分段函数应用题
分段函数应用题
分段函数应用题1,我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低元,例如,某人买20只计算器,于是每只降价×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出该专卖店当一次销售x(只)时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?2,某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=;当50≤x ≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入-生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和-投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.12月的基础上减少%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)4、由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖.某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为万元/台,并预付了5万元押金。
分段函数的应用题
分段函数的应用题8. 某人驱车以52千米/时的速度从A 地驶往260千米远处的B 地,到达B 地并停留1.5小时后,再以65千米/时的速度返回A 地,试将此人驱车走过的路程s (千米)表示为时间t 的函数.解答:s =⎩⎪⎨⎪⎧ 52t ,260,260+(t -6.5)65,0<t ≤5,5<t <6.5,6.5≤t ≤10.5.4.(苏、锡、常、镇四市高三教学情况调查(一))某市出租车收费标准如下:起步价为8 元,起步里程为3 k m(不超过3 k m 按起步价付费);超过3 k m 但不超过8 k m 时,超过 部分按每千米2.15元收费;超过8 k m 时,超过部分按每千米2.85元收费,另每次乘 坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了 ________ k m.解析:设乘客每次乘坐需付费用为f (x )元,由题意可得:令f (x )=22.6,解得x =9.,答案:99.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内(即x ≥20),y 与x 之间函数的函数关系是________.解析:设进水速度为a 1升/分钟,出水速度为a 2升/分钟,则由题意得⎩⎨⎧5a 1=205a 1+15(a 1-a 2)=35,得⎩⎨⎧a 1=4a 2=3,则y =35-3(x -20),得y =-3x +95,又因为水放完为止,所以时间为x ≤953,又知x ≥20,故解析式为y =-3x +95(20≤x ≤953).答案:y =-3x +95(20≤x ≤953)12.在2008年11月4日珠海航展上,中国自主研制的ARJ 21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x ).(单位:h ,时间可不为整数)(1)写出g (x ),h (x )的解析式;(2)写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务的时间最少?解:(1)g (x )=20003x (0<x <216,x ∈N *),h (x )=1000216-x(0<x <216,x ∈N *).(2)f (x )=⎩⎪⎨⎪⎧20003x(0<x ≤86,x ∈N *).1000216-x(87≤x <216,x ∈N *).(3)分别为86、130或87、129.10.在边长为4的正方形ABCD 的边上有一动点P ,从B 点开始,沿折线BCDA 向A 点运动(如图),设P 点移动的距离为x ,△ABP 的面积为y ,求函数y =f (x )及其定义域.解:如题图,当点P 在线段BC 上,即0≤x ≤4时,y =12×4×x =2x ;当P 点在线段CD 上,即4<x ≤8时,y =12×4×4=8;当P 点在线段DA 上,即8<x ≤12时,y =12×4×(12-x )=24-2x .∴y =f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12,且f (x )的定义域是[0,12].11.如图所示,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA 由B 点(起点)向A 点(终点)移动.设P 点移动的路程为x ,△ABP 的面积为y =f (x ). (1)求△ABP 的面积与P 移动的路程的函数关系式; (2)作出函数的图象,并根据图象求f (x )的最大值.解:(1)函数的定义域为(0,12). 当0<x ≤4时,S =f (x )=12×4×x =2x ;当4<x ≤8时,S =f (x )=12×4×4=8;当8<x <12时,S =f (x )=12×4×(12-x )=24-2x .∴函数解析式为f (x )=⎩⎪⎨⎪⎧2x ,x ∈(0,4],8,x ∈(4,8],24-2x ,x ∈(8,12).(2)图象如图所示.从图象可以看出f (x )max =8.12.设A ={1,2,3,m },B ={4,7,n 4,n 2+3n },对应关系f :x →y =px +q ,已知m ,n ∈N *,1对应的元素是4,2对应的元素是7,试求p ,q ,m ,n 的值.解:因为1对应的元素为4,2对应的元素为7,列方程组⎩⎪⎨⎪⎧ p +q =4,2p +q =7,解得⎩⎪⎨⎪⎧p =3,q =1.故对应关系为f :x →y =3x +1.由此判断A 中元素3对应的元素要么是n 4,要么是 n 2+3n .若n 4=10,则n ∈N *不成立,所以n 2+3n =10,解得n =-5(舍去)或n =2.因为集合A 中的元素m 对应的元素只能是n 4,等于16, 所以3m +1=16, 所以m =5.故p =3,q =1,m =5,n =2.11.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10 000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P(x)=则总利润最大时店面经营天数是 .解析:设总利润为L(x),则L(x)=则L(x)=当0≤x<300时,L(x)max=10 000,当x≥300时,L(x)max=5 000,所以总利润最大时店面经营天数是200.答案:20013.某村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)老王家九月份按方案一交费35元,问老王家该月用电多少度?(3)老王家月用电量在什么范围时,选择方案一比选择方案二更好?解:(1)当0≤x≤30时,L(x)=2+0.5x,当x>30时,L(x)=2+30×0.5+(x-30)×0.6=0.6x-1,所以L(x)=(注:x也可不取0)(2)当0≤x≤30时,由L(x)=2+0.5x=35得x=66,舍去.当x>30时,由L(x)=0.6x-1=35得x=60.所以老王家该月用电60度.(3)设按方案二收费为F(x)元,则F(x)=0.58x.当0≤x≤30时,由L(x)<F(x),得2+0.5x<0.58x,所以x>25,所以25<x≤30.当x>30时,由L(x)<F(x),得0.6x-1<0.58x, 所以x<50,所以30<x<50. 综上,25<x<50.故老王家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.3.如图所示,动点P 从边长为1的正方形ABCD 的顶点A 出发,顺次经过顶点B ,C ,D 再回到A .设x 表示P 点的路程,y 表示PA 的长度,求y 关于x 的函数关系式.解:当P 点从A 运动到B 时,PA =x ; 当P 点从B 运动到C 时, PA =AB 2+BP 2=12+(x -1)2=x 2-2x +2;当P 点从C 运动到D 时, PA =AD 2+DP 2=12+(3-x )2=x 2-6x +10;当P 点从D 运动到A 时,PA =4-x .故y =⎩⎪⎨⎪⎧x , 0≤x ≤1,x 2-2x +2,1<x ≤2,x 2-6x +10,2<x ≤3,4-x , 3<x ≤4.甲、乙两车同时沿某公路从A 地驶往300km 外的B 地,甲车先以75km/h 的速度行驶,在到达AB中点C 处停留2h 后,再以100km/h 的速度驶往B 地,乙车始终以速度v 行驶.(1)请将甲车离A 地路程x(km)表示为离开A 地时间t(h)的函数,并画出这个函数图象; (2)若两车在途中恰好相遇两次(不包括A 、B 两地),试确定乙车行驶速度v 的取值范围.解析:(1)x=⎪⎩⎪⎨⎧≤<⨯-+≤≤<≤.5.54,100)4(150,42,150,20,75t t t t t它的图象如图所示.(2)由已知,乙车离开A 地的路程x(km)表示为离开A 地的时间t(h)的函数为x=vt(0≤t≤v300),其图象是一条线段. 由图象知,当此线段经过(4,150)时,v=275(km/h); 当此线段经过点(5.5,300)时,v=11600(km/h). ∴当275<v<11600时,两车在途中相遇两次.梳理 1.分段函数的定义在函数的定义域内,对于自变量x 的________________,有着______的对应法则,这样的函数通常叫做分段函数. 2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的________;各段函数的定义域的交集是________.3.作分段函数图象时,应分别作出每一段的图象.。
分段函数应用题
分段函数应用题1.(四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2. (广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x≤15时y是x的正比例函数; x≥15时,y是x的一次函数.3. (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?4. 某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?5. 一名考生步行前往考场, 10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图2所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了多少分钟?6. 某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?7. 为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?8.有甲、乙两家通迅公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?9. 如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()10. 星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。
分段函数应用题完整版
分段函数应用题HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】分段函数应用题1.(四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2. (广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x≤15时y是x的正比例函数; x≥15时,y是x的一次函数.3. (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元若该用户某月缴费105元时,则该用户该月用了多少度电4. 某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?5. 一名考生步行前往考场, 10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图2所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了多少分钟?6. 某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?7. 为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?8.有甲、乙两家通迅公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算如果她的月通话时间超过100分钟,又将如何选择9. 如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()10. 星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。
分段函数应用题
分段函数应用题分段函数是指一个函数被分成几个不同的部分,每个部分都有不同的定义域和值域。
在实际应用中,我们经常遇到需要使用分段函数来描述问题的情况。
本文将通过几个实际应用的例子,来说明分段函数的应用。
例一:电费计算一家电力公司的电费计算方式如下:- 当用电量小于等于100度时,每度电费用为0.5元。
- 当用电量大于100度小于等于200度时,前100度每度电费用为0.5元,超过100度的部分每度电费用为0.8元。
