最新-创新设计2018高考数学一轮复习第一章集合训练理新人教A版 精品

合集下载

2018届高考数学(理)人教A版(全国)一轮复习必修一 §1.1 集合及其运算

2018届高考数学(理)人教A版(全国)一轮复习必修一  §1.1 集合及其运算

解析 集合A表示圆心在原点的单位圆,集合B表示直线y=x,
易知直线y=x和圆x2+y2=1相交,且有2个交点,
故A∩B中有2个元素.
1 2 3 4 5
解析答案
返回
题型分类 深度剖析
题型一
集合的含义
(1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个 B.3 C.5 D.9
{x|x≤2或x≥10} =_______________.
解析 ∵A∪B={x|2<x<10},
∴∁R(A∪B)={x|x≤2或x≥10}.
1 2 3 4 5
解析答案
5.已知集合A={(x,y)| x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y
=x},则A∩B的元素个数为___. 2
失误与防范
1.解题中要明确集合中元素的特征,关注集合的代表元素(集合是点集、
数集还是图形集).对可以化简的集合要先化简再研究其关系运算.
2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集
的讨论,防止漏解.
3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与
集合的包含关系.
(∁RP)∩Q等于( C )
A.[0,1) B.(0,2] C.(1,2) D.[1,2]
解析 ∵P={x|x≥2或x≤0},∁RP={x|0<x<2},
∴(∁RP)∩Q={x|1<x<2},故选C.
1 2 3 4 5
解析答案
4.(教材改编)已知集合A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)
解析 由题意知,∁UB={2,5,8}, 则A∩(∁UB)={2,5},选A.

高考数学一轮复习第一章集合与常用逻辑用语1集合的概念与运算课件新人教A版(文)

高考数学一轮复习第一章集合与常用逻辑用语1集合的概念与运算课件新人教A版(文)
C.a≥-1
D.a>-1
(3)已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3}.若B⊆A,则实数
(-∞,-4)∪(2,+∞) .
a的取值范围为
思考若集合中的元素含有参数,求集合中的参数有哪些技巧?
-24考点1
考点2
考点3
解析:(1)由A∪B=A得B⊆A,则m∈A,
故有 m=√或 m=3,即 m=3 或 m=1 或 m=0.
中的元素是离散的,则紧扣集合运算的定义求解;若集合中的元素
是连续的,则常结合数轴进行集合运算;若集合中的元素是抽象的,
则常用Venn图法进行求解.
-15考点1
考点2
考点3
考点 1
集合的基本概念
例1(1)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M
中的元素个数为(
(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( × )
(3)A⊆B⇔A∩B=A⇔A∪B=B;(A∩B)⊆(A∪B).( √ )
(4)若A∩B=A∩C,则B=C. ( × )
(5)(教材习题改编P5T2(3))直线y=x+3与y=-2x+6的交点构成的集
合是{1,4}.( × )
符号
N
N*(或N+)

Venn图法
.
整数集 有理数集 实数集
Z
Q
R
-5知识梳理
双基自测
1
2
3
4
5
2.集合间的基本关系
关系 自然语言
符号表示
集合A 中的所有元素都在

高三数学一轮复习 第1单元 1.1 集合的概念与运算课件 理 新人教A版

高三数学一轮复习 第1单元 1.1 集合的概念与运算课件 理 新人教A版

1.集合元素的三个特征:确定性、互异性、 无序性 . 2.集合的表示法:列举法、 描述法 、图示法.
提示:(1)注意集合表示的列举法与描述法在形式上的区别,列举法一般适合 于有限集,而描述法一般适合于无限集.
(2)注意集合中元素的互异性:集合{x|x2-2x+1=0}可写为{1},但不可写为 {1,1}. 3.元素与集合的关系有:属于和不属于,分别用符号∈ 和 ∉ 表示.
结合思想方法的运用.
二、集合的运算 1.两个集合的交、并、补的运算分别与逻辑联结词且、或、非对应,但不能等同
和混淆. 2.数形结合的思想方法在集合的运算中也是常见的,对于一般的集合运算时可用
文氏图直观显示,例如若A⊆S,B⊆S,则全集S最多被四个集合A∩B,A∩(∁SB), B∩(∁SA)和∁U(A∪B)所划分;对于可以用区间表示的数集可以利用数轴进行集合 的运算.
【例2】 (2010·衡水中学调研)已知集合A={x|x2+ x+1=0},B={y|y=x2+a,
x∈R},若A∩B≠∅,则a的取值范围是( )
A.(-∞,- ] B.
C.
D.(-∞,-2]
解析:由x2+ x+1=0得(2x+1)(x+2)=0,则x=- ,或x=-2,
既A= ≤- .
. 又B={y|y=x2+a,x∈R}=[a,+∞).由A∩B≠∅,知a
1.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩 (Venn)图是( )
解析:N={x|x2+x=0}={-1,0},则N M,故选B. 答案:B
2. 已知集合A={-1,2},B={x|mx+1=0},若A∩B=B,则所有实数m的值组 成的集合是( ) A.{-1,2} B.{1,- } C.{1,0,- } D.{-1,0, } 解析:∵A∩B=B,即B⊆A,若m=0,B=∅⊆A; 若m≠0,B={x|x=- };由B⊆A得:- =-1或- =2, ∴m=1或m=- .综上选C. 答案:C

人教A版高考总复习一轮文科数学精品课件 第1章 集合与常用逻辑用语 第1节 集合的概念与运算

人教A版高考总复习一轮文科数学精品课件 第1章 集合与常用逻辑用语 第1节 集合的概念与运算

A∪B={x|x∈A,或 x
合 B 的元素所组成的集合
∈B}
由全集 U 中不属于集合 A 的
∁UA={x|x∈U,且
x∉A}
所有元素组成的集合
Venn 图
微点拨1.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的
条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁UA.
2.集合运算的基本性质
2.集合间的基本关系
关系
自然语言
集合 A 中 任意一个元素 都是集合 B
子集
中的元素
若 x∈A,则 x∈B
符号
表示
A⊆B
(或B⊇A)
真子
如果集合 A⊆B,但存在元素x∈B,且
A⫋B

x∉A,就称集合 A 是集合 B 的真子集
(或B⫌A)
Venn 图

关系
符号
自然语言
如果集合 A 是集合 B 的 子集
5.理解两个集合的并集与交集的含义,会求两个简
单集合的并集与交集.
6.理解在给定集合中一个子集的补集的含义,会求
给定子集的补集.
7.能使用Venn图表达集合的关系及运算.
衍生考点
核心素养
1.集合的含
义与表示
2.集合间的
1.直观想象
基本关系
2.逻辑推理
3.集合的基
3.数学运算
本运算
4.集合的新
定义问题
(3)A={x|x2+6x+8≤0}={x|-4≤x≤-2},B={x|x<a},因为A⊆B,所以实数a的取值
范围是(-2,+∞).
规律方法 集合间基本关系的两种判定方法和一个关键

2018版高考数学一轮复习课件:第1章 第1节 集合

2018版高考数学一轮复习课件:第1章 第1节 集合

上一页
返回首页
下一页
第八页,编辑于星期六:二十二点 二十六分。
高三一轮总复习
1.元素与集合 (1)集合中元素的三个特性:确定性、 互异性 、 无序性 . (2)元素与集合的关系是 属于 或 不属于 ,表示符号分别为∈和∉. (3)集合的三种表示方法: 列举法 、 描述法 、Venn 图法.
上一页
返回首页
上一页
返回首页
下一页
第二十七页,编辑于星期六:二十二点 二十六 分。
高三一轮总复习
[变式训练 2] (1)(2017·长沙雅礼中学质检)若集合 A={x|x>0},且 B⊆A,则
集合 B 可能是( )
A.{1,2}
B.{x|x≤1}
C.{-1,0,1}
D.R
(2)(2017·石家庄质检)已知集合 A={x|x2-2 016x-2 017≤0},B={x|x<m+
上一页
返回首页
下一页
第二十一页,编辑于星期六:二十二点 二十六 分。
高三一轮总复习
(2)若集合 A 中只有一个元素,则方程 ax2-3x+2=0 只有一个实根或有两个 相等实根.
当 a=0 时,x=23,符合题意; 当 a≠0 时,由 Δ=(-3)2-8a=0 得 a=98, 所以 a 的取值为 0 或98.]
第六页,编辑于星期六:二十二点 二十六分。
高三一轮总复习
3.重视数学思想方法的应用 (1)数形结合思想:解决有关集合的运算问题时,可利用 Venn 图或数轴更直观 地求解. (2)转化与化归思想:通过运用原命题和其逆否命题的等价性,进行恰当转化, 巧妙判断命题的真假.
上一页
返回首页
下一页
第七页,编辑于星期六:二十二点 二十六分。

