反激式电源设计及应用
正激反激式双端开关电源高频变压器设计详解
正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。
根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。
下面就分别对这三种电源的高频变压器设计进行详解。
1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。
其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。
正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。
其基本结构包括主磁线圈、副磁线圈和反馈元件等。
反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。
反激式开关电源设计详解
反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。
当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。
当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。
2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。
在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。
在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。
3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。
为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。
二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。
2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。
常见的控制方式有定时控制和反馈控制两种。
3.开关管:开关管在反激式开关电源中起到了关键的作用。
常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。
4.变压器:变压器用于将输入电压变换为所需的输出电压。
同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。
5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。
三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。
PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。
2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。
同时,还需要考虑变压器的大小和功耗。
反激式开关电源(flyback)环路设计基础
反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。
它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。
本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。
一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。
其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。
1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。
在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。
通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。
二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。
2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。
反激式开关电源电路设计
反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。
2.整流电路:将输入交流电压转换为直流电压。
3.开关变压器:通过变压器实现电压的升降。
4.开关管:通过快速开关控制电源的输出。
5.输出滤波电路:对输出电压进行滤波,减小纹波。
二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。
2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。
3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。
较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。
4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。
5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。
6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。
7.其他辅助电路设计:如过温保护电路、过流保护电路等。
8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。
9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。
三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。
2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。
3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。
4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。
5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。
