Abstract Gaussian-selection-based non-optimal search for speaker identification

合集下载

语音信号当中降噪算法的实现方法

语音信号当中降噪算法的实现方法

语音信号当中降噪算法的实现方法1.语音信号的降噪算法可以通过滤波器来实现。

The noise reduction algorithm of speech signals can be implemented through filters.2.降噪算法可以利用数字信号处理技术进行实现。

The noise reduction algorithm can be implemented using digital signal processing techniques.3.常见的降噪算法包括中值滤波和小波变换。

Common noise reduction algorithms include median filtering and wavelet transforms.4.中值滤波是一种简单且有效的降噪技术。

Median filtering is a simple and effective noise reduction technique.5.小波变换可以将信号分解成不同频率的子信号进行处理。

Wavelet transform can decompose the signal into sub-signals of different frequencies for processing.6.降噪算法的实现需要考虑运算速度和处理效果的平衡。

The implementation of noise reduction algorithm needs to consider the balance between computational speed and processing effect.7.降噪算法的性能评价可以使用信噪比等指标进行量化。

The performance evaluation of noise reduction algorithm can be quantified using metrics such as signal-to-noise ratio.8.自适应滤波是一种根据信号特性进行动态调整的降噪技术。

kosel包的中文名字:基于修正碰撞法的变量选择方法说明书

kosel包的中文名字:基于修正碰撞法的变量选择方法说明书

Package‘kosel’October13,2022Title Variable Selection by Revisited Knockoffs ProceduresVersion0.0.1Description Performs variable selection for many types of L1-regularised regressions using the revis-ited knockoffs procedure.This procedure uses a matrix of knockoffs of the covariates indepen-dent from the response variable Y.The idea is to determine if a covariate be-longs to the model depending on whether it enters the model before or after its knock-off.The procedure suits for a wide range of regressions with various types of response vari-ables.Regression models available are exported from the R packages'glmnet'and'ordinal-Net'.Based on the paper linked to via the URL below:Gegout A.,Gueudin A.,Kar-mann C.(2019)<arXiv:1907.03153>.URL https:///pdf/1907.03153.pdfLicense GPL-3Depends R(>=1.1)Encoding UTF-8LazyData trueRoxygenNote6.1.1Imports glmnet,ordinalNetSuggests graphicsNeedsCompilation noAuthor Clemence Karmann[aut,cre],Aurelie Gueudin[aut]Maintainer Clemence Karmann<**************************>Repository CRANDate/Publication2019-07-1810:44:06UTCR topics documented:ko.glm (2)ko.ordinal (3)ko.sel (4)Index812ko.glm ko.glm Statistics of the knockoffs procedure for glmnet regression models.DescriptionReturns the vector of statistics W of the revisited knockoffs procedure for regressions available in the R package glmnet.Most of the parameters come from glmnet().See glmnet documentation for more details.Usageko.glm(x,y,family="gaussian",alpha=1,type.gaussian=ifelse(nvars<500,"covariance","naive"),type.logistic="Newton",type.multinomial="ungrouped",nVal=50,random=FALSE)Argumentsx Input matrix,of dimension nobs x nvars;each row is an observation vector.Can be in sparse matrix format(inherit from class"sparseMatrix"as in packageMatrix;not yet available for family="cox")y Response variable.Quantitative for family="gaussian",or family="poisson"(non-negative counts).For family="binomial"should be either a factor with twolevels,or a two-column matrix of counts or proportions(the second column istreated as the target class;for a factor,the last level in alphabetical order is thetarget class).For family="multinomial",can be a nc>=2level factor,or amatrix with nc columns of counts or proportions.For either"binomial"or"multinomial",if y is presented as a vector,it will be coerced into a factor.Forfamily="cox",y should be a two-column matrix with columns named’time’and’status’.The latter is a binary variable,with’1’indicating death,and’0’indicating right censored.The function Surv()in package survival producessuch a matrix.family Response type:"gaussian","binomial","poisson","multinomial","cox".Not avail-able for"mgaussian".alpha The elasticnet mixing parameter,with0<=alpha<=1.alpha=1is the lasso penalty,and alpha=0the ridge penalty.The default is1.type.gaussian See glmnet documentation.type.logistic See glmnet documentation.type.multinomialSee glmnet documentation.nVal Length of lambda sequence-default is50.random If TRUE,the matrix of knockoffs is different for every run.If FALSE,a seed is used so that the knockoffs are the same.The default is FALSE.ko.ordinal3ValueA vector of dimension nvars corresponding to the statistics W.See Alsoko.selExamples#see ko.selko.ordinal Statistics of the knockoffs procedure for ordinalNet regression models.DescriptionReturns the vector of statistics W of the revisited knockoffs procedure for regressions available in the R package ordinalNet.Most of the parameters come from ordinalNet().See ordinalNet documentation for more details.Usageko.ordinal(x,y,family="cumulative",reverse=FALSE,link="logit",alpha=1,parallelTerms=TRUE,nonparallelTerms=FALSE,nVal=100,warn=FALSE,random=FALSE)Argumentsx Covariate matrix,of dimension nobs x nvars;each row is an observation vector.It is recommended that categorical covariates are converted to a set of indicatorvariables with a variable for each category(i.e.no baseline category);otherwisethe choice of baseline category will affect the modelfit.y Response variable.Can be a factor,ordered factor,or a matrix where each row isa multinomial vector of counts.A weightedfit can be obtained using the matrixoption,since the row sums are essentially observation weights.Non-integermatrix entries are allowed.family Specifies the type of model family.Options are"cumulative"for cumulative probability,"sratio"for stopping ratio,"cratio"for continuation ratio,and"acat"for adjacent category.reverse Logical.If TRUE,then the"backward"form of the model isfit,i.e.the model is defined with response categories in reverse order.For example,the reversecumulative model with K+1response categories applies the link function to thecumulative probabilities P(Y>=2),...,P(Y>=K+1),rather then P(Y<=1),...,P(Y<=K).link Specifies the link function.The options supported are logit,probit,complemen-tary log-log,and cauchit.alpha The elastic net mixing parameter,with0<=alpha<=1.alpha=1corresponds to the lasso penalty,and alpha=0corresponds to the ridge penalty.parallelTerms Logical.If TRUE,then parallel coefficient terms will be included in the model.parallelTerms and nonparallelTerms cannot both be FALSE.nonparallelTermsLogical.if TRUE,then nonparallel coefficient terms will be included in themodel.parallelTerms and nonparallelTerms cannot both be FALSE.Defaultis FALSE.nonparallelTerms=TRUE is highly discouraged.nVal Length of lambda sequence-default is100.warn Logical.If TRUE,the following warning message is displayed whenfitting a cu-mulative probability model with nonparallelTerms=TRUE(i.e.nonparallel orsemi-parallel model)."Warning message:For out-of-sample data,the cumula-tive probability model with nonparallelTerms=TRUE may predict cumulativeprobabilities that are not monotone increasing."The warning is displayed bydefault,but the user may wish to disable it.random If TRUE,the matrix of knockoffs is different for every run.If FALSE,a seed is used so that the knockoffs are the same.The default is FALSE.ValueA vector of dimension nvars corresponding to the statistics W.NotenonparallelTerms=TRUE is highly discouraged because the knockoffs procedure does not suit well to this setting.See Alsoko.selExamples#see ko.selko.sel Variable selection with the knockoffs procedure.DescriptionPerforms variable selection from an object(vector of statistics W)returned by ko.glm or ko.ordinal.Usageko.sel(W,print=FALSE,method="stats")ArgumentsW A vector of length nvars corresponding to the statistics W.Object returned by the functions ko.glm or ko.ordinal.print Logical.If TRUE,positive statistics W are displayed in increasing order.If FALSE,nothing is displayed.If method= manual ,print is automaticallyTRUE.method Can be stats , gaps or manual .If stats ,the threshold used is the W-threshold.If gaps ,the threshold used is the gaps-threshold.If manual ,the user can choose its own threshold using the graph of the positive statistics Wsorted in increasing order.ValueA list containing two elements:•threshold A positive real value corresponding to the threshold used.•estimation A binary vector of length nvars corresponding to the variable selection:1*(W>= threshold).1indicates that the associated covariate belongs to the estimated model.ReferencesGegout-Petit Anne,Gueudin Aurelie,Karmann Clemence(2019).The revisited knockoffs method for variable selection in L1-penalised regressions,arXiv:1907.03153.See Alsoko.glm,ko.ordinalExampleslibrary(graphics)#linear Gaussian regressionn=100p=20set.seed(11)x=matrix(rnorm(n*p),nrow=n,ncol=p)beta=c(rep(1,5),rep(0,15))y=x%*%beta+rnorm(n)W=ko.glm(x,y)ko.sel(W,print=TRUE)#logistic regressionn=100p=20set.seed(11)x=matrix(runif(n*p,-1,1),nrow=n,ncol=p)u=runif(n)beta=c(c(3:1),rep(0,17))y=rep(0,n)a=1/(1+exp(0.1-x%*%beta))y=1*(u>a)W=ko.glm(x,y,family= binomial ,nVal=50)ko.sel(W,print=TRUE)#cumulative logit regressionn=100p=10set.seed(11)x=matrix(runif(n*p),nrow=n,ncol=p)u=runif(n)beta=c(3,rep(0,9))y=rep(0,n)a=1/(1+exp(0.8-x%*%beta))b=1/(1+exp(-0.6-x%*%beta))y=1*(u<a)+2*((u>=a)&(u<b))+3*(u>=b)W=ko.ordinal(x,as.factor(y),nVal=20)ko.sel(W,print=TRUE)#adjacent logit regressionn=100p=10set.seed(11)x=matrix(rnorm(n*p),nrow=n,ncol=p)U=runif(n)beta=c(5,rep(0,9))alpha=c(-2,1.5)M=2y=rep(0,n)for(i in1:n){eta=alpha+sum(beta*x[i,])u=U[i]Prob=rep(1,M+1)for(j in1:M){Prob[j]=exp(sum(eta[j:M]))}Prob=Prob/sum(Prob)C=cumsum(Prob)C=c(0,C)j=1while((C[j]>u)||(u>=C[j+1])){j=j+1}y[i]=j}W=ko.ordinal(x,as.factor(y),family= acat ,nVal=10) ko.sel(W,method= manual )0.4#How to use randomness?n=100p=20set.seed(11)x=matrix(rnorm(n*p),nrow=n,ncol=p)beta=c(5:1,rep(0,15))y=x%*%beta+rnorm(n)Esti=0for(i in1:100){W=ko.glm(x,y,random=TRUE)Esti=Esti+ko.sel(W,method= gaps )$estimation }EstiIndexko.glm,2,4,5ko.ordinal,3,4,5ko.sel,3,4,48。

Abstract Gaussian Filter for Nonlinear Filtering Problems

Abstract Gaussian Filter for Nonlinear Filtering Problems

@ @ @ ;A (x) = @x ai j (x) @x (x) ; @x (ai (x) (x)) : i j i
1 @ ai j = ( 2 t )i j and ai = fi ; @x ai j :
Байду номын сангаас
d(x(t) ; x(t) = (f (x(t)) ; fd)(t))) dt ^ (x
d ;L(1)(t)(h(x(t)) ; h(x)(t)) dt
If the measure t (dx) = E (x(t) 2 smooth density (t x) with respect to the Lebesgue measure, it is easy checked that (t x) satis es the Kushner equation d (t) + A (t) dt = (h ; t h]) (t) (dy(t) ; t h] dt) (1.4) R where (0 x) = p0 (x) and t h] = Rn h(x) (t x) dx. From (1.3) and (1.4) the optimal state estimate x(t) = E x(t)jFty satis es ^
j dx)jFty ] admits a
d dx(t) = fd)(t) dt + L(t)(dy(t) ; h(x)(t) dt) ^ (x Z
R
(1.5)
where and
d t ] + t A ]dt = ( t h ] ; t ] t h])(dy(t) ; t h]dt)
(1.3)
where the generator A is the formal adjoint operator to A with

遗传算法及其MATLAB程序代码

遗传算法及其MATLAB程序代码

遗传算法及其MATLAB程序代码遗传算法及其MATLAB实现主要参考书:MATLAB 6.5 辅助优化计算与设计飞思科技产品研发中⼼编著电⼦⼯业出版社2003.1遗传算法及其应⽤陈国良等编著⼈民邮电出版社1996.6主要内容:遗传算法简介遗传算法的MATLAB实现应⽤举例在⼯业⼯程中,许多最优化问题性质⼗分复杂,很难⽤传统的优化⽅法来求解.⾃1960年以来,⼈们对求解这类难解问题⽇益增加.⼀种模仿⽣物⾃然进化过程的、被称为“进化算法(evolutionary algorithm)”的随机优化技术在解这类优化难题中显⽰了优于传统优化算法的性能。

⽬前,进化算法主要包括三个研究领域:遗传算法、进化规划和进化策略。

其中遗传算法是迄今为⽌进化算法中应⽤最多、⽐较成熟、⼴为⼈知的算法。

⼀、遗传算法简介遗传算法(Genetic Algorithm, GA)最先是由美国Mic-hgan⼤学的John Holland于1975年提出的。

遗传算法是模拟达尔⽂的遗传选择和⾃然淘汰的⽣物进化过程的计算模型。

它的思想源于⽣物遗传学和适者⽣存的⾃然规律,是具有“⽣存+检测”的迭代过程的搜索算法。

遗传算法以⼀种群体中的所有个体为对象,并利⽤随机化技术指导对⼀个被编码的参数空间进⾏⾼效搜索。

其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核⼼内容。

遗传算法的基本步骤:遗传算法是⼀种基于⽣物⾃然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从⼀组随机产⽣的称为“种群(Population)”的初始解开始搜索过程。

种群中的每个个体是问题的⼀个解,称为“染⾊体(chromos ome)”。

染⾊体是⼀串符号,⽐如⼀个⼆进制字符串。

这些染⾊体在后续迭代中不断进化,称为遗传。

在每⼀代中⽤“适值(fitness)”来测量染⾊体的好坏,⽣成的下⼀代染⾊体称为后代(offspring)。

代数中常用英语词汇

代数中常用英语词汇

(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。

0+||zero-dagger; 读作零正。

1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。

AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。

BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。

B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。

C0 类函数||function of class C0; 又称“连续函数类”。

CA T准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。

Cp统计量||Cp-statisticC。

【优秀毕业论文】gmsk调制解调技术研究

【优秀毕业论文】gmsk调制解调技术研究

重庆大学硕士学位论文GMSK调制解调技术研究硕士研究生:熊于菽指导教师:吴玉成教授学科、专业:电路与系统重庆大通信工程学院二OO七年九月Master Degree Dissertation of Chongqing UniversityStudy on Modulation and DemodulationTechnique of GMSKCandidate: Xiong YushuSupervisor: Prof. Wu YuchengMajor: Circuits and SystemCollege of Communication EngineeringChongqing UniversitySept. 2007摘要在数字通信系统中,全数字接收机已经得到了广泛的应用。

利用数字化方法设计通信系统中的调制解调技术是实际应用中的一项重要技术。

最小高斯频移键控(GMSK)是一种典型的连续相位调制方式,具有包络恒定、频谱紧凑、抗干扰能力强等特点,可有效降低邻道干扰,提高非线性功率放大器的效率,已在移动通信(如GSM系统)、航天测控等场合得到广泛应用。

传统方法设计的GMSK调制解调器不能很好满足全数字化接收机可编程、多模式等需要。

论文重点研究利用全数字化技术设计GMSK调制解调器,以便更广泛地使用GMSK调制解调技术。

主要研究工作有:1. 针对传统GMSK调制技术实现中存在的设计复杂、有相位累计误差等不足,基于相关文献思想,设计实现了一种改进的波形存储正交法GMSK调制信号生产方案。