2018-2019学年高三数学人教版A版数学(理)高考一轮复习课件:第一章 第一节 集合

2018-2019学年高三数学人教版A版数学(理)高考一轮复习课件:第一章  第一节  集合

知识点三
关系
相等

______ A=B
知识点二
知识点一
必记结论
若集合 A 中有 n 个元素,则其子集个数为
知识点二
2n,真子集个数为 2n-1,非空真子集的个数为 2n-2. 易误提醒 易忘空集的特殊性,在写集合的子集时不要
知识点三
忘了空集和它本身.
知识点二
知识点一
[自测练习]
2.已知集合 A={x|x=a+(a2- 1)i}(a∈R,i 是虚数单位),若 A
知识点三
知识点一
易误提醒 心.
运用数轴图示法易忽视端点是实心还是空
知识点二
必记结论
UA)∩(∁UB).
∁ U(A∩B) = ( ∁ UA) ∪ (∁ UB) , ∁ U(A∪ B) = ( ∁
知识点三
知识点三
4. (2015· 广州一模)已知全集 U=
知识点一
试题
解析
{1,2,3,4,5},集合 M={3,4,5},N ={1,2,5},则集合{1,2}可以表示
知识点一
知识点一
[自测练习]
试题
解析
1.已知 a∈R,若{-1,0,1} =
1 , a2, 0 a
1 2 ≠ 0 , a ≠ 0 , a ≠ - 1 ,只 a 有 a2=1. 1 当 a=1 时,a=1,不满足 互异性,∴a=-1.
知识点二
,则 a=
-1 ________.
知识点三
M∩N={5},A 错误;∁UM ={1,2},(∁UM)∩N={1,2}, B 正确; ∁UN={3,4}, M∩(∁
UN) = {3,4} , C
知识点二
(B ) A.M∩N

【数学课件】2018版高考数学理科一轮复习第1章集合与常用逻辑用语(人教A版)

【数学课件】2018版高考数学理科一轮复习第1章集合与常用逻辑用语(人教A版)
为∈和∉. (3)集合的三种表示方法:列举法 _______、描述法 _______、图示法.
基础诊断
考点突破
课堂总结
2.集合间的基本关系
x∈B ,则 A⊆B 或 B⊇A. (1)子集:若对任意 x∈A,都有______
(2)真子集:若 A⊆B,且集合 B 中至少有一个元素不属于集合
A B 或 B A. A,则_____
答案 D
基础诊断
考点突破
课堂总结
3.(2016· 全国Ⅰ卷)设集合 A={x|x2-4x+3<0},B={x|2x-3>0}, 则 A∩B=________.
3 A.-3,-2 3 C.1,2 3 B.-3,2 3 D.2,3 源自C.{2,5}解析
D.{2,4}
由题意得A∪B={1,3}∪{3,5}={1,3,5}.又
U={1,2,3,4,5},∴∁U(A∪B)={2,4}.
答案 D
基础诊断
考点突破
课堂总结
5. 已知集合 A = {(x , y)|x , y ∈ R ,且 x2 + y2 = 1} , B = {(x , y)|x,y∈R,且y=x},则A∩B的元素个数为________. 解析 集合A表示圆心在原点的单位圆,集合B表示直线
{x|x∈A, __________ 且x∈B} __________
基础诊断
{x|x∈U,且x∉A}
考点突破
课堂总结
4.集合关系与运算的常用结论
(1) 若有限集 A 中有 n个元素,则 A的子集有 ____ 2n 个,真子集 有________ 2n-1 个. A⊆C . (2)子集的传递性:A⊆B,B⊆C⇒________ A ⇔A∪B=___. B (3)A⊆B⇔A∩B=___

《创新设计》数学一轮复习(理科)人教A配套课件 第1章 第1讲 集合及其运算

《创新设计》数学一轮复习(理科)人教A配套课件 第1章 第1讲 集合及其运算
解析 (1)A={x|x>-3},B={x|x≥2}, 结合数轴可得:B⊆A. (2)由log2x≤2,得0<x≤4, 即A={x|0<x≤4}, 而B= {x|x<a} , 由于A⊆B,如图所示, 则a>4. 答案 (1)D (2)(4,+∞)
考点突破 考点三 集合的基本运算
【例3】(1)(2014·四川卷)已知集合A={x|x2-x-2≤0},集合B
考点突破 考点二 集合间的基本关系
【训练2】 (1)已知集合A={x|y=ln(x+3)},B={x|x≥2},则下 列结论正确的是( )
A.A=B B.A∩B=∅ C.A⊆B D.B⊆A (2)已知集合A={x|log2x≤2},B= {x|x<a} ,若A⊆B,则实数a 的取值范围是__________.
考点突破 考点一 集合的含义
【例 1】 (1)若集合 A={x∈R|ax2+ax+1=0}中只有一个元素,
则 a=( )
A.4 B.2 C.0 D.0 或 4 集合A中的方程
只有一个实根
(2)已知 a∈R,b∈R,若a,ba,1={a2,a+b,0},则 a2 016+
要注意集合中
b2 016=________.
第 1 讲 集合及其运算
➢ 夯基释疑
概要
➢ 考点突破
➢ 课堂小结
考点一 考点二
例 1 训练1 例 2 训练2
考点三 例 3 训练3
夯基释疑
判断正误(在括号内打“√”或“×”) (1)若 A={x|y=x2},B={(x,y)|y=x2}, C={y|y=x2},则 A=B=C.( ) (2)若{x2,1}={0,1},则 x=0,1.( ) (3)已知集合 A={x|mx=1},B={1,2}, 且 A⊆B,则实数 m=1 或 m=12.( ) (4)含有 n 个元素的集合的子集个数是 2n,真子集 个数是 2n-1,非空真子集的个数是 2n-2.( )

2018高考数学文人教新课标大一轮复习配套文档:第一章

2018高考数学文人教新课标大一轮复习配套文档:第一章

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·全国Ⅱ)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3} 解:集合B ={x |-1<x <2,x ∈Z }={0,1},而A ={1,2,3},所以A ∪B ={0,1,2,3}.故选C .2.命题“若p 则q ”的逆命题是( ) A .若q 则pB .若p 则qC .若q 则pD .若p 则q解:根据原命题与逆命题的关系可得“若p 则q ”的逆命题是“若q 则p ”.故选A .3.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( ) A .∃x 0∉∁R Q ,x 3∈Q B .∃x 0∈∁R Q ,x 30∉Q C .∀x ∉∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3∉Q解:该特称命题的否定为“∀x ∈∁R Q ,x 3∉Q ”.故选D .4.已知p :⊆{0},q :{1}∈{1,2},由它们构成的新命题“p ∧q ”“p ∨q ”“p ”中,真命题有( )A .0个B .1个C .2个D .3个解:因为空集是任何集合的子集,{1}⊆{1,2},所以p 真q 假.所以“p ∨q ”为真,“p ∧q ”“p ”为假.故选B .5.已知集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z 且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5解:因为32-x ∈Z 且x ∈Z ,所以2-x 的取值有-3,-1,1,3,x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.故选C .6.已知集合M ={x ||x -1|<1},集合N ={x |-1<x <3},则M ∩(∁R N )=( )A .{x |0<x <2}B .{x |-1<x ≤0或2≤x <3}C .{x |-1<x <2}D.解:因为M ={x ||x -1|<1}={x |0<x <2},N ={x |-1<x <3},所以∁R N =(-∞,-1]∪B .C .(-∞,1)D .(0,1)解:易知M =,当a <0时,N =;当a ≥0时,N ={x |1-a ≤x ≤1+a },若N ⊆M ,则a <0或⎩⎪⎨⎪⎧1-a ≥-2,1+a ≤2,a ≥0,得a ≤1.故选A .11.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为()A .B .(-1,0)C .(-∞,-1)∪∪(0,1)解:因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},B ={y |y =f (x )}={y |y ≤0},所以A ∪B =(-∞,1),A ∩B =(-1,0],图中阴影部分表示的集合为(-∞,-1]∪(0,1).故选D .12.(2015·荆州模拟)给出下列四个命题: ①∃x 0∈R ,sin x 0+cos x 0=3;②∃x 0∈(-∞,0),2x 0<3x 0;③∀x ∈R ,e x≥x +1;④∀(x ,y )∈{(x ,(1)p时,p (2)所以;。