通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。
反激式开关电源设计方法
反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。
它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。
当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。
2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。
(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。
(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。
(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。
(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。
3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。
(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。
(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。
(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。
(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。
总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。
通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。
反激式开关电源工作原理
反激式开关电源工作原理
反激式开关电源是一种常见的电源设计,其工作原理如下:
1. 输入电压:将交流电源输入到变压器的主线圈中。
主线圈的绕组根据需要选择适当的变比,以实现输入电压的转换和隔离。
2. 桥式整流:在主线圈的输出端连接一个桥式整流电路,将交流信号转换成直流信号。
桥式整流电路通常由四个二极管组成,通过改变二极管的导通方式,将正负半周的交流信号转换为正向的直流信号。
3. 滤波电容:为了进一步减小直流信号中的纹波成分,通常在桥式整流电路后面添加一个滤波电容。
滤波电容会充当一个能量储存器,在充电过程中吸收纹波成分,在电容放电过程中输出平稳的直流信号。
4. 开关管:在滤波电容充电期间,控制开关管的导通和截止状态,以避免电压过高和电流过大。
通常使用开关管,如MOSFET、BJT等。
当开关管导通时,它会允许电源输出电流,而当开关管截止时,它会切断电源输出。
5. 控制电路:使用控制电路来控制开关管的开关时间和频率。
控制电路通常会监测输出电压,并根据需要调整开关管的状态,以保持输出电压稳定。
通过上述步骤,反激式开关电源可以实现将输入电压转换为稳定的输出电压,具有高效率、小体积和广泛的应用范围。
反激式开关电源电路设计
反激式开关电源电路设计首先,反激式开关电源的基本原理是利用开关管来开闭电源电流,从而实现电流的快速切换。
这样可以有效地提高电源的转换效率。
设计反激式开关电源的步骤如下:1.确定输出电压和电流要求:首先需要确定电源的输出电压和电流要求,这对于选取合适的电源电路和元器件非常重要。
2.确定输入电压范围:根据使用环境和应用需求,确定电源的输入电压范围。
通常情况下,反激式开关电源的输入电压范围为100V至240V。
3.选择开关管和变压器:选择合适的开关管和变压器是设计过程中的关键步骤。
开关管需要具有高效率和可靠性,变压器需要满足电源的输入输出要求。
4.设计开关电路:设计开关电路是反激式开关电源设计的核心部分。
开关电路的设计需要根据输入输出电压和电流的要求,选择合适的电感和电容元件,以及适当的反馈电路。
5.设计保护电路:设计反激式开关电源的过程中,需要考虑各种保护电路,以确保电源的安全和稳定性。
常见的保护电路包括过温保护、过压保护、过流保护等。
6.PCB布局和元件选型:进行PCB布局和元件选型是设计的最后一步。
在PCB布局中,需要考虑电源电路的稳定性和EMC(电磁兼容)的问题。
在元件选型过程中,需要考虑电压和电流的要求,以及元件的可靠性和成本。
设计完成后,需要对反激式开关电源进行测试和验证。
测试过程可以包括输入输出电压波形、效率和稳定性等方面的测试。
总之,反激式开关电源的设计需要考虑多个因素,包括输出电压和电流要求、输入电压范围、开关管和变压器的选择、开关电路和保护电路的设计、PCB布局和元件选型等。
只有综合考虑这些因素,并进行有效的测试和验证,才能设计出稳定、高效的反激式开关电源。
反激电源设计及应用之六控制环路设计
反激电源设计及应用之六控制环路设计
一、简介
反激式电源是一种恒功率,半桥及全桥输出的稳压、纹波电源,可以实现从几千至几万瓦输出的宽广应用,包括电机控制、无线电等高功率应用。
反激式电源的控制环路是实现功率控制的关键环路,它的设计是控制电源的重要组成部分,能够实现对输出功率的良好控制,从而保证整个电源能够有效、安全的工作。
1、电路示意图
可以看出,反激式电源控制环路的主要电路结构是以电流反馈电路和电压反馈电路为主要组成部分,其中电流反馈电路有助于实现电流负反馈的控制,而电压反馈电路可以有效地控制输出电压,以保证反激式电源的质量。
2、电流反馈控制
电流反馈控制是反激式电源的主要控制环路,它是电源功率控制的基础。
电流反馈控制主要包括电流保护、负反馈控制和电流分配。
电流保护是电源控制的一项基本功能,它可以有效地限制最大输入电流,以保证电源的安全工作。
负反馈控制可以实现对输出电流的可控控制,而电流分配则可以有效平衡输出电流,以保证反激式电源的平衡工作。
3、电压反馈控制
电压反馈控制是电源输出电压的关键控制回路,是保证电源的安全工作的重要手段。
反激式开关电源辅助电路设计
反激式开关电源辅助电路设计反激式开关电源是一种常见的电源设计,常用于电子设备中。
为了提高开关电源的性能和稳定性,通常需要设计一些辅助电路来实现。
本文将介绍反激式开关电源辅助电路的设计原理和实施方法。
我们来了解一下反激式开关电源的工作原理。
反激式开关电源由输入电源、变压器、整流电路、滤波电路、开关管和控制电路等组成。
其中,开关管通过开关动作来控制输入电源与变压器的耦合,从而实现输入电源能量的传递。
为了提高开关电源的效率和稳定性,需要设计一些辅助电路来辅助实现开关管的控制和滤波。