该方法不存在传统方法相位累加过程中的累计误差,而且无需滤波器,降低了数字化实现中的器件资源。

仿真及FPGA实现结果表明,该方法计算量小、占用资源少,更容易实现高旁瓣抑制度的GMSK信号。

2. 研究了GMSK信号的数字化解调技术,针对突发通信系统的需要,对1比特差分解调和2bit差分解调技术进行研究,设计实现了1bit差分解调。

PS菜单中英文对照表

PS菜单中英文对照表

一、File<文件>1.New<新建>2.Open<打开>3.Open As<打开为>4.Open Recent<最近打开文件>5.Close<关闭>6.Save<存储>7.Save As<存储为> 8.Save for Web<存储为Web所用格式> 9.Revert<恢复> 10.Place<置入> 11.Import<输入> <1>PDF Image <2>Annotations<注释> 12.Export<输出> 13.Manage Workflow<管理工作流程> <1>Check In<登记> <2>Undo Check Out<还原注销> <3>Upload To Server<上载到服务器> <4>Add To Workflow<添加到工作流程> <5>Open From Workflow<从工作流程打开>14.Automate<自动> <1>Batch<批处理> <2>Create Droplet<创建快捷批处理> <3>Conditional Mode Change<条件模式更改> <4>Contact Sheet<联系表> <5>Fix Image<限制图像> <6>Multi <7>Picture package<图片包> <8>Web Photo Gallery15.File Info<文件简介> 16.Print Options<打印选项> 17.Page Setup<页面设置> 18.Print<打印> 19.Jump to<跳转到> 20.Exit<退出>二、Edit<编辑>1.Undo<还原>2.Step Forward<向前>3.Step Backward<返回>4.Fade<消退>5.Cut<剪切>6.Copy<拷贝>7.Copy Merged<合并拷贝>8.Paste<粘贴>9.Paste Into<粘贴入> 10.Clear<清除> 11.Fill<填充> 12.Stroke<描边> 13.Free Transform<自由变形>14.Transform<变换> <1>Again<再次> <2>Sacle<缩放> <3>Rotate<旋转> <4>Skew<斜切> <5>Distort<扭曲> <6>Prespective<透视> <7>Rotate 180°<旋转180度> <8>Rotate 90°CW<顺时针旋转90度> <9>Rotate 90°CCW<逆时针旋转90度> <10> Flip Hpeizontal<水平翻转> <11> Flip Vertical<垂直翻转>15.Define Brush<定义画笔> 16.Define Pattern<设置图案>17.Define Custom Shape<定义自定形状>18.Purge<清除内存数据> <1> Undo<还原> <2> Clipboard<剪贴板> <3> Histories<历史纪录> <4> All<全部>19.Color Settings<颜色设置> 20.Preset Manager<预置管理器>21.Preferences<预设> <1> General<常规> <2> Saving Files<存储文件> <3> Display & Cursors<显示与光标> <4> Transparency & Gamut<透明区域与色域> <5> Units & Rulers<单位与标尺> <6> Guides & Grid<参考线与网格> <7> Plug <8> Memory & Image Cache<内存和图像高速缓存> <9> Adobe Online <10> Workflows Options<工作流程选项>三、Image<图像>1.Mode<模式> <1> Bitmap<位图> <2> Grayscale<灰度> <3> Duotone<双色调> <4> Indexed Color<索引色> <5> RGB Color <6> CMYK Color <7> Lab Color <8> Multichannel<多通道> <9> 8 Bits/Channel<8位通道> <10> 16 Bits/Channel<16位通道> <11> Color Table<颜色表> <12>Assing Profile<制定配置文件> <13>Convert to Profile<转换为配置文件>2.Adjust<调整> <1> Levels<色阶>> <2> Auto Laves<自动色阶> <3> Auto Contrast<自动对比度> <4> Curves<曲线>> <5> Color Balance<色彩平衡> <6> Brightness/Contrast<亮度/对比度> <7> Hue/Saturation<色相/饱和度> <8> Desaturate<去色> <9> Replace Color<替换颜色><10> Selective Color<可选颜色> <11> Channel Mixer<通道混合器> <12> Gradient Map<渐变映射> <13> Invert<反相> <14> Equalize<色彩均化> <15> Threshold<阈值> <16> Posterize<色调分离> <17> Variations<变化>3.Duplicate<复制>4.Apply Image<应用图像>5.Calculations<计算>6.Image Size<图像大小>7.Canvas Size<画布大小>8.Rotate Canvas<旋转画布> <1> 180°<180度> <2> 90°CW<顺时针90度> <3> 90°CCW<逆时针90度> <4> Arbitrary<任意角度> <5> Flip Horizontal<水平翻转> <6> Flip Vertical<垂直翻转>9.Crop<裁切> 10.Trim<修整> 11.Reverl All<显示全部> 12.Histogram<直方图> 13.Trap<陷印> 14.Extract<抽出> 15.Liquify<液化>四、Layer<图层>1.New<新建> <1> Layer<图层> <2> Background From Layer<背景图层> <3> Layer Set<图层组> <4> Layer Set From Linked<图层组来自链接的> <5> Layer via Copy<通过拷贝的图层> <6> Layer via Cut<通过剪切的图层>2.Duplicate Layer<复制图层>3.Delete Layer<删除图层>yer Properties<图层属*>yer Style<图层样式> <1> Blending Options<混合选项> <2> Drop Shadow<投影> <3> Inner Shadow<内*影> <4> Outer Glow<外发光> <5> Inner Glow<内发光> <6> Bevel and Emboss<斜面和浮雕> <7> Satin<光泽> <8> Color Overlay<颜色叠加> <9> Gradient Overlay<渐变叠加> <10> Pattern Overlay<图案叠加> <11> Stroke<描边> <12> Copy Layer Effects<拷贝图层样式> <13> Paste Layer Effects<粘贴图层样式> <14> Paste Layer Effects To Linked<将图层样式粘贴的链接的> <15> Clear Layer Effects<清除图层样式> <16> Global Light<全局光> <17> Create Layer<创建图层> <18> Hide All Effects<显示/隐藏全部效果> <19> Scale Effects<缩放效果>6.New Fill Layer<新填充图层> <1> Solid Color<纯色> <2> Gradient<渐变> <3> Pattern<图案>7.New Adjustment Layer<新调整图层> <1>Levels<色阶> <2>Curves<曲线> <3>Color Balance<色彩平衡> <4>Brightness/Contrast<亮度/对比度> <5>Hue/Saturation<色相/饱和度> <6>Selective Color<可选颜色> <7>Channel Mixer<通道混合器> <8>Gradient Map<渐变映射> <9>Invert<反相> <10>Threshold<阈值> <11>Posterize<色调分离>8.Change Layer Content<更改图层内容>yer Content Options<图层内容选项>10.Type<文字> <1> Create Work Path<创建工作路径> <2> Convert to Shape<转变为形状> <3> Horizontal<水平> <4> Vertical<垂直> <5> Anti-Alias None<消除锯齿无> <6> Anti-Alias Crisp<消除锯齿明晰> <7> Anti-Alias Strong<消除锯齿强> <8> Anti-Alias Smooth<消除锯齿平滑> <9> Covert To Paragraph Text<转换为段落文字> <10> Warp Text<文字变形> <11>Update All Text Layers<更新所有文本图层> <12>Replace All Missing Fonts<替换所以缺欠文字>11.Rasterize<栅格化> <1>Type<文字> <2>Shape<形状> <3>Fill Content<填充内容> <4>Layer Clipping Path<图层剪贴路径> <5>Layer<图层> <6>Linked Layers<链接图层> <7>All Layers<所以图层>12.New Layer Based Slice<基于图层的切片>13.Add Layer Mask<添加图层蒙板> <1> Reveal All<显示全部> <2> Hide All<隐藏全部> <3>Reveal Selection<显示选区> <4> Hide Selection<隐藏选区>14.Enable Layer Mask<启用图层蒙板>15.Add Layer Clipping Path<添加图层剪切路径> <1>Reveal All<显示全部> <2>Hide All<隐藏全部> <3>Current Path<当前路径>16.Enable Layer Clipping Path<启用图层剪切路径>17.Group Linked<于前一图层编组>18.UnGroup<取消编组>19.Arrange<排列> <1> Bring to Front<置为顶层> <2> Bring Forward<前移一层> <3> Send Backward<后移一层> <4> Send to Back<置为底层>20.Arrange Linked<对齐链接图层> <1> Top Edges<顶边> <2> Vertical Center<垂直居中> <3> Bottom Edges<底边> <4> Left Edges<左边> <5> Horizontal Center<水平居中> <6> Right Edges<右边>21.Distribute Linked<分布链接的> <1> Top Edges<顶边> <2> Vertical Center<垂直居中> <3> Bottom Edges<底边> <4> Left Edges<左边> <5> Horizontal Center<水平居中> <6> Right Edges<右边>22.Lock All Linked Layers<锁定所有链接图层>23.Merge Linked<合并链接图层>24.Merge Visible<合并可见图层> 25.Flatten Image<合并图层>26.Matting<修边> <1> Define<去边> <2> Remove Black Matte<移去黑色杂边> <3> Remove White Matte<移去白色杂边>五、Selection<选择>1.All<全部>2.Deselect<取消选择>3.Reselect<重新选择>4.Inverse<反选>5.Color Range<色彩范围>6.Feather<羽化>7.Modify<修改> <1> Border<扩边> <2> Smooth<平滑> <3> Expand<扩展> <4> Contract<收缩>8.Grow<扩大选区> 9.Similar<选区相似> 10.Transform Selection<变换选区> 11.Load Selection<载入选区> 12.Save Selection<存储选区>六、Filter<滤镜>st Filter<上次滤镜*作>2.Artistic<艺术效果> <1> Colored Pencil<彩色铅笔> <2> Cutout<剪贴画> <3> Dry Brush<干笔画> <4> Film Grain<胶片颗粒> <5> Fresco<壁画> <6> Neon Glow<霓虹灯光> <7> Paint Daubs<涂抹棒> <8> Palette Knife<调色刀> <9> Plastic Wrap<塑料包装> <10> Poster Edges<海报边缘> <11> Rough Pastels<粗糙彩笔> <12> Smudge Stick<绘画涂抹> <13> Sponge<海绵> <14> Underpainting<底纹效果> <15> Watercolor<水彩>3.Blur<模糊> <1> Blur<模糊> <2> Blur More<进一步模糊> <3> Gaussian Blur<高斯模糊><4> Motion Blur<动态模糊> <5> Radial Blur<径向模糊> <6> Smart Blur<特殊模糊>4.Brush Strokes<画笔描边> <1> Accented Edges<强化边缘> <2> Angled Stroke<成角的线条> <3> Crosshatch<*影线> <4> Dark Strokes<深色线条> <5> Ink Outlines<油墨概况> <6> Spatter<喷笔> <7> Sprayed Strokes<喷色线条> <8> Sumi5.Distort<扭曲> <1> Diffuse Glow<扩散亮光> <2> Displace<置换> <3> Glass<玻璃> <4>Ocean Ripple<海洋波纹> <5> Pinch<挤压> <6> Polar Coordinates<极坐标> <7> Ripple<波纹> <8> Shear<切变> <9> Spherize<球面化> <10> Twirl<旋转扭曲> <11> Wave<波浪> <12> Zigzag<水波>6.Noise<杂色> <1> Add Noise<加入杂色> <2> Despeckle<去斑> <3> Dust &Scratches<蒙尘与划痕> <4> Median<中间值>7.Pixelate<像素化> <1> Color Halftone<彩色半调> <2> Crystallize<晶格化> <3> Facet<彩块化> <4> Fragment<碎片> <5> Mezzotint<铜版雕刻> <6> Mosaic<马赛克> <7> Pointillize<点状化>8.Render<渲染> <1> 3D Transform<3D 变换> <2> Clouds<云彩> <3> Difference Clouds<分层云彩> <4> Lens Flare<镜头光晕> <5> Lighting Effects<光照效果> <6> Texture Fill<纹理填充>9.Sharpen<锐化> <1> Sharpen<锐化> <2> Sharpen Edges<锐化边缘> <3> Sharpen More<进一步锐化> <4> Unsharp Mask10.Sketch<素描> <1> Bas Relief<基底凸现> <2> Chalk &Charcoal<粉笔和炭笔> <3> Charcoal <3> Chrome<铬*> <4> Conte Crayon<彩色粉笔> <5> Graphic Pen<绘图笔> <6> Halftone Pattern<半色调图案> <7> Note Paper<便条纸> <8> Photocopy<副本> <9> Plaster<塑料效果> <10> Reticulation<网状> <11> Stamp<图章> <12> Torn Edges<撕边> <13> Water Paper<水彩纸>11.Stylize<风格化> <1> Diffuse<扩散> <2> Emboss<浮雕> <3> Extrude<突出> <4> Find Edges<查找边缘> <5> Glowing Edges<照亮边缘> <6> Solarize<曝光过度> <7> Tiles<拼贴> <8> Trace Contour<等高线> <9> Wind<风>12.Texture<<纹理> <1> Craquelure<龟裂缝> <2> Grain<颗粒> <3> Mosained Tiles<马赛克拼贴> <4> Patchwork<拼缀图> <5> Stained Glass<染色玻璃> <6> Texturixer<纹理化>13.Video<视频> <1> De <2> NTSC Colors14.Other<其它> <1> Custom<自定义> <2> High Pass<高反差保留> <3> Maximum<最大值> <4> Minimum<最小值> <5> Offset<位移>15.Digimarc <1>Embed Watermark<嵌入水印> <2>Read Watermark<读取水印>七、View<视图>1.New View<新视图>2.Proof Setup<校样设置> <1>Custom<自定> <2>Working CMYK<处理CMYK> <3>Working Cyan Plate<处理青版> <4>Working Magenta Plate<处理洋红版> <5>Working Yellow Plate<处理*版> <6>Working Black Plate<处理黑版> <7>Working CMY Plate<处理CMY版> <8>Macintosh RGB <9>Windows RGB <10>Monitor RGB<显示器RGB> <11>Simulate Paper White<模拟纸白> <12>Simulate Ink Black<模拟墨黑>3.Proof Color<校样颜色>4.Gamut Wiring<色域警告>5.Zoom In<放大>6.Zoom Out<缩小>7.Fit on Screen<满画布显示>8.Actual Pixels<实际象素>9.Print Size<打印尺寸> 10.Show Extras<显示额外的>11.Show<显示> <1> Selection Edges<选区边缘> <2> Target Path<目标路径> <3> Grid<网格> <4> Guides<参考线> <5> Slices<切片> <6> Notes<注释> <7> All<全部> <8> None<无> <9>Show Extras Options<显示额外选项>12.Show Rulers<显示标尺> 13.Snap<对齐>14.Snap To<对齐到> <1> Guides<参考线> <2> Grid<网格> <3> Slices<切片> <4> DocumentBounds<文档边界> <5> All<全部> <6> None<无>15.Show Guides<锁定参考线> 16.Clear Guides<清除参考线>17.New Guides<新参考线> 18.Lock Slices<锁定切片> 19.Clear Slices<清除切片>八、Windows<窗口>1.Cascade<层叠>2.Tile<拼贴>3.Arrange Icons<排列图标>4.Close All<关闭全部>5.Show/Hide Tools<显示/隐藏工具>6.Show/Hide Options<显示/隐藏选项>7.Show/Hide Navigator<显示/隐藏导航>8.Show/Hide Info<显示/隐藏信息>9.Show/Hide Color<显示/隐藏颜色> 10.Show/Hide Swatches<显示/隐藏色板> 11.Show/Hide Styles<显示/隐藏样式> 12.Show/Hide History<显示/隐藏历史记录> 13.Show/Hide Actions<显示/隐藏动作> 14.Show/Hide Layers<显示/隐藏图层> 15.Show/Hide Channels<显示/隐藏通道> 16.Show/Hide Paths<显示/隐藏路径> 17.Show/Hide Character<显示/隐藏字符> 18.Show/Hide Paragraph<显示/隐藏段落> 19.Show/Hide Status Bar<显示/隐藏状态栏> 20.Reset Palette Locations<复位调板位置>。

Photoshop 常用术语的英文翻译

Photoshop 常用术语的英文翻译

最佳答案Photoshop 常用术语的英文翻译一、File-(文件)1.New-(新建)2.Open-(打开)3.Open As-(打开为)4.Open Recent-(最近打开文件)5.Close-(关闭)6.Save-(存储)7.Save As-(存储为)8.Save for Web-(存储为Web所用格式)9.Revert-(恢复)10.Place-(置入)11.Import-(输入)-(1)PDF Image-(2)Annotations-(注释)12.Export-(输出)13.Manage Workflow-(管理工作流程)-(1)Check In-(登记)-(2)Undo Check Out-(还原注销)-(3)Upload To Server-(上载到服务器)-(4)Add To Workflow-(添加到工作流程)-(5)Open From Workflow-(从工作流程打开)14.Automate-(自动)-(1)Batch-(批处理)-(2)Create Droplet-(创建快捷批处理)-(3)Conditional Mode Change-(条件模式更改)-(4)Contact Sheet-(联系表)-(5)Fix Image-(限制图像)-(6)Multi-(7)Picture package-(图片包)-(8)Web Photo Gallery15.File Info-(文件简介)16.Print Options-(打印选项)17.Page Setup-(页面设置)18.Print-(打印)19.Jump to-(跳转到)20.Exit-(退出)二、Edit-(编辑)1.Undo-(还原)2.Step Forward-(向前)3.Step Backward-(返回)4.Fade-(消退)5.Cut-(剪切)6.Copy-(拷贝)7.Copy Merged-(合并拷贝)8.Paste-(粘贴)9.Paste Into-(粘贴入)10.Clear-(清除)11.Fill-(填充)12.Stroke-(描边)13.Free Transform-(自由变形)14.Transform-(变换)-(1)Again-(再次)-(2)Sacle-(缩放)-(3)Rotate-(旋转)-(4)Skew-(斜切)-(5)Distort-(扭曲)-(6)Prespective-(透视)-(7)Rotate 180°-(旋转180度)-(8)Rotate 90°CW-(顺时针旋转90度)-(9)Rotate 90°CCW-(逆时针旋转90度)-(10)Flip Hpeizontal-(水平翻转)-(11)Flip V ertical-(垂直翻转)15.Define Brush-(定义画笔)16.Define Pattern-(设置图案)17.Define Custom Shape-(定义自定形状)18.Purge-(清除内存数据)-(1)Undo-(还原)-(2)Clipboard-(剪贴板)-(3)Histories-(历史纪录)-(4)All-(全部)19.Color Settings-(颜色设置)20.Preset Manager-(预置管理器)21.Preferences-(预设)-(1)General-(常规)-(2)Saving Files-(存储文件)-(3)Display &Cursors-(显示与光标)-(4)Transparency &Gamut-(透明区域与色域)-(5)Units &Rulers-(单位与标尺)-(6)Guides &Grid-(参考线与网格)-(7)Plug-(8)Memory &Image Cache-(内存和图像高速缓存)-(9)Adobe Online-(10)Workflows Options-(工作流程选项)三、Image-(图像)1.Mode-(模式)-(1)Bitmap-(位图)-(2)Grayscale-(灰度)-(3)Duotone-(双色调)-(4)Indexed Color-(索引色)-(5)RGB Color-(6)CMYK Color-(7)Lab Color-(8)Multichannel-(多通道)-(9)8 Bits/Channel-(8位通道)-(10)16 Bits/Channel-(16位通道)-(11)Color Table-(颜色表)-(12)Assing Profile-(制定配置文件)-(13)Convert to Profile-(转换为配置文件)2.Adjust-(调整)-(1)Levels-(色阶))-(2)Auto Laves-(自动色阶)-(3)Auto Contrast-(自动对比度)-(4)Curves-(曲线))-(5)Color Balance-(色彩平衡)-(6)Brightness/Contrast-(亮度/对比度)-(7)Hue/Saturation-(色相/饱和度)-(8)Desaturate-(去色)-(9)Replace Color-(替换颜色)-(10)Selective Color-(可选颜色)-(11)Channel Mixer-(通道混合器)-(12)Gradient Map-(渐变映射)-(13)Invert-(反相)-(14)Equalize-(色彩均化)-(15)Threshold-(阈值)-(16)Posterize-(色调分离)-(17)V ariations-(变化)3.Duplicate-(复制)4.Apply Image-(应用图像)5.Calculations-(计算)6.Image Size-(图像大小)7.Canvas Size-(画布大小)8.Rotate Canvas-(旋转画布)-(1)180°-(180度)-(2)90°CW-(顺时针90度)-(3)90°CCW-(逆时针90度)-(4)Arbitrary-(任意角度)-(5)Flip Horizontal-(水平翻转)-(6)Flip V ertical-(垂直翻转)9.Crop-(裁切)10.Trim-(修整)11.Reverl All-(显示全部)12.Histogram-(直方图)13.Trap-(陷印)14.Extract-(抽出)15.Liquify-(液化)四、Layer-(图层)1.New-(新建)-(1)Layer-(图层)-(2)Background From Layer-(背景图层)-(3)Layer Set-(图层组)-(4)Layer Set From Linked-(图层组来自链接的)-(5)Layer via Copy-(通过拷贝的图层)-(6)Layer via Cut-(通过剪切的图层)2.Duplicate Layer-(复制图层)3.Delete Layer-(删除图层)yer Properties-(图层属性)yer Style-(图层样式)-(1)Blending Options-(混合选项)-(2)Drop Shadow-(投影)-(3)Inner Shadow-(内阴影)-(4)Outer Glow-(外发光)-(5)Inner Glow-(内发光)-(6)Bevel and Emboss-(斜面和浮雕)-(7)Satin-(光泽)-(8)Color Overlay-(颜色叠加)-(9)Gradient Overlay-(渐变叠加)-(10)Pattern Overlay-(图案叠加)-(11)Stroke-(描边)-(12)Copy Layer Effects-(拷贝图层样式)-(13)Paste Layer Effects-(粘贴图层样式)-(14)Paste Layer Effects To Linked-(将图层样式粘贴的链接的)-(15)Clear Layer Effects-(清除图层样式)-(16)Global Light-(全局光)-(17)Create Layer-(创建图层)-(18)Hide All Effects-(显示/隐藏全部效果)-(19)Scale Effects-(缩放效果)blend mode 混合模式6.New Fill Layer-(新填充图层)-(1)Solid Color-(纯色)-(2)Gradient-(渐变)-(3)Pattern-(图案)7.New Adjustment Layer-(新调整图层)-(1)Levels-(色阶)-(2)Curves-(曲线)-(3)Color Balance-(色彩平衡)-(4)Brightness/Contrast-(亮度/对比度)-(5)Hue/Saturation-(色相/饱和度)-(6)Selective Color-(可选颜色)-(7)Channel Mixer-(通道混合器)-(8)Gradient Map-(渐变映射)-(9)Invert-(反相)-(10)Threshold-(阈值)-(11)Posterize-(色调分离)8.Change Layer Content-(更改图层内容)yer Content Options-(图层内容选项)10.Type-(文字)-(1)Create Work Path-(创建工作路径)-(2)Convert to Shape-(转变为形状)-(3)Horizontal-(水平)-(4)V ertical-(垂直)-(5)Anti-Alias None-(消除锯齿无)-(6)Anti-Alias Crisp-(消除锯齿明晰)-(7)Anti-Alias Strong-(消除锯齿强)-(8)Anti-Alias Smooth-(消除锯齿平滑)-(9)Covert To Paragraph Text-(转换为段落文字)-(10)Warp Text-(文字变形)-(11)Update All Text Layers-(更新所有文本图层)-(12)Replace All Missing Fonts-(替换所以缺欠文字)11.Rasterize-(栅格化)-(1)Type-(文字)-(2)Shape-(形状)-(3)Fill Content-(填充内容)-(4)Layer Clipping Path-(图层剪贴路径)-(5)Layer-(图层)-(6)Linked Layers-(链接图层)-(7)All Layers-(所以图层)12.New Layer Based Slice-(基于图层的切片)13.Add Layer Mask-(添加图层蒙板)-(1)Reveal All-(显示全部)-(2)Hide All-(隐藏全部)-(3)Reveal Selection-(显示选区)-(4)Hide Selection-(隐藏选区)14.Enable Layer Mask-(启用图层蒙板)15.Add Layer Clipping Path-(添加图层剪切路径)-(1)Reveal All-(显示全部)-(2)Hide All-(隐藏全部)-(3)Current Path-(当前路径)16.Enable Layer Clipping Path-(启用图层剪切路径)17.Group Linked-(于前一图层编组)18.UnGroup-(取消编组)19.Arrange-(排列)-(1)Bring to Front-(置为顶层)-(2)Bring Forward-(前移一层)-(3)Send Backward-(后移一层)-(4)Send to Back-(置为底层)20.Arrange Linked-(对齐链接图层)-(1)Top Edges-(顶边)-(2)V ertical Center-(垂直居中)-(3)Bottom Edges-(底边)-(4)Left Edges-(左边)-(5)Horizontal Center-(水平居中)-(6)Right Edges-(右边)21.Distribute Linked-(分布链接的)-(1)Top Edges-(顶边)-(2)V ertical Center-(垂直居中)-(3)Bottom Edges-(底边)-(4)Left Edges-(左边)-(5)Horizontal Center-(水平居中)-(6)Right Edges-(右边)22.Lock All Linked Layers-(锁定所有链接图层)23.Merge Linked-(合并链接图层)24.Merge V isible-(合并可见图层)25.Flatten Image-(合并图层)26.Matting-(修边)-(1)Define-(去边)-(2)Remove Black Matte-(移去黑色杂边)-(3)Remove White Matte-(移去白色杂边)五、Selection-(选择)1.All-(全部)2.Deselect-(取消选择)3.Reselect-(重新选择)4.Inverse-(反选)5.Color Range-(色彩范围)6.Feather-(羽化)7.Modify-(修改)-(1)Border-(扩边)-(2)Smooth-(平滑)-(3)Expand-(扩展)-(4)Contract-(收缩)8.Grow-(扩大选区)9.Similar-(选区相似)10.Transform Selection-(变换选区)11.Load Selection-(载入选区)12.Save Selection-(存储选区)六、Filter-(滤镜)st Filter-(上次滤镜操作)2.Artistic-(艺术效果)-(1)Colored Pencil-(彩色铅笔)-(2)Cutout-(剪贴画)-(3)Dry Brush-(干笔画)-(4)Film Grain-(胶片颗粒)-(5)Fresco-(壁画)-(6)Neon Glow-(霓虹灯光)-(7)Paint Daubs-(涂抹棒)-(8)Palette Knife-(调色刀)-(9)Plastic Wrap-(塑料包装)-(10)Poster Edges-(海报边缘)-(11)Rough Pastels-(粗糙彩笔)-(12)Smudge Stick-(绘画涂抹)-(13)Sponge-(海绵)-(14)Underpainting-(底纹效果)-(15)Watercolor-(水彩)3.Blur-(模糊)-(1)Blur-(模糊)-(2)Blur More-(进一步模糊)-(3)Gaussian Blur-(高斯模糊)-(4)Motion Blur-(动态模糊)-(5)Radial Blur-(径向模糊)-(6)Smart Blur-(特殊模糊)4.Brush Strokes-(画笔描边)-(1)Accented Edges-(强化边缘)-(2)Angled Stroke-(成角的线条)-(3)Crosshatch-(阴影线)-(4)Dark Strokes-(深色线条)-(5)Ink Outlines-(油墨概况)-(6)Spatter-(喷笔)-(7)Sprayed Strokes-(喷色线条)-(8)Sumi5.Distort-(扭曲)-(1)Diffuse Glow-(扩散亮光)-(2)Displace-(置换)-(3)Glass-(玻璃)-(4)Ocean Ripple-(海洋波纹)-(5)Pinch-(挤压)-(6)Polar Coordinates-(极坐标)-(7)Ripple-(波纹)-(8)Shear-(切变)-(9)Spherize-(球面化)-(10)Twirl-(旋转扭曲)-(11)Wave-(波浪)-(12)Zigzag-(水波)6.Noise-(杂色)-(1)Add Noise-(加入杂色)-(2)Despeckle-(去斑)-(3)Dust &Scratches-(蒙尘与划痕)-(4)Median-(中间值)7.Pixelate-(像素化)-(1)Color Halftone-(彩色半调)-(2)Crystallize-(晶格化)-(3)Facet-(彩块化)-(4)Fragment-(碎片)-(5)Mezzotint-(铜版雕刻)-(6)Mosaic-(马赛克)-(7)Pointillize-(点状化)8.Render-(渲染)-(1)3D Transform-(3D 变换)-(2)Clouds-(云彩)-(3)Difference Clouds-(分层云彩)-(4)Lens Flare-(镜头光晕)-(5)Lighting Effects-(光照效果)-(6)Texture Fill-(纹理填充)9.Sharpen-(锐化)-(1)Sharpen-(锐化)-(2)Sharpen Edges-(锐化边缘)-(3)Sharpen More-(进一步锐化)-(4)Unsharp Mask10.Sketch-(素描)-(1)Bas Relief-(基底凸现)-(2)Chalk &Charcoal-(粉笔和炭笔)-(3)Charcoal-(3)Chrome-(铬黄)-(4)Conte Crayon-(彩色粉笔)-(5)Graphic Pen-(绘图笔)-(6)Halftone Pattern-(半色调图案)-(7)Note Paper-(便条纸)-(8)Photocopy-(副本)-(9)Plaster-(塑料效果)-(10)Reticulation-(网状)-(11)Stamp-(图章)-(12)Torn Edges-(撕边)-(13)Water Paper-(水彩纸)11.Stylize-(风格化)-(1)Diffuse-(扩散)-(2)Emboss-(浮雕)-(3)Extrude-(突出)-(4)Find Edges-(查找边缘)-(5)Glowing Edges-(照亮边缘)-(6)Solarize-(曝光过度)-(7)Tiles-(拼贴)-(8)Trace Contour-(等高线)-(9)Wind-(风)12.Texture-(-(纹理)-(1)Craquelure-(龟裂缝)-(2)Grain-(颗粒)-(3)Mosained Tiles-(马赛克拼贴)-(4)Patchwork-(拼缀图)-(5)Stained Glass-(染色玻璃)-(6)Texturixer-(纹理化)13.Video-(视频)-(1)De-(2)NTSC Colors14.Other-(其它)-(1)Custom-(自定义)-(2)High Pass-(高反差保留)-(3)Maximum-(最大值)-(4)Minimum-(最小值)-(5)Offset-(位移)15.Digimarc-(1)Embed Watermark-(嵌入水印)-(2)Read Watermark-(读取水印)七、View-(视图)1.New V iew-(新视图)2.Proof Setup-(校样设置)-(1)Custom-(自定)-(2)Working CMYK-(处理CMYK)-(3)Working Cyan Plate-(处理青版)-(4)Working Magenta Plate-(处理洋红版)-(5)Working Yellow Plate-(处理黄版)-(6)Working Black Plate-(处理黑版)-(7)Working CMY Plate-(处理CMY版)-(8)Macintosh RGB-(9)Windows RGB-(10)Monitor RGB-(显示器RGB)-(11)Simulate Paper White-(模拟纸白)-(12)Simulate Ink Black-(模拟墨黑)3.Proof Color-(校样颜色)4.Gamut Wiring-(色域警告)5.Zoom In-(放大)6.Zoom Out-(缩小)7.Fit on Screen-(满画布显示)8.Actual Pixels-(实际象素)9.Print Size-(打印尺寸)10.Show Extras-(显示额外的)11.Show-(显示)-(1)Selection Edges-(选区边缘)-(2)Target Path-(目标路径)-(3)Grid-(网格)-(4)Guides-(参考线)-(5)Slices-(切片)-(6)Notes-(注释)-(7)All-(全部)-(8)None-(无)-(9)Show Extras Options-(显示额外选项)12.Show Rulers-(显示标尺)f13.Snap-(对齐)14.Snap To-(对齐到)-(1)Guides-(参考线)-(2)Grid-(网格)-(3)Slices-(切片)-(4)Document Bounds-(文档边界)-(5)All-(全部)-(6)None-(无)15.Show Guides-(锁定参考线)16.Clear Guides-(清除参考线)17.New Guides-(新参考线)18.Lock Slices-(锁定切片)19.Clear Slices-(清除切片)八、Windows-(窗口)1.Cascade-(层叠)2.Tile-(拼贴)3.Arrange Icons-(排列图标)4.Close All-(关闭全部)5.Show/Hide Tools-(显示/隐藏工具)6.Show/Hide Options-(显示/隐藏选项)7.Show/Hide Navigator-(显示/隐藏导航)8.Show/Hide Info-(显示/隐藏信息)9.Show/Hide Color-(显示/隐藏颜色)10.Show/Hide Swatches-(显示/隐藏色板)11.Show/Hide Styles-(显示/隐藏样式)12.Show/Hide History-(显示/隐藏历史记录)13.Show/Hide Actions-(显示/隐藏动作)14.Show/Hide Layers-(显示/隐藏图层)15.Show/Hide Channels-(显示/隐藏通道)16.Show/Hide Paths-(显示/隐藏路径)17.Show/Hide Character-(显示/隐藏字符)18.Show/Hide Paragraph-(显示/隐藏段落)19.Show/Hide Status Bar-(显示/隐藏状态栏)20.Reset Palette Locations-(复位调板位置。