创新设计(全国通用)2018版高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充

创新设计(全国通用)2018版高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充

第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与必要条件练习 理 北师大版基础巩固题组 (建议用时:25分钟)一、选择题1.(2015·山东卷)设m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A.若方程x 2+x -m =0有实根,则m >0 B.若方程x 2+x -m =0有实根,则m ≤0 C.若方程x 2+x -m =0没有实根,则m >0 D.若方程x 2+x -m =0没有实根,则m ≤0解析 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”. 答案 D2.“x =1”是“x 2-2x +1=0”的( ) A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析 因为x 2-2x +1=0有两个相等的实数根为x =1,所以“x =1”是“x 2-2x +1=0”的充要条件. 答案 A3.设α,β是两个不同的平面,m 是直线且m α,则“m ∥β”是“α∥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 m α,m ∥βα∥β,但m α,α∥β⇒m ∥β,∴“m ∥β”是“α∥β”的必要不充分条件. 答案 B4.(2017·安徽江南十校联考)“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 显然a =0时,f (x )=sin x -1x为奇函数;当f (x )为奇函数时,f (-x )+f (x )=0.又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x+a =0.因此2a =0,故a =0.所以“a =0”是“函数f (x )为奇函数”的充要条件. 答案 C5.下列结论错误的是( )A.命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” B.“x =4”是“x 2-3x -4=0”的充分条件C.命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D.命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题.答案 C6.设x ∈R ,则“1<x <2”是“|x -2|<1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由|x -2|<1,得1<x <3,所以1<x <2⇒1<x <3;但1<x <3⇒/ 1<x <2. 所以“1<x <2”是“|x -2|<1”的充分不必要条件. 答案 A7.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( ) A.[1,+∞) B.(-∞,1] C.[-1,+∞)D.(-∞,-3]解析 由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件.故a ≥1. 答案 A8.(2017·汉中模拟)已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立. 答案 B 二、填空题9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题. 答案 210.“sin α=cos α”是“cos 2α=0”的________条件. 解析 cos 2α=0等价于cos 2α-sin 2α=0, 即cos α=±sin α.由cos α=sin α得到cos 2α=0;反之不成立.∴“sin α=cos α”是“cos 2α=0”的充分不必要条件. 答案 充分不必要11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.解析 令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. ∵p 是q 的充分不必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3. 答案 (0,3) 12.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题.其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”错误.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确. 答案 ②③能力提升题组 (建议用时:10分钟)13.(2016·四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件D.既不充分也不必要条件解析 如图作出p ,q 表示的区域,其中⊙M 及其内部为p 表示的区域,△ABC 及其内部(阴影部分)为q 表示的区域. 故p 是q 的必要不充分条件.答案 A14.(2017·南昌十所省重点中学联考)已知m ∈R ,“函数y =2x+m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由y =2x+m -1=0,得m =1-2x,则m <1. 由于函数y =log m x 在(0,+∞)上是减函数, 所以0<m <1.因此“函数y =2x+m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件. 答案 B15.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x<8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x<8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴AB ,∴m +1>3,即m >2.答案 (2,+∞)16.(2017·临沂模拟)下列四个结论中正确的是________(填序号).①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“任意x ∈R ,sin x ≤1”的否定是“存在x 0∈R ,sin x 0>1”;③“若x =π4,则tan x =1”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0.解析 ①中“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误.对于②,命题:“任意x ∈R ,sin x ≤1”的否定是“存在x 0∈R ,sin x 0>1”,故②正确. 对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,其为假命题,故③错误.对于④,若f(x)是R上的奇函数,则f(-x)+f(x)=0,∵log32=1log23≠-log32,∴log32与log23不互为相反数,故④错误.答案②。

创新设计(全国通用)2018版高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与

创新设计(全国通用)2018版高考数学一轮复习 第一章 集合与常用逻辑用语 第2讲 命题及其关系、充分条件与

p q且q p
诊断自测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)“x2+2x-3<0”是命题.( ) (2)命题“若p,则q”的否命题是“若p,则綈q”.( ) (3)当q是p的必要条件时,p是q的充分条件.( ) (4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( )
【例1】 (1)命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为
()
A.“若x=4,则x2-3x-4=0”为真命题
B.“若x≠4,则x2-3x-4≠0”为真命题
C.“若x≠4,则x2-3x-4≠0”为假命题
D.“若x=4,则x2-3x-4=0”为假命题
(2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命 题、否命题、逆否命题真假性的判断依次如下,正确的是( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 若 f(x)为偶函数,则有 f(x)=f(-x),所以 p⇒q;
若 f(x)=x,当 x=0 时,f(0)=f(-0),而 f(x)=x 为奇函数,
所以 q p.∴“命题 p”是“命题 q”的充分不必要条件.
答案 A
考点一 四种命题的关系及其真假判断
C.若 tan α≠1,则 α≠π4
D.若 tan α≠1,则 α=π4
解析 命题“若 p,则 q”的逆否命题是“若綈 q,则綈 p”,显
然綈 q:tan
α≠1,綈
π p:α≠ 4 ,所以该命题的逆否命题是“若
tan
α≠1,则
π α≠ 4 ”.
答案 C
3.(2016·天津卷)设x>0,y∈R,则“x>y”是“x>|y|”的( )

创新设计2018版高考数学(理)(人教)大一轮复习配套讲义:第一章集合与常用逻辑用语第3讲含解析

创新设计2018版高考数学(理)(人教)大一轮复习配套讲义:第一章集合与常用逻辑用语第3讲含解析

基础巩固题组(建议用时:25分钟)一、选择题1。

已知命题p:所有指数函数都是单调函数,则綈p为()A.所有的指数函数都不是单调函数B.所有的单调函数都不是指数函数C。

存在一个指数函数,它不是单调函数D。

存在一个单调函数,它不是指数函数解析命题p:所有指数函数都是单调函数,则綈p为:存在一个指数函数,它不是单调函数。

答案C2。

设命题p:函数y=sin 2x的最小正周期为错误!;命题q:函数y =cos x的图象关于直线x=错误!对称.则下列判断正确的是( )A。

p为真 B.綈p为假C.p∧q为假D.p∧q为真解析p为假命题,q为假命题,∴p∧q为假。

答案C3.2016年巴西里约奥运会,在体操预赛中,有甲、乙两位队员参加。

设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为()A.(綈p)∨(綈q) B。

p∨(綈q)C.(綈p)∧(綈q)D。

p∨q解析命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(綈p)∨(綈q).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p∧q"的否定。

答案A4.(2017·西安调研)已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根。

则下列命题为真命题的是()A。

p∧(綈q) B.(綈p)∧qC。

(綈p)∧(綈q)D。

p∧q解析由题意知命题p是真命题,命题q是假命题,故綈p是假命题,綈q是真命题,由含有逻辑联结词的命题的真值表可知p∧(綈q)是真命题。

答案A5。

下列命题中,真命题是( )A。

∃x0∈R,e x0≤0B.∀x∈R,2x〉x2C.a+b=0的充要条件是错误!=-1D.“a〉1,b〉1"是“ab>1”的充分条件解析因为y=e x〉0,x∈R恒成立,所以A不正确.因为当x=-5时,2-5〈(-5)2,所以B不正确.“错误!=-1”是“a+b=0”的充分不必要条件,C不正确。

创新设计全国通用2018版高考数学一轮复习第一章集合与常用逻辑用语第1讲集合练习理北师大版201703310142

创新设计全国通用2018版高考数学一轮复习第一章集合与常用逻辑用语第1讲集合练习理北师大版201703310142

第一章集合与常用逻辑用语第1讲集合练习理北师大版基础巩固题组(建议用时:25分钟)一、选择题1.(2015·全国Ⅱ卷)已知集合A={1,2,3},B={2,3},则( )A.A=BB.A∩B=∅C.A BD.B A解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案 D2.(2016·全国Ⅱ卷)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}解析由(x+1)(x-2)<0,得-1<x<2,又x∈Z,所以B={0,1},因此A∪B={0,1,2,3}.答案 C3.(2017·宝鸡模拟)已知集合A={x|lg x>0},B={x|x≤1},则( )A.A∩B≠∅B.A∪B=RC.B⊆AD.A⊆B解析由B={x|x≤1},且A={x|lg x>0}=(1,+∞),∴A∪B=R.答案 B4.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( )A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)解析因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案 C5.(2016·山东卷)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)解析由y=2x,x∈R,知y>0,则A=(0,+∞).又B={x|x2-1<0}=(-1,1).因此A∪B=(-1,+∞).答案 C6.(2016·浙江卷)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(∁U P )∪Q =( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴(∁U P )∪Q ={1,2,4,6}.答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A.1B.3C.7D.31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2. 答案 B8.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( )A.{x |x ≥0}B.{x |x ≤1}C.{x |0≤x ≤1}D.{x |0<x <1}解析 ∵A ={x |x ≤0},B ={x |x ≥1},∴A ∪B ={x |x ≤0或x ≥1},在数轴上表示如图.∴∁U (A ∪B )={x |0<x <1}.答案 D二、填空题9.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________.解析 ∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,∴a ≤1.答案 (-∞,1]10.(2016·天津卷)已知集合A ={1,2,3},B ={y |y =2x -1,x ∈A },则A ∩B =________. 解析 由A ={1,2,3},B ={y |y =2x -1,x ∈A },∴B ={1,3,5},因此A ∩B ={1,3}. 答案 {1,3}11.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.解析 由x (x +1)>0,得x <-1或x >0,∴B =(-∞,-1)∪(0,+∞),∴A -B =[-1,0).答案 [-1,0)12.(2017·合肥质检)已知集合A ={x |x 2-2 016x -2 017≤0},B ={x |x <m +1},若A ⊆B ,则实数m 的取值范围是________.解析 由x 2-2 016x -2 017≤0,得A =[-1,2 017],又B ={x |x <m +1},且A ⊆B ,所以m +1>2 017,则m >2 016.答案 (2 016,+∞)能力提升题组(建议用时:10分钟)13.(2016·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =( )A.[2,3]B.(-∞,-2)∪[3,+∞)C.(2,3)D.(0,+∞) 解析 易知S =(-∞,2]∪[3,+∞),∴∁R S =(2,3),因此(∁R S )∩T =(2,3).答案 C14.(2016·黄山模拟)集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是( )A.{x |x ≥1}B.{x |1≤x <2}C.{x |0<x ≤1}D.{x |x ≤1}解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.答案 B15.(2017·南昌十所省重点中学模拟)设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________.解析 由14≤2x ≤16,x ∈N , ∴x =0,1,2,3,4,即A ={0,1,2,3,4}.又x 2-3x >0,知B ={x |x >3或x <0},∴A ∩B ={4},即A ∩B 中只有一个元素.答案 116.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m+n=________.解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n)可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.所以m+n=0.答案0。

创新设计2018版高考数学(文)(人教)大一轮复习.