一、过压保护电路过压保护电路是反激式开关电源中重要的辅助电路之一。
其作用是在输出电压超过设定值时,通过控制开关管的导通和断开来保护负载和开关管。
过压保护电路通常由比较器、参考电压源和控制电路等组成。
当输出电压超过设定值时,比较器会检测到这一变化,并通过控制电路来控制开关管的动作,从而实现过压保护的功能。
二、过流保护电路过流保护电路也是反激式开关电源中常用的辅助电路之一。
其作用是在输出电流超过设定值时,通过控制开关管的导通和断开来保护负载和开关管。
过流保护电路通常由电流传感器、比较器和控制电路等组成。
当输出电流超过设定值时,电流传感器会检测到这一变化,并通过控制电路来控制开关管的动作,从而实现过流保护的功能。
三、温度保护电路温度保护电路是为了防止开关电源因过热而损坏而设计的辅助电路。
温度保护电路通常由温度传感器、比较器和控制电路等组成。
当温度传感器检测到开关电源的温度超过设定值时,比较器会发出信号,并通过控制电路来控制开关管的动作,从而实现温度保护的功能。
四、软起动电路软起动电路是为了减小开关电源启动时的冲击电流而设计的辅助电路。
软起动电路通常由电容器、电阻器和继电器等组成。
在开关电源启动时,软起动电路会通过控制继电器的动作来实现对电源的逐渐接入,从而减小冲击电流的影响。
以上是反激式开关电源辅助电路的一些常见设计。
在实际应用中,根据具体的需求和要求,可能还需要设计其他辅助电路来满足特定的功能和性能要求。
反激式开关电源变压器的设计
反激式开关电源变压器的设计反激式开关电源变压器是一种常见的变压器类型,广泛应用于电子设备和通信设备中。
它具有体积小、效率高以及输出电压稳定等优点。
本文将分别从设计原理、工作方式和设计步骤等方面对反激式开关电源变压器的设计进行详细介绍。
一、设计原理二、工作方式反激式开关电源变压器的工作方式可以分为两个阶段:储能和传输。
在储能阶段,开关管打开,电流通过变压器一侧的绕组进行储能;在传输阶段,开关管关闭,储存的能量被转移到变压器另一侧的绕组上,最后输出所需的电压。
三、设计步骤1.确定输入电压和输出电压的需求。
根据实际应用需求确定输入电压和输出电压的范围。
2.计算变压器的变比。
根据输入电压和输出电压的比例计算变压器的变比N。
3.计算变压器的功率。
根据输出电压和输出电流计算变压器的功率,确保变压器能够承受所需的功率。
4.确定变压器的工作频率。
根据实际应用需求选择合适的工作频率,通常在20kHz到200kHz之间。
5.计算变压器的参数。
根据变压器的变比、工作频率和功率计算变压器的参数,包括绕组的匝数、铁芯的尺寸等。
6.选择合适的磁性材料。
根据变压器的参数选择适合的磁性材料,常用的材料有软磁合金和磁性氧化铁等。
7.进行原型设计和测试。
根据上述设计参数制作变压器的原型,并进行测试以验证设计结果的准确性。
8.进行参数调整和优化。
根据原型测试结果进行参数调整和优化,以实现更好的性能和效果。
9.进行批量生产。
当设计满足要求时,可以进行批量生产并进行产品验证和测试。
总结:。
反激式开关电源变压器设计说明
反激式开关电源变压器设计说明反激式开关电源变压器是一种常见的电源变压器,能够将输入电压通过开关转换和变换输出为所需的电压。
它具有多种应用领域,如电子设备、通信设备、医疗设备等。
本文将详细介绍反激式开关电源变压器的设计原理、设计步骤以及注意事项。
一、设计原理开关管是控制开关电路导通和断开的关键元件。
当开关导通时,输入电压通过变压器传递到输出端,当开关断开时,输出端与输入端相隔离。
变压器用于变换电压。
它通常由两个或多个线圈绕制而成,主要包括输入线圈和输出线圈。
输入线圈与开关管相连接,负责将输入电压传递到输出线圈。
输出线圈则负责变换电压。
滤波电路用于对输出信号进行滤波,减小波动和噪音。
二、设计步骤1.确定输入电压和输出电压:首先需要明确所需的输入电压和输出电压。
这将决定变压器的变比。
2.选择合适的变压器:根据所需的变比,选择合适的变压器。
变压器的选取应基于电流容量和功率需求等因素。
3.计算变压器的线圈数:根据变压器的变比和输入输出电压,计算输入线圈和输出线圈的匝数。
同时,考虑变压器的耦合系数和数量线圈相对位置等因素。
4.确定开关管和开关频率:根据输入电压、输出电压和功率需求,确定合适的开关管。
同时,选择合适的开关频率,以避免电磁干扰。
5.设计滤波电路:根据输出电压的要求,设计合适的滤波电路。
滤波电路可以使用电容、电感和抗干扰电路等组成。
6.确定电源保护电路:为了保证电源的稳定性和可靠性,设计合适的保护电路,如过流保护、过压保护、短路保护等。
7.进行仿真分析:使用电路仿真工具,对设计的电源变压器进行仿真分析,检查电源变压器的性能和特性。
8.制作和测试:按照设计的电路图,制作电源变压器,并进行测试。
测试包括输出电压稳定性、效率和波动等。
三、注意事项1.选择适当的变压器:变压器应能满足所需的电流容量和功率需求。
同时,应注意变压器的质量和耐用性。
2.稳定性和可靠性:电源变压器应具有良好的输出电压稳定性和可靠性。
反激式开关电源的设计
反激式开关电源的设计1.反激式开关电源的基本原理与拓扑结构2.反激式开关电源的设计步骤(1)选择合适的开关器件:根据设计需求确定开关器件的额定电流和电压。
应选择满足设计需求的高效开关器件,以确保电源的稳定性和可靠性。
(2)设计变压器:变压器是反激式开关电源中非常重要的组成部分,其设计影响着整个电源的性能。
变压器的设计应根据输入电压、输出电压及负载电流等确定变比。
(3)设计输入滤波器:输入滤波器主要用于去除输入电源的高频噪声和电磁干扰。
应根据设计要求选择合适的滤波器元件。
(4)选择输出滤波器:输出滤波器用于去除输出电压中的高频噪声和波动。
应选择满足设计要求的输出滤波器元件。
(5)选择控制器和反馈电路:反激式开关电源需要一个控制器来控制开关器件的开关频率和占空比。
应根据具体设计需求选择合适的控制器和反馈电路。
(6)设计保护电路:反激式开关电源应设计有相应的保护电路,以防止过流、过压和过温等情况的发生,保证电源的安全可靠运行。
(7)进行电路仿真和调试:应使用电子设计自动化工具进行电路仿真和调试,以验证电源设计的正确性和稳定性。
3.注意事项和常见问题(1)电源设计应考虑效率和性能的平衡,既要保持高效率,又要满足设计要求。
(2)电源设计时要合理布局电路板,降低电磁干扰和噪声。
(3)电源设计应注意选择合适的元件,在成本和性能之间进行权衡。
(4)在进行电路仿真和调试时,应注意保护器件和测试仪器的安全,避免电源短路和电流过大导致元器件损坏。
(5)设计完成后,应进行严格的测试和质量控制,确保电源的稳定性和可靠性。
总结:反激式开关电源是一种常见的开关电源拓扑结构,在设计中需要考虑元件选择、变压器设计、滤波器设计、控制器和反馈电路选择等多个因素。
合理的设计和调试能够确保电源的稳定性和可靠性,满足设备的电源需求。
反激式开关电源的设计方法