Photoshop中英文菜单对照表

Photoshop中英文菜单对照表

Photoshop中英文菜单对照表ps教育 02-03 21:31---------------------------------Photoshop是Adobe公司旗下最为出名的图像处理软件之一,集图像扫描、编辑修改、图像制作、广告创意,图像输入与输出于一体的图形图像处理软件,深受广大平面设计人员和电脑美术爱好者的喜爱。

由于该软件是由美国研制的,最初的版本肯定是英文的,由于该软件十分出色,备受国内设计人员的喜爱,但最初由于语言的限制,国内只有懂得英文的人士才能勉强使用,虽然现在的版本大多数是中文的,但还是有一部分朋友已经习惯了英文,或是用英文版本出的教程,很多新手看不懂。

一、File 文件(菜单)二、Edit 编辑(菜单)1.New 新建 1.Undo 还原2.Open 打开 2.Step Forward 向前3.Open As 打开为 3.Step Backward 返回4.Open Recent 最近打开文件 4.Fade 消退5.Close 关闭 5.Cut 剪切6.Save 存储 6.Copy 拷贝7.Save As 存储为7.Copy Merged 合并拷贝8.Save for Web 存储为Web所用格式8.Paste 粘贴9.Revert 恢复9.Paste Into 粘贴入10.Place 置入10.Clear 清除1 PDF Image PDF图象导入11.Fill 填充2 Annotations 注释12.Stroke 描边12.Export 输出13.Free Transform 自由变形13.Manage Workflow 管理工作流程14.Transform 变换1 Check In 登记 1 Again 再次2 Undo Check Out 还原注销 2 Sacle 缩放3 Upload To Server 上载到服务器 3 Rotate 旋转4 Add To Workflow 添加到工作流程 4 Skew 斜切5 Open From Workflow 从工作流程打开 5 Distort 扭曲14.Automate 自动 6 Prespective 透视1 Batch 批处理7 Rotate 180° 旋转180度2 Create Droplet 创建快捷批处理8 Rotate 90°CW 顺时针旋转90度3 Conditional Mode Change 条件模式更改9 Rotate 90°CCW 逆时针旋转90度4 Contact Sheet 联系表10 Flip Hpeizontal 水平翻转5 Fix Image 限制图像11 Flip Vertical 垂直翻转6 Multi Page PDF to PSD 多页面PDF文件到15.Define Brush 定义画笔PSD文件7 Picture package 图片包16.Define Pattern 设置图案8 Web Photo Gallery Web照片画廊17.Define Custom Shape 定义自定形状15.File Info 文件简介18.Purge 清除内存数据16.Print Options 打印选项 1 Undo 还原17.Page Setup 页面设置 2 Clipboard 剪贴板18.Print 打印 3 Histories 历史纪录19.Jump to 跳转到 4 All 全部20.Exit 退出19.Color Settings 颜色设置20.Preset Manager 预置管理器21.Preferences 预设1 General 常规2 Saving Files 存储文件3 Display &Cursors 显示与光标4 Transparency &Gamut 透明区域与色域5 Units &Rulers 单位与标尺6 Guides &Grid 参考线与网格7 Plug Ins &Scratch Disks 增效工具与暂存盘8 Memory &Image Cache 内存和图像高速缓存9 Adobe Online Adobe在线10 Workflows Options 工作流程选项三、Image 图像(菜单)四、Layer 图层(菜单)1.Mode 模式 1.New 新建1 Bitmap 位图 1 Layer 图层2 Grayscale 灰度 2 Background From Layer 背景图层4.Open Recent 最近打开文件 3 Layer Set 图层组3 Duotone 双色调4 Layer Set From Linked 图层组来自链接的4 Indexed Color 索引色5 Layer via Copy 通过拷贝的图层5 RGB Color RGB色6 Layer via Cut 通过剪切的图层8.Save for Web 存储为Web所用2.Duplicate Layer 复制图层格式6 CMYK Color CMYK色 3.Delete Layer 删除图层7 Lab Color Lab色 yer Properties 图层属性8 Multichannel 多通道 yer Style 图层样式9 8 Bits/Channel 8位通道 1 Blending Options 混合选项10 16 Bits/Channel 16位通道 2 Drop Shadow 投影11 Color Table 颜色表 3 Inner Shadow 内阴影12 Assing Profile 制定配置文件 4 Outer Glow 外发光13 Convert to Profile 转换为配置5 Inner Glow 内发光文件2.Adjust 调整 6 Bevel and Emboss 斜面和浮雕1 Levels 色阶7 Satin 光泽2 Auto Laves 自动色阶8 Color Overlay 颜色叠加3 Auto Contrast 自动对比度9 Gradient Overlay 渐变叠加4 Curves 曲线10 Pattern Overlay 图案叠加5 Color Balance 色彩平衡11 Stroke 描边6 Brightness/Contrast 亮度/对比12 Copy Layer Effects 拷贝图层样式度7 Hue/Saturation 色相/饱和度13 Paste Layer Effects 粘贴图层样式14 Paste Layer Effects To Linked 将图层样式粘贴8 Desaturate 去色的链接的9 Replace Color 替换颜色15 Clear Layer Effects 清除图层样式10 Selective Color 可选颜色16 Global Light 全局光11 Channel Mixer 通道混合器17 Create Layer 创建图层12 Gradient Map 渐变映射18 Hide All Effects 显示/隐藏全部效果13 Invert 反相19 Scale Effects 缩放效果14 Equalize 色彩均化 6.New Fill Layer 新填充图层15 Threshold 阈值 1 Solid Color 纯色16 Posterize 色调分离 2 Gradient 渐变17 Variations 变化 3 Pattern 图案3.Duplicate 复制7.New Adjustment Layer 新调整图层4.Apply Image 应用图像 1 Levels 色阶5.Calculations 计算 2 Curves 曲线6.Image Size 图像大小 3 Color Balance 色彩平衡7.Canvas Size 画布大小 4 Brightness/Contrast 亮度/对比度8.Rotate Canvas 旋转画布 5 Hue/Saturation 色相/饱和度1 180° 180度 6 Selective Color 可选颜色2 90°CW 顺时针90度7 Channel Mixer 通道混合器3 90°CCW 逆时针90度8 Gradient Map 渐变映射4 Arbitrary 任意角度9 Invert 反相5 Flip Horizontal 水平翻转10 Threshold 阈值6 Flip Vertical 垂直翻转11 Posterize 色调分离9.Crop 裁切8.Change Layer Content 更改图层内容10.Trim 修整yer Content Options 图层内容选项11.Reverl All 显示全部10.Type 文字12.Histogram 直方图 1 Create Work Path 创建工作路径13.Trap 陷印 2 Convert to Shape 转变为形状14.Extract 抽出 3 Horizontal 水平15.Liquify 液化 4 Vertical 垂直5 Anti-Alias None 消除锯齿无五、Selection 选择(菜单) 6 Anti-Alias Crisp 消除锯齿明晰1.All 全部7 Anti-Alias Strong 消除锯齿强2.Deselect 取消选择8 Anti-Alias Smooth 消除锯齿平滑3.Reselect 重新选择9 Covert To Paragraph Text 转换为段落文字4.Inverse 反选10 Warp Text 文字变形5.Color Range 色彩范围11 Update All Text Layers 更新所有文本图层6.Feather 羽化12 Replace All Missing Fonts 替换所以缺欠文字7.Modify 修改11.Rasterize 栅格化1 Border 扩边 1 Type 文字2 Smooth 平滑 2 Shape 形状3 Expand 扩展 3 Fill Content 填充内容4 Contract 收缩 4 Layer Clipping Path 图层剪贴路径8.Grow 扩大选区 5 Layer 图层9.Similar 选区相似 6 Linked Layers 链接图层10.Transform Selection 变换选区7 All Layers 所以图层11.Load Selection 载入选区12.New Layer Based Slice 基于图层的切片12.Save Selection 存储选区13.Add Layer Mask 添加图层蒙板1 Reveal All 显示全部六、Filter 滤镜(菜单) 2 Hide All 隐藏全部st Filter 上次滤镜操作 3 Reveal Selection 显示选区2.Artistic 艺术效果 4 Hide Selection 隐藏选区1 Colored Pencil 彩色铅笔14.Enable Layer Mask 启用图层蒙板2 Cutout 剪贴画15.Add Layer Clipping Path 添加图层剪切路径3 Dry Brush 干笔画 1 Reveal All 显示全部4 Film Grain 胶片颗粒 2 Hide All 隐藏全部5 Fresco 壁画 3 Current Path 当前路径6 Neon Glow 霓虹灯光16.Enable Layer Clipping Path 启用图层剪切路径7 Paint Daubs 涂抹棒17.Group Linked 于前一图层编组8 Palette Knife 调色刀18.UnGroup 取消编组9 Plastic Wrap 塑料包装19.Arrange 排列10 Poster Edges 海报边缘 1 Bring to Front 置为顶层11 Rough Pastels 粗糙彩笔 2 Bring Forward 前移一层12 Smudge Stick 绘画涂抹 3 Send Backward 后移一层13 Sponge 海绵 4 Send to Back 置为底层14 Underpainting 底纹效果20.Arrange Linked 对齐链接图层15 Watercolor 水彩 1 Top Edges 顶边3.Blur 模糊 2 Vertical Center 垂直居中1 Blur 模糊 3 Bottom Edges 底边2 Blur More 进一步模糊 4 Left Edges 左边3 Gaussian Blur 高斯模糊 5 Horizontal Center 水平居中4 Motion Blur 动态模糊 6 Right Edges 右边5 Radial Blur 径向模糊21.Distribute Linked 分布链接的6 Smart Blur 特殊模糊 1 Top Edges 顶边4.Brush Strokes 画笔描边 2 Vertical Center 垂直居中1 Accented Edges 强化边缘 3 Bottom Edges 底边2 Angled Stroke 成角的线条 4 Left Edges 左边3 Crosshatch 阴影线 5 Horizontal Center 水平居中4 Dark Strokes 深色线条 6 Right Edges 右边5 Ink Outlines 油墨概况22.Lock All Linked Layers 锁定所有链接图层6 Spatter 喷笔23.Merge Linked 合并链接图层7 Sprayed Strokes 喷色线条24.Merge Visible 合并可见图层8 Sumi 总量25.Flatten Image 合并图层5.Distort 扭曲26.Matting 修边1 Diffuse Glow 扩散亮光 1 Define 去边2 Displace 置换 2 Remove Black Matte 移去黑色杂边3 Glass 玻璃 3 Remove White Matte 移去白色杂边4 Ocean Ripple 海洋波纹5 Pinch 挤压七、View 视图(菜单)6 Polar Coordinates 极坐标 1.New View 新视图7 Ripple 波纹 2.Proof Setup 校样设置8 Shear 切变 1 Custom 自定9 Spherize 球面化 2 Working CMYK 处理CMYK10 Twirl 旋转扭曲 3 Working Cyan Plate 处理青版11 Wave 波浪 4 Working Magenta Plate 处理洋红版12 Zigzag 水波 5 Working Yellow Plate 处理黄版6.Noise 杂色 6 Working Black Plate 处理黑版1 Add Noise 加入杂色7 Working CMY Plate 处理CMY版2 Despeckle 去斑8 Macintosh RGB3 Dust &Scratches 蒙尘与划痕9 Windows RGB4 Median 中间值10 Monitor RGB 显示器RGB7.Pixelate 像素化11 Simulate Paper White 模拟纸白1 Color Halftone 彩色半调12 Simulate Ink Black 模拟墨黑2 Crystallize 晶格化 3.Proof Color 校样颜色3 Facet 彩块化 4.Gamut Wiring 色域警告4 Fragment 碎片 5.Zoom In 放大5 Mezzotint 铜版雕刻 6.Zoom Out 缩小6 Mosaic 马赛克7.Fit on Screen 满画布显示7 Pointillize 点状化8.Actual Pixels 实际象素8.Render 渲染9.Print Size 打印尺寸1 3D Transform 3D 变换10.Show Extras 显示额外的2 Clouds 云彩11.Show 显示3 Difference Clouds 分层云彩 1 Selection Edges 选区边缘4 Lens Flare 镜头光晕 2 Target Path 目标路径5 Lighting Effects 光照效果 3 Grid 网格6 Texture Fill 纹理填充 4 Guides 参考线9.Sharpen 锐化 5 Slices 切片1 Sharpen 锐化 6 Notes 注释2 Sharpen Edges 锐化边缘7 All 全部3 Sharpen More 进一步锐化8 None 无4 Unsharp Mask USM 锐化9 Show Extras Options 显示额外选项10.Sketch 素描12.Show Rulers 显示标尺1 Bas Relief 基底凸现13.Snap 对齐2 Chalk &Charcoal 粉笔和炭笔14.Snap To 对齐到3 Charcoal 1 Guides 参考线4 Chrome 铬黄 2 Grid 网格5 Conte Crayon 彩色粉笔 3 Slices 切片6 Graphic Pen 绘图笔 4 Document Bounds 文档边界7 Halftone Pattern 半色调图案 5 All 全部8 Note Paper 便条纸 6 None 无9 Photocopy 副本15.Show Guides 锁定参考线10 Plaster 塑料效果16.Clear Guides 清除参考线11 Reticulation 网状17.New Guides 新参考线12 Stamp 图章18.Lock Slices 锁定切片13 Torn Edges 撕边19.Clear Slices 清除切片14 Water Paper 水彩纸11.Stylize 风格化八、Windows 窗口(菜单)1 Diffuse 扩散 1.Cascade 层叠2 Emboss 浮雕 2.Tile 拼贴3 Extrude 突出 3.Arrange Icons 排列图标4 Find Edges 查找边缘 4.Close All 关闭全部5 Glowing Edges 照亮边缘 5.Show/Hide Tools 显示/隐藏工具6 Solarize 曝光过度 6.Show/Hide Options 显示/隐藏选项7 Tiles 拼贴7.Show/Hide Navigator 显示/隐藏导航8 Trace Contour 等高线8.Show/Hide Info 显示/隐藏信息9 Wind 风9.Show/Hide Color 显示/隐藏颜色12.Texture 纹理10.Show/Hide Swatches 显示/隐藏色板1 Craquelure 龟裂缝11.Show/Hide Styles 显示/隐藏样式2 Grain 颗粒12.Show/Hide History 显示/隐藏历史记录3 Mosained Tiles 马赛克拼贴13.Show/Hide Actions 显示/隐藏动作4 Patchwork 拼缀图14.Show/Hide Layers 显示/隐藏图层5 Stained Glass 染色玻璃15.Show/Hide Channels 显示/隐藏通道6 Texturixer 纹理化16.Show/Hide Paths 显示/隐藏路径13.Video 视频17.Show/Hide Character 显示/隐藏字符1 De Interlace 逐行18.Show/Hide Paragraph 显示/隐藏段落2 NTSC Colors NTSC色彩19.Show/Hide Status Bar 显示/隐藏状态栏14.Other 其它20.Reset Palette Locations1 Custom 自定义2 High Pass 高反差保留3 Maximum 最大值4 Minimum 最小值5 Offset 位移15.Digimarc1 Embed Watermark 嵌入水印2 Read Watermark 读取水印ps教育关注PS教育学习,及时收取图文教程,为网友提供PS相关知识,PS教程每天更新,是广大网络的PS教程网爱好者学习的乐园,PS软件学习,让学习无忧。

联合生成与判别模型的雷达HRRP目标识别方法研究

联合生成与判别模型的雷达HRRP目标识别方法研究

摘要摘要雷达自动目标识别(RATR)是雷达技术和模式识别技术相结合的一个领域,在军事和民用方面都具有非常重要的应用价值,近年来受到广泛关注。

而雷达高分辨距离像(HRRP)因其包含目标信息丰富,具有易于存储和计算等优势,在雷达自动目标识别中成为研究热点。

目标识别方法大致可以分为基于生成模型的识别方法和基于判别模型的识别方法,前者着重刻画数据的概率分布特征,后者则主要描述不同类别数据之间的差异及分类界面。

将生成模型与判别模型相结合的识别方法能够兼具二者优势,提高识别性能。

本论文主要围绕国防预研项目,从贝叶斯统计学习、最大间隔正则化模型、贝叶斯非参数技术等方面进行了研究。

论文主要研究内容概括如下:1、因子分析(FA)模型是一种无监督的生成模型,具有良好的数据描述能力,然而其识别过程没有考虑不同类别数据之间的差异。

为了提升FA模型的识别性能,最大间隔因子分析(MMFA)模型提出将FA模型与隐变量支持向量机(LVSVM)相结合,在子空间建立最大间隔约束。

MMFA模型将样本隐变量作为SVM输入,该做法造成了一定程度上的信息损失,同时将所有样本投影在同一子空间并不能准确描述数据分布。

针对以上问题,本文提出了最大间隔正则化因子分析(MMRFA)模型,将FA模型与LVSVM模型在原始空间内进行结合,对FA模型的重构变量建立最大间隔准则的约束。

MMRFA模型既保留了数据几乎所有信息又确保了重构向量的可分性,有利于提升模型识别性能。

进一步,为了解决MMRFA的模型选择问题,将BPFA 模型与LVSVM相结合,提出最大间隔正则化Beta过程因子分析(MMRBPFA)模型。

MMRBPFA模型能够实现模型自动选择,提升模型稳健型和推广性。

2、针对雷达HRRP数据样本呈多模分布且线性不可分的问题,本文提出了贝叶斯核支持向量机(BKSVM)模型以及狄利克雷过程贝叶斯核支持向量机(DPBKSVM)模型,并基于这两种模型提出了目标识别框架。

