narrow-band interference.Blind channel es-timation methods are developed with guaranteed channel identifiability,regardless of the locations of the zeros of the FIR channel.Performance analysis and simulation re-sults illustrate the merits of the proposed FH-GMC-CDMA transceivers relative to competing OFDMA and multicar-rier CDMA alternatives.I.INTRODUCTIONA variant of spread-spectrum(SS)signaling,called frequency-diversity spread spectrum(FD-SS)was recently proposed and shown to be more resistant than direct-sequence SS(DS-SS)to partial-band interference(PBI)[3]. FD-SS,with disjoint frequency support for each subcarrier, is in fact the analog counterpart of the OFDM spread spec-trum(OFDM-SS)proposed in[6]and the underlying multi-carrier spread spectrum(MC-SS)for MC-CDMA[8]sys-tems with overlapping subcarriers.Assuming digital imple-mentations via DFTs,both OFDM-SS and MC-SS systems can be seen as special cases of a unifying framework[2]. In MC-CDMA,users transmit simultaneously using the entire system bandwidth;in the down-link,user separation is achieved by use of orthogonal spreading codes.How-ever,in the up-link orthogonality is lost due to multipath, resulting in MUI and performance degradation as the sys-tem load increases.In[5],FH-OFDMA was proposed for uplink CATV transmission,and was shown to achieve MUI elimination.However,it suffers from frequency-selective fading and requires extra diversity to ameliorate the effects of channel nulls.Work in this paper was supported by ARL grant no.DAAL01-98-Q-0648and NSF Wireless Initiative grant no.99-79443In this paper,we generalize MC-CDMA and FH-OFDMA,and propose a generalized MC-CDMA(GMC-CDMA)system.By judicious transceiver design,MUI is eliminated e of redundant subcarriers guarantees recovery of the symbols,regardless of the loca-tions of the zeros of the multipath channel.Further,GMC-CDMA permits blind estimation of the channel,without imposing any restrictions on the zeros.Resistance to both narrow-band interference(NBI)and PBI is guaranteed. Section II provides a general model,with Section III specializing it to existing MC-CDMA and FH-OFDMA. Frequency-hopped GMC-CDMA transceivers are devel-oped in Section IV and simulation results are provided in Section V.II.DISCRETE TIME SYSTEM MODELFig.1.Discrete time system modelThe baseband discrete-time equivalent transmitter and re-ceiver model for the th user is depicted in Fig.1,whereand is the number of users.The informa-tion stream,at symbol rate,isfirst parsed into -long blocks,,spread by the code matrix,and then IFFT processed to obtain the vector. Here,is the block spreading length,and is theFFT matrix with entrywhere is the overall channel(transmit and receive filters,and propagation channel)encountered by the th user’s signal,is thefiltered PBI,is thefiltered additive Gaussian noise(AGN),and is the maximum or-der of FIR channels for all users,i.e.,.Additive noise is assumed to haveflat power spectral density over the system bandwidth. PBI is assumed to occupy bandwidth() with large power density.In order to avoid inter-block interference(IBI),we as-sume that the prefix length is longer than the maximum channel order for all users:(a0).To cast(1)into a convenient matrix-vector form,we define the vector,and similarly and; define the Toeplitz channel matrices with th entries and,respectively. Because of(a0),we can write(1)aswhere the second term represents IBI.For convenience,we define as the equivalent(colored)ad-ditive noise vector.At the receiver,the CP is removed by dropping thefirst elements of,thus eliminating IBI.After FFT processing,we have(2)where is thefiltered interference and noise vector,and is the resulting channel matrix.is a circulant matrix with its th entry given by mod (see also[7]).Since is circulant,is a diagonal matrix;the diagonal elements,, are values of the channel frequency responseevaluated at,.Therefore,we can rewrite(2)as(3)Subsequently,for the th user,multiplication by the equal-ization matrix yields symbol block estimates