反激式开关电源的设计方法反激式开关电源是一种常用于电子设备中的高效率电源。
它通过将输入电源的直流电压转换为高频脉冲信号,再进行变压、整流和滤波等处理,最终得到所需要的输出电压。
本文将介绍反激式开关电源的设计方法,包括主要元件的选择、电路的设计和调试等内容。
一、元件的选择1.变压器:反激式开关电源的核心元件之一、在选择变压器时,需要根据设计好的输入和输出电压来确定变比。
同时,还需要考虑变压器的工作频率、功率损耗、功率因数等参数。
一般情况下,选择具有较高工作频率和较低损耗的变压器效果会更好。
2.开关管:开关管主要用于开关电源中的开关操作。
在选择开关管时,需要考虑电流和电压的要求,以及其承受功率和导通损耗等参数。
常见的开关管有MOSFET和IGBT等。
3.控制芯片:控制芯片用于控制开关管的导通和关闭时间,以及输入输出电压的稳定性等。
选择合适的控制芯片需要考虑芯片的工作频率、控制方式、保护功能等参数。
4.输出电容和滤波电感:输出电容和滤波电感用于平滑输出电压和滤除高频噪声。
在选择时,需要考虑电容和电感的电压和电流容量,以及使用寿命等因素。
二、电路的设计1.输入滤波电路:输入滤波电路主要用于去除输入电源中的高频噪声和波动。
常见的输入滤波电路包括滤波电容和滤波电感的串联组合,以及降压电感和降压二极管的并联组合。
2.开关电路:开关电路是反激式开关电源的核心部分,它通过开关管的导通和关闭操作,将输入电源的直流电压转换为高频脉冲信号。
开关电路一般由开关管、变压器、滤波电容和滤波电感等元件组成。
3.输出调整电路:输出调整电路用于稳定输出电压,并提供过载、过流和短路等保护功能。
常见的输出调整电路包括反馈电路、比较电路和控制芯片等。
4.反馈电路:反馈电路用于检测输出电压,并通过控制芯片对开关管的导通和关闭时间进行调节,从而稳定输出电压。
反馈电路一般由分压电阻、运放和电压比较器等组成。
三、电路的调试1.输出电压调节:利用调整反馈电路中的分压电阻,可以实现对输出电压的调节。
反激式电源设计及应用五
反激式电源设计及应用五[电磁干扰] 反激式电源设计及应用五[电磁干扰原来的系列专题还有几个,春节前推出此电磁干扰,我尽量以图示来说明。
希望对大家有所帮助。
实际中如何确定差模和共模的比例。
这样可以看到实际的干扰中差模是多少,共模是多少。
以决定采取的措施。
贴一个例子。
前面一个图是有加4.7uF的X电容,剩下的基本是共模;后面是正常的波形。
峰值,准峰值,平均值的定义及测量。
哇!!频率抖动的作用原来如此。
由于RC的积分作用,所以会降低。
不是在欺骗仪器吗?!对此电源界存在争论,反过来想一下,难道标准就合理吗?管它呢,不管哪国的标准,过了就行了。
一个小问题,反馈控制特性和EMI 有关系吗?我想决大部分人的答案是没有关系,有的说有关系,因为他在实际中发现过(我记的21IC上有人问过)!什么原因?可能没人说的清。
同样输入,输出2的控制带宽和环路增益比输出1高,所以纹波小。
在相同的情况下,输出2要迫使脉冲的宽度更快速的变化(电压高时减小脉宽,反之相同),这恰恰就是频率抖动,所以可以改善EMI。
电流型控制IC比电压型相比具有自动前馈功能,更迅速的改变脉宽压制100Hz纹波,所以同等情况,EMI要好一些。
当然电压型的如果加了电压前馈能起到同样的功能。
低压出来去调制3842的第4脚,就可实现频率抖动功能。
几个因素对干扰的影响(摘自香港大学电力电子实验室资料)我们可以看出,波形和占空比只影响低频段的干扰。
上升和下降沿影响高频段。
为什么会有EMI还是来个图吧。
f1的值大概在6-10MHz之间,f2的值大概在20-30MHz之间,其频率会根据变压器漏感的大小,杂散电容的大小,器件输出电容的大小而变化,但频率大概在上述范围,但你没加RC吸收电路和共模滤波不是超强时,EMI曲线上明显的可以看到此两点。
把这两点抑制掉,再采取点其他措施,你都可能把Y电容拿掉。
传导干扰的差模的产生和抑制加差模电感是常用的方法,但在整流管后面时要注意。
反激式开关电源是如何工作的-设计应用
反激式开关电源是如何工作的-设计应用反激的变压器可以看作一个带变压功能的电感,是一个buck-boost电路。
反击式开关变压器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源。
“反激”指的是在开关管接通的情况下,当输入为高电平时输出线路中串联的电感为放电状态;相反,在开关管断开的情况下,当输入为高电平时输出线路中的串联的电感为充电状态。
与之相对的是“正激”式开关电源,当输入为高电平时输出线路中串联的电感为充电状态,相反当输入为高电平时输出线路中的串联的电感为放电状态,以此驱动负载。
单端反激式变换由于是在开关管T关断期间变压器向输出电容器和负载提供能量,为反激变换器。
当开关晶体管Tr ton时,变压器初级Np有电流Ip,并将能量储存于其中(E = LpIp / 2)。
由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载。
当开关Tr off 时,由楞次定律:(e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通。
反激式转换器之稳态波形反激的原理反激的工作原理是在D的时候原边将能量存储在变压器的励磁电感里面(标准反激电路没有输出电感),1-D的时候励磁电感释放能量给负载和输出电容供电,下一个D周期时输出电容维持负载输出。
反激式开关电源原理单端反激开关电源采用的是稳定性很好的双环路反馈的控制系统,所以它可以通过开关电源的PWM迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和低级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。
这种反馈控制电路的特点是:在输进电压和负载电流变化较大时,具有更快的动态响应速度,自动限制负载电流,补偿电路简单。
反激式开关电源设计方法
反激式开关电源设计方法1.输入变压器设计:反激式开关电源的输入变压器主要用于实现能量的储存和传递。
其设计方法一般包括确定变压器的变比、计算绕线参数和计算磁芯截面积。
变比的选择要根据输入和输出电压的关系来确定,一般采用副边大于主边的变比。
绕线参数的计算要根据输入电压、输出功率和开关频率来确定。
磁芯截面积的计算要根据输入电压、输出功率和变频器频率来确定。
2.控制电路设计:反激式开关电源的控制电路主要用于实现开关管的开关和关断控制。
其设计方法一般包括选择适合的开关管和控制芯片、设计反馈电路和设计保护电路。
选择合适的开关管和控制芯片要考虑输入和输出电压、输出功率和开关频率等因素。
设计反馈电路主要是为了实现恒定的输出电压,一般采用反馈误差放大器和锁相环等。
设计保护电路主要是为了提高电源的可靠性和稳定性,一般包括过流保护、过压保护和过温保护等。