高速路换道意图参数提取及意图阶段确定

高速路换道意图参数提取及意图阶段确定

高速路换道意图参数提取及意图阶段确定任园园,赵兰,郑雪莲†,李显生(吉林大学交通学院,吉林长春130022)摘要:针对换道意图辨识研究中的意图表征参数选择与意图阶段确定问题,提出一种新的组合方法.在驾驶模拟器所得原始参数基础上,从参数重要度与相关性角度,使用决策树C4.5算法和皮尔逊相关性分析,最终得到以方向盘转角、车道偏离量和横摆角加速度组成的重要度高且互相关性低的换道意图表征参数组.在此基础上,对方向盘转角和车道偏离量的时间序列进行K-means 聚类,确定驾驶人换道意图阶段,并得出意图阶段长度与平均车速近似线性相关,且左换道意图阶段长度大于右换道意图阶段长度.最后,建立连续高斯隐马尔可夫模型,在所得意图表征参数组及意图阶段数据的基础上,训练换道意图识别模型及车道保持识别模型.模型的平均离线识别准确率为90%.并可在左换道开始前1.5s 判断出驾驶人左换道意图,右换道开始前1.4s 判断出驾驶人右换道意图.研究结果表明:基于所得的意图表征参数组及意图阶段所建立的意图识别模型可有效识别驾驶人换道意图,且识别精度较高,时序性较强.该方法可为意图识别研究中意图参数选取及意图阶段确定提供参考.关键词:驾驶行为;意图参数提取;决策树C4.5算法;意图阶段确定;K-means ;换道意图识别中图分类号:U491文献标志码:ALane Change Intention Parameter Selection and Intention StageDetermination on the HighwayREN Yuanyuan ,ZHAO Lan ,ZHENG Xuelian †,LI Xiansheng(School of Transportation ,Jilin University ,Changchun 130022,China )Abstract :Aiming at the problem of parameter selection and intention stage determination of intention represen -tation in lane change intention identification ,a new combined method is proposed.On the basis of the original param -eters obtained from the driving simulator ,the C4.5decision tree algorithm and Pearson correlation analysis are used to obtain the parameter group which is composed of steering wheel angle ,lane departure and yaw acceleration with high importance and low correlation.On this basis ,K-means clustering is applied to the time series of steering wheel angle and lane departure to determine the driver's lane change intention stage.It is concluded that the length of inten -tion stage is approximately linear related to the average speed ,and the length of left lane change intention stage is larger than that of right lane change intention stage.Finally ,the continuous Gaussian hidden Markov model is estab -lished ,and the lane change intention recognition model and lane keeping recognition model are trained on the basis 收稿日期:2020-09-22基金项目:国家重点研发计划(2018YFB1600502),National Key R&D Program of China (2018YFB1600502)作者简介:任园园(1982—),女,吉林长春人,吉林大学副教授,博士†通信联系人,E-mail :********************.cn*第48卷第2期2021年2月湖南大学学报(自然科学版)Journal of Hunan University (Natural Sciences )Vol.48,No.2Feb.2021DOI :10.16339/ki.hdxbzkb.2021.02.002文章编号:1674—2974(2021)02—0010—11任园园等:高速路换道意图参数提取及意图阶段确定随着汽车智能化发展,高级辅助驾驶系统(Ad-vanced Driver Assistance System,ADAS)被逐渐应用于车辆驾驶中以提高驾驶安全.ADAS系统唯有理解驾驶人的意图及动作,才能更好地提供辅助及协作控制策略[1].近年来,驾驶意图辨识的研究越来越多,机器学习作为主流方法之一,被较多研究学者所使用.在机器学习辨识换道意图的研究中,换道意图表征参数和换道意图阶段确定对模型的辨识效果具有重要影响,过多无用的表征参数会使模型复杂化,降低计算速度,意图阶段截取不当会混入非意图阶段信息,影响意图模型识别效果.因此,意图表征参数组的选择和意图阶段的确定对意图辨识具有重要意义.意图表征参数可被分为交通环境参数、车辆动态参数和驾驶人行为参数三大类[2].对于具体的意图表征参数选取,现有研究常见提取方法有研究者观察选定、统计学分析差异性、分类器验证三种. Salvucci等基于驾驶模拟器实验,分析8位驾驶人的384次指定换道实验数据,发现驾驶人换道前伴随轻微减速,且意图阶段驾驶人对后视镜的关注明显高于车道保持阶段,因此认为车速及驾驶人视觉特性可以表征驾驶人换道意图[3].李创以NGSIM数据集作为数据依托,认为横向运动变化规律可以很好地区分车道保持和左右换道三种驾驶行为,选择前车与其初始所在车道左侧车道线的距离、前车的横向速度以及纵向速度作为观测变量[4].以上为研究者通过观察参数在不同驾驶阶段的差异性后确定意图表征参数.除此之外,侯海晶基于驾驶人视觉特性,采用独立样本T检验,分析驾驶人在左、右换道和车道保持阶段的视觉特性差异,确定驾驶人意图表征参数组[5].毕胜强等人对人-车-路参数构造不同组合,通过分类器验证各组合的分类性能,确定包含人-车-路三者信息的参数组合最优[6].以上学者采用不同方式选取了人车路不同方面的参数用于意图辨识.为降低模型计算复杂度,提升模型精度,本文从参数重要度及相关性角度,选取在意图辨识中重要度高且互相关性低的参数.在换道意图辨识研究中,意图阶段数据是驾驶人意图的重要表征.常用意图阶段确定方式有两种:一种是通过确定意图起、终点得到意图阶段数据,另一种是确定换道开始点并反向截取一个固定长度得到意图阶段数据.在意图起终点确定意图阶段的方式中,意图起终点多是由观察者观察视频或分析参数变化确定.Kiefer等人提出将驾驶人开启一侧转向灯或第一次注视后视镜作为换道意图的起点,将驾驶人为完成换道首次转动方向盘为换道意图的终点,二者差值即为换道意图阶段[7].长安大学袁伟、马勇、彭金栓等人基于实车实验数据,以驾驶人首次关注后视镜与横向位置显著变化时刻的时间差为换道意图阶段,经统计得到驾驶人换道意图阶段长度为5s[8-10].冯杰以驾驶人首次关注后视镜与方向盘转角发生变化的时间差为意图阶段,同时,得出冲动型、普通型和谨慎型驾驶人的意图阶段分别为2s、3s、5s[11].侯海晶、Kuge等人均提取从直行到方向盘转角出现第一个峰值之前的数据作为意图阶段[12-13].对于第二种换道开始点结合固定长度截取意图阶段数据的方法,换道开始点多由单指标或多指标确定,而意图阶段长度多由参数分析、对比试验获得,宽度不一.其中美国NTHSA报告根据8667次车道变换样本的深入分析发现,换道前3s左右足够捕捉驾驶人的视觉搜索规律,确定3s为换道意图阶段长度[14];霍克观看218次试验换道录像发现驾驶员产生意图到实施动作一般要6s,故确定换道决策阶段为车道变换前6s[15].Doshi等人根据视觉特性,分别选取意of intention representation parameter group and intention stage data.The average off-line recognition accuracy of the model is90%.The driver's left lane change intention can be judged1.5s before the start of left lane change,and1.4 s before the start of right lane change.The results show that the intention recognition model based on the intention representation parameters and intention stage can effectively identify the driver's lane changing intention,and the recognition accuracy is high and the timing is strong.This method can provide reference for intention parameter selec-tion and intention stage determination in intention recognition research.Key words:driving behavior;intention parameter selection;decision tree C4.5;intention stage determination;K-means determination;lane-changing intention recognition第2期11图阶段为2s 和3s 进行识别比较,发现提前2s 的识别成功率高于3s [16].Fitch 等人将驾驶员注视划分区域,通过对比意图阶段长度为8s 和3s 内驾驶员的视觉区域注视规律,得3s 左右可见视觉区域有明显差异且设为意图阶段[17].综上,现有的意图阶段确定方式大多建立在视频观察、数据统计分析和试验对比的基础上,易受研究者主观因素的影响,且均用一个固定长度来描述意图阶段.在换道意图研究中,意图阶段易受驾驶人因素影响,换道样本间的意图阶段的位置与长度存在差异,并不完全相同,在此基础上,本文提出一个基于聚类的意图阶段提取方法,在减少研究者主观因素的同时,对每个换道样本单独提取意图阶段数据.本研究从驾驶模拟器换道数据入手,提出一种换道意图表征参数选择和意图阶段确定方法,并建立高斯隐马尔可夫模型进行高速路换道意图辨识.论文研究成果可以为意图识别研究中意图表征参数的选取及意图阶段的确定提供参考,更准确高效地辨识换道意图.1试验设计及数据处理1.1试验平台试验使用交通运输部公路科学研究所(RIOS )研发的RADS 型8自由度全景驾驶模拟系统(图1)采集驾驶模拟器数据.该驾驶模拟系统主要由6DOF 、Yaw-Table 、Vibration 、X-Table 、客舱、多通道投影系统、声响系统、电源系统及其他辅助系统构成,可通过UC-win/Road 软件快速进行三维道路建模和交通模拟,并采用Carsim 车辆动力学软件对车辆动力学参数进行模拟.此外,系统可外接Facelab/Tobii 等眼动系统以及多导心生理采集系统,以实现人车路环境多维参数的采集.图1RADS 型8自由度全景驾驶模拟系统Fig.1RADS 8DOF panoramic driving simulation system1.2试验场景与实验人员试验场景涵盖城市路段和高架快速路段两种类型,全程10.35km ,共包含11个弯道路段,最小转弯半径为100m ,最大转弯半径为300m.道路形式包含两种,分别为双向双车道和双向四车道,高架快速路车道宽度均为3.25m [18].该研究主要为高速路段驾驶人换道意图辨识,故只选择试验路线中间部分高架路段数据.场景如图2所示,主要包括路边建筑物、路边树木及其他机动车辆,其他机动车辆的运动状态为自由设定.被试驾驶员在实验中,均按照个人的驾驶习惯按预先设定的路线进行自由驾驶,自主换道.图2试验场景Fig.2Experimental scenario试验共选取了17名被试驾驶人,其中女性驾驶人6名,男性驾驶人11名.所选驾驶人均身体健康,无视觉、听觉、心脑血管等疾病.被试基本信息表如表1所示.试验开始前让所有被试驾驶人充分熟悉驾驶仿真平台,每个驾驶人要求以80km/h 到120km/h 的车速完成整个试验.表1参与实验驾驶人基本信息Tab.1Basic information of the experimental driver年龄/a驾龄/a范围28~50范围0~12平均值29.79平均值7.57标准差2.694标准差3.2751.3数据采集与预处理该驾驶模拟系统可同时采集车辆运行状态参数、交通流环境参数、驾驶人眼动行为以及心生理状态,可同时输出123个不同的动态参数,采样频率为60Hz ,与研究相关的参数有22个,如表2所示.其中与车辆运行状态相关参数有16个,与车辆位置相关参数有6个.在驾驶模拟实验过程中,由于驾驶人操作失误或设备本身等原因,导致异常或丢失数据的产生,最终采用其中14个驾驶人试验数据进行研究,利用滑动平均值算法对数据进行滤波处理.湖南大学学报(自然科学版)2021年12表2初始参数Tab.2Initial parameters序号参数说明1δs方向盘转角,左转为负右转为正,(°)2Δx1ane车道偏离量,车辆纵向中心线与当前车道中心线的距离.车辆在右为正;车辆在左为负,m3Δx road道路偏离量,车辆纵向中心线同整条道路(两个行驶方向)的中心线之间的距离,m4a p加速踏板开度,没踩,0;踩死,15b p制动踏板开度,没踩,0;踩死,16θyaw横摆角,车辆x轴与正北方向的夹角(向北为0,逆时针为正),rad7θpitch俯仰角,绕车辆y轴的旋转角度,rad8θroll侧倾角,绕车辆x轴的旋转角度,rad9d rbd车辆纵向中心线到行驶方向全部车道的最右端的距离,m10d lbd车辆纵向中心线到行驶方向全部车道的最左端的距离,m11n rpm发动机转速,r/min12v车辆合速度,m/s13v x车辆纵向速度,m/s14v y车辆横向速度,m/s15a x车辆纵向加速度,m/s216a y车辆侧向加速度,m/s217d x车辆前轴中点在x轴行进方向18d y车辆前轴中点在y轴行进方向19r yaw横摆角速度,rad/s20r roll侧倾角速度,rad/s21a yaw横摆角加速度,rad/s222a roll侧倾角加速度,rad/s2本研究定位于换道意图的辨识,在不知具体换道意图阶段的位置时,本文截取从车辆尚处于直行状态到车辆越过车道线的时间段为最初研究样本,可以确定此方式截取的样本必定包含换道意图阶段,具体截取示例如图3所示.车辆横向位置轨迹与车道线的交点对应时间为车辆跨过车道线的时刻T lc,以此往前推,找到车辆直行状态末期T lk,截取T lk 与T lc之间的数据段用于下文换道意图参数及换道意图阶段确定.采用MATLAB中findpeaks函数寻找到峰值点,该点为局部最大值,为保证所选换道片段不缺失有效数据,从峰值点处往前2s作为车辆直行阶段末期T lk.以此方式最终获取180组有效样本,包括换道样本112组(左换道62组、右换道50组)和车道保持68组.所有有效样本将被分为两部分:训练样本和验证样本,比例约为2∶1.7654321016081610161216141616时间序列T直行T lk峰值点越线时间T lc车辆横向位置车道线车道中心线2s时间/s(a)左换道样本截取示意图164916511653165516577654321时间序列T直行T lk峰值点越线时间T lc车辆横向位置车道线车道中心线2s时间/s(b)右换道样本截取示意图图3样本截取示例Fig.3Sample extraction example2换道意图表征参数的选取换道意图辨识研究中,表征意图的参数众多,为减少模型计算复杂度,需要筛选出对区分换道意图重要度较高的换道意图表征参数.本文基于决策树原理进行重要参数的选择.选择决策树算法时,考虑到参数的统计特征取值较多及统计特征之间取值数目不同,选择了可以分裂为多叉树的C4.5算法进行参数统计特征重要度分析.在进行换道意图表征参数选取时,首先基于C4.5算法计算参数统计特征的信息增益率GR(Gain Ratio),初步筛选出一组参数,然后进行皮尔逊相关性分析,逐步剔除掉互相关性任园园等:高速路换道意图参数提取及意图阶段确定第2期13高的参数,最终得到在意图分类方面重要度高且互相关性低的意图表征参数组.2.1参数统计值构造在上节提取的22个参数、180组有效样本中,从每个参数的时间序列中构造对应参数的9个统计特征,分别为平均值、众数、最大值、最小值、25%分位数、中位数、75%分位数、标准差、方差,22个参数共计198个统计特征.鉴于此处参数的时间序列较短,均值、最值、中位数、方差、百分位数等统计值可以大致反映时间序列的变化趋势,故本文采用时间序列的统计特征来表示时间序列,通过分析参数时间序列对应的统计特征的重要度,反映参数的重要度. 2.2基于C4.5算法的参数重要度分析C4.5算法采用信息增益率作为特征选择指标,信息增益率越大,分裂后的集合有序程度越高,特征的分类效果越好.C4.5算法进行特征重要度分析流程如图4所示,图中特征A代表198个统计特征中的任意一个.A{a1,a2,…}B{b1,b2,…}样本集D的信息熵样本集D Inf D特征AD1D2…D j…A2…A j…D V据A分类后样本集D的信息熵Inf A,DA1A V以A为随机变量的D的信息熵SplitInf A,D图4C4.5算法特征分析Fig.4Feature analysis of C4.5algorithm首先,每个换道样本有198个特征,将180组包含左换道、右换道和直行三类样本的特征集作为样本集D,用信息熵Inf D来描述样本集合D的不确定度.Inf D=-m i=1∑D i D log2D i D()(1)然后以特征A为依据将样本集D分为v类,此时样本集的信息熵为Inf A,D.Inf A,D=v j=1∑D i D×Inf D j(2)利用特征A对样本集合D进行划分所得到的信息增益为G A,信息增益越大,集合D的不确定度下降越多.G A=Inf D-Inf A,D(3)但是,使用信息增益评价一个特征的分类性能存在缺点:信息增益偏向于选择取值较多的特征,容易过拟合.因此,在信息增益的基础上,除以分裂信息SplitInf A,D[19],得到信息增益率GR A.GR A=G A SplitInf A,D(4)把22个参数所构造的198个统计特征的信息增益率按由高到低排序如表3所示.表3参数统计特征的信息增益率排序Tab.3Order of gain ratio in parameterstatistical characteristics序号参数名称信息增益率归一化1横摆角加速度中位数(a yaw_m)0.0282 1.0000 2车辆侧向加速度均值(a y_mean)0.02760.9799 3横摆角加速度均值(a yaw_mean)0.02750.9749 4方向盘转角25%分位(啄s_p75)0.02730.9691 5横摆角速度均值(r yaw_mean)0.02370.8406 6侧倾角速度中位数(r roll_mean)0.02300.8149 7车辆侧向加速度75%分位(a y_p75)0.02080.7365 8车辆侧向加速度标准差(a y_std)0.02020.7165 9横摆角速度75%分位(r yaw_p75)0.01980.7014 10侧倾角速度75%分位(r roll_p75)0.01970.6998 11道路偏离量标准差(Δx road_std)0.01970.6990 12道路偏离量协方差(Δx road_cov)0.01960.6949……….. 197加速踏板开度均值(a p_mean)00 198制动踏板开度最小值(b p_min)00为获取重要度较高的参数,将每个参数的9个统计特征的信息增益率排名表示为一个箱线图.图5为198个参数统计特征的信息增益率排名对应的箱线图,横轴为表2中参与重要度排序的22个参数,纵轴为参数统计特征信息增益率排名.箱线图中每个箱子都可以代表对应参数的9个统计特征的信息增益率排名情况,中间线表示信息增益率排名100的位置,线以下的10个箱子,即为信息增益率排名前10的参数,分别是方向盘转角、侧向加速度、横摆角速度、侧倾角速度、横摆角加速度、车道偏离量、侧倾角、车辆距离左、右边界的距离和道路偏离量.将以上参数的统计特征作为决策树的分裂节点,进行原始数据的分裂,分裂后的数据集,信息增益率大,混乱程度降低明显,反映出此10个参数在区分不同驾驶阶段意图时有较好的分类效果,符合意图表征参数要求,为确保各参数之间的独立性,还需要进一步分析参数之间的相关性.湖南大学学报(自然科学版)2021年142001801601401201008060402013579111315171921参与重要度排序的22个参数图5参数统计特征信息增益率排名复式箱线图Fig.5Gain ratio in parameter statisticalcharacteristics ranking’s double box line chart2.3表征参数相关性分析在上述参数中,车辆离左、右边界的距离与道路偏离量易受道路线形的影响,而本文主要研究高速路上直行后的换道,故排除以上三个参数,只对剩余7个参数做皮尔逊相关性分析,所得结果如表4所示.表4参数的皮尔逊相关性分析Tab.4Pearson correlation analysis of parameters方向盘转角横摆角速度侧向加速度横摆角加速度侧倾角速度侧倾角车道偏离量方向盘转角1-0.954-0.941-0.041-0.056-0.9330.138横摆角速度10.996-0.343-0.3250.991-0.225侧向加速度10.0470.0520.992-0.238横摆角加速度10.95-0.3890.144侧倾角速度1-0.3760.126侧倾角1-0.241车道偏离量1在显著性水平P值均小于0.05的条件下,排除掉相关系数值大于0.5,即互相关性较高的参数,剩余参数为互相关性较低的参数,分别为方向盘转角、横摆角加速度和车道偏离量.因此综合参数重要度与皮尔逊相关性分析,最终将方向盘转角、横摆角加速度和车道偏离量作为驾驶人换道意图的表征参数,为下文意图识别模型的训练提供观测层输入参数.3换道意图阶段的确定换道意图是驾驶人与周围环境交互后产生的结果.具体地说,当驾驶人对当前车道的满意程度下降,且对目标车道期望程度上升,则会形成换道意图.而具体的换道意图阶段是指,驾驶人产生换道意图时间点至驾驶人执行换道机动时的时间点,这二者之间的时间间隔.作为整个换道进程中的一部分,换道意图阶段具有位置、长度两个属性,且不同换道过程的换道意图阶段也不完全相同.本文结合车辆到达分道线前参数的阶段性变化,提出一种基于K-means聚类的换道意图阶段的截取方法,提取训练样本的换道意图阶段训练换道意图识别模型.3.1观测集与聚类个数的确定车辆换道意图表征参数中的方向盘转角和车道偏离量分别代表了驾驶人的动作与车辆的横向位置,最能直观体现车辆换道过程中的动态变化.因此,观测集为方向盘转角和车道偏离量的时间序列.车辆从直行到跨越车道线,驾驶人通过操纵方向盘实现车辆偏离,又因方向盘具有自由行程,导致方向盘转角变化较早,存在换道意图形成(预转向)到换道意图实施(正式转向)两种状态的过渡,可通过聚类算法中的最小距离准则得到换道意图形成的位置.而车道偏离量反映了车辆的横向位置,其变化晚于其他参数,可以体现换道意图(预偏离)到换道执行阶段(正式偏离)的过渡,可通过聚类算法中的最小距离准则得到换道执行阶段即意图阶段结束的位置.故将方向盘转角和车道偏离量观测集的聚类个数均定为2.考虑到驾驶人的驾驶风格会导致参数阈值多样化,而此处重点在于换道意图阶段的确定,故在不改变参数变化趋势的条件下,先对时间序列中参数值归一化后再作为K-means聚类分析的观测集.3.2基于K-means的换道意图阶段确定换道意图阶段确定方法的流程图如图6所示,基于文中1.3节所截取的换道样本,采用车辆从直行到越过车道线的方向盘转角序列和车道偏离量序列作为观测集.以左换道为例,换道过程中,方向盘转角值的变化要克服方向盘的自由行程及直行阶段方向盘的正常变化范围,此过程为换道与直行共同存在的阶段,即意图形成过程,也称预转向过程,此后的方向盘转任园园等:高速路换道意图参数提取及意图阶段确定第2期15角变化可区分直行与换道,为正式转向过程,故将方向盘转角从预转向过程到正式转向过程的分界点定为换道意图开始时刻.意图阶段开始点意图阶段结束点76543210时间序列T 直行T lk 越线时间T lc 车辆横向位置车道线车道中心线聚类个数K =2聚类个数K =2时间/s16091611161316151617-10-200-0.5-1.0-1.50-10-20178717891791时间/s 时间/s178717891791-0.5-1.0-1.5时间/s时间/s预转向意图形成正式转向意图实施预偏离意图实施正式偏离换道执行Intent start Intent end 178717891791178717891791图6换道意图阶段确定方法Fig.6Method for determining the intention stage of lane change而车道偏离量作为驾驶人操纵行为的最终表现,其变化较晚,故基于车道偏离量的聚类结果所得的意图阶段结束时刻可最大程度涵盖意图阶段信息.从安全角度,驾驶人确定换道意图后会存在换道可行性判断过程,即换道意图实施中的对换道安全的考量过程,此时车道偏离量为预偏离过程,在确认换道安全后,即开始真正的换道执行动作,到达正式偏离过程.故将车道偏离量从预偏离过程到正式偏离过程的分界点定为换道意图结束时刻.单个换道样本聚类结果如图7所示,上方为方向盘转角聚类结果,下方为车道偏离量聚类结果.左换道意图阶段左换道17871788178917901791178717881789179017911.00.501.00.50从直行到车辆越过分道线的时间序列/s(a )左换道1.00.501.00.5016501651165216531654右换道意图阶段16501651165216531654右换道从直行到车辆越过分道线的时间序列/s(b )右换道图7单个样本聚类结果Fig.7Single sample clustering results按照图7的方式,对112个换道样本进行K-means 聚类,不同换道样本的方向盘转角和横向偏离量聚类后的分界点对应的时间不完全相同,符合实际换道情况.3.3K-means 聚类结果验证Sil 指标,又称轮廓系数(Silhouette Coefficient ),可评价类的密集程度与分散程度[20].Sil 指标的变化范围是[-1,1],其值越大说明聚类效果越好.表5为聚类后所有样本点的平均Sil 值,左右换道样本的方向盘转角和车道偏离量聚类后的样本点轮廓系数为0.8左右,可知本节K-means 聚类结果是合理的.表5聚类后样本点的轮廓系数Tab.5Silhouette coefficient of sample points after clustering样本方向盘转角聚类车道偏离量聚类左换道0.80010.7731右换道0.85930.85703.4换道意图阶段的分析将14个驾驶人的112段换道训练样本数据,按照上述换道意图阶段的确定方法,计算每个换道样本的意图阶段并统计所有换道样本的意图阶段长度和每位驾驶人左、右换道平均意图阶段长度,所得结果如图8和表6所示.00.51.01.52.02.53.000.51.01.52.02.53.0108642108642左换道意图阶段长度/s右换道意图阶段长度/s(a )左换道(b )右换道湖南大学学报(自然科学版)2021年16。