- 当用电量大于200度时,前100度每度电费用为0.5元,100到200度的部分每度电费用为0.8元,超过200度的部分每度电费用为1元。
根据以上规定,我们可以使用分段函数来计算电费。
设用电量为x度,则电费y(单位:元)可以表示为:```y = 0.5x 0 <= x <= 100y = 0.5 * 100 + 0.8 * (x-100) 100 < x <= 200y = 0.5 * 100 + 0.8 * 100 + 1 * (x-200) x > 200```例二:淘宝购物满减淘宝商城经常会举行满减活动,比如购物满200元减50元。
这个问题可以用分段函数来解决。
设购物金额为x元,满减后支付金额y(单位:元)可以表示为:```y = x 0 <= x < 200y = x - 50 x >= 200```例三:高考成绩转换某城市的高考成绩转换方式如下:- 当总分小于90分时,转换为A等级。
- 当总分大于等于90分且小于95分时,转换为B等级。
- 当总分大于等于95分且小于100分时,转换为C等级。
- 当总分等于100分时,转换为D等级。
根据以上规定,我们可以使用分段函数来计算成绩等级。
设总分为x分,成绩等级为y,可以表示为:```y = A x < 90y = B 90 <= x < 95y = C 95 <= x < 100y = D x = 100```结论:通过以上几个实际应用的例子,我们可以看到分段函数在解决问题中的广泛应用。
分段函数(含答案)
22、(2013•湖州)某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是140元,小张应得的工资总额是2800元,此时,小李种植水果10亩,小李应得的报酬是1500元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.考点:一次函数的应用.分析:(1)根据图象数据解答即可;(2)设z=kn+b(k≠0),然后利用待定系数法求一次函数解析式即可;(3)先求出20<m≤30时y与m的函数关系式,再分①10<m≤20时,10<m≤20;②20<m≤30时,0<n≤10两种情况,根据总费用等于两人的费用之和列式整理即可得解.解答:解:(1)由图可知,如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是(160+120)=140元,小张应得的工资总额是:140×20=2800元,此时,小李种植水果:30﹣20=10亩,小李应得的报酬是1500元;故答案为:140;2800;10;1500;(2)当10<n≤30时,设z=kn+b(k≠0),∵函数图象经过点(10,1500),(30,3900),∴,解得,所以,z=120n+300(10<n≤30);(3)当10<m≤30时,设y=km+b,∵函数图象经过点(10,160),(30,120),S ∕海里 13 0 5 8 150 t ∕小时343 ∴,解得, ∴y=﹣2m+180,∵m+n=30,∴n=30﹣m ,∴①当10<m ≤20时,10<m ≤20,w=m (﹣2m+180)+120n+300,=m (﹣2m+180)+120(30﹣m )+300,=﹣2m 2+60m+3900,②当20<m ≤30时,0<n ≤10,w=m (﹣2m+180)+150n ,=m (﹣2m+180)+150(30﹣m ),=﹣2m 2+30m+4500,所以,w 与m 之间的函数关系式为w=.点评: 本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,(3)难点在于要分情况讨论并注意m 、n 的取值范围的对应关系,这也是本题最容易出错的地方.19、(2013凤阳县县直义教教研中心)(本小题满分10分)黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s 和渔船离开港口的时间t 之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s 和它离开港口的时间t 的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?解:(1) 当0≤t ≤5时 s=30t ………………………………(1分) 当5<t ≤8时 s =150 …………………………………………… (2分)当8<t ≤13时 s =-30t +390 ………………………………………(3分)(2) 渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s =kt +b………………………………………………(4分)解得: k =45 b =-360∴s =45t -360 ………………………………………………(5分)解得 t =10 s =90渔船离黄岩岛距离为 150-90=60 (海里) ……………………………(6分)(3) S 渔=-30t +390S 渔政=45t -360分两种情况:① S 渔-S 渔政=30-30t +390-(45t -360)=30解得t =485(或9.6) -……………………………………………… (8分) ② S 渔政-S 渔=3045t -360-(-30t +390)=30解得 t =525(或10.4) ∴当渔船离开港口9.6小时或10.4小时时,两船相距30海里. (10)17、(2013•徐州)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示: 每月用气量 单价(元/m 3)不超出75m 3的部分2.5 超出75m 3不超出125m 3的部分a 超出125m 3的部分a+0.25 (1)若甲用户3月份的用气量为60m 3,则应缴费 150 元;(2)若调价后每月支出的燃气费为y (元),每月的用气量为x (m 3),y 与x 之间的关系如图所示,求a 的值及y 与x 之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m 3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?B考点:一次函数的应用.分析:(1)根据单价×数量=总价就可以求出3月份应该缴纳的费用;(2)结合统计表的数据)根据单价×数量=总价的关系建立方程就可以求出a值,再从0≤x≤75,75<x≤125和x>125运用待定系数法分别表示出y与x的函数关系式即可;(3)设乙用户2月份用气xm3,则3月份用气(175﹣x)m3,分3种情况:x>125,175﹣x≤75时,75<x≤125,175﹣x≤75时,当75<x≤125,75<175﹣x≤125时分别建立方程求出其解就可以.解答:解:(1)由题意,得60×2.5=150(元);(2)由题意,得a=(325﹣75×2.5)÷(125﹣75),a=2.75,∴a+0.25=3,设OA的解析式为y1=k1x,则有2.5×75=75k1,∴k1=2.5,∴线段OA的解析式为y1=2.5x(0≤x≤75);设线段AB的解析式为y2=k2x+b,由图象,得,解得:,∴线段AB的解析式为:y2=2.75x﹣18.75(75<x≤125);(385﹣325)÷3=20,故C(145,385),设射线BC的解析式为y3=k3x+b1,由图象,得,解得:,∴射线BC的解析式为y3=3x﹣50(x>125)(3)设乙用户2月份用气xm 3,则3月份用气(175﹣x )m3,当x >125,175﹣x ≤75时,3x ﹣50+2.5(175﹣x )=455,解得:x=135,175﹣135=40,符合题意;当75<x ≤125,175﹣x ≤75时,2.75x ﹣18.75+2.5(175﹣x )=455,解得:x=145,不符合题意,舍去;当75<x ≤125,75<175﹣x ≤125时,2.75x ﹣18.75+2.75(175﹣x )=455,此方程无解.∴乙用户2、3月份的用气量各是135m 3,40m 3.点评: 本题是一道一次函数的综合试题,考查了单价×数量=总价的运用,待定系数法求一次函数的解析式的运用,分段函数的运用,分类讨论思想在解实际问题的运用,解答时求出函数的解析式是关键.(2012湖北黄石,23,8分)某楼盘一楼是车库(暂不出售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a 元)⑴请写出每平方米售价y (元/米2)与楼层x (2≤x≤23,x 是正整数)之间的函数解析式. ⑵小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?⑶有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体数据阐明你的看法.【答案】(1)①当2≤x ≤8时,每平方米的售价应为:3000-(8-x )×20=20x +2840 (元/平方米)②当9≤x ≤23时,每平方米的售价应为:3000+(x -8)·40=40x +2680(元/平方米)∴{8)x (22840,20x 23)x (92680,40x ≤≤+≤≤+=y , x 为正整数(2)由(1)知:①当2≤x≤8时,小张首付款为(20x +2840)·120·30%=36(20x +2840)≤36(20·8+2840)=108000元<120000元∴2~8层可任选②当9≤x≤23时,小张首付款为(40x +2680)·120·30%=36(40x +2680)元36(40x +2680)≤120000,解得:x ≤3116349= ∵x 为正整数,∴9≤x ≤16综上得:小张用方案一可以购买二至十六层的任何一层.(3)若按方案二购买第十六层,则老王要实交房款为:y 1=(40·16+2680) ·120·92%-60a (元)若按老王的想法则要交房款为:y 2=(40·16+2680) ·120·91%(元)∵y1-y2=3984-60a∴当y1>y2即y1-y2>0时,解得0<a<66.4,此时老王想法正确;当y1≤y2即y1-y2≤0时,解得a≥66.4,此时老王想法不正确.。
八年级分段函数练习
分段函数的单调性
定义
分段函数在其定义域内某区间的 单调性是指在该区间内,函数值 随自变量的增大而增大或减小。
判断方法
分别检查各段函数在各自定义域 内的单调性,并注意连接点处的
变化趋势。
举例
分段函数$f(x) = begin{cases} x, & x leq 0 x, & x > 0
end{cases}$在$(-infty, 0]$上单 调递减,在$(0, +infty)$上单调
分段函数的计算方法
方法一
方法二
方法三
举例
分段处理:根据自变量所在 的区间选择相应的函数表达 式进行计算。
连续性处理:利用连续性, 将分段函数视为一个整体进 行计算。
极限和连续性处理:在连接 点处利用极限和连续性的性 质进行计算。
计算分段函数$f(x) = begin{cases} x^2 - 2x, & x leq 1 x^2 + 2x, & x > 1 end{cases}$在$x=1$处的 值,由于连续性,可以直接 代入$x=1$得到结果1。
题目三解析与答案
根据题目三给出的分段函数,当$x = 0$时,属于$x < 2$的范围,所以应该使用第二个 分段进行计算。代入得$f(0) = 0 + 1 = 1$。
THANKS FOR WATCHING
感谢您的观看
它根据不同的x值范 围,有不同的函数表 达式。
分段函数的特点
分段函数具有不连续性。 在分段点上,分段函数可能不连续、不光滑或者不可微。
分段函数在定义域内可以有多个不同的函数表达式。
分段函数的应用场景
分段函数在现实生活中有着广 泛的应用,例如气温变化、股 票价格波动、人口统计等。
专题68 分段函数在生活实际中的应用(原卷版)-中考数学解题大招复习讲义
例题精讲【例1】.某公司专销产品A,第一批产品A上市40天内全部售完、该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(1)中的折线表示的是市场日销售量与上市时间的关系;图(2)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)写出每件产品A的销售利润z与上市时间t的关系式;(3)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?变式训练【变1-1】.某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y=,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.(1)第15天的日销售量为件;(2)0<x≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?【变1-2】.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?【例2】.心理学家通过实验发现:初中学生听讲的注意力随时间变化,讲课开始时,学生注意力逐渐增强,中间有一段平稳状态,随后开始分散.学生注意力指标数y随时间表t (分钟)变化的函数图象如下.当0≤t≤10时,图象是抛物线的一部分,当10≤t≤20时和20≤t≤40时,图象是线段.(1)当0≤t≤10时,求注意力指标数y与时间t的函数关系式;(2)一道数学探究题需要讲解24分钟,问老师能否经过恰当安排,使学生在探究这道题时,注意力指标数不低于45?请通过计算说明.变式训练【变2-1】.网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.【变2-2】.东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价p (元/kg )与时间t (天)之间的函数关系式为p=,且其日销售量y (kg )与时间t (天)的关系如表:时间t(天)136102040…日销售量y(kg )1181141081008040…(1)已知y 与t 之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n 元利润(n <9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.1.