3.输出滤波电路设计:反激式开关电源的输出滤波电路主要用于滤除开关管开关过程中产生的高频脉冲噪声,保证输出电压的稳定性和纹波度。
其设计方法一般采用LC滤波器或电容滤波器。
LC滤波器具有较好的滤波效果,但体积较大,适用于功率较大的电源。
电容滤波器体积小,但滤波效果相对较差,适用于功率较小的电源。
4.保护电路设计:反激式开关电源的保护电路主要用于保护电源,防止出现过流、过压、过温等故障。
其设计方法一般包括选择合适的保护元件和设计合理的保护电路。
选择合适的保护元件要考虑其额定参数和动态特性,以满足电源的保护要求。
设计合理的保护电路要考虑多种故障情况,实现对电源的全方位保护。
以上是反激式开关电源设计的基本方法和步骤,设计师在实际设计过程中还需考虑电源的稳定性、可靠性、效率等因素,并根据具体的应用需求进行优化设计。
同时,还要注意电源设计中的安全性和可调度性,确保电源工作的稳定性和可靠性。
反激式变换器原理设计与实用
反激式变换器原理设计与实⽤反激式变换器原理设计与实⽤1、引⾔反激式转换器⼜称单端反激式或“BUCK-BOOST”转换器,因其输出端在原边绕组关断时获得能量故⽽得名。
在反激变换器拓扑中,开关管导时,变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。
其优点如下:a、电路简单,能⾼效提供多路直流输出,因此适合多组输出要求;b、输⼊电压在很⼤的范围内波动时,仍可有较稳定的输出,⽬前⼰可实理交流输⼊85-265V间,⽆需切换⽽达到稳定输出的要求;c、转换效率⾼,损失⼩;d、变压器匝数⽐值⼩。
2、反激变换器⼯作原理以隔离反激式转换器为例(如右图),简要说明其⼯作原理:当开关管VT 导通时,变压器T初级Np有电流Ip,并将能量储存于其中(E=Lp*Ip2/2)。
由于初级Np与次级Ns极性相反,此时次级输出整流⼆极管D反向偏压⽽⽌,⽆能量传送到负载。
当开关管VT关断时,由楞次定律:(感应电动势E=—N Δ∮/ΔT)可知,变压器原边绕组将产⽣⼀反向电动势,此时输出整流⼆极管D正向导通,负载有电流Il流通。
由图可知,开关管Q导通时间Ton的⼤⼩将决定IP、Vds的幅值为Vds(max)=Vin/1-Dmax。
(其中Vin:输⼊直流电压;Dmax:最⼤占空⽐Dmax=Ton/T)。
由此可知,想要得到低的漏极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应有中通常取Dmax=0.45,以限制Vds(max)≦2Vin。
开关管VT导通时的漏极⼯作电流Id,也就是原边峰值电流Ip,根据能量守恒原则即原副边安匝数相等NpIp=NsIs可导出等式:Id=Ip=Il/n。
因Il=Io,故当Io⼀定时,匝⽐N的⼤⼩即决定了Id的⼤⼩。
原边峰值电流Ip也可⽤下⾯公式表⽰:Ip=2Po/(n*Vin*Dmax)(n转换器的效率)。
单端反激 三极管 mos
单端反激式三极管MOS电路设计与应用在电子电路设计中,单端反激式(Flyback)拓扑结构因其简单、高效及成本效益而在开关电源设计中占有一席之地。
当该拓扑与三极管(BJT)和金属氧化物半导体场效应晶体管(MOSFET,简称MOS)结合时,可以构建出性能稳定、效率高的电源转换电路。
本文将深入探讨单端反激式三极管MOS电路的工作原理、设计要点以及应用实例。
一、单端反激式工作原理单端反激式转换器是一种隔离型开关电源,它通过变压器在开关管(如MOSFET)导通和关断的不同阶段存储和释放能量。
在开关管导通期间,变压器初级绕组被充电,并在其周围建立磁场。
当开关管关断时,磁场崩溃,在变压器次级绕组中感应出电压,从而向负载提供电能。
二、三极管与MOSFET在单端反激式电路中的角色在单端反激式转换器中,三极管和MOSFET都可以用作开关元件。
三极管作为电流控制型器件,其基极电流的变化可以控制集电极与发射极之间的导通与截止。
而MOSFET则是电压控制型器件,通过栅极电压的变化来控制漏极与源极之间的通断。
1. 三极管在单端反激式电路中的应用三极管因其成本较低,在一些对效率和体积要求不是特别严格的场合仍有一定应用。
在单端反激式电路中,三极管通常工作在饱和与截止状态之间,以实现高效的能量转换。
然而,三极管的开关速度相对较慢,且在高频工作时功耗较大,这限制了其在高性能电源中的应用。
2. MOSFET在单端反激式电路中的应用与三极管相比,MOSFET具有更快的开关速度、更低的导通电阻和更高的耐压能力,因此更适合用于高频、高效率的电源设计中。
在单端反激式电路中,MOSFET的栅极驱动电路需要精心设计,以确保快速、稳定的开关动作。
此外,MOSFET的散热设计也至关重要,以防止在高功率工作时温度过高而损坏。
三、单端反激式三极管MOS电路设计要点1. 变压器设计变压器的设计是单端反激式电源设计中的关键。
需要根据输入电压、输出电压、输出功率以及开关频率等参数来确定变压器的匝数比、磁芯材料和尺寸等。
反激式开关电源设计详细流程
反激式开关电源设计详细流程1.确定需求:首先要明确设计电源的输入电压和输出电流的需求,以及设计的环境条件,如工作温度范围和工作效率等。
2.选择主要元器件:根据需求确定选择适配器的主要元器件,包括变压器、MOSFET、二极管、电感器、电容器等。
3.设计变压器:变压器是反激式开关电源中的一个重要元器件,主要功能是提供电源输出的隔离和变压功能。
根据需求设计变压器的变比和功率,确定铁芯材料和绕线参数,如线径和绕线圈数等。
4.选择MOSFET:MOSFET是电源开关的关键元器件,它需要具备低导通和开关损耗、高效率和可靠性等特点。
根据需求选择合适的MOSFET,通过计算和模拟分析确定导通和关断时的最大功率损耗。
5.设计电感器和电容器:电感器和电容器用于滤波和稳压,通过计算和模拟模拟设计电流和电压波形,选择合适的电感值和电容值,以保证输出电流和电压的稳定。
6.设计控制电路:根据反激式开关电源的工作原理,设计适当的控制电路,用于控制开关管的导通和关断。
控制电路包括脉宽调制(PWM)控制和电流/电压反馈控制,以确保输出电流和电压的稳定和可靠。
7.选择和设计保护电路:反激式开关电源需要一些保护电路,如过压保护、过流保护、短路保护等。
根据设计需求选择合适的保护元器件和电路,以防止电源和被供电设备的损坏。
8.PCB设计:根据电路设计和布局要求进行PCB设计,包括元器件的布局、走线、线宽、间距等。
同时要考虑电磁兼容性(EMC)和热管理的问题。
9.原理图和PCB布线优化:通过仿真软件对电路进行仿真和优化,优化电路的参数和特性,如输出电压波形、效率和稳定性等。
10.系统测试与调试:完成PCB的制作和组装后,进行系统测试与调试,测试电源的输出性能、稳定性和保护功能等,并进行必要的调整和优化。
11.电源性能评估:对设计的电源进行性能评估,包括效率、功率因数、纹波和噪声等,以确保其符合设计要求和行业标准。