小波消噪英文文献

小波消噪英文文献

Wavelet De-noising First, the wavelet threshold de-noising the signal estimateSignal processing signal de-noising is one of the classic.De-noising methods include traditional linear filtering method andnonlinear filtering methods, such as median filter and wiener filtering.De-noising method is not traditional is the entropy of the signal increasedafter transformation, can not describe the characteristics of non-stationarysignals and can not get the signal correlation. To overcome theseshortcomings, people began to signal de-noising using the wavelettransform to solve the problem.Wavelet transform has the following favorable characteristics:(1)Low Entropy of: the sparse distribution of wavelet coefficients, sothat reduces the entropy of the transformed signal;(2)Multi-resolution features: Y u to characterize the signal can be verynon-stationary features such as edges, spikes, breakpoints, etc.;(3)To relevance: the relevance of the signal can be removed, and thenoise in wavelet transform has whitening trend, the more beneficialthan the time-domain de-noising;(4)Selected based flexibility: the flexibility to choose the wavelet basisfunction can therefore be required according to the signalcharacteristics and select the appropriate wavelet de-noisingIn the field of wavelet de-noising has been more widely used.Thresholding method is a simple, better methods of wavelet de-noising. Thresholding method is the idea of layers of wavelet decomposition coefficients of the model is larger than and smaller than a certainthreshold value of the coefficient of treatment, and then re-processed the wavelet coefficients of an anti-transformation, through the reconstructed de-noised Signal. The following functions from the threshold and threshold estimation of both thresholding methods are introduced.1.Threshold functionCommonly used threshold function is mainly hard and softthreshold function threshold function.(1) Hard threshold function. Expression isη(w)=w I (∣w ∣>T).(2) Soft threshold function. Expression isη(w)=(w-sgn(w)T)I (∣w ∣>T)In general, the hard thresholding method can preserve the signal edge of the other local features, soft threshold is relatively smooth, but will cause the edge of the blurring distortion. To overcome theseshortcomings, recently proposed a semi-soft threshold function. It can take into account the soft threshold and hard threshold method has the advantage, and its expression isη(w)=sgn(w) )()()(2211212T w wI T w T T T T w T >+<<--The basis of the soft threshold, you can improve them with theirmore advanced. It can be seen in the noise (wavelet coefficients) and the useful signal (wavelet coefficients) there is a smooth transition between the areas, more in line with the natural signal / image of continuous features. Its expression isη(w)=⎪⎪⎪⎩⎪⎪⎪⎨⎧>++-≤+<+-++T w w -T w 12)12(112122k T T w T k k T T w w T k k 2. Threshold estimationDonoho proposed in 1994 VisuShrink method (or uniformthresholding method). It is for the multi-dimensional joint distribution of independent normal variables, when the dimension tends to infinity the conclusions of the maximum estimate of the minimum constraints derived optimal threshold. The choice of thresholds meets:T=N n ln 2σDonoho prove that given estimates of the signal is Besov set,obtained in a number of risks similar to the ideal function of the risk of noise reduction. A unified method of Donoho threshold effect in the practical application unsatisfactory, resulting in the phenomenon of over kill, put forward in 1997 Janse unbiased estimate based on the thresholdcalculation. Risk function is defined as:N t R f f -=^)(2Orthogonality of wavelet transform, the risk function can be written in the same form in the wavelet domainN t t R X Y -=)(2)(η SetN t t R Y Y -=)(2)(ηSo⎥⎦⎤⎢⎣⎡-<++≥<-+==---X Y t E N V E N t ER t N ET t t n Y X X Y Y Y )(21,2)(12222)()(ηηηση Finally, the expression of risk function can be obtained:)(2)(2)()(11222122)^(t I N i t I N t ET t ER Y t Y Y i N i N i n n i N i n n <-+=>+-=∑∑∑===σσσσN 1Where is the indicator function, taking the number of two small. Thus, the best threshold selection can be obtained by minimizing the risk function, i.e.)(min arg 0*t ER t t >= MA TLAB to achieve the threshold of signal de-noising,including the threshold and the thresholding for the two parties . The following description of them.Second, the wavelet de-noising function in MA TLAB1) ThresholdsImplemented in MA TLAB function of signal threshold for a ddencmp, thselect, wbmpen and wdcbm, following the use of their simple instructions. Ddencmp call the format of the following three(1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2, X)(2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X)(3)[THR,SORH,KEEPAPP]=ddencmp(IN1,'wv',X)Function ddencmp used to obtain in the process of de-noising or compression the default threshold. Input parameter X is one or two dimensional signals; IN1 value for the 'den' or 'crop', den, said thede-noising, crop that is compressed; IN2 value for the 'wv' or 'wp', wv, said selection of wavelet , wp said the choice of wavelet packets. Return value is the return threshold THR; SORH is soft or hard threshold threshold selection parameters; KEEPAPP that kept low frequency signal; CRIT is the entropy of name (only used in the choice of wavelet packet).Function thselect call the following format:THR=thselect(X,TPTR)THR=thselect(X,TPTR) according to the definition of the string TPTR threshold selection rules to select the signal X of the adaptive threshold.Adaptive threshold selection rules include the following four.TPTR = 'rigrsure', adaptive threshold choose to use Stein's unbiased risk estimate principle.TPTR = 'heursure', using the heuristic threshold selection.TPTR = 'sqtwolog', the threshold value is equal to sqrt (2 * log (1ength(X))). TPTR = 'minimaxi', with the minimax principle of selection threshold.Threshold selection rule based on the model, A is the Gaussian noise N (O, 1).Function wbmpen call the following format:THR = wbmpen (C, L, SIGMA, ALPHA)THR = wbmpen (C, L, SIGMA, ALPHA) returns the global de-noising threshold THR. THR by a given selection rules calculated wavelet coefficients, wavelet coefficients selection rule using theBirge-Massart penalty algorithm. [C, L] is the de-noising of the signal or the wavelet decomposition structure; SIGMA is a zero mean Gaussian white noise of standard deviation; ALPHA adjust the parameters used for punishment, it must be a real number greater than 1, a Shares take ALPHA = 2.Let t * is the crit (t) =- sum (c (k) ^ 2, k <= t) +2 * SIGMA ^ 2 * t * (ALPHA + log (n / t)) minimum, where c ( k) are ordered from largest to smallest absolute value of wavelet packet coefficients, n is the number of coefficients, the THR = c (t *).wbmpen (C, L, SIGMA, ALPHA, ARG) calculated the threshold and draw the three curves.2 * SIGMA ^ 2 * t * (ALPHA +10 g (n / t))Sum (c (k) ^ 2, k <= t)crit (t)Function wdcbm call the following two formats:(1) [THR, NKEEP] = wdcbm (C, L, ALPHA)(2) [THR, NKEEP] = wdcbm (C, L, ALPHA, M)Function wdcbm using Birge-Massart method for one-dimensional wavelet transform to obtain the threshold. Return value THR is the threshold and scale independent, NKEEP is the number of coefficients. [C, L] is to carry out signal de-noising or compression in the j = length (L) -2 layer breakdown structure; ALPHA and M must be a real number greater than 1; THR is about j of the vector, THR (i) is the i-layer threshold; NKEEP is a vector on the j, NKEEP (i) is the coefficient of i layer number. 1.5 for the general compression ALPHA, ALPHA de-noising take 3. 2) Signal threshold de-noisingMA TLAB, the threshold for signal de-noising function has wden, wdencmp, wthresh, wthcoef, wpthcoef and wpdencmp. Following the usage of their brief. Function wden call the following two formats:(1) [XD, CXD, LXD] = wden (X, TPTR, SORH, SCAL, N,'wname')(2) [XD, CXD, LXD] = wden (C, L, TPTR, SORH, SCAL, N, 'wname')Function wden for the automatic one-dimensional signalde-noising. X is the original signal, [C, L] for the signal decomposition, N is the number of layers of wavelet decomposition.TPTR the threshold selection rules, TPTR the following four values:TPTR = 'rigrsure', by Stein unbiased likelihood estimation.TPTR = 'heursure', using heuristic threshold selection.TPTR = 'sqtwolog', take universal threshold N2lnTPTR = 'minimaxi', using the maximum threshold for the minimum value selection. SORH is soft or hard threshold threshold selection (corresponding to 's' and 'h'). SCAL refers to the threshold used by the need to re-adjust, including the bottom three:SCAL = 'one', do not adjust.SCAL = 'sln', according to the first layer of the estimated coefficients to adjust the noise floor threshold.SCAL = 'mln', according to different estimates to adjust the noise level threshold. XD for the noised signal, [CXD, LXD] for the signal after de-noising wavelet decomposition structure. Format (1) returns the signal X through N layers decomposed wavelet coefficients after thresholding and signal de-noising signal XD XD the wavelet decomposition structure [CXD, LXD]. Format (2) return parameters and format (1), but its structure by direct decomposition of the signal structureof [C, L] obtained by threshold processing.Function wdencmp call the following three formats:(1)[XC, CXC, LXC, PERF0, PERFL2] = wdenemp('gbl', X,'wname', N,THR, SORH, KEEPAPP)(2) [XC, CXC, LXC, PERF0, PERFL2] = wdencmp ('1 vd ', X,' wname ', N, THR, SORH)(3) [XC, CXC, LXC, PERF0, PERFL2] = wdencmp ('1 vd ', C, L,' wname ', N, THR, SORH)Function wdencmp for one or two dimensional signalde-noising or compression. wname wavelet function is used, gbl (global abbreviation) that each have adopted a threshold for the same treatment, lvd that each use different thresholds for treatment, N said that the number of layers of wavelet decomposition, THR is the threshold vector For Format (2) and (3) requires each department has a threshold value, so the threshold vector length THR N, SORH that choice of soft or hard threshold threshold (value, respectively, for the 's' and' h) , the parameter KEEPAPP value to 1, the frequency factor is not quantified by threshold, on the contrary, the low-frequency coefficients of the threshold to be quantified. XC is the elimination of noise or the compressed signal, [CXC, LXC] is the XC of the wavelet decomposition structure, PERF0 and PERFL2 is to restore and compress the percentage of the norm. If [C, L] is the wavelet decomposition structure of X, then)norm vector C norm vector CXC *1002(2=PERFT ; If X is a one-dimensional signal, wavelet wname is a wavelet, then the X XC PERFL 221002= Function wthresh call the following format:Y = wthresh (X, SORH, T)Y = wthresh (X, SORH, T) returns the input vector or matrix of X by the soft threshold (if SORH = 's') or Hard threshold (if SORH = 'h') after the signal. T is the threshold.Y = wthresh (X, 's', T) returns )()(T X X SING Y -+∙=, namely,the absolute value of the signal compared with the threshold value, less than or equal to the threshold point to 0, the point becomes greater than the threshold value The point value and the threshold of the difference. Y = _wthresh (X, 'h', T) returns 1)(T X X Y >∙=, namely, theabsolute value of the signal compared with the threshold value, less than or equal to the threshold point to 0, greater than the threshold value of the point remains the same .An, the use of hard threshold signal after treatment than the soft threshold signal is more rough.Function wpthcoef call the following format:T = wpthcoef (T, KEEPAPP, SORH, THR)NT = wpthcoef (T, KEEPAPP, SORH, THR) by the coefficients of wavelet packet tree T after the threshold value returns a new wavelet packet tree NT. If KEEPAPP = 1, then the details of the signal factor is not the threshold processing; Otherwise, it is necessary for thresholdprocessing. If SORH = 's', using the soft threshold, if SORH = 'h', then use the hard threshold. THR is the threshold.Call function wthcoef following four formats:(1) NC = wthcoef ('d', C, L, N, P)(2) NC = wthcoef ('d', C, L, N)(3) NC = wthcoef ('a', C, L)(4) NC = wthcoef ('t', C, L, N, T, SORH)Function wthcoef for one dimensional signal thresholding wavelet coefficients.Format (1) returns the wavelet decomposition structure [C, L] defined by the vector of N and P after the compression rate of decomposition of the new vector NC, [NC, L] that constitutes a new wavelet decomposition structure. N contains the details to be compressed vector, P is set to 0, the smaller the percentage of coefficient vectors of information. N and P must be the same length, the vector N must satisfy 1 ≤N (i) ≤length (L) -2.Format (2) returns wavelet decomposition structure [C, L] after the vector N is specified in detail coefficients set to 0 after the wavelet decomposition vector NC.Format (3) returns wavelet decomposition structure [C, L] after approximate coefficients set to 0 after the wavelet decomposition vector NC.Format (4) returns wavelet decomposition structure [C, L] N as the vector after treatment, the wavelet threshold vector NC. If SORH = 's', was soft threshold; if SORH = 'h', was a hard threshold. N contains the details of the scale vector, T is the N vector of the corresponding threshold. N and T must be equal in length.Function wpdencmp call the following two formats:(1) [XD, TREED, PERF0, PERFL2] = wpdencmp (X, SORH, N, 'wname', CRIT, PAR, KEEPAPP)(2) [XD, TREED, PERF0, PERFL2] = wpdencmp (TREE, SORH, CRIT, PAR, KEEPAPP) Function wpdencmp for the signalusing wavelet packet compression or de-noising.Forma (1) returns the input signal X (one and two dimensional) of the signal after de-noising or compression XD. XD TREED outputparameters are the best wavelet packet decomposition tree; PERFL2 and PERF0 is the energy recovery and the percentage of L2 compression.) ts coefficien packet wavelet the of ts coefficien packet wavelet the of norm (2*1002X XD PERFL =. If X is a one-dimensional signal, wname is an orthogonal wavelet, the X XC PERFL 221002=. SORH values for the 's' or 'h', that is soft or hard threshold threshold.Input parameter N is the number of layers wavelet packetdecomposition, wname string that contains the wavelet name. Functionuses the definition of entropy by the string CRIT criteria and threshold parameters for optimal decomposition of PAR. If KEEPAPP = 1, then the approximation of wavelet coefficients are not quantified by threshold; Otherwise, proceed to quantify.Format (2) format (1) of the output parameter, the input options are the same, but it from the signal using wavelet packet decomposition tree TREE directly de-noising or compression.Third, the wavelet threshold de-noising examples of signalAn to say, signal de-noising include the following three-step basic steps:(1)signal decomposition;(2)high-frequency coefficients of wavelet thresholding;(3)Signal wavelet reconstruction. Use of low frequencycoefficients of wavelet decomposition and thresholding thehigh frequency coefficients after wavelet reconstruction.。

Photoshop各个工具快捷键对应英文

Photoshop各个工具快捷键对应英文

Photoshop各个工具快捷键对应英文选框-MarqueeM移动-moveV套索-LassoL魔棒-WandW喷枪-injection lance J画笔-Brush B铅笔-pencilN橡皮图章-rubbr-stamps历史记录画笔-history brush tool Y橡皮擦-Erasers S模糊-Blur R减淡- dodge tool O钢笔-pen P文字-text T度量-measurement U渐变-Gradient G油漆桶-Paint Bucket Tool K吸管- suction tube I抓手-hand grip H缩放-Zoom Z默认前景和背景色-The default foreground and background color D 切换前景和背景色-Switch foreground and background color X 编辑模式切换-Edit mode switching Q显示模式切换-F Cycle through Screen Modes F一、File-文件-新建-打开As-打开为Recent-最近打开文件-关闭-存储As-存储为for Web-存储为Web所用格式-恢复-置入-输入-1PDF Image-2Annotations-注释Workflow-管理工作流程-1Check In-登记-2Undo Check Out-还原注销-3Upload To Server-上载到服务器-4Add To Workflow-添加到工作流程-5Open From Workflow-从工作流程打开-自动-1Batch-批处理-2Create Droplet-创建快捷批处理-3Conditional Mode Change-条件模式更改-4Contact Sheet-联系表-5Fix Image-限制图像-6Multi-7Picture package-图片包-8Web Photo GalleryInfo-文件简介Options-打印选项Setup-页面设置to-跳转到-退出二、Edit-编辑-还原Forward-向前Backward-返回-消退-剪切-拷贝Merged-合并拷贝-粘贴Into-粘贴入-清除-填充-描边Transform-自由变形-变换-1Again-再次-2Sacle-缩放-3Rotate-旋转-4Skew-斜切-5Distort-扭曲-6Prespective-透视-7Rotate 180°-旋转180度-8Rotate 90°CW-顺时针旋转90度-9Rotate 90°CCW-逆时针旋转90度-10 Flip Hpeizontal-水平翻转-11 Flip Vertical-垂直翻转Brush-定义画笔Pattern-设置图案Custom Shape-定义自定形状-清除内存数据-1 Undo-还原-2 Clipboard-剪贴板-3 Histories-历史纪录-4 All-全部Settings-颜色设置Manager-预置管理器-预设-1 General-常规-2 Saving Files-存储文件-3 Display & Cursors-显示与光标-4 Transparency & Gamut-透明区域与色域-5 Units & Rulers-单位与标尺-6 Guides & Grid-参考线与网格-7 Plug-8 Memory & Image Cache-内存和图像高速缓存-9 Adobe Online-10 Workflows Options-工作流程选项三、Image-图像-模式-1 Bitmap-位图-2 Grayscale-灰度-3 Duotone-双色调-4 Indexed Color-索引色-5 RGB Color-6 CMYK Color-7 Lab Color-8 Multichannel-多通道-9 8 Bits/Channel-8位通道-10 16 Bits/Channel-16位通道-11 Color Table-颜色表-12Assing Profile-制定配置文件-13Convert to Profile-转换为配置文件-调整-1 Levels-色阶-2 Auto Laves-自动色阶-3 Auto Contrast-自动对比度-4 Curves-曲线-5 Color Balance-色彩平衡-6 Brightness/Contrast-亮度/对比度-7 Hue/Saturation-色相/饱和度-8 Desaturate-去色-9 Replace Color-替换颜色-10 Selective Color-可选颜色-11 Channel Mixer-通道混合器-12 Gradient Map-渐变映射-13 Invert-反相-14 Equalize-色彩均化-15 Threshold-阈值-16 Posterize-色调分离-17 Variations-变化-复制Image-应用图像-计算Size-图像大小Size-画布大小Canvas-旋转画布-1 180°-180度-2 90°CW-顺时针90度-3 90°CCW-逆时针90度-4 Arbitrary-任意角度-5 Flip Horizontal-水平翻转-6 Flip Vertical-垂直翻转-裁切-修整All-显示全部-直方图-陷印-抽出-液化四、Layer-图层-新建-1 Layer-图层-2 Background From Layer-背景图层-3 Layer Set-图层组-4 Layer Set From Linked-图层组来自链接的-5 Layer via Copy-通过拷贝的图层-6 Layer via Cut-通过剪切的图层Layer-复制图层Layer-删除图层Properties-图层属性Style-图层样式-1 Blending Options-混合选项-2 Drop Shadow-投影-3 Inner Shadow-内阴影-4 Outer Glow-外发光-5 Inner Glow-内发光-6 Bevel and Emboss-斜面和浮雕-7 Satin-光泽-8 Color Overlay-颜色叠加-9 Gradient Overlay-渐变叠加-10 Pattern Overlay-图案叠加-11 Stroke-描边-12 Copy Layer Effects-拷贝图层样式-13 Paste Layer Effects-粘贴图层样式-14 Paste Layer Effects To Linked-将图层样式粘贴的链接的-15 Clear Layer Effects-清除图层样式-16 Global Light-全局光-17 Create Layer-创建图层-18 Hide All Effects-显示/隐藏全部效果-19 Scale Effects-缩放效果Fill Layer-新填充图层-1 Solid Color-纯色-2 Gradient-渐变-3 Pattern-图案Adjustment Layer-新调整图层-1Levels-色阶-2Curves-曲线-3Color Balance-色彩平衡-4Brightness/Contrast-亮度/对比度-5Hue/Saturation-色相/饱和度-6Selective Color-可选颜色-7Channel Mixer-通道混合器-8Gradient Map-渐变映射-9Invert-反相-10Threshold-阈值-11Posterize-色调分离Layer Content-更改图层内容Content Options-图层内容选项-文字-1 Create Work Path-创建工作路径-2 Convert to Shape-转变为形状-3 Horizontal-水平-4 Vertical-垂直-5 Anti-Alias None-消除锯齿无-6 Anti-Alias Crisp-消除锯齿明晰-7 Anti-Alias Strong-消除锯齿强-8 Anti-Alias Smooth-消除锯齿平滑-9 Covert To Paragraph Text-转换为段落文字-10 Warp Text-文字变形-11Update All Text Layers-更新所有文本图层-12Replace All Missing Fonts-替换所以缺欠文字-栅格化-1Type-文字-2Shape-形状-3Fill Content-填充内容-4Layer Clipping Path-图层剪贴路径-5Layer-图层-6Linked Layers-链接图层-7All Layers-所以图层Layer Based Slice-基于图层的切片Layer Mask-添加图层蒙板-1 Reveal All-显示全部-2 Hide All-隐藏全部-3 Reveal Selection-显示选区-4 Hide Selection-隐藏选区Layer Mask-启用图层蒙板Layer Clipping Path-添加图层剪切路径-1Reveal All-显示全部-2Hide All-隐藏全部-3Current Path-当前路径Layer Clipping Path-启用图层剪切路径 Linked-于前一图层编组-取消编组-排列-1 Bring to Front-置为顶层-2 Bring Forward-前移一层-3 Send Backward-后移一层-4 Send to Back-置为底层Linked-对齐链接图层-1 Top Edges-顶边-2 Vertical Center-垂直居中-3 Bottom Edges-底边-4 Left Edges-左边-5 Horizontal Center-水平居中-6 Right Edges-右边Linked-分布链接的-1 Top Edges-顶边-2 Vertical Center-垂直居中-3 Bottom Edges-底边-4 Left Edges-左边-5 Horizontal Center-水平居中-6 Right Edges-右边All Linked Layers-锁定所有链接图层 Linked-合并链接图层Visible-合并可见图层Image-合并图层-修边-1 Define-去边-2 Remove Black Matte-移去黑色杂边-3 Remove White Matte-移去白色杂边五、Selection-选择-全部-取消选择-重新选择-反选Range-色彩范围-羽化-修改-1 Border-扩边-2 Smooth-平滑-3 Expand-扩展-4 Contract-收缩-扩大选区-选区相似Selection-变换选区Selection-载入选区Selection-存储选区六、Filter-滤镜Filter-上次滤镜操作-艺术效果-1 Colored Pencil-彩色铅笔-2 Cutout-剪贴画-3 Dry Brush-干笔画-4 Film Grain-胶片颗粒-5 Fresco-壁画-6 Neon Glow-霓虹灯光-7 Paint Daubs-涂抹棒-8 Palette Knife-调色刀-9 Plastic Wrap-塑料包装-10 Poster Edges-海报边缘-11 Rough Pastels-粗糙彩笔-12 Smudge Stick-绘画涂抹-13 Sponge-海绵-14 Underpainting-底纹效果-15 Watercolor-水彩-模糊-1 Blur-模糊-2 Blur More-进一步模糊-3 Gaussian Blur-高斯模糊-4 Motion Blur-动态模糊-5 Radial Blur-径向模糊-6 Smart Blur-特殊模糊Strokes-画笔描边-1 Accented Edges-强化边缘-2 Angled Stroke-成角的线条-3 Crosshatch-阴影线-4 Dark Strokes-深色线条-5 Ink Outlines-油墨概况-6 Spatter-喷笔-7 Sprayed Strokes-喷色线条-8 Sumi-扭曲-1 Diffuse Glow-扩散亮光-3 Glass-玻璃-4 Ocean Ripple-海洋波纹-5 Pinch-挤压-6 Polar Coordinates-极坐标-7 Ripple-波纹-8 Shear-切变-9 Spherize-球面化-10 Twirl-旋转扭曲-11 Wave-波浪-12 Zigzag-水波-杂色-1 Add Noise-加入杂色-2 Despeckle-去斑-3 Dust & Scratches-蒙尘与划痕-4 Median-中间值-像素化-1 Color Halftone-彩色半调-2 Crystallize-晶格化-4 Fragment-碎片-5 Mezzotint-铜版雕刻-6 Mosaic-马赛克-7 Pointillize-点状化-渲染-1 3D Transform-3D 变换-2 Clouds-云彩-3 Difference Clouds-分层云彩-4 Lens Flare-镜头光晕-5 Lighting Effects-光照效果-6 Texture Fill-纹理填充-锐化-1 Sharpen-锐化-2 Sharpen Edges-锐化边缘-3 Sharpen More-进一步锐化-4 Unsharp Mask-素描-1 Bas Relief-基底凸现-2 Chalk & Charcoal-粉笔和炭笔-3 Charcoal-3 Chrome-铬黄-4 Conte Crayon-彩色粉笔-5 Graphic Pen-绘图笔-6 Halftone Pattern-半色调图案-7 Note Paper-便条纸-8 Photocopy-副本-9 Plaster-塑料效果-10 Reticulation-网状-11 Stamp-图章-12 Torn Edges-撕边-13 Water Paper-水彩纸-风格化-1 Diffuse-扩散-2 Emboss-浮雕-3 Extrude-突出-4 Find Edges-查找边缘-5 Glowing Edges-照亮边缘-6 Solarize-曝光过度-7 Tiles-拼贴-8 Trace Contour-等高线-9 Wind-风--纹理-1 Craquelure-龟裂缝-2 Grain-颗粒-3 Mosained Tiles-马赛克拼贴-4 Patchwork-拼缀图-5 Stained Glass-染色玻璃-6 Texturixer-纹理化-视频-1 De-2 NTSC Colors-其它-1 Custom-自定义-2 High Pass-高反差保留-3 Maximum-最大值-4 Minimum-最小值-5 Offset-位移-1Embed Watermark-嵌入水印-2Read Watermark-读取水印七、View-视图View-新视图Setup-校样设置-1Custom-自定-2Working CMYK-处理CMYK-3Working Cyan Plate-处理青版-4Working Magenta Plate-处理洋红版-5Working Yellow Plate-处理黄版-6Working Black Plate-处理黑版-7Working CMY Plate-处理CMY版-8Macintosh RGB-9Windows RGB-10Monitor RGB-显示器RGB-11Simulate Paper White-模拟纸白-12Simulate Ink Black-模拟墨黑Color-校样颜色Wiring-色域警告In-放大Out-缩小on Screen-满画布显示Pixels-实际象素Size-打印尺寸Extras-显示额外的-显示-1 Selection Edges-选区边缘-2 Target Path-目标路径-3 Grid-网格-4 Guides-参考线-5 Slices-切片-6 Notes-注释-7 All-全部-8 None-无-9Show Extras Options-显示额外选项 Rulers-显示标尺-对齐To-对齐到-1 Guides-参考线-2 Grid-网格-3 Slices-切片-4 Document Bounds-文档边界-5 All-全部-6 None-无Guides-锁定参考线Guides-清除参考线Guides-新参考线Slices-锁定切片Slices-清除切片八、Windows-窗口-层叠-拼贴Icons-排列图标All-关闭全部Hide Tools-显示/隐藏工具Hide Options-显示/隐藏选项Hide Navigator-显示/隐藏导航Hide Info-显示/隐藏信息Hide Color-显示/隐藏颜色Hide Swatches-显示/隐藏色板Hide Styles-显示/隐藏样式Hide History-显示/隐藏历史记录Hide Actions-显示/隐藏动作Hide Layers-显示/隐藏图层Hide Channels-显示/隐藏通道Hide Paths-显示/隐藏路径Hide Character-显示/隐藏字符Hide Paragraph-显示/隐藏段落Hide Status Bar-显示/隐藏状态栏 Palette Locations-复位调板位置。