创新设计2018版高考数学(文)(人教)大一轮复习.

基础诊斷 考点夹破 课堂总结•第3讲 简单的逻辑联结词、全称量词与存在量词基础诊斷考点夹破1课堂总结最新考纲1.了解逻辑联结词“或”、义;2.理解全称量词与存在量词的意义; 一个量词的命题进行否定.且,,、“非”的含 3.能正确地对含有I基H!诊断梳理自测,理解记忆知识梳理1 .简单的逻辑联结词(1)命题中的且、型、生叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断基础诊斷考点夹祓潭堂总结2.全称量词与存在量词(1)全称量词:短语“所有的”、“任意一个”等在逻辑中通常叫做全称量词,用符号“乂”表示.(2)全称命题:含有全称応同的命题.全称命题“对M中任意一个兀,有“(X)成立”简记为0胆/心).(3)存在量词:短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在量词,用符号“旦”表示.(4)特称命题:含有存在量词的命题.特称命题“存在M中的一个元素勺,使卩(勺)成立”,简记•oWM,"(勺).碁诊斷考点夹祓课巻总结3•含有一个量词的命题的否定基越诊祈考点夷破课巻总结诊断自测1.判断正误(在扌舌号内打“ J ”或“ X ")琦精彩PPT展示(1)命题“5>6或5>2”是假命题.()(2)命题絲(p/\q)是假命题,则命题p, q中至少有一个是/[•命题•()(3)“长方形的对角线相等”是特称命题.()(4归x()GM, p(x())与WCM, 的真假性相反.()解析(1)错误•命题q中,p、Q有一真则真. ⑵错误是真命题,则p, Q都是真命题.基础诊斷•考点夹破课堂总结(3)错误.命题“长方形的对角线相等”是全称命题. 答案(1)X (2)X (3)X (4) V基础诊斷| 考点夹破课堂总结2.(选修1 -1P1XB组改编)已知p: 2是偶数,q: 2是质数,则命题p,「q, p\Jq、p/\q中真命题的个数为( )A.1B.2C.3D.4解析P和纟显然都是真命题,所以- p.「9都是假命题,p' q、/?/\q都是真命题.答案B3.(2015-全国I卷)设命题0 弘EN,护>2”,则1卩为()A.Vz?N, n~>2nB.3/?^N, rflWHC.bnGN,几2”D.UnGN, n2 = 2lt解析命题p的量词T”改为“P" ,“/I2>2“”改为“/W2"”,・・・「p: VnSN,沪W2”.答案C基础诊斷考点突破课堂总结基础诊斷| 考点夹破课堂总结4.(2017-贵阳调研)下列命题中的假命题是()A.3x0^R, lgx0= 1B.3x()eR, sinx()=0C.VxeR,兀3>oD.VxeR, 2">0解析当x= 1()时,lgl0=l,则A为真命题;当x = 0时,sin 0 = 0,则B为真命题;当xVO时,x3<0,则C为假命题;由指数函数的性质知,VxeR, 2->0,则D为真命题.故选C.答案C基础诊斷•考点夹破课堂总结5.(2015-山东卷)若“色丘0,牙,tan x^m ff是真命题,则实数加的最小值为_________ •解析•・•函数y = tanx在0,手上是增函数,■ ■7T 、•••ymdx = tan才=1,依题意,加鼻^优你,即加Ml.m的最小值为1.答案1考克突破KF牯彩PPT名师讲解分类讲练,以例求法基础诊斷| 考点夹破课堂总结考点一含有逻辑联结词的命题的真假判断【例1】设a,b, c是非零向量.已知命题°:若ab = 09 bc = 0, 贝ija-c = ();命题q:若a//b, b//c,贝ia//c.则下列命题中真命题是()X.p7 qC.(「p)A(~1q)解析取a = c = (l, 0), b = (0, 1),显然ab =0, be= 0,但ac =1 ^0,是假命题.又a, h, c是非零向量,基础诊斷•考点夹破课堂总结由a//b知由h // c^b = ye,/.a = xyc, . .a//c>・•・§是真命题.综上知pVg是真命题,是假命题.又•・•「P为真命题,为假命题.・•・(「P)A(-»q), pAC-1 q)都是假命题.答案A基础诊斷| 考点夹祓| 潭堂总结|规律方法⑴“p7q”、“pM”、p”形式命题真假的判断关键是对逻辑联结词“或” “且” “非”含义的理解,其操作步骤是:①明确其构成形式;②判断其中命题p, q的真假;③确定“ p7 q” “pg' p”形式命题的真假.(2)p且g形式是“一假必假,全真才真”,p或纟形式是“一真必真,全假才假,非“则是“与p的真假相反”.基础诊斷•考点夹破课堂总结【训练1】(2017-郑州调研)命题0函数y = log2(x-2)的单调增区间是[1,+8),命题中函数歹=詁~[的值域为(0, 1).下列命题是真命题的为( \.p/\q )B.pV<yC.p/\ (絲q)D.絲q基础诊断I 考点夹破课堂总结解析由于y= log2(x - 2)在(2, + 8)上是增函数,命题卩是假命题.由3、0,得3"+1>1,所以0v尹[「Vi,所以函数y = 的值域为(0,1),故命题q为真命题•所以p/\q为假命题,p'q为真命题,q)为假命题,絲q为假命题.答案B基础诊斬- 考点夹破课堂总结基础诊斷• 考点夹破 课堂总结考点二含有一个量词命题的否定及真假判定【例2】(1)(2016-东北师大附中质检)已知命题0 WGR, e'-x- 1>0,则「卩是( ) A. VxeR,X —1<0B. 3x 0^R, e")—x 0—1 W0C. 3x 0 W R, e'°—x 0 — 1 <0D. VxeR,x —1W0基础诊斷| 考点夹破 课堂总结个命题:Pi : V(x, y)W£>,兀+2歹三一2,P2: 3(x 0» yo)WD ,xo+2yoM2, P3: V(x, y)eD, x+2yW3,04: 3(X(), yo)W£>, x ()+2y ()w —1. 其中真命题是()A./?2,P3B.0, p 2C.pi ,P4D.p, P3 解析(1)因为全称命题的否定是特称命题,命题p: Vx R , e ' - x - 1 >0 的否定为=p : 3X 0^R, e A<) - x 0 - 1 ^0. (2)画出可行域如图中阴影部分所示,(2)(2014•全国I 卷)不等式组丿 兀一2yW4的解集为D, 有下面四由图可知,当目标函数z = x + 经过可行域的点A(2, - 1)时,取得最小值0,故x + 2yM0,因比厂,血是真命题.答案(1)B (2)B基础诊斷| 考点突破课堂总结规律方法(I)全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.(2)判定全称命题“bxUM,是真命题,需要对集合M中的每一个元素兀,证明卩(对成立;要判断特称命题是真命题,只要在限定集合内至少找到一个x = x0,使卩(以0)成立.基础诊斷. 考点突破课堂总结【训练2】(2017-安徽皖江名校联考)命题°:存在xe o, y , 使sin x+cos x>^2;命题g:u3x o^(O, +°°), In Xo=x()-1”的否定是a Vxe(0, +8), lnxHx-l”,则四个命题:(絲p)\/(絲q), p/\q,(絲p)/\g, pV(^ q)中,正确命题的个数为()A.lB.2C.3D.4基础诊斷| 考点夹破课堂总结解析因为sin x + cos X= V2sin x + 所以命题p是假命题;又特称命题的否定是全称命题,因此命题q为真命题.则(絲p)V(^ q)为真命题、p *q为假命题,(絲p)/\q为真命题,pV(締q)为假命题.・・・四个命题中正确的有2个命题.答案B基础诊斷•考点夹破课堂总结考点三由命题的真假求参数的取值范围【例3】(1)已知命题"mx()WR,使衣+⑺一l)x()+*WO”是假命题,则实数G的取值范围是( )A.(-8, -1)B.(—1, 3)C.( —3, +°°)D.( —3, 1)(2)己知p: mx()ER,皿兔+lWO,q: VxeR, x2+/nx+l>0, 若p7q为假命题,则实数加的取值范围是( )A.[2, +8)B.(—8, —2]C.(-8, -2]U[2, +oo)D.[-2, 2]基础诊新| 考点突该| 棵愛总结|解析(1)原命题的否定为Hx€R, 2x2 + (a -l)x + |>O,由题意知,其为真命题,即A = (a - 1)2-4X2X|<0,则- 2va - 1<2,则 - lvav3.(2)依题意知,p, q均为假命题.当p是假命题时,加:?+ i> o恒成立, 则有加MO;当q是假命题时,则有J = in2- 4^0, mW _ 2或加三2. 因此由p, q均为假命题得::I;或丹三0,即心2.答案(1)B (2)A基础诊断”考点夹破课堂总结规律方法(1)根据含逻辑联结词的命题真假求参数的方法步骤:①根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);②求出每个命题是真命题时参数的取值范围;③根据每个命题的真假情况,求出参数的取值范围.(2)全称命题可转化为恒成立问题.基础诊斷考点突祓课堂总结【训练3】(2017-衡水中学月考)设卩:实数x满足x2~5ax+4a2<(\其中d>0), q:实数x满足2<rW5.(1)若d=l,且p/\q为真,求实数x的取值范围;(2)若綁q是繍p的必要不充分条件,求实数a的取值范围.解(1)当幺=1时,X2—5tzx+4tz2<0即为W —5X+4V0,解得l<rv4,当。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【创新设计】2018高考数学一轮复习第一章集合训练理新人教A版[备考方向要明了][归纳·知识整合]1.元素与集合(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a属于A,记作a∈A;若b不属于A,记作b∉A.(3)集合的表示方法:列举法、描述法、图示法.(4)常见数集及其符号表示[探究] 1.集合A={x|x2=0},B={x|y=x2},C={y|y=x2},D={(x,y)|y=x2}相同吗?它们的元素分别是什么?提示:这4个集合互不相同,A是以方程x2=0的解为元素的集合,即A={0};B是函数y=x2的定义域,即B=R;C是函数y=x2的值域,即C={y|y≥0};D是抛物线y=x2上的点组成的集合.2.0与集合{0}是什么关系?