12.生产和质量控制:根据设计要求进行电源的批量生产,并进行质量控制,包括检测和测试,以确保产品的质量和可靠性。
负电压反激开关电源设计
负电压反激开关电源设计
负电压反激开关电源是一种常见的电源设计,用于产生负电压
输出。
这种设计通常用于一些特定的应用,比如一些电子设备的电
路需要负电压来工作。
下面我会从多个角度来解释这种设计。
首先,负电压反激开关电源的基本原理是利用开关管的导通和
截止来控制电感储能元件的能量传递,从而实现电压转换。
在这种
设计中,一般会使用一个变压器来将输入电压变换成所需的负输出
电压。
通过合适的电路拓扑和控制策略,可以实现稳定的负输出电压。
其次,负电压反激开关电源的设计需要考虑到诸多因素,比如
输入电压范围、输出电流、效率、线性度、过载保护等。
在设计过
程中需要选择合适的开关管、电感、电容和变压器等元件,并进行
合理的参数计算和匹配,以确保电源具有良好的性能和稳定的负输
出电压。
此外,负电压反激开关电源的设计还需要考虑到电磁兼容(EMC)和电磁干扰(EMI)的问题,确保电源在工作时不会对周围的电子设
备产生干扰,同时也要考虑到散热和安全等方面的问题,以保证电
源的可靠性和安全性。
在实际的应用中,负电压反激开关电源广泛用于工业控制、通
信设备、医疗设备等领域,为这些设备提供稳定可靠的负电压电源。
总的来说,负电压反激开关电源设计涉及到电路原理、元器件
选择、控制策略、EMC/EMI设计以及安全可靠性等多个方面,需要
综合考虑各种因素,才能设计出性能稳定、符合要求的负电压电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反激式电源设计及应用变压器有两种绕法:顺序绕法和夹层绕法.这两种绕法对EMI和漏感有不同的影响.顺序绕法一般漏感为电感量的5%左右,但由于初,次级只有一个接触面,耦合电容较小,所以EMI 比较好.夹层绕法一般漏感为电感量的1-3%左右,但由于初,次级只有两个接触面,耦合电容较大,所以EMI 比较难过.一般30-40W以下,功率不大,漏感能量还可以接受,所以用顺序绕法比较多,40W以上,漏感的能量较大,一般只能用夹层绕法.变压器的漏感主要与哪些因素有关绕组顺序:夹层绕法一般是先初级,后次级的1/2-1/3.变压器形状:长宽比越大的变压器漏感越小.先初級1/2-次級-初級1/2,大家叫這為三明治繞法夹层?好象是先原边的二分之一,再逼边,再原边的二分之一吧!(1)变压器由于绕制造成的耦合电容偏差对变压器有那些指标有影响?(2)如你所说,顺序绕法露感较大,耦合电容较小,EMI较好,怎样从理论上解释耦合电容小EMI小这一问题?当然我想你这是从变压器本身来说的,从整个电源来说,漏感较大的话,整个产品的EMI 是不好的.所以我到认为,漏感的因素比耦合电容更能引起EMI难过,我这样说有道理吗?(3)在提到屏蔽层时,我有点不明白屏蔽绕组在变压器中是怎样设计的?耦合电容是最大的共模干扰传导途径.<br>漏感产生的干扰频率比较低,也容易处理这个电容到底起到什么作用?<br>通常的隔离变换器中,在原边和副边需接一个或两个耐高压隔离电容,通常也很小,这个电容到底是起到什么作用呢?事实也是,如果这个电容取得不当,会影响到输出噪声指标?不知cmg老哥对这个电容怎么看?还有就是这个电容连接到原副边,是接两个地呢,还是接输入地端和输出正端...?并不是说不能用三名治饶,功率稍微大一点也只能用这个方法.否则漏感太大.<br>只是干扰大小的问题,当然在小功率的时候有更多的考虑,比如取消共摸电感,来降低成本.我发现个有趣的问题,以前我也一直是认为更小的耦合电容对EMI有更多的好处.但我在最近的实验中发现当我把漏感控制在0.5%-0.8%时,整机电源的效率显著上升,再测传导和辐射发现原本辐射超过标准2个DB变成留有6.4DB余量. (说明:电源输出电压19V,功率75w.采用四段式绕法)漏感小后,MOS关断时D-S端的震荡波形的幅度会减小,而这是最重要的干扰源,小了干扰能量会降低.在反激式开关电源中,变压器相当于电感的作用.在开关管导通时,变压器储能,开关管关断时,变压器向次级释放能量.那么功率由开关管导通电流确定还是电感量确定?在反激开关电源变压器设计时,如何计算变压器的气隙?能否详细介绍开关电源的斜率补偿的作用,原理?功率既不是由电感量确定,也不是由开关管确定,是由你的需要确定.一般程序是这样,由功率和经验效率确定变压器的型号,也可以由“AP”等书上介绍的方法确定变压器,我一般是根据经验确定,要求比较严格时用允许温升确定变压器型号.确定变压器后其他参数可算出.包括开关管的电流,这样就可以选管子.变压器的气隙有相关的公式计算,但注意气息一般不要大于1毫米,否则可能引起边缘磁通效应使初级有过热点.反激电压方式不需要斜率补偿.电流方式大于50%脉宽,或为了防止噪音影响需要加,计算方法可参考3842应用指南.变压器的两种屏蔽层.<br>在小功率电源变压器中,一般有两种两种屏蔽层,铜薄和绕组.铜薄的原理是切断了初次级间杂散电容的路径,让其都对地形成电容,其屏蔽效果非常好,但工艺,成本都上升.绕组屏蔽有两种原理都在起作用:切断电容路径和电场平衡.所以绕组的匝数,绕向和位置对EMI的结果都有很大影响.可惜我不会在这里画图来讲解,总之有一点:屏蔽绕组感应的电压要和被屏蔽绕组工作时的电压方向相反.屏蔽绕组的位置对电源的待机功耗有较大的影响.下节讲变压器浸漆和屏蔽绕组位置对待机功耗的影响.你说的屏蔽层是不是这个意思<br>只是起隔离作用的一个隔离层?(对不起,我接触的都是些通讯电源和仪表电源都是体积小的二次片式电源,所用的变压器也都是采用体积小的表贴变压器,没有用什么屏蔽层,也没有见过其它同类电源用屏蔽层),你所说的用了屏蔽层的电源主要用在哪方面?这样一来是不是体积就大了呢?还有你的“屏蔽绕组感应的电压要和被屏蔽绕组工作时的电压方向相反” 是什么意思?还有,你的屏蔽绕组输出接哪儿?最好能图文结合,这样大家的兴趣不是就来了吗?屏蔽的“接地”<br>屏蔽在初次级间时,其接地可以不接,接原边地,接次边地,接大地几种形式,一般接原边的地的情况较多.不知道cmg兄是如何处理的.变压器的外部加屏蔽,特别在flyback中,由于要加气隙,在批量小或简单起见,不是只在中间加,而是磁心截面全有气隙,为减小外部气隙的磁场干扰,而加屏蔽的,此屏蔽一般接大地.是EMI屏蔽,非安全屏蔽.<br>可以接原边的地线,也可以接原边的高压端,EMI几乎没有分别,因为有高压电容存在,上下对共模信号(一般大于1M后以共模干扰为主)来说是等电位的.变压器的外部屏蔽可以不接,也可以接初级地线,其对EMI的影响看绕组内部的情况,但注意安规的问题,接初级地线,磁芯就是初级.屏蔽绕组对变压器的工作有影响<br>屏蔽绕组为了起到很好的作用,一般紧靠初级,这样它跟初级绕组之间形成一个电容,屏蔽绕组一般接初级地线或高压端,这个电容就相当于接在MOS的D-S端,很明显造成很大的开通损耗.