Graduated Nonconvexity by Functional Focusing

Graduated Nonconvexity by Functional Focusing

Graduated Nonconvexity by Functional FocusingMads NielsenAbstract —Reconstruction of noise-corrupted surfaces may be stated as a (in general nonconvex) functional minimization problem. For functionals with quadratic data term, this paper addresses the criteria for such functionals to be convex, and the variational approach for minimization. I present two automatic and general methods ofapproximation with convex functionals based on Gaussian convolution.They are compared to the Blake-Zisserman graduated nonconvexity (GNC) method and Bilbro et al. and Geiger and Girosi’s mean field annealing (MFA) of a weak membrane.Index Terms —Graduated nonconvexity, functional minimization, mean field annealing, Bayesian reconstruction.———————— 3 ————————1I NTRODUCTIONT HE reconstruction of noise-corrupted surfaces cannot in general be deduced . Information is lost, and the reconstruction must be inferred by an estimation paradigm such as Bayesian Maximum A Posteriori Estimation (MAP) or Minimum Description Length (MDL) [1]. MAP selects the most probable reconstruction while MDL selects the simplest explanation of the measurements. Under appropriate conditions [2], the two methodologies yield identical formulations, and I use the Bayesian formulation.A sampled surface D n :ޚޒa is noise-corrupted by additive noise N n :ޚޒa yielding the measurementsM (x ) = D (x ) + N (x ).The MAP estimate is found as the argument R n:ޚޒa maxi-mizing the a posteriori probabilityp R D M p M D R p D R p M ====ch c h b g b gwhere p (M ) can be perceived as a normalizing constant. This is maximized by the same argument R that minimizesE R p R D M cp M D R p D R E R E Rd s ∫-=+=-=-=∫+log log log c hc h b g(1)where E d is the data term and E s is the smoothness term . Assuming a model of independent identically distributed Gaussian noise, the data term becomes quadratic (Also spatially correlated and non-stationary Gaussian noise leads to a quadratic term as long as it is not correlated with the image.) in R , leading to (the inverse noise variance l s 22∫- is absorbed in E s [R ])E R MRE R ii s i =-+ŒÂe j2W(2)where superscript i denotes the i th point in the discrete surfacedomain W . In general, the smoothness term can express any prior knowledge on the surface, but here I assume the prior to be inde-pendent identically distributed in the gradient —R . That is,E R f R p R s ii i i=—∫-—ŒŒÂÂe j e j l 2WWlog (3)where f n :ޒޒa is the smoothness function . In the following, the convexity of the functional E [R ] is analyzed for various smooth-ness functions f .The shape of f determines the properties of the optimal recon-struction R . If f is quadratic, the minimization implies standard regularization as formulated by Tikhonov and Arsenin [3]. In this case, the functional E is convex and the unique solution can be found by a linear nonrecursive or recursive filtering [4], [5].Blake and Zisserman reformulated (by use of what Rangarajan and Chelleppa [6] call the adiabatic approximation) the discon-tinuous surface reconstruction problem of Geman and Geman [7]on the form of (3) so thatf TT x x x b g =<R S |T|l l 222222if otherwise(4)where ʈ◊ʈ indicates the Euclidean norm. In this case the solution is called the weak membrane, and the functional E is nonconvex and leads to a serious minimization problem. Other smoothness func-tions f have been used in computer vision [8]. The assumption of 3D isotropy of surface normals implies the Lorentzian estimator f x xb gej =+log 12[9] while the assumption of surface structurelike Brownian motion leads to a more complicated form of f [10].In the following, I analyze the class of smoothness functions f im-plying convex functionals E . This analysis is followed by the de-velopment and characterization of variational methods for ap-proximation of the solution in the nonconvex case. A comparison with and analysis of the Blake-Zisserman GNC and the MFA of the weak string is performed.2C ONVEXITY OF F UNCTIONALSThe convexity of a functional on the form of (2) and (3) can be specified directly as a constraint on the smoothness function f :T HEOREM 1 [1D C ONVEXITY ]. E [R ] on the form of (2) is convex if"Œ¢¢>-x G f x :b g12, where G is the set of possible gradient val-ues —R .P ROOF . Let N = |W |. E [R ] is convex if the Hessian H of E withrespect to R is positive definite: "Œ>x x Hx ޒNT:0. The Hessian can be written H = 2I + F , whereF f f f f f f f f f f f f f f N N N NNNN=¢¢-¢¢-¢¢¢¢+¢¢-¢¢-¢¢◊◊◊◊-¢¢-¢¢¢¢+¢¢-¢¢-¢¢¢¢L N M M M M M M O QPP P P PP ---222233111¢¢∫¢¢—f f R iic h , and the operator —iis defined as —∫--i i i x x x 1. Since "Œ≥—=Âx x x ޒN ii N :2222c h , the cri-terion of H being positive definite"+—¢¢>=Âx xx i:20222c h i Nif is always true if "Œ¢¢>-i N f i 212K :. This is true if ¢¢>-f x b g12 for every possible gradient value x Œ G .0162-8828/97/$10.00 © 1997 IEEE————————————————• The author is with 3D-Lab, School of Dentistry, Nørre Allé 25, DK-2200Copenhagen N, Denmark. E-mail: malte@lab3d.odont.ku.dk.Manuscript received Nov. 28, 1994; revised Feb. 24, 1997. Recommended for acceptance by J. Malik.For information on obtaining reprints of this article, please send e-mail to:transpami@, and reference IEEECS Log Number 104687.Normally I will identify G = ޒ, but some discussions regarding MFA simplifies using distinct notation. Notice, in the admissible class of smoothness functions f implying a convex functional the second derivative may indeed be negative and introduce disconti-nuities in the reconstruction. The above theorem is valid for inte-ger sampled signals in 1D where f is a function of the gradient.When another sampling h is used and f is a function of a derivative of order m the theorem still holds but with a modified limit on ¢¢f x b g[11]:¢¢>-+--F H I K--f x h m m m mb g211211In the case where the measurements M to be reconstructed are of ahigher dimensionality M n:ޒޒa , the picture complicates a bit.T HEOREM 2 [ND C ONVEXITY ]. A functional E [R ], R n :ޒޒa onthe form of (2) is convex if the Hessian H of the smoothness func-tion f is in the class +=Œ"Œ£>-R S TU V W¥•H y yy Hy ޒޒn nn T {}:112where ◊•denotes the maximum norm .The proof is analogous to the above [11]. Due to the square gridon which R is defined, the criterion is not rotationally symmetric.An isotropic separation reads: If the eigenvalues l i of the Hessian of f (x ) are all larger than -1/2n for every x , then E is convex. If one of the eigenvalues is smaller than -1/2, then E is in general non-convex. Notice that the different dimensions cannot help each other to gain convexity. On the contrary, they all have to share the convexity provided by the data term.3G RADUATED N ONCONVEXITYWhen the functional to be minimized is nonconvex, gradient methods do not guarantee obtaining the global minimum.Variational methods estimate the solution using an embedding of the functional E [R ] into a one-parameter family of functionals E s [R ] where E 0[R ] ∫ E [R ]. The (local) minimum of E s [R ] is tracked when the control parameter s is varied from s 0 to 0. The final estimate is a local minimum of E [R ] but not necessarily the global minimum. In order to argue about the quality of a varia-tional algorithm, I describe three properties: the initial functional E s 0, the general evolution of the functional, and the convergence of the functional.In a graduated nonconvexity (GNC) algorithm, the initial func-tional E R s 0 must be convex. Thus the estimate becomes inde-pendent of the initial state and may then be uniquely defined. A set of lines of steepest descent connects to a minimum and forms its basin of attraction. If the functional is convex, every function R is in the basin of attraction of the global minimum. If the initial functional E R s 0 contains several minima, the initial estimate will generically be contained in one basin defining the initially chosen minimum. Thus the final estimate may depend on the initial con-dition. Obtaining convexity in the initial functional is a critical point of a variational algorithm.The evolution of the functional and especially the creation and displacement of nonconvexities in the functional is vital to the final choice of minimum. In general, minima will be created and annihilated when varying the control parameter of the functional. The creation (or annihilation) happens through the catastrophes classified by Thom [12]. During the simplest event,the fold , minima appear/disappear on hillsides and the solution is still uniquely defined even though it may move discontinu-ously as a function of the control parameter [13]. During a cusp ,however, a minimum creation corresponds to a balanced split-ting of the minimum in two, and a unique tracking of the solu-tion is not defined. That is, cusps should not happen generically in the functional. The analysis of catastrophes in the functional is, even though important, not the subject of this paper.The displacement of the minimum during variation is impor-tant for the final solution. It is hard generally to quantify this dis-placement, but in the case of MFA of the weak membrane [14], [15]one can describe parts of the dynamics of the local minima and thereby derive some qualitative structure of the solution.Finally, the local minima of E s must converge to the local minima of E . This is captured in the mathematical concept of G -convergence [16]. In general, functions can be G -convergent with-out being uniform convergent and vice versa, but in a discrete setting uniform convergence implies G -convergence. Hence, I am in this context satisfied by uniformly convergence for GNC-algorithms.The GNC of the weak string by Blake and Zisserman [17] fulfils the above criteria of convexity and convergence. Here, the critical part of f is substituted by a negative parabola of second derivative larger than -1/2 and the interval of substitution shrinks with s . In the following, two GNC generating algorithms are presented.They work on a large class of smoothness functions and are auto-matic. Furthermore, the MFA of the weak string is reviewed in terms of the above properties of variational algorithms.4F OCUSING A LGORITHMSTwo GNC algorithms based on Gaussian blurring of the function-als are presented. The first, Smoothness Focusing (SF), performs a Gaussian blurring of the smoothness function f while the second,Probability Focusing (PF), performs a Gaussian blurring of the prior probability p x ef xb gb g ∫-.T HEOREM 3 [S MOOTHNESS B LURRING ]. Any functional E on theform of (2) having a smoothness function f (x ) ∫ g (x ) + h (x ), where h (x ) is integrable and g implies a convex functional E *= E d + Âg ,becomes convex by convolution of f (x ) with a Gaussian of appro-priate standard deviation s 0.P ROOF . From the convexity of E * and Theorem 1 follows "x Œޒ: g ¢¢(x ) ≥ b , where b >-12. Furthermore,Gf x dkG kg x k dkG x kh kbdkG k dk h k G x k b e dk h kx ss s ssspଙc h b g b g b g b g b gb g b g b gb g ≤=¢¢-+¢¢-≥-¢¢-=-z zzzzŒ-ޒޒޒޒޒޒsup /22323This implies that "Œ≤>-x G f x ޒ:/s 012ଙej b gifs p3322122>+-zeb dk h k//b gb gޒand thereby (Theorem 1) E s 0 is convex.In the case of the weak string (the 1D version of the weak membrane (4)), f (x ) can be constructed fromg x T h x x Tx Tb gb g ==-<R S Tl l l 22222222and if otherwise implying b = 0 anddk h k T ޒz=b g 4323l /. According to Theorem 3,the weak string becomes convex by a convolution of f with a Gaus-sian ofs 0 > 2e-1/2(9p /2)-1/6l 2/3T Ϸ 0.695l2/3TThis is a conservative estimate of the lower bound on s 0 and in reality approximately 9 percent higher than necessary. Notice, also functionals not mentioned in Theorem 3 may be convex after smoothness blurring. Examples are periodic smoothness functions which all imply convex approximations [11].T HEOREM 4 [P ROBABILITY B LURRING ]. The functional of (2) be-comes convex by a convolution of the prior distribution p x ef xb gb g ∫- by a Gaussian of finite standard deviation s > s 0[p ]when p is Gaussian except in a finite interval .The proof is given in [18]. It is also valid if the Gaussian part ofp has an infinite standard deviation, and thereby the Probability Blurring applies to the weak string.Both Smoothness and Probability Blurring have here been de-fined for the 1D case, but generalize to higher dimensions since Gaussian convolution is separable [11].These two blurring methods generating convex approximations of nonconvex functionals can be used to design GNC algorithms,here called focusing algorithms : The global minimum is found for s = s 0 and then locally tracked as s is lowered towards zero. In Fig. 1 the Smoothness Focusing behavior is compared to the Blake-Zisserman GNC. The SF finds a solution of lower energy for most image gradients. In general the BZ finds too many discontinuities while the SF finds too few. In Fig. 2 the development of disconti-nuities during the Smoothness Focusing of the weak membrane on an image of a water lily is shown.The focusing algorithms can be given a Bayesian rationale as respectively maximizing the expectation value of the a posterior probability and minimizing the expectation value of the energy functionals when the gradient can only be measured with noise from the discretely sampled image [19].In Fig. 3 the Probability Focusing is applied to the Lorentzian estimator f (x ) = l 2log(1 + |x ʈ2) assuming 3D isotropy of surface normals [9].Fig. 1. The energy of the weak string (l = 1, T = 1) as a function of the gradient of the input signal of the solutions found by Blake-Zisserman GNC and Smoothness Focusing. The BZ detects some discontinuitiesfor too small gradients while the SF detects discontinuities a little too late when the gradient is increased.Fig. 2. Development of discontinuities during Smoothness Focusing of weak membrane (l = 25, T = 3). From upper left: original image, gradi-ents larger than T indicated for s = 15, 12.5, 10.42, 6.03, 2.91, 1.17,0.47, 0.19, and the resulting image.Fig. 3. Reconstruction using the Lorentzian estimator and Probability Focusing. From upper left: original data, noise corrupted signal, width SNR =2 on the step edges, the reconstruction, and the normalized residual.5M EAN F IELD A NNEALINGMean field annealing (MFA) is a deterministic analogy of simu-lated annealing. Instead of randomly sampling a Gibbs distribu-tion of solutions, the mean of the distribution is computed:R dRRp R dRReZE R ∫∫zz-b gswhere Z , the partition function, normalises the distribution.When s tends towards infinity, all solutions have same prob-ability and the MF approximation becomes the center of gravity of the domain of R . When s tends to zero, only the solution of minimum energy has a nonzero probability, and the minimum-energy-solution equals R . However,the partition function and the integral are hard to evaluate, and approximations must in practice be introduced.In case of the weak string, Geiger and Girosi [15] used the so-called saddle point approximation while Bilbro et al. [14] used Peierl’s inequality to derive identical approximations of effective potential to be minimized. In these MF approximations, the smoothness term reads:f x T eT x s l sl s b g=-+F HG G I KJ J -221222log This term has the following properties [11]: the lower bound on the second derivative increases towards approximately -0.6l 2when s tends towards infinity. For large s the minimum in secondderivative occurs at x µ±s while for small s it occurs at x Ϸ T .T HEOREM 5 [MFA, W EAK S TRING C ONVEXITY ]. The above MeanField approximation of the weak string leads to a convex smooth-ness term for sufficiently large s if l < 0.9 or the image gradient—R Œ G is bounded from below and above .P ROOF . This follows from Theorem 1 and the above two proper-ties of f s .In practice, images are bounded (e.g., R Œ [0; I max ]) so that the finite difference approximation of the derivative is also bounded (e.g., G = [-I max ; I max ]). In this way the MFA creates a convex func-tional if s initially is chosen sufficiently large. However, the non-convexities (potential barriers) that may not be overcome travels in the solution space as —R = ±h (s ), where h (s ) decreases from I max toward T during the annealing. In this way the solution may be trapped between the potential barriers creating solutions with very low gradients. This behavior is generic for the proposed MFA. In Fig. 4 this is illustrated. Parameters (l , T ) are chosen to emphasize the trend; often the energy will drop before it increases as a function of the initial temperature.The MFA of the weak string does not gradually introduce nonconvexities, but merely intro-duces them at the boundary of the solution space and moves them inwards.Fig. 4. Phone image [15]. Left is MFA (l = 19, T = 1 like in [15]) for initial temperature s 0 = 10n, where n Œގ running from one to eight is the image number starting from upper left. All annealings end at s = 0.1. Below is the energy of the solution as a function of initial tem-perature compared to the SF and BZ-GNC solutions.6C ONCLUSIONI have derived criteria for functionals with quadratic data terms being convex. Two methods of approximating smoothness terms both based on Gaussian smoothing have been proposed. Gaussian smoothing has the advantage of being causal (i.e., not creating structure in the functional when applied [20]) and implying a semigroup structure. Applied to surface reconstruction problems, the functional approximation has produced GNC algorithms that perform marginally to significantly better than the Blake-Zisserman GNC on the weak string.The methods of approximation guarantee an initially convex functional and are fully automatic. They also provide a conserva-tive measure of the initial degree of smoothing needed. In this paper results are shown for the weak string and the robust Lorentzian estimator for reconstruction. In [18], more results can be seen. In [21], the Probability Focusing has been used in con-junction with an adaptive reconstruction scheme. Here, the prior is given as a measured histogram of gradients. Both the schemes are applicable to such situations of numerically represented smooth-ness functions.The methods have also been used in conjunction with stereo. However, in this case the data term is not quadratic and a convex functional cannot be guaranteed. Actually, it can be argued that an unbiased method can never guarantee a convex solution space in the stereo case [22].The criterion on the smoothness functional to imply a convex solution space is used to show that the Mean Field approximation of the weak string [14], [15] does not necessarily imply a convex functional. Furthermore, the MF Annealing is analyzed from the motion of nonconvexities indicating that the initial temperature defines the discontinuities and that they are arbitrarily few for a sufficiently high starting temperature.A CKNOWLEDGMENTSThe author thanks S.I. Olsen and J. Zerubia for discussions and comments and D. Geiger for making the Phone Image available.R EFERENCES[1] J. Rissanen, Stochastic Complexity in Statistical Inquiry. World Sci-entific Publishing, 1989.[2] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity andIts Applications. New York: Springer-Verlag, 1993.[3] A.N. Tikhonov and V.Y. Arsenin, Solution of Ill-Posed Problems.Washington, D.C.: Winston and Wiley, 1977.[4] M. Unser, A. Aldroubi, and M. Eden, “Recursive RegularizationFilters: Design, Properties, and Applications,” Transactions on Pat-tern Analysis and Machine Intelligence, vol. 13, Mar. 1991.[5] M. Nielsen, L. Florack, and R. Deriche, ”Regularization, ScaleSpace, and Edge Detection Filters,” J. Mathematical Imaging and Vi-sion, in press.[6] A. Rangarajan and R. Chellappa, “Generalized Graduated Non-Convexity Algorithm for Maximum A Posteriori Image Estima-tion,” Proc. 10th ICPR, Atlantic City, N.J., USA, June 1990.[7] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distribu-tion, and the Bayesian Restoration of Images,” Transactions on Pat-tern Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984. [8] A.R.P. Meer, D. Mintz, and D.Y. Kim, “Robust Regression Meth-ods for Computer Vision: A Review,” IJCV, vol. 6, no. 1, pp. 59-70, 1991.[9] M. Nielsen, “Isotropic Regularization,” Proc. Fourth BMVC, Guild-ford, England, Sept. 21-23, 1993.[10] P. Belhumeur, “A Binocular Stereo Algorithm for ReconstructingSloping, Creased, and Broken Surfaces, in the Presence of Half-Occlusion,” Int’l Conf. Computer Vision, Berlin, 1993.[11] M. Nielsen, “Surface Reconstruction: GNCs and MFA,” Tech.Rep. 2353, Institut National de Recherche en informatique et en automatique, Centre de Diffusion, INRIA, BP 105-78153 Le Ches-nay Cedex, France, Sept. 1994.[12] R. Thom, Structural Stability and Morphogenesis, translation byD.H. Fowler. New York: Benjamin–Addison Wesley, 1975.[13] P.T. Saunders, An Introduction to Catastrophe Theory. Cambridge,England: Cambridge Univ. Press, 1980.[14] G.L. Bilbro, W.E. Snyder, S.J. Garnier, and J.W. Gault, “MeanField Annealing: A Formalism for Constructing GNC-Like Algo-rithms,” IEEE Trans. Neural Networks, vol. 3, Jan. 1992.[15] D. Geiger and F. Girosi, “Parallel and Deterministic AlgorithmsFrom MFRs: Surface Reconstruction,” Transactions on Pattern Analysis and Machine Intelligence, vol. 13, May 1991.[16] R. March, “Visual Reconstruction With Discontinuities UsingVariational Methods,” Image and Vision Computing, vol. 10, Jan.-Feb. 1992.[17] A. Blake and A. Zisserman, Visual Reconstruction. Cambridge,Mass.: MIT Press, 1987.[18] M. Nielsen, From Paradigm to Algorithms in Computer Vision, PhDthesis, Datalogisk Institut ved Kobenhavns Universitet, Copenha-gen, Denmark, Apr. 1995.[19] M. Nielsen, “Surface Reconstruction: GNCs and MFA,” Proc. Int’lConf. Computer Vision, Cambridge, Mass., USA, pp. 344-349, June 20-23, 1995.[20] J.J. Koenderink, “The Structure of Images,” Biol. Cybern., vol. 50,pp. 363-370, 1984.[21] M. Nielsen, “Adaptive Regularization: Towards Self-CalibratedSurface Reconstruction,” Tech. Rep. 2351, Institut National de Re-cherche en informatique et en automatique, Centre de Diffusion, INRIA, BP 105-78153 Le Chesnay Cedex, France, Sept. 1994. [22] M. Nielsen and R. Deriche, “Binocular Dense Depth Reconstruc-tion Using Isotropy Constraint,” G. Borgefors, ed. Theory and Ap-plications of Image Processing II—Selected Articles From the Ninth Scandinavian Conference on Image Analysis. World Scientific Pub-lishing, 1995.。

ABSTRACT

ABSTRACT

Figure 1: Woodmod 5-D Data with Outliers. in data mining. For example, pairwise sample correlation coefficients are often examined in an exploratory data analysis (EDA) stage of data mining to determine which variables are highly correlated with one another. Estimated covariance matrices are used as the basis for computing principal components for both general principal components analysis (PCA), and for manual or automatic dimensionality reduction and variable selection. Estimated covariance matrices are also the basis for detecting multidimensional outliers through computation of the so-called Mahalanobis distances of the rows of a data table. Unfortunately the classical sample covariance and correlation matrix estimates, motivated by either Gaussian maximum likelihood or simple method of moments principles, are very sensitive to the presence of multidimensional outliers. Even a small fraction of outliers can distort these classical estimates to the extent that the estimates are very misleading, and virtually useless in any of the above data mining applications. To cope with the problem of outliers, statisticians have invented robust methods that are not much influenced by outliers for a wide range of problems, including estimation of covariance and correlation matrices. We illustrate the extent to which outliers can distort classical correlation matrix estimates and the value of having a robust correlation matrix estimate with the small five-dimensional data set example illustrated in Figures 1-3. Figure 1 shows all pairwise scatter plots of the 5-dimensional data set called “Woodmod”. This data clearly has at least several multidimensional outliers that show up as a cluster in several of the scatterplots. Note that while these outliers are clearly outliers in two-dimensional space they are