∅与集合{∅}呢?提示:0∈{0},∅∈{∅}或∅⊆{∅}.2.集合间的基本关系A B或B A∅⊆A∅B(B≠∅)[探究] 3.对于集合A,B,若A∩B=A∪B,则A,B有什么关系?提示:A=B.假设A≠B,则A∩B A∪B,与A∩B=A∪B矛盾,故A=B.3.集合的基本运算[探究] 4.同一个集合在不同全集中的补集相同吗?提示:一般情况下不相同,如A={0,1}在全集B={0,1,2}中的补集为∁B A={2},在全集D={0,1,3}中的补集为∁D A={3}.[自测·牛刀小试]1.(2018·山东高考)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为( )A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}解析:选C 由题意知∁U A={0,4},又B={2,4},所以(∁U A)∪B={0,2,4}.2.(教材改编题)已知集合A={x|2x-3<3x},B={x|x≥2},则( )A.A⊆B B.B⊆AC.A⊆∁R B D.B⊇∁R A解析:选B ∵A={x|2x-3<3x}={x|x>-3},B={x|x≥2},∴B⊆A.3.已知集合M={1,m+2,m2+4},且5∈M,则m的值为( )A.1或-1 B.1或3C.-1或3 D.1,-1或3解析:选B ∵5∈{1,m+2,m2+4},∴m+2=5或m2+4=5,即m=3或m=±1.当m=3时,M={1,5,13};当m=1时,M={1,3,5};当m=-1时M={1,1,5}不满足互异性.∴m的值为3或1.4.(教材改编题)已知集合A={1,2},若A∪B={1,2},则集合B有________个.解析:∵A={1,2},A∪B={1,2},∴B⊆A,∴B=∅,{1},{2},{1,2}.答案:45.已知集合A={x|a-1≤x≤a+1},B={x|x2-5x+4≥0},若A∩B=∅,则实数a的取值范围是________.解析:∵B={x|x2-5x+4≥0}={x|x≥4,或x≤1},且A∩B=∅,∴⎩⎪⎨⎪⎧a -1>1,a +1<4,∴⎩⎪⎨⎪⎧a >2,a <3.即2<a <3.答案:(2,3)[例1] (1)(2018·新课标全国卷)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10(2)已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若9∈(A ∩B ),则实数a 的值为________.[自主解答] (1)法一:由x -y ∈A ,及A ={1,2,3,4,5}得x >y ,当y =1时,x 可取2,3,4,5,有4个;y =2时,x 可取3,4,5,有3个;y =3时,x 可取4,5,有2个;y =4时,x 可取5,有1个.故共有1+2+3+4=10(个).法二:因为A 中元素均为正整数,所以从A 中任取两个元素作为x ,y ,满足x >y 的(x ,y )即为集合B 中的元素,故共有C 25=10个.(2)∵9∈(A ∩B ),∴9∈A 且9∈B , ∴2a -1=9或a 2=9.∴a =5或a =±3.当a =5时,A ={-4,9,25},B ={0,-4,9},符合题意;当a =3时,A ={-4,5,9},B 不满足集合中元素的互异性,故a ≠3;当a =-3时,A ={-4,-7,9},B ={-8,4,9},符合题意.∴a =5或a =-3. [答案] (1)D (2)5或-3本例(2)中,将“9∈(A ∩B )”改为“A ∩B ={9}”,其他条件不变,则实数a 为何值? 解:∵A ∩B ={9},∴9∈A 且9∈B , ∴2a -1=9或a 2=9, 即a =5或a =±3.当a =5时,A ={-4,9,25},B ={0,-4,9}, ∴A ∩B ={-4,9},不满足题意, ∴a ≠5.当a =3时,A ={-4,5,9},B ={-2,-2,9},不满足集合中元素的互异性,∴a ≠3.当a =-3时,A ={-4,-7,9},B ={-8,4,9}, ∴A ∩B ={9},符合题意, 综上a =-3. ———————————————————解决集合问题的一般思路(1)研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.(2)对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性.1.(1)已知非空集合A ={x ∈R |x 2=a -1},则实数a 的取值范围是________. (2)已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:(1)∵集合A ={x ∈R |x 2=a -1}为非空集合, ∴a -1≥0,即a ≥1.(2)∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0}, 即1-2+a ≤0,∴a ≤1.答案:(1)[1,+∞) (2)(-∞,1][例2] 已知集合A ={x |0<ax +1≤5},B =⎩⎨⎧⎭⎬⎫x |-12<x ≤2,若A ⊆B ,则实数a 的取值范围是________.[自主解答] A 中不等式的解集应分三种情况讨论: ①若a =0,则A =R ;②若a <0,则A =⎩⎨⎧⎭⎬⎫x |4a≤x <-1a ;③若a >0,则A =⎩⎨⎧⎭⎬⎫x |-1a<x ≤4a .当a =0时,若A ⊆B ,此种情况不存在. 当a <0时,若A ⊆B ,如图,则⎩⎪⎨⎪⎧4a >-12,-1a ≤2,即⎩⎪⎨⎪⎧a >0或a <-8,a >0或a ≤-12.又∵a <0,∴a <-8. 当a >0时,若A ⊆B ,如图,则⎩⎪⎨⎪⎧-1a ≥-12,4a ≤2,即⎩⎪⎨⎪⎧a ≥2或a <0,a ≥2或a <0.又∵a >0,∴a ≥2.综上知,当A ⊆B 时,a <-8或a ≥2. [答案] (-∞,-8)∪[2,+∞)保持例题条件不变,当a 满足什么条件时,B ⊆A? 解:当a =0时,显然B ⊆A ; 当a <0时,若B ⊆A ,如图,则⎩⎪⎨⎪⎧4a ≤-12,-1a >2,即⎩⎪⎨⎪⎧-8≤a <0,-12<a <0.又∵a <0,∴-12<a <0.当a >0时,若B ⊆A ,如图,则⎩⎪⎨⎪⎧-1a ≤-12,4a ≥2,即⎩⎪⎨⎪⎧0<a ≤2,0<a ≤2.又∵a >0,∴0<a ≤2.综上知,当B ⊆A 时,-12<a ≤2.——————————————————— 根据两集合的关系求参数的方法已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.2.若集合A ={x |x 2+ax +1=0,x ∈R },集合B ={1,2},且A ⊆B ,则实数a 的取值范围是________.解析:(1)若A =∅,则Δ=a 2-4<0,解得-2<a <2;(2)若1∈A ,则12+a +1=0,解得a =-2,此时A ={1},符合题意;(3)若2∈A ,则22+2a +1=0,解得a =-52,此时A =⎩⎨⎧⎭⎬⎫2,12,不合题意.综上所述,实数a 的取值范围为[-2,2). 答案:[-2,2)[例3] (1)(2018·北京高考)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( )A .(-∞,-1) B.⎝⎛⎭⎪⎫-1,-23 C.⎝ ⎛⎭⎪⎫-23,3D .(3,+∞)(2)(2018·威海模拟)已知集合A ={1,2a},B ={a ,b },若A ∩B =⎩⎨⎧⎭⎬⎫12,则A ∪B =( )A.⎩⎨⎧⎭⎬⎫12,1,bB.⎩⎨⎧⎭⎬⎫12,-1 C.⎩⎨⎧⎭⎬⎫12,1 D.⎩⎨⎧⎭⎬⎫12,1,-1 (3)(2018·武汉模拟)已知A ,B 均为集合U ={1,2,3,4,5,6}的子集,且A ∩B ={3},(∁UB )∩A ={1},(∁U A )∩(∁U B )={2,4},则B ∩(∁U A )=________.[自主解答] (1)∵A =⎩⎨⎧⎭⎬⎫x |x >-23,B ={x |x <-1,或x >3},∴A ∩B ={x |x >3}.(2)由A ∩B =⎩⎨⎧⎭⎬⎫12得2a=12,解得a =-1,则b =12.所以A =⎩⎨⎧⎭⎬⎫1,12,B =⎩⎨⎧⎭⎬⎫-1,12,则A∪B =⎩⎨⎧⎭⎬⎫1,-1,12.(3)依题意及韦恩图得,B ∩(∁U A )={5,6}.[答案] (1)D (2)D (3){5,6} ———————————————————1.集合的运算口诀集合运算的关键是明确概念.集合的交、并、补运算口诀如下:交集元素仔细找,属于A 且属于B ;并集元素勿遗漏,切记重复仅取一;全集U 是大范围,去掉U 中A 元素,剩余元素成补集.2.解决集合的混合运算的方法解决集合的混合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合是用不等式形式表示时,可运用数轴求解.3.(2018·南昌模拟)已知全集U =R ,函数y =1x 2-4的定义域为M ,N ={x |log 2(x -1)<1},则如图所示阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}解析:选C 集合M =(-∞,-2)∪(2,+∞),∁U M =[-2,2],集合N =(1,3),所以∁U M ∩N =(1,2].[例4] 非空集合G 关于运算⊕满足:(1)对任意a 、b ∈G ,都有a ⊕b ∈G ;(2)存在c ∈G ,使得对一切a ∈G ,都有a ⊕c =c ⊕a =a ,则称集合G 关于运算⊕为“融洽集”.现给出下列集合和运算:①G ={非负整数},⊕为整数的加法; ②G ={偶数},⊕为整数的乘法; ③G ={平面向量},⊕为平面向量的加法; ④G ={二次三项式},⊕为多项式的加法. 其中G 关于运算⊕为“融洽集”的是( )A .①②B .①③C .②③D .