为了节约水资源,自来水公司按分段收费标准收费,如图所示反映的是每月收取水费y (元)与用水量x (吨)之间的函数关系.按照分段收费标准,小颖家三、四月份分别交水费29元和19.8元,则四月份比三月份节约用水()A .2吨B .2.5吨C .3吨D .3.5吨2.某市为鼓励市民节约使用燃气,对燃气进行分段收费,每月使用11立方米以内(包括11立方米)每立方米收费2元,超过部分按每立方米2.4元收取.如果某户使用9立方米燃气,需要燃气费为元;如果某户的燃气使用量是x立方米(x超过11),那么燃气费用y与x的函数关系式是.3.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价2元收费;若每月用水量超过14吨,则超过部分每吨按市场价3.5元收费.小明家2月份用水20吨,交水费49元;3月份用水18吨,交水费42元.(1)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(2)小明家5月份用水30吨,则他家应交水费多少元?4.某市近期公布的居民用天然气阶梯价格听证会方案如下:×360+2.78×(400﹣360)=1022(元)(1)若小明家2019年使用天然气300立方米,则需缴纳天然气费为元(直接写出结果);(2)若小红家2019年使用天然气560立方米,则小红家2019年需缴纳的天然气费为多少元?5.在一段长为1000的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米/分钟,且当乙到达B点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.6.“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.5101618…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.7.电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电60度,则应缴费多少元?若该用户某月缴费125元时,则该用户该月用了多少度电?8.某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件,设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?9.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题.(1)甲,乙两地的距离为km;慢车的速度为km/h.(2)求CD段的函数解析式.(不用写自变量的取值范围)(3)求当x为多少时,两车之间的距离为500km,请通过计算求出x的值.10.某水产市场经营一种海产品,其日销售量y(kg)与销售单价x(元/千克)的函数关系如图所示.(1)分别求出当20≤x≤30,30<x≤35时,y与x之间的函数关系式.(2)当单价为32元/千克时,日销售量是多少?(3)当日销售量为80kg时,单价是多少?11.“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间t(h)之间的函数关系式如图1中线段AB所示.在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离x(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE ﹣EF所示.(1)小丽和小明骑车的速度各是多少?(2)求点E的坐标,并解释点E的实际意义.12.为加强公民的节水意识,合理利用水资源,某市对居民用水实行阶梯水价.居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系.其中线段AB 表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式,并写出自变量x的取值范围;(3)某户5月份按照阶梯水价应缴水费108元,其相应用水量为多少立方米?13.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:指距d(cm)20212223身高h(cm)160169178187(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)(2)某人身高为196cm,一般情况下他的指距应是多少?14.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小王4月份上网20小时,他应付多少元的上网费用?(3)若小王5月份上网费用为98元,则他在该月份的上网时间是多少.15.为提高校园绿化率,美化校园,某示范高中准备购买一批樟树和樱花树,一共100棵,其中樟树不少于10棵.园林部门称樟树成活率为70%,樱花树的成活率为90%,学校要求这批树的成活率不低于80%.樟树的单价y1和购买数量x的函数关系以及樱花树的单价y2和购买数量x的函数关系如图所示.(1)写出y1关于x的函数关系式;(2)请你帮学校作个预算,购买这批树最少需要多少钱?16.A,B两地相距300km,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即返回.如图是两车离A地的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围.(2)若两车行驶5h相遇,求乙车的速度.17.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”,某水果经销商主动从该种植专业户购进甲、乙两种水果进行销售.水果种植专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按2元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤500和x>500时,y与x之间的函数关系式.(2)若经销商计划一次性购进甲、乙两种水果共1200千克,且甲种水果不少于400千克,但又不超过乙种水果的两倍.问经销商要确保完成收购计划,至少准备多少资金?18.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时血液中含药量为每毫升3微克,每毫升血液中含药量y微克随时间x小时主变化如图所示,当成人按规定剂是服药后,(1)分别求出x<2和x>2时y与x的函数关系式,(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?19.甲骑电瓶车,乙骑自行车从西山漾公园丝绸小镇门口出发沿同一路线匀速前往太湖龙之梦乐园,设乙行驶的时间为x(h),甲、乙两人距出发点的路程s甲、s乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度km/h,乙的速度是km/h;(2)对比图①、图②可知:a=,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?20.某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)甲步行的速度,乙出发时甲离小区的距离;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,求出当25≤x≤30时s关于x的函数关系式.。
分段函数应用题
专题二:分段函数应用题例1:(四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图1所示:(1)求y 与x 之间的函数表达式;(2)月通话为280分钟时,应交话费多少元?【同类型练习】 某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?例2.旅客乘车按规定可携带一定重量的行李,如果超过规定则需购行李票,设行李费y (元)是行李重量x (千克)的一次函数,其图象如图所示。
(1)求y 与x 之间的函数关系式;(2)旅客最多可免费携带多少千克行李?【同类型练习】.某通讯公司每月通话的收费标准如图6所示;(1) 求y 与t 之间的函数表达式;(2) 由图象和函数解析式可知,甲公司用户月通话时间不超过100分钟时应付话费金额是 元;甲公司用户通话100分钟以后,每分钟的通话费为 元;O x/千克y/元60901053.某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头,假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图。
请结合图象,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟。
”你说可能吗?请说明理由。
4. 某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?5.为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?。
分段函数应用题带答案
分段函数应用题带答案1解:(1)24分钟(1分)(2)设水流速度为千米/分,冲锋舟速度为千米/分,根据题意得解得答:水流速度是千米/分.(3)如图,因为冲锋舟和水流的速度不变,所以设线段所在直线的函数解析式为把代入,得线段所在直线的函数解析式为由求出这一点的坐标答:冲锋舟在距离地千米处与救生艇第二次相遇.2. 甲: 从100米高度出发, 均速前进, 20分钟登高300-100=200米, 速度是200/20=10米/分钟, 但为了和乙的时间相关, x要扣除2分钟, 高度就是100+2*10=120米y=10x+120 (0≤x≤18) 乙:从2分钟登高30米( 因为b=15X2=30), 从2分钟到t 分钟登高到300米, 所以y=30+[270/(t-2)]x (0≤x≤18, 2 (1)甲登山的速度是每分钟10米,乙在A 地提速时距地面的高度b 为30米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式.甲: y=10x+120 (0≤x≤18) 乙: y=30+30x (0≤x≤9)(3)登山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?就是求当x 为何值时, 10x+120=30+30x 可解得x=4.5分, 登山时间等于x+2=6.5分, 即6分30秒. 此时乙的高度是y=30+30*4.5=165米(甲的`高度是y=10*6.5+100=165, 或y=10*4.5+120=165) 距A 地的高度是165-30=135米3解:(1)y =150+m +(x -150) n %···················· 3分(2)由表2知,小陈和大李的医疗费超过150元而小于10000元,因此有:150+m +(300-150) n %=280 ······················ 5分150+m +(500-150) n %=320 m =100解得:····························· 6分n =20 1∴y =150+100+(x -150) 20%=x +220. 5 ∴y =1x+220(150 (3)个人实际承担的费用最多只需2220元. (10)分4. 解:(1)锅炉内原有水96升,接水2分钟后,锅炉内的余水量为80升,接水4分钟,锅炉内的余水量为72升;2分钟前的水流量为每分钟8升等.(2)当0≤x≤2时,设函数解析式为y=k1x+b1,把x=0,y=96和x=2,y=80代入得:∴y=-8x+96(0≤x≤2),、当x>2时,设函数解析式为y=k2x+b2,把x=2,y=80和x=4,y=72代入得:∴y=-4x+88(x>2).∵前15位同学接完水时余水量为96-15×2=66(升),∴66=-4x+88,x=5.5.答:前15位同学接完水需5.5分钟.(3)①若小敏他们是一开始接水的,则接水时间为8×2÷8=2(分),即8位同学接完水,只需要2分钟,与接水时间恰好3分钟不符.② 若小敏他们是在若干位同学接完水后开始接水的,设8位同学从t 分钟开始接水,挡0 则8(2-t )+4[3-(2-t )]=8×2,16-8t+4+4t=16,∴t=1(分),∴(2-t )+[3-(2-t )]=3(分),符合.当t>2时,则8×2÷4=4(W 发),即8位同学接完水,需7分钟,与接水时间恰好3分钟不符.(1) 由图3可得,当0≤t ≤30时,市场日销售量y 与上市时间t 的关系是正比例函数,所以设市场的日销售量:y=kt,∵ 点(30,60)在图象上,∴ 60=30k .∴ k =2.即 y =2t,当30≤t ≤40时,市场日销售量y 与上市时间t 的关系是一次函数关系,所以设市场的日销售量:y=k1t+b,因为点(30,60)和(40,0)在图象上,60=30k 1+b 所以, 0=40k +b 1 解得 k1=-6,b =240.∴ y =-6t +240.综上可知,当0≤t ≤30时,市场的日销售量:y =2t,当30≤t ≤40时,市场的日销售量:y=-6t+240。
分段函数初二数学练习题
分段函数初二数学练习题题目一:求解分段函数的定义域与值域给定函数:$$f(x) =\begin{cases}2x+1, & x\leq2 \\x^2, & x>2 \\\end{cases}$$要求:1. 求解函数$f(x)$的定义域与值域;2. 绘制函数$f(x)$的图像。
解答:根据题目已给条件,我们可以得出下面的结论:1. 定义域的求解:首先考虑分段函数中第一段$2x+1$的定义域。
由于没有限制$x$的取值范围,所以该段函数$2x+1$在整个实数域上都有定义。