机器学习课件p3 遗传算法eb

机器学习课件p3 遗传算法eb

种群其余部分按排序表由高到低依次选 择填充
置换式余数随机选择法
开始部分同确定性选择法 余数部分用来计算轮转法中的权值
置换式余数随机选择法
开始部分同确定性选择法 余数部分按概率来处理
Rank-based Selection
Rank fitness assignment
f(x)x2
问题的表述与参数的编码
将待寻优的参数编码为有限长度的串
5位二进制编码
定义目标函数
极大值
Jx2
确定初始种群 step0
初始种群的数量
4
随机生成初始种群
01101 11000 01000 10011 染色体与基因
复制(Selection) step1
Loss of diversity
– proportion of individuals of a population that is not selected during the selection phase
复制的评价指标
Selection intensity
– expected average fitness value of the population after applying a selection method to the normalized Gaussian distribution
– absolute difference between an individual's normalized fitness and its expected probability of reproduction
复制的评价指标
Spread
– range of possible values for the number of offspring of an individual

MXM工具包:一种用于特征选择、交叉验证和贝叶斯网络的R包说明书

MXM工具包:一种用于特征选择、交叉验证和贝叶斯网络的R包说明书

A very brief guide to using MXMMichail Tsagris,Vincenzo Lagani,Ioannis Tsamardinos1IntroductionMXM is an R package which contains functions for feature selection,cross-validation and Bayesian Networks.The main functionalities focus on feature selection for different types of data.We highlight the option for parallel computing and the fact that some of the functions have been either partially or fully implemented in C++.As for the other ones,we always try to make them faster.2Feature selection related functionsMXM offers many feature selection algorithms,namely MMPC,SES,MMMB,FBED,forward and backward regression.The target set of variables to be selected,ideally what we want to discover, is called Markov Blanket and it consists of the parents,children and parents of children(spouses) of the variable of interest assuming a Bayesian Network for all variables.MMPC stands for Max-Min Parents and Children.The idea is to use the Max-Min heuristic when choosing variables to put in the selected variables set and proceed in this way.Parents and Children comes from the fact that the algorithm will identify the parents and children of the variable of interest assuming a Bayesian Network.What it will not recover is the spouses of the children of the variable of interest.For more information the reader is addressed to[23].MMMB(Max-Min Markov Blanket)extends the MMPC to discovering the spouses of the variable of interest[19].SES(Statistically Equivalent Signatures)on the other hand extends MMPC to discovering statistically equivalent sets of the selected variables[18,9].Forward and Backward selection are the two classical procedures.The functionalities or the flexibility offered by all these algorithms is their ability to handle many types of dependent variables,such as continuous,survival,categorical(ordinal,nominal, binary),longitudinal.Let us now see all of them one by one.The relevant functions are1.MMPC and SES.SES uses MMPC to return multiple statistically equivalent sets of vari-ables.MMPC returns only one set of variables.In all cases,the log-likelihood ratio test is used to assess the significance of a variable.These algorithms accept categorical only, continuous only or mixed data in the predictor variables side.2.wald.mmpc and wald.ses.SES uses MMPC using the Wald test.These two algorithmsaccept continuous predictor variables only.3.perm.mmpc and perm.ses.SES uses MMPC where the p-value is obtained using per-mutations.Similarly to the Wald versions,these two algorithms accept continuous predictor variables only.4.ma.mmpc and ma.ses.MMPC and SES for multiple datasets measuring the same variables(dependent and predictors).5.MMPC.temporal and SES.temporal.Both of these algorithms are the usual SES andMMPC modified for correlated data,such as clustered or longitudinal.The predictor vari-ables can only be continuous.6.fbed.reg.The FBED feature selection method[2].The log-likelihood ratio test or the eBIC(BIC is a special case)can be used.7.fbed.glmm.reg.FBED with generalised linear mixed models for repeated measures orclustered data.8.fbed.ge.reg.FBED with GEE for repeated measures or clustered data.9.ebic.bsreg.Backward selection method using the eBIC.10.fs.reg.Forward regression method for all types of predictor variables and for most of theavailable tests below.11.glm.fsreg Forward regression method for logistic and Poisson regression in specific.Theuser can call this directly if he knows his data.12.lm.fsreg.Forward regression method for normal linear regression.The user can call thisdirectly if he knows his data.13.bic.fsreg.Forward regression using BIC only to add a new variable.No statistical test isperformed.14.bic.glm.fsreg.The same as before but for linear,logistic and Poisson regression(GLMs).15.bs.reg.Backward regression method for all types of predictor variables and for most of theavailable tests below.16.glm.bsreg.Backward regression method for linear,logistic and Poisson regression(GLMs).17.iamb.The IAMB algorithm[20]which stands for Incremental Association Markov Blanket.The algorithm performs a forward regression at first,followed by a backward regression offering two options.Either the usual backward regression is performed or a faster variation, but perhaps less correct variation.In the usual backward regression,at every step the least significant variable is removed.In the IAMB original version all non significant variables are removed at every step.18.mmmb.This algorithm works for continuous or categorical data only.After applying theMMPC algorithm one can go to the selected variables and perform MMPC on each of them.A list with the available options for this argument is given below.Make sure you include the test name within””when you supply it.Most of these tests come in their Wald and perm (permutation based)versions.In their Wald or perm versions,they may have slightly different acronyms,for example waldBinary or WaldOrdinal denote the logistic and ordinal regression respectively.1.testIndFisher.This is a standard test of independence when both the target and the setof predictor variables are continuous(continuous-continuous).2.testIndSpearman.This is a non-parametric alternative to testIndFisher test[6].3.testIndReg.In the case of target-predictors being continuous-mixed or continuous-categorical,the suggested test is via the standard linear regression.If the robust option is selected,M estimators[11]are used.If the target variable consists of proportions or percentages(within the(0,1)interval),the logit transformation is applied beforehand.4.testIndRQ.Another robust alternative to testIndReg for the case of continuous-mixed(or continuous-continuous)variables is the testIndRQ.If the target variable consists of proportions or percentages(within the(0,1)interval),the logit transformation is applied beforehand.5.testIndBeta.When the target is proportion(or percentage,i.e.,between0and1,notinclusive)the user can fit a regression model assuming a beta distribution[5].The predictor variables can be either continuous,categorical or mixed.6.testIndPois.When the target is discrete,and in specific count data,the default test isvia the Poisson regression.The predictor variables can be either continuous,categorical or mixed.7.testIndNB.As an alternative to the Poisson regression,we have included the Negativebinomial regression to capture cases of overdispersion[8].The predictor variables can be either continuous,categorical or mixed.8.testIndZIP.When the number of zeros is more than expected under a Poisson model,thezero inflated poisson regression is to be employed[10].The predictor variables can be either continuous,categorical or mixed.9.testIndLogistic.When the target is categorical with only two outcomes,success or failurefor example,then a binary logistic regression is to be used.Whether regression or classifi-cation is the task of interest,this method is applicable.The advantage of this over a linear or quadratic discriminant analysis is that it allows for categorical predictor variables as well and for mixed types of predictors.10.testIndMultinom.If the target has more than two outcomes,but it is of nominal type(political party,nationality,preferred basketball team),there is no ordering of the outcomes,multinomial logistic regression will be employed.Again,this regression is suitable for clas-sification purposes as well and it to allows for categorical predictor variables.The predictor variables can be either continuous,categorical or mixed.11.testIndOrdinal.This is a special case of multinomial regression,in which case the outcomeshave an ordering,such as not satisfied,neutral,satisfied.The appropriate method is ordinal logistic regression.The predictor variables can be either continuous,categorical or mixed.12.testIndTobit(Tobit regression for left censored data).Suppose you have measurements forwhich values below some value were not recorded.These are left censored values and by using a normal distribution we can by pass this difficulty.The predictor variables can be either continuous,categorical or mixed.13.testIndBinom.When the target variable is a matrix of two columns,where the first one isthe number of successes and the second one is the number of trials,binomial regression is to be used.The predictor variables can be either continuous,categorical or mixed.14.gSquare.If all variables,both the target and predictors are categorical the default test isthe G2test of independence.An alternative to the gSquare test is the testIndLogistic.With the latter,depending on the nature of the target,binary,un-ordered multinomial or ordered multinomial the appropriate regression model is fitted.The predictor variables can be either continuous,categorical or mixed.15.censIndCR.For the case of time-to-event data,a Cox regression model[4]is employed.Thepredictor variables can be either continuous,categorical or mixed.16.censIndWR.A second model for the case of time-to-event data,a Weibull regression modelis employed[14,13].Unlike the semi-parametric Cox model,the Weibull model is fully parametric.The predictor variables can be either continuous,categorical or mixed.17.censIndER.A third model for the case of time-to-event data,an exponential regressionmodel is employed.The predictor variables can be either continuous,categorical or mixed.This is a special case of the Weibull model.18.testIndIGreg.When you have non negative data,i.e.the target variable takes positivevalues(including0),a suggested regression is based on the the inverse Gaussian distribution.The link function is not the inverse of the square root as expected,but the logarithm.This is to ensure that the fitted values will be always be non negative.An alternative model is the Weibull regression(censIndWR).The predictor variables can be either continuous, categorical or mixed.19.testIndGamma(Gamma regression).Gamma distribution is designed for strictly positivedata(greater than zero).It is used in reliability analysis,as an alternative to the Weibull regression.This test however does not accept censored data,just the usual numeric data.The predictor variables can be either continuous,categorical or mixed.20.testIndNormLog(Gaussian regression with a log link).Gaussian regression using the loglink(instead of the identity)allows non negative data to be handled naturally.Unlike the gamma or the inverse gaussian regression zeros are allowed.The predictor variables can be either continuous,categorical or mixed.21.testIndClogit.When the data come from a case-control study,the suitable test is via con-ditional logistic regression[7].The predictor variables can be either continuous,categorical or mixed.22.testIndMVReg.In the case of multivariate continuous target,the suggested test is viaa multivariate linear regression.The target variable can be compositional data as well[1].These are positive data,whose vectors sum to1.They can sum to any constant,as long as it the same,but for convenience reasons we assume that they are normalised to sum to1.In this case the additive log-ratio transformation(multivariate logit transformation)is applied beforehand.The predictor variables can be either continuous,categorical or mixed.23.testIndGLMMReg.In the case of a longitudinal or clustered target(continuous,propor-tions within0and1(not inclusive)),the suggested test is via a(generalised)linear mixed model[12].The predictor variables can only be continuous.This test is only applicable in SES.temporal and MMPC.temporal.24.testIndGLMMPois.In the case of a longitudinal or clustered target(counts),the suggestedtest is via a(generalised)linear mixed model[12].The predictor variables can only be continuous.This test is only applicable in SES.temporal and MMPC.temporal.25.testIndGLMMLogistic.In the case of a longitudinal or clustered target(binary),thesuggested test is via a(generalised)linear mixed model[12].The predictor variables can only be continuous.This test is only applicable in SES.temporal and MMPC.temporal.To avoid any mistakes or wrongly selected test by the algorithms you are advised to select the test you want to use.All of these tests can be used with SES and MMPC,forward and backward regression methods.MMMB accepts only testIndFisher,testIndSpearman and gSquare.The reason for this is that MMMB was designed for variables(dependent and predictors)of the same type.For more info the user should see the help page of each function.2.1A more detailed look at some arguments of the feature selection algorithmsSES,MMPC,MMMB,forward and backward regression offer the option for robust tests(the argument robust).This is currently supported for the case of Pearson correlation coefficient and linear regression at the moment.We plan to extend this option to binary logistic and Poisson regression as well.These algorithms have an argument user test.In the case that the user wants to use his own test,for example,mytest,he can supply it in this argument as is,without””. For all previously mentioned regression based conditional independence tests,the argument works as test=”testIndFisher”.In the case of the user test it works as user test=mytest.The max kargument must always be at least1for SES,MMPC and MMMB,otherwise it is a simple filtering of the variables.The argument ncores offers the option for parallel implementation of the first step of the algorithms.The filtering step,where the significance of each predictor is assessed.If you have a few thousands of variables,maybe this option will do no significant improvement.But, if you have more and a”difficult”regression test,such as quantile regression(testIndRQ),then with4cores this could reduce the computational time of the first step up to nearly50%.For the Poisson,logistic and normal linear regression we have included C++codes to speed up this process,without the use of parallel.The FBED(Forward Backward Early Dropping)is a variant of the Forward selection is per-formed in the first phase followed by the usual backward regression.In some,the variation is that every non significant variable is dropped until no mre significant variables are found or there is no variable left.The forward and backward regression methods have a few different arguments.For example stopping which can be either”BIC”or”adjrsq”,with the latter being used only in the linear regression case.Every time a variable is significant it is added in the selected variables set.But, it may be the case,that it is actually not necessary and for this reason we also calculate the BIC of the relevant model at each step.If the difference BIC is less than the tol(argument)threshold value the variable does not enter the set and the algorithm stops.The forward and backward regression methods can proceed via the BIC as well.At every step of the algorithm,the BIC of the relevant model is calculated and if the BIC of the model including a candidate variable is reduced by more that the tol(argument)threshold value that variable is added.Otherwise the variable is not included and the algorithm stops.2.2Other relevant functionsOnce SES or MMPC are finished,the user might want to see the model produced.For this reason the functions ses.model and mmpc.model can be used.If the user wants to get some summarised results with MMPC for many combinations of max k and treshold values he can use the mmpc.path function.Ridge regression(ridge.reg and ridge.cv)have been implemented. Note that ridge regression is currently offered only for linear regression with continuous predictor variables.As for some miscellaneous,we have implemented the zero inflated Poisson and beta regression models,should the user want to use them.2.3Cross-validationcv.ses and cv.mmpc perform a K-fold cross validation for most of the aforementioned regression models.There are many metric functions to be used,appropriate for each case.The folds can be generated in a stratified fashion when the dependent variable is categorical.3NetworksCurrently three algorithms for constructing Bayesian Networks(or their skeleton)are offered,plus modifications.MMHC(Max-Min Hill-Climbing)[23],(mmhc.skel)which constructs the skeleton of the Bayesian Network(BN).This has the option of running SES[18]instead.MMHC(Max-Min Hill-Climbing)[23],(local.mmhc.skel)which constructs the skeleton around a selected node.It identifies the Parents and Children of that node and then finds their Parents and Children.MMPC followed by the PC rules.This is the command mmpc.or.PC algorithm[15](pc.skel for which the orientation rules(pc.or)have been implemented as well.Both of these algorithms accept continuous only,categorical data only or a mix of continuous,multinomial and ordinal.The skeleton of the PC algorithm has the option for permutation based conditional independence tests[21].The functions ci.mm and ci.fast perform a symmetric test with mixed data(continuous, ordinal and binary data)[17].This is employed by the PC algorithm as well.Bootstrap of the PC algorithm to estimate the confidence of the edges(pc.skel.boot).PC skeleton with repeated measures(glmm.pc.skel).This uses the symetric test proposed by[17]with generalised linear models.Skeleton of a network with continuous data using forward selection.The command work does a similar to MMHC task.It goes to every variable and instead applying the MMPC algorithm it applies the forward selection regression.All data must be continuous,since the Pearson correlation is used.The algorithm is fast,since the forward regression with the Pearson correlation is very fast.We also have utility functions,such as1.rdag and rdag2.Data simulation assuming a BN[3].2.findDescendants and findAncestors.Descendants and ancestors of a node(variable)ina given Bayesian Network.3.dag2eg.Transforming a DAG into an essential(mixed)graph,its class of equivalent DAGs.4.equivdags.Checking whether two DAGs are equivalent.5.is.dag.In fact this checks whether cycles are present by trying to topologically sort theedges.BNs do not allow for cycles.6.mb.The Markov Blanket of a node(variable)given a Bayesian Network.7.nei.The neighbours of a node(variable)given an undirected graph.8.undir.path.All paths between two nodes in an undirected graph.9.transitiveClosure.The transitive closure of an adjacency matrix,with and without arrow-heads.10.bn.skel.utils.Estimation of false discovery rate[22],plus AUC and ROC curves based onthe p-values.11.bn.skel.utils2.Estimation of the confidence of the edges[16],plus AUC and ROC curvesbased on the confidences.12.plotnetwork.Interactive plot of a graph.4AcknowledgmentsThe research leading to these results has received funding from the European Research Coun-cil under the European Union’s Seventh Framework Programme(FP/2007-2013)/ERC Grant Agreement n.617393.References[1]John Aitchison.The statistical analysis of compositional data.Chapman and Hall London,1986.[2]Giorgos Borboudakis and Ioannis Tsamardinos.Forward-Backward Selection with Early Drop-ping,2017.[3]Diego Colombo and Marloes H Maathuis.Order-independent constraint-based causal structurelearning.Journal of Machine Learning Research,15(1):3741–3782,2014.[4]David Henry Cox.Regression Models and Life-Tables.Journal of the Royal Statistical Society,34(2):187–220,1972.[5]Silvia Ferrari and Francisco Cribari-Neto.Beta regression for modelling rates and proportions.Journal of Applied Statistics,31(7):799–815,2004.[6]Edgar C Fieller and Egon S Pearson.Tests for rank correlation coefficients:II.Biometrika,48:29–40,1961.[7]Mitchell H Gail,Jay H Lubin,and Lawrence V Rubinstein.Likelihood calculations for matchedcase-control studies and survival studies with tied death times.Biometrika,68(3):703–707, 1981.[8]Joseph M Hilbe.Negative binomial regression.Cambridge University Press,2011.[9]Vincenzo Lagani,Giorgos Athineou,Alessio Farcomeni,Michail Tsagris,and IoannisTsamardinos.Feature Selection with the R Package MXM:Discovering Statistically-Equivalent Feature Subsets.Journal of Statistical Software,80(7),2017.[10]Diane Lambert.Zero-inflated Poisson regression,with an application to defects in manufac-turing.Technometrics,34(1):1–14,1992.[11]RARD Maronna,Douglas Martin,and Victor Yohai.Robust statistics.John Wiley&Sons,Chichester.ISBN,2006.[12]Jose Pinheiro and Douglas Bates.Mixed-effects models in S and S-PLUS.Springer Science&Business Media,2006.[13]FW Scholz.Maximum likelihood estimation for type I censored Weibull data including co-variates,1996.[14]Richard L Smith.Weibull regression models for reliability data.Reliability Engineering&System Safety,34(1):55–76,1991.[15]Peter Spirtes,Clark Glymour,and Richard Scheines.Causation,Prediction,and Search.TheMIT Press,second edi edition,12001.[16]Sofia Triantafillou,Ioannis Tsamardinos,and Anna Roumpelaki.Learning neighborhoods ofhigh confidence in constraint-based causal discovery.In European Workshop on Probabilistic Graphical Models,pages487–502.Springer,2014.[17]Michail Tsagris,Giorgos Borboudakis,Vincenzo Lagani,and Ioannis Tsamardinos.Constraint-based Causal Discovery with Mixed Data.In The2017ACM SIGKDD Work-shop on Causal Discovery,14/8/2017,Halifax,Nova Scotia,Canada,2017.[18]I.Tsamardinos,gani,and D.Pappas.Discovering multiple,equivalent biomarker sig-natures.In In Proceedings of the7th conference of the Hellenic Society for Computational Biology&Bioinformatics,Heraklion,Crete,Greece,2012.[19]Ioannis Tsamardinos,Constantin F Aliferis,and Alexander Statnikov.Time and sampleefficient discovery of Markov blankets and direct causal relations.In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining,pages673–678.ACM,2003.[20]Ioannis Tsamardinos,Constantin F Aliferis,Alexander R Statnikov,and Er Statnikov.Al-gorithms for Large Scale Markov Blanket Discovery.In FLAIRS conference,volume2,pages 376–380,2003.[21]Ioannis Tsamardinos and Giorgos Borboudakis.Permutation testing improves Bayesian net-work learning.In ECML PKDD’10Proceedings of the2010European conference on Machine learning and knowledge discovery in databases,pages322–337.Springer-Verlag,2010.[22]Ioannis Tsamardinos and Laura E Brown.Bounding the False Discovery Rate in LocalBayesian Network Learning.In AAAI,pages1100–1105,2008.[23]Ioannis Tsamardinos,Laura E.Brown,and Constantin F.Aliferis.The Max-Min Hill-ClimbingBayesian Network Structure Learning Algorithm.Machine Learning,65(1):31–78,2006.。