②④[自主解答] ②错,因为不满足条件(2);④错,因为不满足条件(1). [答案] B ——————————————————— 解决新定义问题应注意以下几点(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质. (2)按新定义的要求,“照章办事”逐步分析、验证、运算,使问题得以解决. (3)对于选择题,可以结合选项通过验证,排除、对比、特值等方法解诀.4.若x ∈A ,且11-x∈A ,则称集合A 为“和谐集”.已知集合M =⎩⎨⎧⎭⎬⎫-2,-1,-12,0,1,12,23,2,3,则集合M 的子集中,“和谐集”的个数为( )A .1B .2C .3D .4解析:选C 当x =-2时,11-x =13∉M ,故-2不是“和谐集”中的元素; 当x =-1时,11-x =12∈M ;当x =12时,11-x =2∈M ;当x =2时,11-x=-1∈M .所以-1,12,2可以作为“和谐集”中的一组元素;当x =-12时,11-x =23∈M ;当x =23时,11-x =3∈M ;当x =3时,11-x =-12∈M .所以-12,23,3可以作为“和谐集”中的一组元素;当x =0时,11-x =1∈M ,但x =1时,11-x 无意义,所以0,1不是“和谐集”中的元素.所以集合M 的子集为“和谐集”,其元素只能从两组元素:-1,12,2与-12,23,3中选取一组或两组,故“和谐集”有⎩⎨⎧⎭⎬⎫-1,12,2,⎩⎨⎧⎭⎬⎫-12,23,3,-1,12,2,-12,23,3三个.1组转化——两个集合的运算与包含关系之间的转化在集合的运算关系和两个集合的包含关系之间往往存在一定的联系,在一定的情况下,集合的运算关系和包含关系之间可以相互转化,如A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁UB )=∅,在解题中运用这种转化能有效简化解题过程.3种技巧——集合的运算技巧(1)对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号.(2)对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.这是数形结合思想的又一体现.(3)两个有限集合相等,可以从两个集合中的元素相同求解,如果是两个无限集合相等,从两个集合中元素相同求解就不方便,这时就根据两个集合相等的定义求解,即如果A ⊆B ,B ⊆A ,则A =B .5个注意——解答集合题目应注意的问题(1)认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)要注意区分元素与集合的从属关系;以及集合与集合的包含关系. (3)要注意空集的特殊性,在写集合的子集时不要忘了空集和它本身. (4)运用数轴图示法要特别注意端点是实心还是空心.(5)在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.创新交汇——与集合运算有关的交汇问题1.集合的运算是高考的常考内容,以两个集合的交集和补集运算为主,且常与函数、不等式、三角函数、向量等内容相结合,以创新交汇问题的形式出现在高考中.2.解决集合的创新问题常分三步: (1)信息提取,确定化归的方向;(2)对所提取的信息进行加工,探求解决方法;(3)将涉及到的知识进行转换,有效地输出,其中信息的提取和转化与化归是解题的关键,也是解题的难点.[典例] (2018·重庆高考)设平面点集A =⎩⎨⎧⎭⎬⎫x ,y |y -x ⎝ ⎛⎭⎪⎫y -1x ≥0,B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为( )A.34π B.35π C.47π D.π2[解析] 不等式(y -x )⎝⎛⎭⎪⎫y -1x ≥0可化为⎩⎪⎨⎪⎧y -x ≥0,y -1x≥0,或⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0.集合B 表示圆(x -1)2+(y -1)2=1上以及圆内部的点所构成的集合,A ∩B 所表示的平面区域如图所示.曲线y =1x,圆(x -1)2+(y -1)2=1均关于直线y =x 对称,所以阴影部分占圆面积的一半.[答案] D [名师点评]1.本题具有以下创新点(1)命题方式的创新:题目并不是直接求解不等式组⎩⎪⎨⎪⎧y -x ⎝ ⎛⎭⎪⎫y -1x ≥0,x -2+y -2≤1所表示的平面区域的面积,而是以求集合交集的形式考查.(2)考查内容的创新:本题通过集合A ,B 考查了一元一次函数y =x 、反比例函数y =1x的图象和圆的方程(x -1)2+(y -1)2=1,以及圆和函数y =1x的图象的对称性、不等式所表示的平面区域等内容.2.解决本题的关键有以下两点(1)正确识别集合A 与集合B 中元素的几何性质,并正确画出各自所表示的区域; (2)注意到圆(x -1)2+(y -1)2=1与函数y =1x(x >0)的图象都关于直线y =x 对称.3.在解决以集合为背景的创新交汇问题时,应重点关注以下两点(1)认真阅读,准确提取信息,是解决此类问题的前提.如本题应首先搞清集合A 与B 的性质,即不等式表示的点集.(2)剥去集合的外表,将陌生转化为熟悉是解决此类问题的关键,如本题去掉集合的外表,将问题转化为求解不等式组表示的平面区域问题.[变式训练]1.已知A ={(x ,y )|y =|ln x |},B =⎩⎨⎧⎭⎬⎫x ,y |x 29+y 24=1,则A ∩B 的子集个数为( )A .3B .4C .2D .8解析:选B A ∩B 中元素的个数就是函数y =|ln x |的图象与椭圆x 29+y 24=1的交点个数,如图所示.由图可知,函数图象和椭圆有两个交点,即A ∩B 中有两个元素,故A ∩B 的子集有22=4个.2.设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x || x -⎪⎪⎪1i < 2,i 为虚数单位,x ∈R ,则M ∩N 为( ) A .(0,1) B .(0,1] C .[0,1)D .[0,1]解析:选C ∵y =|cos 2x -sin 2x |=|cos 2x |,且x ∈R ,∴y ∈[0,1],∴M =[0,1].在N 中,x ∈R 且⎪⎪⎪⎪⎪⎪x -1i < 2,∴|x +i|< 2,∴x 2+1<2,解得-1<x <1, ∴N =(-1,1). ∴M ∩N =[0,1).3.设M ={a |a =(2,0)+m (0,1),m ∈R }和N ={b |b =(1,1)+n (1,-1),n ∈R }都是元素为向量的集合,则M ∩N =( )A .{(1,0)}B .{(-1,1)}C .{(2,0)}D .{(2,1)}解析:选C 设c =(x ,y )∈M ∩N ,则有(x ,y )=(2,0)+m (0,1)=(1,1)+n (1,-1),即(2,m )=(1+n,1-n ),所以⎩⎪⎨⎪⎧2=1+n ,m =1-n ,由此解得n =1,m =0,(x ,y )=(2,0),即M ∩N ={(2,0)}.(限时:45分钟满分81分)一、选择题(本大题共6小题,每小题5分,共30分)1.(2018·辽宁高考)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=( )A.{5,8} B.{7,9}C.{0,1,3} D.{2,4,6}解析:选B ∁U A={2,4,6,7,9},∁U B={0,1,3,7,9},则(∁U A)∩(∁U B)={7,9}.2.已知S={(x,y)|y=1,x∈R},T={(x,y)|x=1,y∈R},则S∩T=( )A.空集B.{1}C.(1,1) D.{(1,1)}解析:选D 集合S表示直线y=1上的点,集合T表示直线x=1上的点,S∩T表示直线y=1与直线x=1的交点.3.已知集合A={1,3,m},B={1,m},A∪B=A,则m=( )A.0或 3 B.0或3C.1或 3 D.1或3解析:选B 由A∪B=A得B⊆A,有m∈A,所以有m=m或m=3,即m=3或m=1或m=0,又由集合中元素互异性知m≠1.4.设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则A∩(∁R B)=( )A.(1,4) B.(3,4)C.(1,3) D.(1,2)∪(3,4)解析:选B B={x|-1≤x≤3},A∩(∁R B)={x|3<x<4}.5.(2018·湖北高考)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1 B.2C.3 D.4解析:选D A={1,2},B={1,2,3,4},A⊆C⊆B,则集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.6.(2018·厦门模拟)设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为( )A .[-1,0]B .(-1,0)C .(-∞,-1)∪[0,1)D .(-∞,-1]∪(0,1)解析:选D 因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1). 二、填空题(本大题共3小题,每小题5分,共15分)7.若1∈⎩⎨⎧⎭⎬⎫a -3,9a 2-1,a 2+1,-1,则实数a 的值为________.解析:若a -3=1,则a =4,此时9a 2-1=a 2+1=17不符合集合中元素的互异性;若9a 2-1=1,则a =49,符合条件;若a 2+1=1,则a =0,此时9a 2-1=-1,不符合集合中元素的互异性.综上可知a =49.答案:498.(2018·天津高考)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解析:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n )可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.答案:-1 19.(2018·合肥模拟)对于任意的两个正数m ,n ,定义运算⊙:当m ,n 都为偶数或都为奇数时,m ⊙n =m +n2,当m ,n 为一奇一偶时,m ⊙n =mn ,设集合A ={(a ,b )|a ⊙b =6,a ,b ∈N *},则集合A 中的元素个数为________.