as(4)Instead of adding a CP to avoid IBI,we can add trailing zeros as in[7].Equation(3)generalizes both conventional MC-CDMA and coherent FH-OFDMA.III.SPECIAL CASESIn this section,we discuss two special cases of our gen-eral model obtained by setting(no symbol blocking): MC-CDMA and FH-OFDMA.A.MC-CDMAThe block spreading matrix reduces to a spreading vector,and the receiver matrix reduces to a vector .Therefore,(3)reduces toTo gain insight into how MC-CDMA copes with frequency-selective channels,we focus on the single user case,i.e., ,and assume that is white(no MUI and noPBI).The Maximum Ratio Combiner is known to achieve the maximum output SNR:(5) where diag,.Define the Vander-monde matrix with th entry;hence,,and the output SNR is given bywhich reveals that frequency diversity due to transmitting replicas through subcarriers comes only from the channel taps.With,the vector is corre-lated and it does not provide more diversity than the original channel taps.More explicitly,for single user MC-SS,we do not need to exploit all the subcarriers.It suf-fices to choose;if is an integer,we select equispaced subcarriers out of the subcarriers;vector will have non-zero entries with amplitudeusers relies on having a distinct spreading code (e.g.,Walsh-Hadamard code)for each user.Then choosingserves to suppress the MUI by decreasing the MUI level or possible NBI(colored noise).Because of MUI,MC-CDMA suffers from the near-far problem and thus degraded performance in comparison with the single-user case.This motivates our MUI-resilient GMC-CDMA system in Section IV.B.FH-OFDMAFor OFDMA,we set;is the th Euclidean basis vector and has only one non-zero element. Thus,and the equivalent model is(6) which reveals that MUI is eliminated.However,FH-OFDMA suffers from frequency-selective fading.Specifically,when the channel has zeros close to ,the symbol will suffer from severe fading.To avoid consistent fading,frequency hopping is proposed(coding or fast hopping is beyond the scope of this paper).Specif-ically,is changed frequently(and thus depends upon a time index)according to some prescribed hopping pattern. Multiple users are allowed to transmit information simulta-neously using different hopping sequences,and MUI can be avoided if no frequencies are employed by two users at the same time.For example,we can set mod. However,symbol recovery is not guaranteed and fre-quency diversity is not exploited in FH-OFDMA because it uses only a single subcarrier.We saw in Result1that subcarriers are needed to fully exploit the frequency diversity of the order FIR channel.GMC-CDMA system considered next overcomes the lim-itations due to MUI,NBI,PBI,and multipath effects.IV.GMC-CDMA TRANSCEIVER DESIGN We will transmit symbols per block,using subcarriers such that is an integer.Thus,each of the users can be assigned a distinct set of subcarriers. We denote by,,the distinct subcarriers assigned to the user.To unravel the attractive features of MUI resilience pro-gressively,we factor our spreading and despreading matri-ces in the following forms:(7)with each matrix factor playing a different role:is a matrix that linearly maps the information symbols of the th block to()symbols; these in turn are mapped to the user’s signature subcarri-ers via the selector matrix,to yield. We have if,and0 otherwise;note that we will have non-zero entries.Per Result1,we would like to choose equispaced subcarriers for each user such that if.Thanks to the non-overlapping frequency allocation,the corresponding subcarrier selector matrices are mutually orthogonal by construction.Since has a single non-zero(unity)entry per column,it can be readily verified that,where diag.This fact, together with the orthogonality of,allows us to simplify (4)for user to[7]:(8) where is the MUI-free vector corresponding to user.Equation(8)reveals that MUI is eliminated deter-ministically regardless of the multipath channels.To guarantee recovery of the symbols in re-gardless of the signal constellation,the matrixin(8)must