张晟-西南交通大学人事处

张晟-西南交通大学人事处
2.与Florent Baudier合作给出了可数分叉树嵌入到具有(β)性质的Banach空间所需偏转的最优估计,并将此结论应用到Banach空间非线性几何理论中,在一致范畴和粗范畴的意义下,统一并改善了一系列有关经典序列空间之间商映射的结论。
以上成果发表学术论文2篇(独立作者1篇,通讯作者1篇),均被SCI收录。SCI他人引用2次。
2013.8-2016.7
Banach Space and Metric Geometry(NSF DMS-1301604)
美国国家科学基金
$293,000.00
参与(导师主持)
5、科研项目:
项目时间
项目名称
项目类型
经费
参与状况(排序)
6、出版专著
著作名称
作者
出版社
出版年份
ISBN号
7、专利情况
专利类别
基础数学
主要学术成绩、创新成果及评价
(限800字以内)
参与美国国家科学基金项目1项(NSF DMS-1301604)。研究方向为泛函分析,主要从事Banach空间的非线性几何理论以及度量几何等相关方面的研究。
1.首先提出了在大尺度几何意义下的非线性商映射的概念——粗商映射;给出了经典Banach空间 ( )的粗商的线性刻画;证明了序列空间 不是具有(β)性质的Banach空间的粗商,并且当 时,不存在从序列空间 到 的粗商映射。
第一作者或通信作者论文:A++2篇;A+篇;A篇;B+篇;B篇。
2、学习经历
学历/学位
起止时间
毕业学校
所学专业
导师
培养方式
本科
2004.9-2008.7
厦门大学
数学与应用数学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Gaussian-selection-based non-optimal searchfor speaker identificationMarie Roch*San Diego State University,5500Campanile Drive,San Diego,CA 92182-7720,USA Received 3February 2004;received in revised form 28March 2005;accepted 5June 2005AbstractMost speaker identification systems train individual models for each speaker.This is done as individual models often yield better performance and they permit easier adaptation and enrollment.When classifying a speech token,the token is scored against each model and the maximum a priori decision rule is used to decide the classification label.Conse-quently,the cost of classification grows linearly for each token as the population size grows.When considering that the number of tokens to classify is also likely to grow linearly with the population,the total work load increases exponentially.This paper presents a preclassifier which generates an N -best hypothesis using a novel application of Gaussian selec-tion,and a transformation of the traditional tail test statistic which lets the implementer specify the tail region in terms of probability.The system is trained using parameters of individual speaker models and does not require the original feature vectors,even when enrolling new speakers or adapting existing ones.As the correct class label need only be in the N -best hypothesis set,it is possible to prune more Gaussians than in a traditional Gaussian selection application.The N -best hypothesis set is then evaluated using individual speaker models,resulting in an overall reduction of workload.Ó2005Elsevier B.V.All rights reserved.Keywords:Speaker recognition;Text-independent speaker identification;Talker recognition;Gaussian selection;Non-optimal search1.IntroductionTraditionally,speaker identification is imple-mented by training a single model for each speaker in the set of individuals to be identified.Identifica-tion is accomplished by scoring a test utterance against each model and using a decision rule,such as the maximum a posteriori (MAP)decision rule where the class of the highest scoring model is selected as the class label.The advantages of such schemes over training a single model with multiple class outputs is that enrollment of new speakers does not require the0167-6393/$-see front matter Ó2005Elsevier B.V.All rights reserved.doi:10.1016/j.specom.2005.06.003*Tel.:+16195945830;fax:+16195946746.E-mail address:marie.roch@Speech Communication xxx (2005)xxx–xxxtraining data for the existing speakers and the training of individual models is faster.The down-side to this approach is that the computational complexity required for identification grows line-arly for the classification of each speaker as the number of the speakers increases.Unless the majority of enrolled speakers are infrequent users of the system,it is reasonable to expect that as the number of registered users increase,the num-ber of classification requests could increase at least linearly.Under this assumption,the system load rises exponentially as the registered population in-creases due to the increase of requests and increase of models to check against.In this work,we develop a preclassifier which produces a hypothesis that a token is most likely to belong to one of a small subset of the possible classes.The token is then rescored against the tra-ditional per class models and afinal class label is assigned.The design goals are to produce a pre-classifier with the following properties:(1)The computational workload of the system isreduced.(2)Enrollment of new speakers should be of lowcost.Regeneration of the preclassifier as newspeakers are enrolled should not be cost pro-hibitive with respect to both time and spacerequirements.(3)There should be minimal or small impact onthe classification error e of the sys-tem should incur no more than a smallpenalty in classification performance.We will show that a system meeting the above criteria can be achieved through a novel applica-tion of Gaussian selection.A Gaussian selection system is constructed which evaluates a subset of the non-outlier Gaussians near each speaker.Un-like traditional Gaussian selection systems like those described in PichenyÕs(1999)review of large vocabulary dictation systems,there is no attempt to capture all of the distributions for which the point is not an outlier.A small subset of the distri-butions is sufficient to identify a set of promising candidates.This candidate set is then rescored using speaker-specific models and the MAP deci-sion rule is applied.It should be noted that the proposed system is non-optimal;there is no guarantee that the hypothesis set will contain the correct class of the token being classified.As will be demonstrated empirically in the experimental section,in most cases this has minimal impact on the classification error rate for the evaluated corpora.The remainder of this paper is organized as fol-lows:Section2describes an overview of existing techniques to reduce the computational load of speaker recognition systems.Next,we review Gaussian selection(Section3)and present a way to specify the outlier test in terms of probability. Section4describes how Gaussian selection can be applied to construct an efficient preclassifier which meets the stated design goals.Section5 describes the experimental methodology,and results are reported in Section6.Finally,we sum-marize ourfindings in Section7.2.BackgroundThe proposed Gaussian-selection-based preclas-sifier differs from other non-optimal search tech-niques such as the well-known beam search (Huang et al.,2001),time-reordered beam search of Pellom and Hansen(1998),and confidence-based pruning(Kinnunen et al.,in press)in that classification speed can be increased without prun-ing candidates before all feature vectors are consid-ered,but the system could of course be combined with such techniques.In terms of system architec-ture,the proposed technique is similar to the two stage classification system of Pan et al.(2000)where two learning vector quantizers(LVQ)of differing size are used forfirst and second pass scoring.There are several partition-based approaches that have been proposed for speech and speaker recognition systems.The partitioning results in a pruning of Gaussian evaluations.These systems can be separated into techniques which provide separate partitions for each model and those that partition the entire feature space.Pruning of Gaussians in these techniques occurs when com-puting the posterior likelihood for thefinal classi-fication decision,and in all cases it is not part of a N-best match strategy.2M.Roch/Speech Communication xxx(2005)xxx–xxxModel-specific partitioning schemes include the original Gaussian selection scheme of Bocchieri (1993)(which is discussed in the next section)as well as proposals by Lin et al.(1996),and Auc-kenthaler and Mason(2001).LVQ has been used to partition the feature space for speaker identifi-cation by Lin et al.(1996)with each partition rep-resented by a Gaussian mixture model(GMM). Auckenthaler and Mason(2001)applied Gaussian selection to the speaker verification task.They also developed so-called‘‘hash models,’’where mix-tures of a low-order GMM contained mappings indicating which mixtures of a larger GMM should be evaluated.Examples of feature space partitioning can be found in(Reynolds et al.,2000;Padmanabhan et al.,1999;Xiang and Berger,2003).In a speaker verification task,Reynolds et al.(2000)construct a universal background model(UBM)for speaker verification which is a GMM consisting of speech from a large set of disjoint speakers.Individual GMM speaker models are adapted from the UBM using maximum a posteriori(MAP)adapta-tion of the mixture means.When scoring,the UBM is scoredfirst and the mixtures of the adapted GMM corresponding to the top-ranking UBM mixtures are subsequently scored.Padmanabhan et al.(1999)proposed the parti-tioning of the feature space through the use of decision trees in a speech recognition task.During classification,the decision tree is traversed for each feature vector,and only classes associated with the leaf node are evaluated.As the feature data is re-quired for creating the decision tree,this technique would require that training data be retained mak-ing it difficult to meet design goal2in Section1 when new speakers are enrolled or existing ones are adapted.Davenport et al.(1999)have pro-posed a simpler version of this scheme for the BBN Byblos system.Xiang and Berger(2003)created a tree struc-tured classification system for speaker verification. The tree structure was based on the work of Shi-noda and Lee(2001).Each split point forms an interior node of a tree which they call a structural background model(SBM).Efficient computation is achieved by scoring each child of the root and only scoring the children of the best mixture.This technique is applied recursively until the leaf nodes are reached.This results in efficient scoring with a slight increase in error rate,similar to that of Gaussian selection techniques.The error rate is re-duced by exploiting the multiple resolutions of the model,using a multi-layer perceptron trained by back-propagation.The authors propose that the system could be extended to speaker identification by adding one output node per class to the neural network.The training time and training data stor-age requirements would make the neural network portion of this model difficult to apply to speaker identification in situations where new enrollment or adaptation is a common occurrence.The proposed preclassifier falls in the category of feature space partitioning methods and differs from the aforementioned techniques although it is possible to combine it with some of the existing techniques as will be briefly discussed in the conclusion.3.Gaussian selectionThe evaluation of probability density functions (pdfs)in parametric statistical models is a compu-tationally expensive task.For any given observa-tion,the observation is likely to be an outlier with respect to many of the modelsÕdensity func-tions.The goal of Gaussian selection is to identify Gaussians where the observation is an outlier and replace their evaluation with a small constant or table lookup.Bocchieri(1993)was thefirst to propose a tech-nique to efficiently partition a set of distributions into outlier versus non-outlier distributions and to use this knowledge to reduce the set of pdfs that need be evaluated.In his algorithm,the feature space is partitioned by a vector quantization (VQ)codebook which is generated from the means of the Gaussian distributions of an HMM.Each of the codewords is examined to determine whether or not it would be considered an outlier with respect to all of the pdfs in the model.The pdfs for which the codeword is not an outlier are retained as a set which later researchers called a short list.The same pdf may appear on multiple short lists.M.Roch/Speech Communication xxx(2005)xxx–xxx3During recognition,observed feature vectors are quantized to the nearest codeword and the pdfs on the short list are evaluated.The contribution of the omitted pdfs is represented by the addition of a small constant.For a more detailed introduction to Gaussian selection,the interested reader is referred to Gales et al.(1999)whose presentation we follow where possible.For brevity,we only analyze GMMs,but the discussion is applicable to HMMs with minor changes.Before giving a formal introduction to Gauss-ian selection,we will introduce some useful nota-tion for GMMs and VQ Codebooks.It is assumed that the reader is familiar with these con-cepts;details can be found in standard texts such as Huang et al.(2001).Let us assume that a GMM is denoted as a 4-tu-ple M =(a ,l ,R ,h )of N m mixtures where each mix-ture 16j 6N m is a normal distribution N ðl j ;R j Þwith prior weight a j such that P N mj ¼1a j ¼1.It is as-sumed that the variance–covariance matrices R are diagonal.After an appropriate initial guess,the weights can be estimated by the expectation maxi-mization algorithm.The term h denotes the N h -dimensional feature space R N h .A VQ codebook is denoted as a 4-tuple V =(/,d ,q ,h )where:/is a set of N /codewords f /1;/2;...;/N /g &h ;d :h Âh !R is a distance metric which measures the distortion between two vectors.A common definition of d is the Euclidean distortion,or squared distance metric.q :h !/is a function which maps a vector x 2h to the minimum distortion codeword:q ðx Þ¼arg min /i 2/d ð/i ;x Þ.h is the N h -dimensional fea-ture space domain.In cases where the vectors of h being quantized are means of Gaussians them-selves,other distortion metrics such as the sym-metric Kullback–Leibler divergence have been used (e.g.Shinoda and Lee,2001).A codebook V is trained from the means of a specific GMM M .Next,each codeword /j is com-pared with the set of GMM mixtures to determine whether or not the codeword is an outlier with re-spect to individual mixtures.The test originally proposed for Gaussian selection by Bocchieri (1993)to determine if the m th Gaussian is an out-lier is shown in (1):outlier ðm ;/j Þ¼11N h P N h i ¼1ð/j ði ÞÀl m ði ÞÞ2R m ði ;i Þ>H ;1N hP N h i ¼1ð/j ði ÞÀl m ði ÞÞ2R m ði ;i Þ6H ;8>>><>>>:ð1Þwhere H is empirically determined and signifi-cantly greater than 1.In Bocchieri Õs study,he examined values between 1.5and 4.0.By analyzing (1),we can write a different repre-sentation of the tail test which provides better in-sight into the outlier identification process.Letus define z i ¼/j ði ÞÀl m ði ÞffiffiffiffiffiffiffiffiffiffiR m ði ;i Þp.As the codewords /j are representative of observations drawn from a nor-mal distribution and the components are assumedto be independent,each z i is representative of inde-pendent and identically distributed vectors with a distribution N ð0;1Þ.Consequently,(1)can be thought of as a scaled sum of squared z scores.The sum of N h independent and identically distrib-uted squared samples from a standard normal dis-tribution has a chi-squared distribution with N h degrees of freedom (Hogg and Allen,1978)which we will denote as v 2(N h ).Thus,(1)may be rewrit-ten asoutlier ðB s ;m ;/j Þ¼1P N h i ¼1z 2i >H 0;0P N h i ¼1z 2i 6H 0;8>>><>>>:ð2Þwhere H 0=N h H .The Pr P N h i ¼1z 2i ÀÁ6H 0can be found by using the cumulative distribution func-tion (cdf)for v 2(N h )which we will denote with operator F .In Bocchieri Õs study,he used 38dimen-sional feature vectors.When H =1.5,it corre-sponds to rejecting points as outliers if they lie within the tail 2.45%of the distribution (1ÀF (38·1.5)).By using the inverse cumulative distribution function F À1,it is possible to specify a probability which indicates what portion q of the distribution should be considered the tail:outlier ðB s ;m ;/j Þ¼1P N h i ¼1z 2i >F À1ð1Àq Þ;0P N h i ¼1z 2i 6FÀ1ð1Àq Þ.8>>><>>>:ð3Þ4M.Roch /Speech Communication xxx (2005)xxx–xxxAs an example,to specify that points lying on the last5%of the tails should be considered outliers, one could compute FÀ1(.95)=53.384,or a value of H=1.405in Eq.(1).It is worth mentioning that v2(N h)is well approximated by NðN h;2N hÞfor large enough N h and that the inverse cdf of the normal distribution could also be used.Unlike Eq.(1),Eq.(3)permits implementers to specify outlier detection in a manner invariant to the dimensionality of the space.The robust estimation of variances is frequently a problem for GMMs,and when this is the case both Bocchieri and Gales et al.propose alterna-tives for the mixture specific variance term.Boc-chieri(1993)suggested using the mean of all variances and Gales et al.(1999)suggested using the geometric mean of the mixture variance and the mean of the variances.Throughout this work, we will use GalesÕs variance estimate unless other-wise noted.Once an appropriate tail region has been speci-fied,each codeword/j is examined to determine whether or not it is an outlier with respect to each of the mixtures.The mixtures for which/j is not an outlier are retained in a short list which we denote SL j.During classification,each observation o t is quantized to/j and the Gaussians in SL j are eval-uated with respect to o t.A small constant value is added to represent the missing probability from the distributions for which the observation is an outlier.The constant can be set globally,or on a per codeword basis.Error rates for speech recogni-tion tasks using Gaussian selection with HMMs show little degradation when compared to the evaluation of all Gaussians,and there are still sig-nificant savings in the number of operations in the presence of the VQ overhead(Bocchieri,1993; Gales et al.,1999).4.An N-best preclassifierGiven a token which consists of a set of obser-vations from a speaker:O={o1,o2,...,o T},the goal of a speaker identification classifier is to choose the class label C O which corresponds to the person who generated O.If a preclassifier can efficiently and successfully determine a hypothesis H N¼f C h1;C h2;...;C hNg where C O2H N and j H N j is smaller than the total number of classes N C,the work of the classifier can be reduced.Fig.1provides an overview of the system. Acoustic feature vectors are quantized to a code-word in a global codebook that is created by clus-tering the means of the GMMs themselves.Each codeword has a Gaussian short list associated with it which may contain Gaussians from multiple models.The lengths of the short lists are influ-enced by the percentage of the Gaussians labeled as tails by q.As q increases,the short list size de-creases,possibly at the expense of accuracy.This provides a time versus accuracy performance trade offfamiliar to implementers of Gaussian selection. As the short list size decreases,small differences in the probability may be enough to change the deci-sion from the correct class to an incorrect one.In a standard Gaussian selection implementation,one would need to increase the threshold once this behavior began to occur.By using an N-best preclassifier,as long as the correct class is ranked in the highest NlikelihoodFig.1.Two stage classification.Vectors are quantized to a codebook trained from the means of GMMs.Shortlists associated with each codeword identify relevant pdfs to evaluate.The highest ranking speakers are classified in a second stage.The preclassifier is shown separately Fig.2.M.Roch/Speech Communication xxx(2005)xxx–xxx5scores,the second stage can provide a more thor-ough analysis and the final decision may indeed be the correct class.The second stage permits the first stage to aggressively set q to values that would otherwise lead to unacceptable performance.Like any preclassifier,the work done in the first stage must be significantly less than evaluating the com-plete set if the goal is to reduce computation time.First stage classification begins by quantizing each input vector to the nearest codeword (Fig.2).Then for each model,the likelihood of the input vector o t is computed given the Gaussi-ans on the short lists.The small probability due to the mixtures for which o t lies on their tails is approximated by the likelihood of the codeword given the culled mixtures.This value is precom-puted and is retrieved by table lookup during rec-ognition.The likelihoods for each observation are merged on a per class basis in the standard way,(e.g.log sum)and then ranked to determine the N -best set.The worst case complexity of the preclassifier is determined by the cost of quantization,q (o t )!/j ,evaluation of the Gaussians from the correspond-ing short list SL j ,and the sorting of a statistic of the T likelihoods.Codeword lookup of a single vector can be performed in O ðN /N h Þassuming a Euclidean dis-tortion function.With the assumption of indepen-dent components,each pdf on the short list can be evaluated in O ðN h Þtime.Thus,in a worst case sce-nario,the time cost is O ðT ðN /N h þN h j SL max jÞÞper token where j SL max j denotes the maximum num-ber of Gaussians irrespective of class to appear in the short lists.In addition,a small time cost is incurred for sorting the statistic of the scores.As this is negligible in comparison to the rest of the operation we will omit it in our analysis.Based upon our assumption in Section 1that the classification requests grow proportionally to the population size,the preclassification cost for a set of tokens is:O ðN c T ½N /N h þj SL max j N h Þ.ð4ÞThe cost of classification is the cost of the hypoth-esis set plus full evaluation of the j H N j models in the N best speaker set:O ðN c T ½N h ðN /þj SL max jÞ þN c TN h N m j H N jÞð5Þ¼O ðN c TN h ½N /þj SL max j þN m j H N j Þ.ð6ÞThis is in contrast to the cost of complete evalua-tion which is similar to the cost of the second stage (right most term of (5))except that j H N j is replaced with N C as all models must be evaluated:O ðN 2c TN m N h Þ.ð7ÞReduction in workload can be achieved when j H N j (N c and j SL max j (N c N m .When new speakers enroll,the K means cluster-ing algorithm must be rerun and new short lists created.Ignoring the cost of computing the distor-tion between the codewords and the means of the Gaussians,K means has a complexity of O ðIN /N c N m Þwhere I is the number of iterations.Thus the growth of clustering cost is linear with respect to population size.Determining the short lists also has a complexity that grows linearly.Each time a new speaker is enrolled,there will be an additional N /·N c outlier tests to perform.In practice the preclassifier can be trained in a matter of minutes even with large problemsets.Fig.2.First stage.Appropriate short list set is identified by VQ codeword /j and short lists are evaluated for the original observation.For many models,the short lists will be empty.Culled Gaussians are approximated by a table lookup.6M.Roch /Speech Communication xxx (2005)xxx–xxx5.Experimental methodologyTwo corpora were selected to illustrate a variety of different test conditions and population sizes. To illustrate the effectiveness of the preclassifier, it was considered desirable to test under situations where the baseline GMM system could achieve low error rates as well as situations where the error rate was higher.For this reason,the TIMIT and the1999NIST Speaker Recognition corpora were selected for this study.TIMIT(Garofolo et al.,1993)contains record-ings of192female and438male subjects speaking phonetically diverse material under ideal condi-tions.Each speaker has10short sentences col-lected from a speaker in a single session.The sentences can be categorized into three groups. The‘‘sx’’sentences provide coverage of the pho-netic space,the‘‘sa’’sentences are intended to show dialectical variation,and the‘‘si’’sentences contain varied phones.Thefirst8utterances (approximately24s)are used for training and the last two‘‘sx’’phrases form separate3s tests. The conditions of this corpus permit high accuracy.The NIST1999Speaker Recognition Evalua-tion(Martin and Przybocki,2000)is a subset of the Switchboard2Phase3corpus which contains telephone conversations between speakers primar-ily from the the southern United States.The callers were encouraged to use multiple handsets,and the directory number is usually used to infer matched/ unmatched conditions.The corpus is designed pri-marily for speaker detection and tracking tasks, and the study by Kinnunen et al.(in press)is the only study of speaker identification using this cor-pus of which the author is aware.Kinnunen et al. limited themselves to a matched channel condition study using the male speakers.There are207 speakers whofit this criterion.Each speaker has anywhere from1to8test tokens from matching directory numbers for a total of692test tokens. We use the same test plan as Kinnunen et al.in or-der to be able to compare results,but also add the 287matched channel female speakers(997test to-kens)as a separate evaluation task.Throughout the remainder of this work,we will refer to this corpus as the NIST corpus.Features are extracted from the speech by fram-ing the data into25ms windows advanced every 10ms.A Hamming window is applied to each frame before Mel cepstral analysis using24filters. For both corpora,24Melfilters cover a telephone speech bandwidth of200–3500Hz(Rey,1983). Thefirst20Melfiltered cepstral coefficients (MFCC)plus MFCC0are extracted from the log Melfilterbanks by a discrete cosine transform. The NIST data is further processed:the mean of each token is subtracted and the the token is end-pointed.Speech activity is detected by training a2 mixture GMM on MFCC0(three iterations of the EM algorithm)and solving for the Bayes decision boundary.Frames with MFCC0above the deci-sion threshold are retained.MFCC0is discarded before training and testing.With the exception of endpointing,feature extraction was done as a pre-processing step using HTK(Young et al.,2002). The recognizer was implemented in a combination of C and Matlab,and experiments were performed on reasonably unloaded dual Opteron242ma-chines running the Linux2.6kernel.During enrollment,32mixture GMMs are trained for the TIMIT speakers.The NIST speak-ers are modeled in two ways.Speakers were either represented as64mixture GMMs or as models adapted from a universal background model (UBM).Training data for the UBMs came from the Speaker Identification Research(SPIDRE) corpus(Martin et al.,1994),a subset of Switch-board I with similar characteristics to the NIST data.One token from each of the18female and 27male‘‘target speakers’’was used to train gender specific UBMs with1024mixtures.Maximum a posteriori adaptation as described by Reynolds et al.(2000)was used to create speaker specific mean adapted models from the UBMs using the NIST training data.The64mixture speaker spe-cific models and UBMs were initialized with the LBG binary splitting algorithm(Linde et al., 1980)and refined with10iterations of the expecta-tion maximization algorithm.MAP adaptation was not used for the TIMIT corpus due to the excellent classification rate with the32mixture GMMs.When scoring the UBM derived models,we used ReynoldsÕheuristic which scores all mixtures of the UBMfirst,then onlyM.Roch/Speech Communication xxx(2005)xxx–xxx7scores the corresponding highest5mixtures in the adapted models.The baseline results are summarized in Table1 and are comparable to that of other studies using the same corpora(Reynolds,1995;Kinnunen et al.,in press).Confidence intervals for the error rates are estimated using the normal test approxi-mation for binomials(Huang et al.,2001).The TI-MIT classification error rate is 1.6%for the females and0%for the males.In contrast,the male telephone NIST error rates are in the14%range with an approximate6%absolute reduction in er-ror rate when the speaker models are adapted from UBMs.The female NIST speakers,a population that was nearly40%larger,had significantly high-er error rates.As with the male data,the UBMs outperformed the models trained without the ben-efit of prior information even though the amount of prior training information was limited.Analysis of the female UBM results showed that about40% of the error could be attributed to misclassifying tokens as one of15speakers(the‘‘wolves’’).The author is not aware of any published speaker iden-tification studies on this data set.Codebook training for the preclassifier was accomplished using the same procedure used to initialize the GMMs.Experiments not reported here used the Kullback–Leibler symmetric dis-tance as the distortion metric for the VQ.This did not result in significant performance differ-ences,so the simpler Euclidean distortion metric is used throughout.When determining whether or not points in a VQ partition are outliers,the geometric mean variance weighting scheme(Gales et al.,1999)was used to compute the z scores in Eq.(3)for all GMMs except for the adapted means models as the variance estimates from the UBMS tend to be more robust.6.ResultsInsight into the behavior of the preclassifier can be seen by examining the N-best hypothesis sets. The tunable parameters which affect the perfor-mance of the algorithm are the size of the codebook,the percentage of each Gaussian distri-bution for which points are defined as outliers(q), and the size of the hypothesis set H N.Experiments not reported here on TIMIT and NTIMIT(tele-phone version of TIMIT)indicated mild sensitivity to codebook size,and we selected a1024word codebook.Fig.3shows a typical N-best error rate for varying values of q.To be effective,the preclassi-fier must produce an N-best error rate which is as good or better than the second stage classifier. In practice,having the same error rate as the sec-ond stage is insufficient.The preclassifier learns a different set of decision boundaries than the sec-ond stage.Once a correct class is pruned fromTable1Speaker identification error rates and their95%confidence intervals on corpora without preclassificationCorpus Mixtures Pop.size ErrorRate95%CI TIMIT female321920.016±0.0125 TIMIT male324380.000NA NIST1999male642070.198±0.030 NIST1999male(UBM)10242070.142±0.026 NIST1999female642870.486±0.031NIST1999 female(UBM)10242870.382±0.153Fig. 3.N-best error rate for males on a matched handsetspeaker identification task using64mixture GMMs and thematched handset male speakers in the NIST1999SpeakerRecognition Corpus.Error rate is a function of the probabilitythreshold q which determines which codewords are outliers foreach mixture and the size of the N-best hypothesis.The baselineerror rate is shown as a solid horizontal line with the dotted95%confidence interval lines above and below.8M.Roch/Speech Communication xxx(2005)xxx–xxx。

相关文档
最新文档