解析:(1)当a ,b 都为偶数或都为奇数时,a +b2=6⇒a +b =12,即2+10=4+8=6+6=1+11=3+9=5+7=12,故符合题意的点(a ,b )有2×5+1=11个.(2)当a ,b 为一奇一偶时,ab =6⇒ab =36,即1×36=3×12=4×9=36,故符合题意的点(a ,b )有2×3=6个.综上可知,集合A 中的元素共有17个. 答案:17三、解答题(本大题共3小题,每小题12分,共36分)10.A ={x |-2<x <-1或x >1},B ={x |a ≤x <b },A ∪B ={x |x >-2},A ∩B ={x |1<x <3},求实数a ,b 的值.解:∵A ∩B ={x |1<x <3},∴b =3, 又A ∪B ={x |x >-2}, ∴-2<a ≤-1, 又A ∩B ={x |1<x <3}, ∴-1≤a <1, ∴a =-1.11.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )·(x -3a )<0}. (1)若A ⊆B ,求a 的取值范围; (2)若A ∩B =∅,求a 的取值范围; (3)若A ∩B ={x |3<x <4},求a 的取值范围. 解:∵A ={x |x 2-6x +8<0},∴A ={x |2<x <4}. (1)若A ⊆B ,当a =0时,B =∅,显然不成立; 当a >0时,B ={x |a <x <3a }, 应满足⎩⎪⎨⎪⎧a ≤2,3a ≥4⇒43≤a ≤2; 当a <0时,B ={x |3a <x <a },应满足⎩⎪⎨⎪⎧3a ≤2,a ≥4,此时不等式组无解,∴当A ⊆B 时,43≤a ≤2.(2)∵要满足A ∩B =∅, 当a =0时,B =∅满足条件; 当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2.∴0<a ≤23或a ≥4;当a <0时,B ={x |3a <x <a }. ∴a <0时成立,综上所述,a ≤23或a ≥4时,A ∩B =∅.(3)要满足A ∩B ={x |3<x <4},显然a =3.12.设集合A ={x |-1≤x ≤2},B ={x |x 2-(2m +1)x +2m <0}.(1)当m <12时,化简集合B ;(2)若A ∪B =A ,求实数m 的取值范围;(3)若∁R A ∩B 中只有一个整数,求实数m 的取值范围. 解:∵不等式x 2-(2m +1)x +2m <0⇔ (x -1)(x -2m )<0. (1)当m <12时,2m <1,∴集合B ={x |2m <x <1}. (2)若A ∪B =A ,则B ⊆A , ∵A ={x |-1≤x ≤2}, ①当m <12时,B ={x |2m <x <1},此时-1≤2m <1⇒-12≤m <12;②当m =12时,B =∅,有B ⊆A 成立;③当m >12时,B ={x |1<x <2m },此时1<2m ≤2⇒12<m ≤1;综上所述,m 的取值范围是-12≤m ≤1.(3)∵A ={x |-1≤x ≤2}, ∴∁R A ={x |x <-1,或x >2},①当m <12时,B ={x |2m <x <1},若∁R A ∩B 中只有一个整数,则-3≤2m <-2⇒-32≤m <-1;②当m =12时,不符合题意;③当m >12时,B ={x |1<x <2m },若∁R A ∩B 中只有一个整数,则3<2m ≤4⇒32<m ≤2.综上所述,m 的取值范围是-32≤m <-1或32<m ≤2.1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M ,且a ≠b },则集合M 与集合N 的关系是( )A .M =NB .M ⊆NC.N⊆M D.M∩N=∅解析:选C 由于M={-1,0,1},所以x=0,-1,故N={0,-1},所以N⊆M.2.设全集U=R,A={x|-x2-3x>0},B={x|x<-1},则图中阴影部分表示的集合为( )A.{x|x>0}B.{x|-3<x<-1}C.{x|-3<x<0}D.{x|x<-1}解析:选B 依题意得集合A={x|-3<x<0},所求的集合即为A∩B,所以图中阴影部分表示的集合为{x|-3<x<-1}.3.若集合A={x|x≥1},B={0,1,2},则下列结论正确的是( )A.A∪B={x|x≥0} B.A∩B={1,2}C.(∁R A)∩B={0,1} D.A∪(∁R B)={x|x≥1}解析:选B 依题意得,A∪B={x|x≥1}∪{0},A∩B={1,2},(∁R A)∩B={0},A∪(∁R B)=(-∞,0)∪(0,+∞),因此结合各选项知,选B.4.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.解析:A={x|log2x≤2}={x|0<x≤4},即A=(0,4],由A⊆B,B=(-∞,a),且a的取值范围是(c,+∞),可以结合数轴分析得c=4.答案:4第二节命题及其关系、充分条件与必要条件[备考方向要明了][归纳·知识整合]1.命题在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系 (1)四种命题间的相互关系(2)四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.[探究] 1.在原命题及其逆命题、否命题、逆否命题这4个命题中,真命题的个数可能有几个?提示:由于原命题与逆否命题是等价命题;逆命题与否命题是等价命题,所以真命题的个数可能为0,2,4.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充分必要条件.记作p⇔q.[探究] 2.“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的说法相同吗?提示:两者说法不相同.“p的一个充分不必要条件是q”等价于“q是p的充分不必要条件”,显然这与“p是q的充分不必要条件”是截然不同的.3.命题“若p,则q”的逆命题为真,逆否命题为假,则p是q的什么条件?提示:逆命题为真即q⇒p,逆否命题为假,即p⇒/ q,故p是q的必要不充分条件.[自测·牛刀小试]1.(教材改编题)给出命题:“若x2+y2=0,则x=y=0”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A.0个B.1个C.2个D.3个解析:选D 逆命题为:若x=y=0,则x2+y2=0,是真命题.否命题为:若x2+y2≠0,则x≠0或y≠0,是真命题.逆否命题为:若x≠0或y≠0,则x2+y2≠0,是真命题.2.下列命题:①“a>b”是“a2>b2”的必要条件;②“|a|>|b|”是“a2>b2”的充要条件;③“a>b”是“a+c>b+c”的充要条件.其中是真命题的是( )A.①②B.②③C.①③D.①②③解析:选B ①a>b⇒/ a2>b2,且a2>b2⇒/ a>b;故①不正确;②a2>b2⇔|a|>|b|,故②正确;③“a>b”⇒a+c>b+c,且a+c>b+c⇒a>b,故③正确.3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数解析:选B 原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是B 选项.4.(2018·湖南高考)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:选 C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.5.(2018·天津高考)设φ∈R ,则“φ=0”是“f (x )=cos (x +φ)(x ∈R )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 解析:选A 因为f (x )是偶函数⇔φ=k π,k ∈Z ,所以“φ=0”是“f (x )是偶函数”的充分而不必要条件.[例1] 在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )等于( )A .1B .2C .3D .4[自主解答] 原命题p 显然是真命题,故其逆否命题也是真命题.而其逆命题是:若a 1b 2-a 2b 1=0,则两条直线l 1与l 2平行,这是假命题,因为当a 1b 2-a 2b 1=0时,还有可能l 1与l 2重合,逆命题是假命题,从而否命题也为假命题,故f (p )=2.[答案] B ———————————————————判断四种命题间的关系的方法(1)在判断四种命题之间的关系时,首先要注意分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地有了它的“逆命题”“否命题”“逆否命题”.(2)当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其他三种命题时,应把其中一个(或n 个)作为大前提.1.设原命题是“当c >0时,若a >b ,则ac >bc ”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假.解:“当c >0时”是大前提,写其他命题时应该保留,原命题的条件是a >b ,结论是ac >bc . 因此它的逆命题:当c >0时,若ac >bc ,则a >b .它是真命题;否命题:当c >0时,若a ≤b ,则ac ≤bc .它是真命题;逆否命题:当c >0时,若ac ≤bc ,则a ≤b .它是真命题.[例2] (1)(2018·浙江高考)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)下面四个条件中,使a >b 成立的充分不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 3[自主解答] (1)“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的充要条件是:由a 1=2a +1≠-14,解得a =-2或1.