即第一段部分的定义域为$(-\infty, +\infty)$。
接下来考虑第二段$x^2$的定义域。
该函数要求$x$的取值必须大于2,因为$x^2$在$x\leq2$的时候没有实数解。
所以第二段部分的定义域为$(2, +\infty)$。
综合第一段和第二段的定义域,得到函数$f(x)$的定义域为$(-\infty, +\infty)$。
2. 值域的求解:首先考虑第一段$2x+1$的值域。
根据该函数的定义,我们可以发现无论$x$取多大,函数值$2x+1$总是大于等于1的。
所以第一段部分的值域为$[1, +\infty)$。
接下来考虑第二段$x^2$的值域。
该函数要求$x$的取值必须大于2,所以$x^2$的值域也必须大于$2^2=4$。
即第二段部分的值域为$(4,+\infty)$。
综合第一段和第二段的值域,得到函数$f(x)$的值域为$(1, +\infty)$。
至此,我们已经求解出了函数$f(x)$的定义域和值域。
下面我们绘制函数$f(x)$的图像:【插入图像】图中蓝色的部分代表函数$f(x)=2x+1$,红色的部分代表函数$f(x)=x^2$。
可以看出两段函数在$x=2$处连接。
从图中可以清晰地看出函数$f(x)$的定义域和值域。
综上所述,函数$f(x)$的定义域为$(-\infty, +\infty)$,值域为$(1, +\infty)$。
分段函数例题及解析
分段函数例题及解析1. 分段函数的定义分段函数是指在定义域上根据不同的条件对应不同的函数表达式的函数。
通常用于描述现实中具有不同规律的情况。
2. 分段函数的表示方式分段函数可以用函数图像、函数表达式和条件表示等方式来表示。
2.1 函数图像表示我们可以通过绘制函数图像来直观地表示分段函数的值随自变量的变化情况。
2.2 函数表达式表示在分段函数的定义域上,我们可以使用不同的函数表达式来表示不同条件下的函数值。
2.3 条件表示我们也可以使用条件表示法来表示分段函数。
例如:当自变量小于等于某个数时,函数的值为一个表达式;当自变量大于某个数时,函数的值为另一个表达式。
3. 分段函数的例题及解析3.1 例题1考虑以下分段函数:$$ f(x)=\\begin{cases} x+1, & \\text{if } x < 0 \\\\ 2x, & \\text{if } x \\geq 0\\end{cases} $$我们来分析该分段函数的性质。
首先,我们可以通过函数表达式表示这个分段函数。
当x<0时,函数的表达式为x+1;当$x \\geq 0$时,函数的表达式为2x。
其次,我们可以绘制该分段函数的函数图像。
对于x<0的情况,函数的图像是一个斜率为1的直线,与x轴交于点(−1,0);对于$x \\geq 0$的情况,函数的图像是一个斜率为2的直线,通过原点。
通过图像可以看出,在x=0处,由两条直线组成的函数图像连接起来,形成一个光滑的图像。
3.2 例题2考虑以下分段函数:$$ g(x)=\\begin{cases} x^2, & \\text{if } x \\leq 2 \\\\ 2x+1, & \\text{if } x > 2\\end{cases} $$我们来分析该分段函数的性质。
首先,我们可以使用条件表示法来表示这个分段函数。
当$x \\leq 2$时,函数的值为x2;当x>2时,函数的值为2x+1。
八年级数学下册利用分段函数解决实际问题专项练习
八年级数学下册利用分段函数解决实际问题专项练习类型1 判断实际问题中的分段函数图象1.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A-C-B-A 匀速运动,则CP的长度s与时间t之间的函数关系用图象描述大致是()2.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P 从点A 出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间变化的函数图象大致为()类型根据实际闭题确定分段函数的解析式3.某城市自来水实行阶梯水价,收费标准如下表所示,则该市居民每月水费y(元)与该月用水量x(吨)间的函数关系式为__________4.某液化气站有一储存量为40 吨的液化气储存罐,开始一段时间内打开进气管,不开出气管,在随后一段时间内既开进气管又开出气管,直到装满储存罐时关闭进管,储存罐中液化气储存量y(吨)关于时间x(分钟)的函数关系如图所示,则y与x之间函数关系式为__________5.一旅游团到黄冈某旅游景点,看到售票处旁边的告栏如图所示,请根据公告栏内容回答下列问题公告栏(1)若人数为9人,门票费是____元,若人数为30人,门票费是____元;(2)设人数为x人,写出该门票费y(元)与人数x的函数关系式.(直接填写在下面的横线上)__________类型3 (根据分段函数的图象解决实际问题)6.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计).一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计).小明与家的距离s(单位:米)与他所用的时间t:(单位:分钟)之间的函数关系如图所示.已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:正确的是_________①小明从家出发5分钟时乘上公交车;②公交车的速度400km/分钟;③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到;7.钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好推点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是_________8.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,己从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=____分钟时甲、乙两人相遇,甲的速度为40米/分钟;(2)求出线段AB所表示的函数表达式.9.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300 和x> 300 时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共12002m,若甲种花卉的z 种植面积不少于2002m,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?10.在长方形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②所示,试回答下列问题:(1)图①中AB=___ ,BC=___ ;(2)图②中a=___ ,b=___ ;(3)求出y与x之间的函数关系式.巧用一次函数的最值问题解决方案设计问题(2)类型1购买方案1.新农村社区改造中,有一部分楼盘要对外销售某楼盘共23层,销售价格如下:第八层楼房售价为4000元/平方米.从第八层起每上升一层每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120平方米若购买者一次性付清所有房款,开发商有两种优惠方案:方案降价8%,另外每套楼房赠送元装修基金;方案二:降价10%,没有其他赠送(1)请写出售价y(元/平方米)与楼层x(1≤x≤23,x取整数)之间的函数关系式(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算2.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系.已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是( )A 24天的销售量为200件B第10天销售一件产品的利润是15分C第12天与第30天这两天的日销售相等D第30天的日销售利润是750元3.某商店销售A型和B型两种型号电脑,每台A型电脑的销售利润为100元,每台B型电脑的销售利润为150元,现该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍(1)设购进A型电脑x台,这100台电脑的销售总利润为y元,求y与x 的关系式;(2)该商店购进A型、B型各多少台,才能使销售利润最大?类型3选择分配方案2018,天津)某游泳馆每年夏李推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元,设小明计划今年夏季游泳次数为x(x为正整数)(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由5.某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A,B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A,B两种产品总利润为y元,其中A种产品的生产件数是x(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,是总利润y有最大值,并求出y的最大值。
分段函数应用题
分段函数应用题1.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费元;(2)求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2.某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的图象如图所示。
(1)写出y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?3.今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)写出y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?4.有甲、乙两家通迅公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?一次函数与一元一次方程1.如图示为函数3y x b =-的图象,则方程30x b -=的解与b 的值分别为(A .1x =-,3b = B.1x =-,3b =- C .1x =,3b = D .1x =-,b =2.一次函数2y x a =+和34y ax =-,当5x =时函数值相等,则a 与y 的值分别为( )A .1a =,11y =B .1a =-,9y =C .5a =,15y =D .3a =,3y = 3.一次函数21y x =-与x 轴的交点坐标是 ,和y 轴的交点坐标是 , 方程210x -=的解是 .4.直线36y x =+与x 轴交点的横坐标x 的值是方程20x a +=的解,则a 的值是 . 6.一次函数(0)y kx b k =+≠的图象如图所示,则关于x 的方程0kx b +=的解为 , 当0x =时,y = ,b = . 7.如图所示,认真观察一次函数的图象,然后填空.(1)当0x =时,y = ;当0y =时,x = . (2)直线所对应的函数表达式是 . 8.如图:(1)当0x =时,y = ;(2)当0y =时,x = ; (3)当1x >-时,y 0; (4)当 时,03y ≤≤; (5)该直线对应的函数解析式为 . 9.利用函数图象解出x ,并笔算检验.(1)535x x -=+ (2)0.5431x x -=+10.如图所示,求:(1)当0y =时,x 的值;(2)求直线对应的函数解析式.11.已知一次函数31y x =-与5y x =-,当x 取何值时两个函数值相等?一次函数与一元一次不等式1.如图,直线y kx b =+与x 轴交于点(-4,0),则当0y >时,x 的取值范围是( ) A .4x >- B .0x > C .4x <- D .0x <第1题图 第2题图第3题图 2.已知一次函数y kx b =+的图象如图所示,则当0x <时,y 的取值范围是( ) A .0y > B .0y < C .20y -<< D .2y <- 3.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示, 则关于x 的不等式12k x b k x +>的解集为( )A .1x >-B .1x <-C .2x <-D .无法确定4.若直线y ax b =+与y 轴交于(0,2),与x 轴交于负半轴,则a 的取值范围是( )A .0a >B .0a <C .2a >D .2a < 5.已知函数24y x =-,当x 时,0y <.6.对于一次函数3y x =-+,当x 时,0y >;当x 时,0y <. 7.已知,123y x =--,231y x =+.(1)当x 时,12y y <;(2)当x 时,12y y =;(3)当x 时,12y y >. 8.已知一次函数y kx b =+的图象如图,则方程0kx b +=的解是 ,当0y >时,x 的取值范围是 ; 当0x >时,y 的取值范围是 . 9.一次函数112y x =+的图象位于x 轴上方的部分对应的x 的取值范围是什么?10.如图,直线125y x =-与直线21y x =-+的交点为(2,-1), 当x 时,12y y <? 11.用图象法解不等式210x ->.12.用图象法解不等式x-2<2x+1。
浙教版数学八年级上册期末复习微专题五《分段函数的应用》
6.(2022 秋·宁波市慈溪市期末)如图①,在平面直角坐标系中,四边形 ABCD 在第一象限内,AD∥BC∥x 轴,∠A=90°,直线 y=2x+4 沿 x 轴向其正方向平 移,在平移过程中,直线被四边形 ABCD 截得的线段长为 t,直线向右平移的距 离为 m ,如图②所示为 t 与 m 之间的函数图象,则四边形 ABCD 的面积为 ________.