影响了待机功耗,对3842控制来说还可能引起空载不稳定.当然,加屏蔽也会使漏感增大,但此影响在空载时是次要的.理论上关断损耗会小.<br>但由于关断电路作用都很强,MOS速度又快,所以对关断的损耗影响很小.另外屏蔽引起的损耗严格来说不全算开通损耗,有一部分是导通损耗,在开通瞬间和导通后,电容放电.用电流探头可以很明显看到导通瞬间有一个很大的尖峰.我看到很大的电流尖峰,你说的尖峰是不是在FLYBACK的MOSFET开通时有一个很大的尖峰,我以前一直没法理解这是怎么来的,但我的变压器好象没有什么屏蔽呀,只是中间加了绝缘胶带如果你能反饶也可以,但在生产工艺上是不可能的.<br>可以改变绕组从左到右,或从右到左的方向.可能你没有接触过工厂的生产过程.<br>骨架换方向当然可以,但生产效率差不多降低40%.变压器的价格就上来了.1.实际的电容总有感抗成分在内,在共模频率内,接高压端和地线真对EMI没有分别吗?2. \"变压器的外部屏蔽可以不接,也可以接初级地线,其对EMI的影响看绕组内部的情况\",能详细说明一下吗?比如顺绕和夹绕时外部屏蔽该怎样处理呢?3.\"磁芯就是初级\"是什么意思?第一个确实几乎没有影响,我测过很多.第二个有很多情况,我不一一细说,只告诉你一个原则,绕组最外层如果工作时电压变动大,则接地有巨大的影响,如果变动小,也有影响,但不是很大,当然电源功率本身很大时最好接地.第三个是安规的问题,已经有人说了.3倍之说需要查安规.<br>但其原理是明显的,如果安全屏蔽的保险丝电流额定值比电源保险丝小或一样大,则发生短路时可能安全屏蔽的保险丝先断,起不到安全屏蔽的作用.至于外部屏蔽,首先要满足安规的要求,在此前提下,当然宽一些会好一点,但增加了成本,只要把两半磁心的结合面包住就好了,还有一个更好的方法,让铜带直接接触磁心.反激式电源的开关过程分析.<br>我看到有个帖子在讨论此问题,所以需详细写一下.我看到有个帖子在讨论此问题,所以需详细写一下.很多人对反激电源开关转换期间的过程不清楚,以至于产生电流突变等想法.我来详细解释一下:MOS关断后,初级电流给MOS输出电容和变压器杂散电容充电(实际杂散电容放电,为简单,我们统一说充电),然后DS端电压谐振上升,由于电流很大,谐振电路Q值很小,所以基本上是线形上升,当DS端电压上升到在次级的电压达到输出电压加整流管的电压后,本应该次级就导通,但由于次极漏感的影响,电压还会上升一些来克服次级漏感的影响,这样反映到初级的电压也略高于正常反射电压,在这样条件下,次级电流开始上升,初级电流开始下降,但不要忘记初级的漏感,它由于不能偶合,所以它的能量要释放,这时是漏感和MOS输出电容,变压器杂散电容谐振,电压冲高,形成几个震荡,能量在嵌位电路消耗掉,这里要注意一点,漏感的电流始终是和初级电流串联的,所以漏感电流的下降过程就是次级电流的上升过程,而漏感电流的下降过程是由嵌位电路电容上的电压和反射电压的差来决定的,此差越大,下降越快,转换过程越快,明显效率会提高,转换的过程是电压电流叠加的过程.用RC做吸收时,由于稳态时C上的电压和反射电压差别不是太大,所以转换过程慢,效率低,用TVS 做吸收时,其允许电压和反射电压差很多,所以转换快,效率高,当然RC耗电是另一个方面.我曾经在21ic上请教过您一些问题,对于mos的关断,通过您上序的分析,已经很透彻了,其他拓扑应是同样的原理,比如正激,在mos关断后,副边折射电流与激磁电流对coss充电,电压上升到vin 后,按理折射电流应变为零,但正由于漏感的影响,使电流并不太图变只剩下激磁电流,正是这个原因,导致电流与电压重叠时间过长,mos端并电容也没有明显效果,所以只能减少漏感来减小关端重叠时间,实现零电压关端,我要问的是激磁电感与漏感在一个什么样的比列下才算正常呢,我目前变压器激磁电感20uh,漏感为2uh,我总怀疑漏感太大,您说有无道理呢?基本同意说明有些不认同,说出来共同分析一下.<br>你的1得出的结论是不对的,和我的原意不符.可能我的语文表达差一些.我的意思是初级电压上升,次级也跟着生,当次级的电压达到次级输出电压加整流管的压降后,次极整流管应该导通.1、不清楚“杂散电容放电”2、“漏感电流的下降过程是由嵌位电路电容上的电压和反射电压的差来决定的”,嵌位电路电容上的电压不是由反射电压决定的吗?(当然和R的放电也有关).3、假如正激式电源输出不要储能电感,会怎样?(如有必要,我可以按我的疑惑画个原理图,贴在这儿)4、能不能详细说说RCD吸收回路吸收初级电感储能的情况,能不能避免?5、请回复一下SOMETIMES的“faraday screen and safety screen ”中的疑问好吗?1、与其说“杂散电容放电” ,不如杂散电容反向充电来得准确.2、“漏感电流的下降过程是由嵌位电路电容上的电压和反射电压的差来决定的”,无论怎样,漏感电流的下降过程是非常剧烈的,故而激起的自感电压是远高于副边反射电压(MOSFET关断的尖峰应是因此而起),关断时刻RCD上的电压应由自感电压决定,而和反射电压无关.3、这个问题单列出去算了.4、RCD吸收回路吸收初级电感储能是因为与反射电压串联,反激过程始终存在.用TVS,选择合适的工作电压可避免之.是由电磁定律决定的:u=l di/dt;其中l是原边漏感,其电流的变化必然感应出一相应电压,此电压值由外部电路决定,由公式可知,感应电压越高,电流变化越快,开关管上的电压电流交叉时间越短,关断损耗越小.(因漏感与原边励磁电感串联,故原边漏感厨师电流等于开关管关断时的电流值.)1.怎么说都没有关系,关键是理解这个过程,MOS导通时杂散电容电压是上正下负,转换过程结束后是下正上负.2用RCD吸收,漏感电流下降激起的电压一般不会高于副边反射电压.C上的电压是反射电压和漏感电压的和,当MOS关断时,C上的电压和反射电压的差决定了漏感的电流下降速度,差U=Llou*dI/dT.当然C上的电压也包括漏感引起的一个尖峰,C越大时此尖峰也越小.用TVS时因为没有C,此尖峰就是TVS的稳压值.4.这个问题实际上已说过,RCD的能量有两部分,漏感能量和一点励磁能量,原因很简单:我们设想变压器没有漏感,MOS关断时反射电压还是加在R上,当然要耗能.1、你用安培环路定律做个积分看看.2、反激变压器的电流是从异名端流出去的,你用右手螺旋定责看看是不是和先前的磁场方向一致.对你的第一个问题结论并不正确,根据变压器线圈的比例关系,可以确定变压器初次级的电压,一般正向道通时次级反压由初级电压和线圈比例关系相乘决定,而关断时边压器储能相当于电源向次级供电,这时的电压由次级决定,在而实际能量变换是变压压起要求输出一定的功率,相当于变压器输出一定的功率,由负载电阻决定输出电压,而这个电压再根据变压器线圈比例反馈到初级.所以初级和次级的电压关系主要由线圈的匝数比例决定的,在相同的电路下如刚上电时,次级电压很底,这时初级开关的损耗是会减小,但要知道减少的只是初级MOS管的开关损耗(包括漏感).