故“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的充分不必要条件.(2)a >b +1⇒a -b >1>0⇒a >b ,但a =2,b =1满足a >b ,但a =b +1,故A 项正确.或用排除法:对于B ,a >b -1不能推出a >b ,排除B ;而a 2>b 2不能推出a >b ,如a =-2,b =1,(-2)2>12,但-2<1,故C 项错误;a >b ⇔a 3>b 3,它们互为充要条件,排除D.[答案] (1)A (2)A ———————————————————充分条件、必要条件的判断方法判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p.2.已知命题p:函数f(x)=|x-a|在(1,+∞)上是增函数,命题q:f(x)=a x(a>0且a≠1)是减函数,则p是q的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选A 若命题p为真,则a≤1;若命题q为真,则0<a<1.∵由q能推出p但由p不能推出q,∴p是q的必要不充分条件.[例3] 已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围; (2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的范围. [自主解答] (1)由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},∵x ∈P 是x ∈S 的充要条件,∴P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,这样的m 不存在.(2)由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,∴m ≤3.综上,可知m ≤3时,x ∈P 是x ∈S 的必要条件.保持本例条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/ P . ∴[-2,11-m,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞). ———————————————————1.解决与充要条件有关的参数问题的方法解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.2.利用转化的方法理解充分必要条件 若綈p 是綈q 的充分不必要必要不充分、充要条件,则p 是q 的必要不充分充分不必要、充要条件.3.已知不等式1x -1<1的解集为p ,不等式x 2+(a -1)x -a >0的解集为q ,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)解析:选A 不等式1x -1<1等价于1x -1-1<0,即x -2x -1>0,解得x >2或x <1,所以p 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即q 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综合知-2<a ≤-1.1个转化——正难则反的转化由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.2个区别——“否命题”与“命题的否定”以及“充分条件”与“必要条件”的区别(1)否命题是既否定命题的条件,又否定命题的结论,而命题的否定是只否定命题的结论.要注意区别.(2)充分必要条件的判断应注意问题的设问方式,①A 是B 的充分不必要条件是指:A ⇒B 且B ⇒/ A ;②A 的充分不必要条件是B 是指:B ⇒A 且A ⇒/ B ,在解题中一定要弄清它们的区别,以免出现错误.3种方法——判断充分条件和必要条件的方法 (1)命题判断法.设“若p ,则q ”为原命题,那么:①原命题为真,逆命题为假时,p 是q 的充分不必要条件; ②原命题为假,逆命题为真时,p 是q 的必要不充分条件; ③原命题与逆命题都为真时,p 是q 的充要条件;④原命题与逆命题都为假时,p 是q 的既不充分也不必要条件. (2)集合判断法.从集合的观点看,建立命题p ,q 相应的集合:p :A ={x |p (x )成立},q :B ={x |q (x )成立},那么:①若A ⊆B ,则p 是q 的充分条件;若A B 时,则p 是q 的充分不必要条件;②若B ⊆A ,则p 是q 的必要条件;若B A 时,则p 是q 的必要不充分条件; ③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件. (3)等价转化法.p 是q 的什么条件等价于綈q 是綈p 的什么条件.创新交汇——与充要条件有关的交汇问题1.充分条件、必要条件和充要条件的判断是每年高考的热点内容,多与函数、不等式、向量、立体几何、解析几何等交汇命题.2.突破此类问题的关键有以下四点: (1)要分清命题的条件与结论;(2)要善于将文字语言转化为符号语言进行推理; (3)要注意等价命题的运用;(4)当判断多个命题之间的关系时,常用图示法,它能使问题直观、易于判断. [典例] (2018·陕西高考)设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.[解析] x =4±16-4n 2=2±4-n ,因为x 是整数,即2±4-n 为整数,所以4-n为整数,且n ≤4,又因为n ∈N *,取n =1,2,3,4,验证可知n =3,4符合题意,所以n =3,4时可以推出一元二次方程x 2-4x +n =0有整数根.[答案] 3或4 [名师点评]1.本题有以下两个创新点(1)考查内容创新:本题以一元二次方程为背景,探求方程有整数根的充要条件. (2)命题方式创新:此题目的特点是给出结论,未给条件,由结论探求条件. 2.解决本题的关键有以下两点(1)从结论出发,正确求出使结论成立的必要条件;(2)要验证所得到的必要条件是否满足充分性,否则极易得出n =1,2,3,4的错误答案. [变式训练]1.已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( ) A .x =-12B .x =-1C .x =5D .x =0解析:选D a ⊥b ⇔a ·b =0,a ·b =(x -1,2)·(2,1)=2(x -1)+2×1=2x =0,∴x=0.2.对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B 当m <0,n <0时,mn >0,但mx 2+ny 2=1没有意义,不是椭圆;反之,若mx 2+ny 2=1表示椭圆,则m >0,n >0,即mn >0.3.设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 化简得A ={x |x >2},B ={x |x <0},C ={x |x <0,或x >2}.∵A ∪B =C ,∴“x ∈A ∪B ”是“x ∈C ”的充要条件.一、选择题(本大题共6小题,每小题5分,共30分)1.(2018·潍坊模拟)命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.2.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B M ={x |0<x ≤3},N ={x |0<x ≤2},所以N M ,故a ∈M 是a ∈N 的必要不充分条件.3.(2018·日照模拟)已知直线l 1:x +ay +1=0,直线l 2:ax +y +2=0,则命题“若a =1或a =-1,则直线l 1与l 2平行”的否命题为( )A .若a ≠1且a ≠-1,则直线l 1与l 2不平行B .若a ≠1或a ≠-1,则直线l 1与l 2不平行C .若a =1或a =-1,则直线l 1与l 2不平行D .若a ≠1或a ≠-1,则直线l 1与l 2平行解析:选A 命题“若A ,则B ”的否命题为“若綈A ,则綈B ”,显然“a =1或a =-1”的否定为“a ≠1且a ≠-1”,“直线l 1与l 2平行”的否定为“直线l 1与l 2不平行”.4.已知a ,b 为非零向量,则“函数f (x )=(a x +b )2为偶函数”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析:选C 依题意得f (x )=a 2x 2+2(a ·b )x +b 2.由函数f (x )是偶函数,得a ·b =0,又a ·b 为非零向量,所以a ⊥b ;反过来,由a ⊥b 得,a ·b =0,f (x )=a 2x 2+b 2,函数f (x )是偶函数.综上所述,“函数f (x )=(a x +b )2为偶函数”是“a ⊥b ”的充要条件.5.(2018·安徽高考)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 若α⊥β,又α∩β=m ,b ⊂β,b ⊥m ,根据两个平面垂直的性质定理可得b ⊥α,又因为a ⊂α,所以a ⊥b ;反过来,当a ∥m 时,因为b ⊥m ,一定有b ⊥a ,但不能保证b ⊥α,即不能推出α⊥β.6.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8xx +4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x 恒成立,故Δ≤0,即m ≥43;m ≥8x x 2+4对任意x >0恒成立,即x >0时,m ≥⎝⎛⎭⎪⎫8x x 2+4max,而8x x 2+4=8x +4x≤824=2,故m ≥2.当p 成立时q 不一定成立,即p 不是q 的充分条件,但如果p 不成立,即m <43时,q 一定不成立,即p 是q 的必要不充分条件.二、填空题(本大题共3小题,每小题5分,共15分) 7.(2018·南京模拟)有下列几个命题: ①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;。

相关文档
最新文档