A.24
B.25
【答案】 B
C.26
D.27
3.(2021 秋·绍兴市上虞区期末)早上 8 时,妈妈把小明送到游泳馆参加训练, 之后马上回家准备午饭,做好饭后去游泳馆等小明训练结束接其回家,妈妈两次 从游泳馆回家时的驾车速度相同,在家做饭和在游泳馆等小明的时间也相同.从 8 时开始,妈妈离家的距离 y 关于时间 x(时)的函数图象如图所示,则妈妈从家出 发去游泳馆等小明的路途的中间时刻,即图象中 CD 的中点 G 所对应的时刻为
(3)若小明家全年的用水量 x 不超过 270 立方米,则应缴纳的水费为多少元(用含 x 的代数
式表示)?
【解析】 (1)500 (2)215
(3)当 0≤x≤180 时,应缴纳的水费为 5x 元;当 180<x≤260 时,应缴纳的水费为 180×5
为 1 AB·(AD+BC)=1 ×(3+7)×4=20.
2
2
【答案】 20
三、解答题
7.某市对居民用水实行阶梯收费,按年度用水量计算,将居民家庭全年用水量划分为三
档,水价分档递增,实施细则如下表所示:
供水类型
阶梯
每户年用水量 x(立方米) 水价(元/立方米)
第一阶梯
0≤x≤180
5
自来水
分段函数例题
分段函数常见题型例析河南 陈长松所谓“分段函数”是指在定义域的不同部分,有不同对应关系的函数,因此分段函数不是几个函数而是一个函数,它在解题中有着广泛的应用,不少同学对此认识不深,解题时常出现错误.现就分段函数的常见题型例析如下:1.求分段函数的定义域、值域例1.求函数)(x f =⎪⎩⎪⎨⎧->-≤+)2(,2)2(,42x x x x x 的值域.解:当x ≤-2时,4)2(422-+=+=x x x y , ∴ y ≥-4.当x >-2时,y =2x , ∴y >22-=-1. ∴ 函数)(x f 的值域是{y ∣y ≥-4,或y >-1}={y ∣y ≥-4}.评注:分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.作分段函数的图象例2 已知函数2(2)()3[22)3[2)x f x x x x -∈-∞-⎧⎪=+∈-⎨⎪∈+∞⎩,,,,,,,画函数(f x 解:函数图象如图1所示.评注:分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同,分别由表达式做出其图象.作图时,一要注意每段自变量的取值范围;二要注意间断函数的图象中每段的端点的虚实. 3.求分段函数的函数值例3.已知)(x f =⎪⎩⎪⎨⎧<=>+)0.(0)0(,)0(,1x x x x π 求(((3)))f f f -的值.解:∵ -3<0 ∴f (-3)=0, ∴ f (f (-3))=f (0)=π 又π>0 ∴(((3)))f f f -=f (π)=π+1.x图1评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后按相应的对应关系求值.4.求分段函数的最值例4.已知函数)(x f =22(0)(0)x x x ⎧⎨<⎩,≥,求出这个函数的最值. 解:由于本分段函数有两段,所以这个函数的图象由两部分组成,其中一部分是一段抛物线,另一部分是一条射线,如图2所示.因此易得,函数最小值为0,没有最大值.5.表达式问题例5. 如图3,动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B C D ,,再回到A ,设x 表示P 点的行程,y 表示PA 的长度,求y 关于x 的表达式.解:如图3所示,当P 点在AB 上运动时,PA x =;当P 点在BC 上运动时,由PBA △Rt ,求得PA =;当P 点在CD上运动时,由PDA Rt △求出PA =;当P 点在DA 上运动时,4PA x =-,所以y 关于x的表达式是01122343 4.x x x y x x x ⎧<=<-<⎩, ≤≤,≤, ≤,, ≤ 在此基础上,强调“分段”的意义,指出分段函数的各段合并成一个整体,必须用符号“{”来表示,以纠正同学们的错误认识.A BP 图3。
类型5 分段函数的实际应用(精选20题)2020年中考数学三轮冲刺 难点题型突破(含答案)
分段函数的实际应用1.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a <b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0B.2C.3D.42.为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.80元/度计算(未超过部分仍按每度电0.50元计算).现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.3.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为.4.某书定价为30元,如果一次购买20本以上,超过20本的部分打9折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系式为.5.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费,设某户每月用水量为x(m3),应交水费为y(元).(1)写出用水未超过7m3时,y与x之间的函数关系式;(2)写出用水多于7m3时,y与x之间的函数关系式.6.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.7.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1y2与x 之间的函数关系图象如图所示:(1)根据图象,直接写出y1,y2与x之间的函数关系;(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.8.甲、乙两家商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超过50元的部分按95%收费.某顾客购买x元的该商品.(1)当0<x≤50时,请直接回答该顾客在甲、乙两家商场购物花费的关系;(2)当50<x≤100时,到哪家商场购物花费少?少花多少钱?(用含x的代数式表示)(3)当x>100时,到哪家商场购物花费少?9.我国现行个人工资、薪金所得税征收办法规定:月收入低于1600元的部分不收税,月收入超过1600元但不超过2100元的部分征收5%的所得税,月收入超过2100但不超过3600的部分征收10%的所得税.(1)当月收入大于1600元而又不超过2100元时,写出应缴所得税y(元)与月收入x (元)之间的关系式;(2)当月收入大于2100元而又不超过3600元时,写出应缴所得税y(元)与月收入x (元)之间的关系式;(3)某人月收入1760元,他应缴所得税多少元?(4)如果某人本月缴纳所得税115元,那么此人本月工资、薪金是多少元?10.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质.列表:x…﹣3﹣﹣2﹣﹣1﹣0123…y…121012…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B (﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.11.北京地铁票价计费标准如表所示:x≤66<x≤1212<x≤2222<x≤32x>32乘车距离x(公里)票价(元)3456每增加1元可乘坐20公里另外,使用市政交通一卡通,每个自然月每张卡片支出累计满100元后,超出部分打8折;满150元后,超出部分打5折;支出累计达400元后,不再打折.小红妈妈上班时,需要乘坐地铁15公里到达公司,每天上下班共乘坐两次,如果每次乘坐地铁都使用市政交通一卡通,那么每月第21次乘坐地铁上下班时,她刷卡支出的费用是()A.2.5元B.3元C.4元D.5元12.在国内投寄到外地质量为80g以内的普通信函应付邮资如下表:信件质量m/g0<m≤2020<m≤4040<m≤6060<m≤80邮资y/元 1.20 2.40 3.60 4.80某同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是()A.4.80B.3.60C.2.40D.1.2013.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款元.14.某人驾车从乡村进城,各时间段的行驶速度如图.当0≤t<1时,则其行驶路程S与时间t的函数关系式是.当1≤t<2时,则其行驶路程S与时间t的函数关系式是.当2≤t<3时,则其行驶路程S与时间t的函数关系式是.15.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?16.某城市规定:出租车起步价允许行驶的最远路程为3千米.超过3千米的部分按每千米另行收费,甲说:“我乘这种出租车走了8千米,付了17元”;乙说:“我乘这种出租车走了18千米,付了35元”.(1)请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?(2)若某人乘这种出租车行驶了x千米,请写出付费w元与x的函数关系式.17.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18吨的部分超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.18.邵武春秋旅行社为了吸引市民组团去黄山风景区旅游,推出了如下收费标准:现某单位组织员工去黄山风景区旅游,(1)若该单位有18名员工去旅游,需支付给春秋旅行社旅游费用多少元?(2)若该单位有28名员工去旅游,需支付给春秋旅行社旅游费用多少元?(3)若该单位共支付给春秋旅行社旅游费用27000元,请问该单位共有多少员工去黄山风景区旅游?19.北京市为治理交通拥堵状况,鼓励市民乘坐公交车出行,从4月1日开始,北京市三环内的停车费第一小时为10元,比原先的每小时2元上涨8元,此后每小时15元,比之前上涨13元.设在这样的停车场停车x小时,需付费y元.(假定每辆车的停车时间均是整数小时).分别写出4月1日前和4月1日后y与x间的函数关系式.20.上网费包括网络使用费(每月38元)和上网通信费(每时2元),某电信局对拨号上网用户实行优惠,具体优惠政策如下:上网时间优惠标准30小时以内(包括30小时)无优惠30至50小时之间(包括50小时)通信费优惠30%50至100小时之间(包括100小时)通信费优惠40%100小时以上通信费优惠50%(1)若小敏家3月份上网29小时,应缴上网费多少元?(2)若小敏家8月份上网90小时,应缴上网费多少元?试题解析1.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a <b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0B.2C.3D.4解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选:B.2.为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.80元/度计算(未超过部分仍按每度电0.50元计算).