have full rank,regardless of the th chan-nel.Hence,we require rank,,so that zero forcing(ZF)equalization based on will recover.If the noise covariance matrix is known,we can ap-ply the MMSE receiver.For small,the ML solution argmin is af-fordable.Since each user’s channel can have at most zeros, can have at most zero diagonal entries.The above rank condition will be satisfied if anyrows of are linearly independent.To meet this rank re-quirement,each column of should have at leastnon-zero entries,i.e.,each symbol is transmitted overor more subcarriers,so that the frequency diversity of the multipath channel is fully exploited.Notice that this rank condition is not a condition on the channels;instead,it is a guideline for designing.For example,we can choose with entries:Increasing increases the value of,which indicates more freedom in choosing the redundant mapping matrix.We illustrate the advantages of GMC-CDMA over MC-CDMA,via a simple example.Example1:Suppose we design an under-loaded system with spreading gain for users,and channel order.The system load is approximately .Even in AWGN channel,MC-CDMA will exhibit BER larger thanTest Case 2(PBI suppression):Assume that MC-CDMA is on the down-link,where all users experience the same channel so that MUI can be eliminated by the orthogonality of spreading codes after channel equalization.Here,we setload .For GMC-CDMA,we set,so that ,indicating that we can afford to have at most two subcarriers hit by the PBI.In Fig.3,we show the performance of the two systemsas the relative bandwidth of the strong PBI ()is var-ied:no interference .For GMC-CDMA,subcarriers are hit by the strong PBI.For both MC-CDMA and GMC-CDMA,we assume that the receiver can detect the presence of strong interference and remove the contaminated subcar-riers.As shown in Fig.3,GMC-CDMA outperforms MC-CDMA when.When the PBI occupies half the system bandwidth,GMC-CDMA becomes worse becausenow,so that symbol recovery is no longer guaranteed.However,even when(sub-carriers will be hit by the PBI),we can increaseso that symbol recovery can be guaranteed,e.g.,with the pair.Test Case 3(Blind channel estimation):The test system has spreading gain ,users,and chan-nel order.We design GMC-CDMA with ,,,where the last tworows are Vandermonde vectors constructed from the rootsand .BPSK signals areused,and the channel is estimated from 20symbol blocks,using the subspace-based and FA-based blind channel esti-mators.Fig.4shows the BER curves corresponding to these estimators;we note that the performance is close to the ideal BER,corresponding to known channel.R EFERENCES[1]J.A.C.Bingham,“Multicarrier modulation for data transmission:An idea whose time has come,”IEEE Communications Magazine ,pp.5–14,May 1990.[2]G.B.Giannakis,P.Anghel,and Z.Wang,“All-digital unification and equalization of generalized multi-carrier transmissions through frequency-selective uplink channels,”IEEE Transactions on Com-munications ,submitted Mar.2000.[3]G.K.Kaleh,“Frequency-diversity spread-spectrum communica-tion system to counter bandlimited Gaussian interference,”IEEE Transactions on Communications ,vol.44,pp.886–893,July 1996.[4]J.Proakis,Digital Communications ,McGraw-Hill,1996.[5]H.Sari and G.Karam,“Orthogonal frequency-division multiple ac-cess and its application to CATV network,”European Transactions on Telecommunications (ETT),507–516,Nov./Dec.1998.[6]G.J.Saulnier,M.Mettke,and M.J.Medley,“Performance of an OFDM spread spectrum communication system using lapped transforms,”in Military Communications Conference ,1997.[7]Z.Wang and G.B.Giannakis,“Wireless multicarrier communi-cations:Where Fourier meets Shannon,”IEEE Signal Processing Magazine ,May 2000(to appear).[8]N.Yee,J-P.Linnartz,and G.Fettweis,“Multicarrier CDMA in indoor wireless radio networks,”in Proc.of IEEE PIMRC ’93,109–113,Sept.1993[9]S.Zhou and G.B.Giannakis,“Finite-Alphabet based Channel Es-timation for OFDM and related Multi-Carrier Systems,”in Proc.of 34th Conf.on Info.Sciences and Systems (CISS’00),Mar.2000.5。