另外输出电压很底,整流管的损耗比例相对会成主要的损耗,所以实际电路联系很多,很多电路都是矛盾的,好的设计就是要找到最佳点一个经验值.<br>顺序绕法(先初级,后次级)一般漏感为电感量的5%左右.三明治绕法,一般在3%以下,用屏蔽好的磁心和绕线顺序可达1%以下.RCD吸收回路,如果電容很大,但RC時間常數還是開關周期的1/10到1/5.那損耗就會很大.會不會RC回路不隻吸收漏感能量,還消耗了一部份初級電感蓄積的能量.也就是說,當MOSFET關斷後,變壓器初級電感蓄能大部分通過次級釋放,還有一部分被RC回路吸收.加上電容上的直流電壓(n*(V o+Vd))在電阻上的損耗會很大.首先加在電容上的直流電壓不是(n*(V o+Vd)),如果是这个电压,则电源的转换时间将非常长.一定会比这个电压高.其次,RCD吸收回路吸收的能量恰恰向你说的,是由两部分组成,一部分是漏感的能量,还有一部分是初级电感储能.这后一部分是很多人不会想到的.RC吸收电路的设计.<br>开关管和输出整流管的震铃是每个电源设计工程师最讨厌的事情.过度的震铃引起的过压可能使器件损坏,引起高频EMI问题,或者环路不稳,解决的办法通常是加一个RC吸收电路.但很多人不知该如何选取RC的值.首先在不加吸收电路轻载下用示波器测量震铃的频率,但注意用低电容的探头,因为探头的电容会引起震铃频率的改变,使设计结果不准.其次,在测量震铃频率时尽可能在工作的最高电压下,因为震零的频率会随电压升高而变化,这主要是MOS或二极管的输出电容会随电压而变化.震零产生的原因是等效RLC电路的震荡,对于一个低损的电路,这种震荡可能持续几个周期.要阻尼此震荡,我们要先知道此震荡的一个参数,对MOS,漏感是引起震荡的主要电感,此值可以测出,对二极管,电容是主要因素,可以有手册查出.计算其阻抗:知道L,则Z=2*3.14*f*L;知道C,Z=1/(2*3.14*f*C).先试选R=Z,通常足可以控制震铃.但损耗可能很高,这时需要串联一个电容来减小阻尼电路的功率损耗.可如此计算C 值:C=1/(3.14*f*R).增加C值损耗就增加,但阻尼作用加强,减小C值当然是相反的作用.电阻的损耗P=C*(V*V)Fs.当然在某些电路形式里面损耗可能是0.5P. 实际中,可依计算的值为基础,根据实验做一些调整.不知哪位高手可以帮帮忙,替我写几部分,谢谢!当然,如果大家感觉没什么意思,就结束这个专题.1)RCD吸收电路的设计方法.2)反激电源多路输出交叉调整率的产生原因和改进方法.3) 开关电源电磁干扰产生的原因及对策.4)反激电源的控制环路零,极点分析及环路定性分析(定量分析要占用大量的时间和篇幅)5)大功率反激电源:双管反激.6)反激电源的软开关和无损吸收.变压器因为已经有很多帖子了,在此专题里面不在赘述.千万不要忽视理论!<br>理论是指导实践的,这是真理,如果没有理论,当你有问题时就无处下手,有的人就到处改,到处试,改好了也不知道其所以然.要知道,电源设计应该是一个严格的数学过程,如果不能做到这一点,说明还有很多东西需要学习.如果我真写书的话,每一点都会有理论解释,只是在BBS上,画图,写公式都很麻烦(实际上我根本就不知道怎么弄),所以只能写几句.刘胜利很熟悉,还送了我一本书,他的书基本上是实验数据堆起来的,很佩服老刘的精神,很大年纪了还在做实验研究.不过老人家很好玩:你跟他讲话一定要先让他讲完,否则插不进嘴.反激电源多路输出交叉调整率的产生原因和改进方法.<br>理论上反激电源比正激电源更使用于多路输出,但实际上反击电源的多路输出交叉调整率比正激电源更难做,这主要是正激后面加了个偶合电感,而反激的漏感不是零.很多人做反激电源时都遇到这个问题,一路输出稳定性非常好,但多路输出时没有直接取反馈的路的电压会随其他路的负载变化而剧烈变化,这是什么原因呢?原来,在MOS关断,次级输出时能量的分配是有规律的,它是按漏感的大小来分配,具体是按匝比的平方来分配(这个可以证明,把其他路等效到一路就可得出结果)如:5V 3匝,漏感1uH,12V 7匝,如果漏感为(7/3)(平方)*1=5.4uH,则两路输出的电流变化率是一样的,没有交叉调整率的问题,但如果漏感不匹配时,就会有很多方面影响到输出调整率:1.次级漏感,这是明显的; 2,输入电压,如果设计不是很连续,则在高压时进入DCM状态,DCM时由于电流没有后面的平台,漏感影响更显著. 改进方法:1,变压器工艺,让功率比较大,电压比较低的绕组最靠近初级,其漏感最小,电压比较高,功率比较小的远离初级,这样就增加了其漏感.2,电路方法,电压输出较高的绕组在整流管前面加一个小的磁珠或一个小的电感,人为增加其漏感,这样电流的变化率就接近于主输出,电压就稳定.3,电压相近的输出,如:3.3V 5V,按我们的解释其漏感应该差别很小,这时就要把这两个绕组绕在同一层里面,甚至有时候5V要借用3.3的绕组,也就是所谓的堆叠绕法,来保证其漏感比.另外有时候电压不平衡是由于算出的匝数不为整数造成的,如半匝,当然半匝是有办法绕的,但半匝的绕法也是很危险的(可参考其他资料),这是我们可以通过二极管的压降来调整,如12V用7匝,5V用3匝,如果发现12V偏高,则12V借用5V的3匝,但剩下的4匝的起点从5V输出的整流管后面连接,则12V的整流管的压降为两组输出整流管的压降和,如:0.5(5V)+0.7(12V)=1.2V,另外12V输出负载变化时,其电流必然引起5V 整流管的压降变化,也就是5V输出变化,而5V的变化会通过反馈调整,这样也间接控制了12V.1、关于匝比平方的问题是这样的:电感值L=匝数的平方*AL(磁芯的电感因子).本质上还是电感量的问题.能量:P=1/2LI^2.2、漏感随便怎么调,如果不采取稳压措施一个绕组的负载状态(I)都会影响另一绕组.(个人观点)1.你说的问题是电感的电感量,而漏感是不遵守这个规律的,你可以把其他组的电压,电流,漏感等效到一组,然后就看到我的结论,只有每个绕组的电流上升率一样时,理论上电压就不会再随负载而变化.2.因为漏感受很多因素的影响,不可能完全调整到理想状态,所以实际上一个绕组还会影响另一个绕组,但可以把这个影响减到实际产品可应用的水平,而不需要加二次稳压.这个指的是每路输出的实际功率是看其负载的大小,而我说的是交叉稳定性,是两个事情,交叉稳定性不好时,其电压值在负载大小变化时变化很大.从一个朋友的角度我建议你还是先去多学点东西,再来发帖.<br>其实这是一个改进交叉调整率的方法之一,并不矛盾.其实还有很多方法来改进交叉调整率,如减小RCD电路的电阻,但会造成很大的耗能,所以没列在里面,还有能量再生绕组,它是把能量反送会电网,属于反激软开关的类型之一.你写了这么多,其实我看的出来,你压根就没理解我的说法.我已经告诉你怎么去把结果推出来,为何不去实验以下,你说我的方法无法实现,为何不照我由此推出的改进方法去试一下,实际上我已经帮很多人用此方法改进了交叉调整率,特别是在DVD,DVR,DVB里面.我将不再回复此帖,信不信由你.。