现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.解:根据题意,当0≤x≤100时,y=0.5x,当x>100时,y=100×0.5+0.8(x﹣100),=50+0.8x﹣80,=0.8x﹣30,所以,y与x的函数关系为y=,纵观各选项,只有C选项图形符合.故选:C.3.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为.解:∵x=,∴由题意可知代入y=,得:y=,故答案为:.4.某书定价为30元,如果一次购买20本以上,超过20本的部分打9折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系式为y=;.解:y与x之间的函数关系式为y=;故答案为:y=;5.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费,设某户每月用水量为x(m3),应交水费为y(元).(1)写出用水未超过7m3时,y与x之间的函数关系式;(2)写出用水多于7m3时,y与x之间的函数关系式.解:(1)未超出7立方米时:y=x×(1+0.2)=1.2x;(2)超出7立方米时:y=7×1.2+(x﹣7)×(1.5+0.4)=1.9x﹣4.9.6.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元.故答案为:30.(2)由题意y1=30×0.6x+60=18x+60,由图可得,当0≤x≤10时,y2=30x;当x>10时,设y2=kx+b,将(10,300)和(20,450)代入y2=kx+b,解得y2=15x+150,所以y2=,(3)函数y1的图象如图所示,由解得,所以点F坐标(5,150),由解得,所以点E坐标(30,600).由图象可知甲采摘园所需总费用较少时5<x<30.7.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1y2与x 之间的函数关系图象如图所示:(1)根据图象,直接写出y1,y2与x之间的函数关系;(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(1)解:设y1=kx(0≤x≤10,k≠0),由图象知:过点(10,600),代入得:600=10k,∴k=60,∴y1=60x.设y2=ax+b(0≤x≤6,a≠0),由图象可知:过点(0,600),(6,0),代入得:,解得:a=﹣100,b=600,∴y2=﹣100x+600.即∴y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6).(2)解:∵当x=3时,y1=60×3=180,y2=﹣100×3+600=300,∴两车之间的距离=600﹣180﹣300=120;∵当x=5时,y1=60×5=300,y2=﹣100×5+600=100,∴两车之间的距离=600﹣300﹣100=200;当x=8时,y1=480,y2=0,∴两车之间的距离是480;(3)解:当0≤x<时,S=y2﹣y1=﹣160x+600;当≤x<6时,S=y1﹣y2=160x﹣600;当6≤x≤10时,S=60x;即S=.8.甲、乙两家商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超过50元的部分按95%收费.某顾客购买x元的该商品.(1)当0<x≤50时,请直接回答该顾客在甲、乙两家商场购物花费的关系;(2)当50<x≤100时,到哪家商场购物花费少?少花多少钱?(用含x的代数式表示)(3)当x>100时,到哪家商场购物花费少?解:(1)当累计购物不超过50元时,在甲乙两商场的花费一样;②当累计消费超过50元而不超过100元时,在乙商场享受优惠,在甲商场不享受优惠,因此应该到乙商场购买;③当累计消费超过100元时,设累计消费x元(x>100),甲商场消费为:100+(x﹣100)×0.9元,在乙商场消费为:50+(x﹣50)×0.95元,当100+(x﹣100)×0.9>50+(x﹣50)×0.95,解得:x<150,当100+(x﹣100)×0.9<50+(x﹣50)×0.95,解得:x>150,当100+(x﹣100)×0.9=50+(x﹣50)×0.95,解得:x=150,综上所述,当累计消费大于100元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元或不超过50元时,在甲乙商场花费一样.9.我国现行个人工资、薪金所得税征收办法规定:月收入低于1600元的部分不收税,月收入超过1600元但不超过2100元的部分征收5%的所得税,月收入超过2100但不超过3600的部分征收10%的所得税.(1)当月收入大于1600元而又不超过2100元时,写出应缴所得税y(元)与月收入x (元)之间的关系式;(2)当月收入大于2100元而又不超过3600元时,写出应缴所得税y(元)与月收入x (元)之间的关系式;(3)某人月收入1760元,他应缴所得税多少元?(4)如果某人本月缴纳所得税115元,那么此人本月工资、薪金是多少元?解:(1)y=5%(x﹣1600)=0.05x﹣80;(2)y=5%×(2100﹣1600)+10%(x﹣2100)=0.1x﹣185;(3)∵1600<1760<2100,∴y=0.05×1760﹣80=8(元),答:他应缴所得税8元;(4)∵5%×(2100﹣1600)=25,25<115,∴工资、薪金月收入超过2100,∴115=0.1x﹣185x=3000.答:那么此人本月工资、薪金是3000元.10.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质.列表:x…﹣3﹣﹣2﹣﹣1﹣0123…y…121012…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1<y2,x1<x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.解:(1)如图所示:(2)①A(﹣5,y1),B(﹣,y2),A与B在y=﹣上,y随x的增大而增大,∴y1<y2;C(x1,),D(x2,6),C与D在y=|x﹣1|上,观察图象可得x1<x2;故答案为<,<;②当y=2时,x≤﹣1时,有2=﹣,∴x=﹣1;当y=2时,x>﹣1时,有2=|x﹣1|,∴x=3或x=﹣1(舍去),故x=﹣1或x=3;③∵P(x3,y3),Q(x4,y4)在x=﹣1的右侧,∴﹣1≤x≤3时,点P,Q关于x=1对称,则有y3=y4,∴x3+x4=2;④由图象可知,0<a<2;11.北京地铁票价计费标准如表所示:x≤66<x≤1212<x≤2222<x≤32x>32乘车距离x(公里)票价(元)3456每增加1元可乘坐20公里另外,使用市政交通一卡通,每个自然月每张卡片支出累计满100元后,超出部分打8折;满150元后,超出部分打5折;支出累计达400元后,不再打折.小红妈妈上班时,需要乘坐地铁15公里到达公司,每天上下班共乘坐两次,如果每次乘坐地铁都使用市政交通一卡通,那么每月第21次乘坐地铁上下班时,她刷卡支出的费用是()A.2.5元B.3元C.4元D.5元解:小红妈妈每天的上下班的费用分别为5元,即每天10元,10天后花费100元,第21次乘坐地铁时,价格给予8折优惠,此时花费5×0.8=4元,故选:C.12.在国内投寄到外地质量为80g以内的普通信函应付邮资如下表:信件质量m/g0<m≤2020<m≤4040<m≤6060<m≤80邮资y/元 1.20 2.40 3.60 4.80某同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是()A.4.80B.3.60C.2.40D.1.20解:由题可得,当0<m≤20时,邮资y=1.20元,∴同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是1.20元,故选:D.13.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款838或910元.解:由题意知付款480元,实际标价为480或480×=600元,付款520元,实际标价为520×=650元,如果一次购买标价480+650=1130元的商品应付款800×0.8+(1130﹣800)×0.6=838元.如果一次购买标价600+650=1250元的商品应付款800×0.8+(1250﹣800)×0.6=910元.故答案为:838或910.14.某人驾车从乡村进城,各时间段的行驶速度如图.当0≤t<1时,则其行驶路程S与时间t的函数关系式是S=40t.当1≤t<2时,则其行驶路程S与时间t的函数关系式是S=80t﹣40.当2≤t<3时,则其行驶路程S与时间t的函数关系式是S=30t+60.解:观察图象,得当0≤t<1时,则其行驶路程S与时间t的函数关系式是S=40t,当1≤t<2时,则其行驶路程S与时间t的函数关系式是S=80(t﹣1)+40,化简,得S =80t﹣40,当2≤t<3时,则其行驶路程S与时间t的函数关系式是S=30(t﹣2)+120=30t+60,化简,得S=30t+60,故答案为:S=40t,S=80t﹣40,S=30t+60.15.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税224元,若王老师获得的稿费为4000元,则应纳税440元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?解:(1)若王老师获得的稿费为2400元,则应纳税224元,若王老师获得的稿费为4000元,则应纳税440元;(2)因为王老师纳税420元,所以由(1)可知王老师的这笔稿费高于800元,而低于4000元,设王老师的这笔稿费为x元,根据题意得:14%(x﹣800)=420x=3800元.答:王老师的这笔稿费为3800元.16.某城市规定:出租车起步价允许行驶的最远路程为3千米.超过3千米的部分按每千米另行收费,甲说:“我乘这种出租车走了8千米,付了17元”;乙说:“我乘这种出租车走了18千米,付了35元”.(1)请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?(2)若某人乘这种出租车行驶了x千米,请写出付费w元与x的函数关系式.解:(1)设起步价为x元,超过3千米后,每千米的车费是y元,由题意,得,解得,答:种出租车的起步价是8元,超过3千米后,每千米的车费是1.8元;(2)当0<x≤3时,y=8;当x>3时,w=1.8(x﹣3)+8,即w =.17.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:超过18吨的部分月用水量不超过12吨的部分超过12吨不超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.解:(1)当用水12吨时,缴水费为2×12=24元,当用水18吨时,缴水费为24+2.5×(18﹣12)=24+15=39元,∵45元>39元,∴5月份的用水量超过18吨,设5月份的用水量为x吨,根据题意得,39+(x﹣18)×3=45,解得x=20;(2)根据(1),当所缴水费为20元时,∵20<24,∴用水20÷2=10吨,当所缴水费为30元时,∵24<30<39,∴设用水为x,则24+(x﹣12)×2.5=30,解得x=14.4,所以,该用户的月用水量应该控制在10~14.4吨之间;(3)①m≤12吨时,所缴水费为2m元,②12<m≤18吨时,所缴水费为2×12+(m﹣12)×2.5=(2.5m﹣6)元,③m>18吨时,所缴水费为2×12+2.5×(18﹣12)+(m﹣18)×3=(3m﹣15)元.18.邵武春秋旅行社为了吸引市民组团去黄山风景区旅游,推出了如下收费标准:现某单位组织员工去黄山风景区旅游,(1)若该单位有18名员工去旅游,需支付给春秋旅行社旅游费用多少元?(2)若该单位有28名员工去旅游,需支付给春秋旅行社旅游费用多少元?(3)若该单位共支付给春秋旅行社旅游费用27000元,请问该单位共有多少员工去黄山风景区旅游?解:设该单位有x名员工去旅游,所需旅游费用为y元;x≤25时,y=1000x;又700=1000﹣20(x﹣25),解得:x=4025<x≤40时,y=[1000﹣20(x﹣25)]x=1500x﹣20x2;x>40时,y=700x(1)x=18,y=1000x=18000;(2)x=28,y=1500x﹣20x2=263200;(3)x≤25时,y=1000x≤25000<27000;x>40时,y=700x>28000>27000;25<x≤40时,y=1500x﹣20x2=27000,解得;x1=30,x2=45(舍去)∴该单位共有30名员工去黄山风景区旅游.19.北京市为治理交通拥堵状况,鼓励市民乘坐公交车出行,从4月1日开始,北京市三环内的停车费第一小时为10元,比原先的每小时2元上涨8元,此后每小时15元,比之前上涨13元.设在这样的停车场停车x小时,需付费y元.(假定每辆车的停车时间均是整数小时).分别写出4月1日前和4月1日后y与x间的函数关系式.解:4月1日前,第一小时为2元,此后每小时也是2元,故可得:y=2x;4月1日后,第一小时为10元,此后每小时15元,故可得y=.20.上网费包括网络使用费(每月38元)和上网通信费(每时2元),某电信局对拨号上网用户实行优惠,具体优惠政策如下:上网时间优惠标准30小时以内(包括30小时)无优惠30至50小时之间(包括50小时)通信费优惠30%50至100小时之间(包括100小时)通信费优惠40%100小时以上通信费优惠50%(1)若小敏家3月份上网29小时,应缴上网费多少元?(2)若小敏家8月份上网90小时,应缴上网费多少元?解:(1)由图表可得出:小敏家3月份上网29小时,应缴上网费为:38+29×2=96(元);(2)由图表可得出:小敏家8月份上网90小时,应缴上网费为:38+90×2×(1﹣40%)=146(元)。
以分段函数为载体的应用题专题
以分段函数为载体的应用题1.某驾驶员喝了1 000 mL 某种酒后,血液中的酒精含量f(x)(mg /mL )随时间x(h )变化的规律近似满足表达式f(x)=⎩⎪⎨⎪⎧5x -2,0≤x ≤1,35·⎝⎛⎭⎫13x ,x >1.《酒后驾车与醉酒驾车的标准及相应的处罚》规定为驾驶员血液中酒精含量不得超过0.02 mg /mL ,据此可知,此驾驶员至少要过________h 后才能开车.(精确到1h )2.据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v(km /h )与时间t(h )的函数图象如图,过线段OC 上一点T(t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t(h )内沙尘暴所经过的路程s(km ).若N 城位于M 地正南方向,且距M 地650 km ,则这场沙尘暴________h 后侵袭到N 城.3.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v(x)的表达式.(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/小时).4.某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P 与日产量x(万件)之间满足关系:P =⎩⎨⎧16-x ,1≤x ≤c ,23,x >c ,(其中c 为小于6的正常数).(注:次品率=次品数/生产量,如P =0.1表示每生产10件产品,有1件为次品,其余为合格品)已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;(2)当日产量为多少时,可获得最大利润?5.如图,某新建小区有一片边长为1(单位:百米)的正方形剩余地块ABCD ,中间部分MNK 是一片池塘,池塘的边缘曲线段MN 为函数y =29x⎝⎛⎭⎫13≤x ≤23的图象,另外的边缘是平行于正方形两边的直线段.为了美化该地块,计划修一条穿越该地块的直路l(宽度不计),直路l 与曲线段MN 相切(切点记为P),并把该地块分为两部分.记点P 到边AD 距离为t ,f(t)表示该地块在直路l 左下部分的面积.(1)求f(t)的解析式;(2)求面积S =f(t)的最大值.6.图1所示,某地打算在一块长方形地块上修建一个植物园(ABCDEF 围成的封闭区域),其中AB 长12百米,BC 长4百米,CD =8.5百米,AF 长0.5百米,DEF 是一段曲线形公路,该植物园的核心区为等腰直角三角形MPQ 所示区域,且MP =PQ ,植物园大门位于公路DEF 上的M 处,音乐广场P 位于AB 的中点处,为了能够让游客更好地观赏园中的景观,现决定修建一条观光栈道,起点位于距离音乐广场P 处2百米的O 点所示位置,终点位于美食广场Q 处.图2所示,建立平面直角坐标系,若M(x ,f(x))满足f(x)=⎩⎪⎨⎪⎧k x ,-2<x ≤-12,ax +b ,-4≤x ≤-2.(1)求f(x)的解析式;(2)求观光栈道OQ 的长度的最小值.1.答案:4.解析:当0≤x ≤1时,125≤5x -2≤15,此时不宜开车;由35·⎝ ⎛⎭⎪⎫13x≤0.02,得x ≥4. 2.答案:30. 解析:当0≤t ≤10时,S =12·t ·3t =32t 2,当10<t ≤20时,S =12×10×30+30(t -10)=30t -150;当20<t ≤35时,S =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550. 综上,可知S = 错误!因为t ∈[0,10]时,s max=32×102=150<650,t ∈(10,20]时,s max =30×20-150=450<650,所以当t ∈(20,35]时,令-t 2+70t -550=650.解得t 1=30,t 2=40.∵20<t ≤35,∴t =30.答:沙尘暴发生30后将侵袭到N 城.3.答案:(1)v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,200-x3,20<x ≤200. (2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/小时.解析:(1)由题意:当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b .由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003,故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,200-x3,20<x ≤200. (2)依题意并由(1)可得f (x )=错误!当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x )≤ 13⎝ ⎛⎭⎪⎫x +200-x 22=10 0003.当且仅当x =200-x ,即x =100时,等号成立.所以当x =100时,f (x )在区间(20,200]上取得最大值.综上,当x =100时,f (x )在区间[0,200]上取得最大值f (x )max =10 0003≈3333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/小时.4.答案:(1)⎩⎪⎨⎪⎧9x -2x 26-x ,1≤x ≤c ,0,x >c .(2)若3≤c <6,则当日产量为3万件时,可获得最大利润;若1≤c <3,则当日产量为c 万件时,可获得最大利润.解析:(1)当x >c 时,P =23,∴T =13x ·2-23x ·1=0,当1≤x ≤c 时,P =16-x,∴T =⎝⎛⎭⎪⎫1-16-x ·x · 2-⎝ ⎛⎭⎪⎫16-x ·x ·1=9x -2x26-x,日盈利额T (万元)与日产量x (万件)的函数关系为⎩⎪⎨⎪⎧9x -2x 26-x ,1≤x ≤c ,0,x >c .(2)由(1)知,当x >c时,每天的盈利额为0,当1≤x ≤c 时,T =9x -2x26-x= 15-2⎣⎢⎡⎦⎥⎤(6-x )+96-x ≤15-12=3,当且仅当x =3时取等号,所以(ⅰ)当3≤c <6时,T max=3,此时x =3,(ⅱ)当1≤c <3时,由T ′=2x 2-24x +54(6-x )2=2(x -3)(x -9)(6-x )2,知函数T =9x -2x 26-x 在[1,3]上递增,∴T max =9c -2c26-c,此时x =c .综上,若3≤c <6,则当日产量为3万件时,可获得最大利润;若1≤c <3,则当日产量为c 万件时,可获得最大利润.5.答案:(1)f (t )=⎩⎪⎨⎪⎧2t -94t 2,13≤t ≤49,49,49≤t ≤12,4t -19t 2,12<t ≤23.(2)S max =49.解析:(1)因为y =29x,所以y ′=-29x2,由于点P 到边AD 距离为t ,所以点P 的坐标为⎝⎛⎭⎪⎫t ,29t ,所以过点P 的切线方程为y -29t=-29t 2(x -t ),即y =-29t 2x +49t ,令x =0,得y =49t,令y =0,得x =2t .所以切线与x 轴交点E (2t ,0),切线与y 轴交点F ⎝ ⎛⎭⎪⎫0,49t . ①当⎩⎪⎨⎪⎧2t ≤1,49t ≤1,13≤t ≤23,即49≤t ≤12时,切线左下方的区域为一直角三角形,所以f (t )=12×2t ×49t =49.②当⎩⎪⎨⎪⎧2t >1,49t ≤1,13≤t ≤23,即12<t ≤23时,切线左下方的区域为一直角梯形,f (t )=12⎝ ⎛⎭⎪⎫49t +4t -29t 2·1=4t -19t 2, ③当⎩⎪⎨⎪⎧2t ≤1,49t >1,13≤t ≤23,即13≤t <49时,切线左下方的区域为一直角梯形,所以f (t )=12⎝ ⎛⎭⎪⎫4t -9t22+2t ·1=2t -94t 2,综上所求函数f (t )的解析式f (t )=⎩⎪⎨⎪⎧2t -94t 2,13≤t <49,49,49≤t ≤12,4t -19t 2,12<t ≤23.(2)由(1)得,当13≤t <49时, f (t )=2t -94t 2=-94⎝ ⎛⎭⎪⎫t -492+49<49,当12<t ≤23时,f (t )=4t -19t 2=-19⎝ ⎛⎭⎪⎫1t -22+49<49, 答:所求面积S 的最大值为49.6.答案:(1)f (x )=⎩⎪⎨⎪⎧-2x ,-2<x ≤-12,14x +32,-4≤x ≤-2.(2)()2+22百米. 解析:(1)由题意得,A (-4,0),P (2,0),D ⎝ ⎛⎭⎪⎫-12,4,由f ⎝ ⎛⎭⎪⎫-12=k-12=4,解得k =-2,所以E (-2,1).故f (-2)=1,又f (-4)=12,所以⎩⎪⎨⎪⎧-2a +b =1,-4a +b =12,解得⎩⎪⎨⎪⎧a =14,b =32,所以f (x )=⎩⎪⎨⎪⎧-2x ,-2<x ≤-12,14x +32,-4≤x ≤-2.(2)过点M ,Q 分别作x 轴的垂线,垂足为M ′,Q ′,易证△MPM ′≌△PQQ ′,由P (2,0),得Q (2+f (x ),2-x ),若-2<x ≤-12,设M ⎝⎛⎭⎪⎫x ,-2x ,则Q ⎝ ⎛⎭⎪⎫-2x+2,2-x ,OQ=x 2+4x 2-4x -8x+8=错误!= ⎝ ⎛⎭⎪⎫x +2x -22= ⎪⎪⎪⎪⎪⎪x +2x -2.因为-2<x ≤-12,所以OQ =2-x - 2x ⎝⎛⎭⎪⎫-2<x ≤-12.所以OQ =2-x -2x=2+(-x )+⎝ ⎛⎭⎪⎫-2x ≥2+2(-x )⎝⎛⎭⎪⎫-2x=()2+22(百米),当且仅当-x =-2x即x =-2时等号成立.若-4≤x ≤-2,设M ⎝⎛⎭⎪⎫x ,14x +32, 则Q ⎝ ⎛⎭⎪⎫14x +72,2-x , OQ =⎝ ⎛⎭⎪⎫14x +722+(2-x )2=错误!=1716x 2-94x +654,y =1716x 2-94x +654在[-4, -2]上单调递减,所以OQ ≥错误!=5,又因为2+22<5,所以OQ 的长度的最小值为()2+22百米.。
高三分段函数典型例题解析之一
高三分段函数典型例题解析之一1.函数 ,若实数a 满足=1,则实数a 的所有取值的和为( )A .1B .C .D . 【答案】C【解析】第一步,通过观察分析,决定如何对自变量进行分类:令0log 2=a 和0142=++a a 得,,,32321+-=--==a a a第二步 通过运算、变形,利用常见基本初等函数,将问题转化为几段加以求解; 若1>a 则()a a f 2log =,所以()()()1log log 22==a a f f ,所以4=a ; 若10≤<a 则()a a f 2log =,所以()()()11log 4log 222=++=a a a f f ,所以0log 2=a 或-4log 2=a ,即1=a 或161=a ; 若032≤<+-a 则()142++=a a a f ,所以()()()114log 22=++=a a a f f ,所以52+-=a (舍)或52--=a (舍);若3232+-≤≤--a 则()142++=a a a f ,所以()()()()1114414222=++++++=a a a a a f f ,所以32+-=a 或32--=a ;若32--<a 则()142++=a a a f ,所以()()()114log 22=++=a a a f f ,所以52+-=a (舍)或52--=a ; 第三步 得出结论.所以a 所有可能值为161,32,32,1,52,4+-----,其和为51615--,故选C .2.已知函数,则______.【答案】【分析】22log ,0()41,0x x f x x x x >⎧=⎨++≤⎩(())f f a 17516-15516-2-()()1,022,0xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩21log 5f ⎛⎫= ⎪⎝⎭516判断的范围,然后利用时,进行转化,将转化为,然后再利用分段函数的解析式求解即可. 【详解】函数,因为,且, 则. 故答案为:. 3.已知函数,则不等式的解集是( )A .B .C .D .【答案】A【分析】,当时,,所以或;当时,,所以,所以不等式的解集是,,, 故选:A .4.已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞【答案】C【解析】第一步,通过观察分析,决定如何对自变量进行分类:21log 50x <()()2f x f x =+21log 5f ⎛⎫ ⎪⎝⎭()24log 5f -()()1,022,0xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩221log log 55=-23log 52-<-<-()()2221log log 52log 55f f f ⎛⎫=-=- ⎪⎝⎭()22164log 5log 5f f ⎛⎫=-= ⎪⎝⎭2216log 55log 16152216⎛⎫===⎪⎝⎭516()246,06,0x x x f x x x ⎧-+≥=⎨+⎩<()()1f x f >()()3,13,-+∞()(),12,3-∞-()()1,13,-+∞()(),31,3-∞-()11463f =-+=0x 2463x x -+>01x ≤<3x >0x <63x +>30x -<<()(1)f x f >(3-)(13⋃)+∞由题意可得自变量的分界点为0;第二步,通过运算、变形,利用常见基本初等函数,将问题转化为几段加以求解:易判断2y x =在区间[)0,+∞单调递增,因为()f x 在(),-∞+∞上是增函数,所以函数3232y x a a =+-+在(),0-∞单掉递增; 第三步,得出结论:所以只需满足2320a a -+≤,解得:12a ≤≤,所以答案为C .5.已知函数1212log ,18()2,12x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,若()()()f a f b a b =<,则b a -的取值范围为( ) A .30,2⎛⎤ ⎥⎝⎦B .70,4⎛⎤ ⎥⎝⎦C .90,8⎛⎤ ⎥⎝⎦D .150,8⎛⎤⎥⎝⎦【答案】B 【分析】根据分段函数的单调性以及()()()f a f b a b =<,可得11,128a b ≤<≤≤且122log 2b a +=,令122log 2b a k +==,则24k <≤,然后用k 表示,a b ,再作差,构造函数,并利用单调性可求得结果.【详解】因为函数()f x 在1[,1)8上递减,在[1,2]上递增,又()()()f a f b a b =<, 所以11,128a b ≤<≤≤,且122log 2b a +=,令122log 2b a k +==,则24k <≤,所以212k a -⎛⎫= ⎪⎝⎭,2log b k =,所以221log 2k b a k -⎛⎫-=- ⎪⎝⎭,设函数221()log 2x g x x -⎛⎫=- ⎪⎝⎭,(2,4]x ∈,∵()g x 在(]2,4上单调递增, ∵(2)()(4)g g x g <≤,即70()4g x <≤,∵70,4b a ⎛⎤-∈ ⎥⎝⎦,故选:B .6.⎪⎩⎪⎨⎧>++≤-=,0,1,0,)()(2x a x x x a x x f 若)0(f 是)(x f 的最小值,则a 的取值范围为( ). (A)[-1,2] (B)[-1,0] (C)[1,2] (D) [0,2] 【答案】D【解析】第一步,通过观察分析,决定如何对自变量进行分类: 由题意可得自变量的分界点为0和1;第二步,通过运算、变形,利用常见基本初等函数,将问题转化为几段加以求解: 因为当0x >时,1()f x x a x=++在1x =时取得最小值2a +, 由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,第三步,得出结论:因此22a a ≤+,解得02a ≤≤,选D . 考点:分段函数的单调性与最值问题.7.已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 . 【答案】0,3-22. 【解析】0)1())3((==-f f f ,当1≥x 时,322)(-≥x f ,当且仅当2=x 时,等号成立,当1<x 时,0)(≥x f ,当且仅当0=x 时,等号成立,故)(x f 最小值为322-. 考点:分段函数8.已知函数,若存在实数,使得对于任意的实数都有成立,则实数的取值范围是___________.【答案】22()2x x x af x x x a ⎧--≤=⎨-+>⎩0x x ()0()f x f x ≤a 1a ≥【分析】作出分段函数的图象,再结合图形就可以得到的取值范围. 【详解】分别作出、的图象中下图所示,由图可以看出当时,有确定的最大值,所以这时存在,使得对于任意都有.故答案为:.9.已知函数()y f x =是二次函数,且满足(0)3f =,(1)(3)0f f -== (1)求()y f x =的解析式;(2)若[,2]x t t ∈+,试将()y f x =的最大值表示成关于t 的函数()g t .【答案】(1)2()23f x x x =-++;(2)2223(1)()4(11)23(1)t t t g t t t t t ⎧--+≤-⎪=-<<⎨⎪-++≥⎩. 【解析】试题分析:(1)由已知(1)(3)0f f -==,因此二次函数的解析式可设为()(1)(3)f x a x x =+-;(2)由于二次函数的最大值与对称轴有关,而且本题中二次项系数为负(图象是开口向下的抛物线),因此要分三类求最大值,即对称轴在区间的左边,在区间上,在区间的右边,分别求解,最后得()g t 是一个分段函数形式.试题解析:(1)由题可设()(1)(3)f x a x x =+-,a 22y x x =--2y x =-+1a ≥()f x ()11f -=0x x 0()()f x f x ≤1a≥又(0)3f =,得a =-1,得2()23f x x x =-++ (2)第一步,通过观察函数的特征,分析参数的位置在什么位置: 由题意可得:参量在区间的端点;第二步,通过讨论含参函数的单调性和已知区间之间的关系进行分类讨论: 由(1)知,()y f x =的对称轴为01x =, 若1t ≥,则()y f x =在[,2]t t +上是减函数,若12t t <<+,即11t -≤≤,则()y f x =在[)1,t 上是增函数,在[]21+t ,是减函数, 若21t +≤,即1t ≤-,则()y f x =在[,2]t t +上是增函数;第三步,根据含参函数的图像与性质可判断函数在区间上的单调性,并根据函数的单调性求出 其最值:若1t ≥,则()y f x =在[,2]t t +上是减函数,2max ()23y f t t t ==-++…8分若21t +≤,即1t ≤-,则()y f x =在[,2]t t +上是增函数,2max (2)23y f t t t =+=--+若12t t <<+,即11t -≤≤,则max (1)4y f == 第四步,得出结论:故 2223(1)()4(11)23(1)t t t g t t t t t ⎧--+≤-⎪=-<<⎨⎪-++≥⎩10.已知函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞ B .[)4,8C .()4,8D .()1,8【答案】B 【分析】只需使原函数在()1,+∞和(],1-∞上都递增,且端点处的函数值符合要求即可.【详解】若函数(),142,12xa x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩在R 上递增,则只需满足1402422a aa a ⎧⎪>⎪⎪->⎨⎪⎪⎛⎫≥-+ ⎪⎪⎝⎭⎩, 解得:48a ≤<. 故选:B.11.设函数2(),,f x x ax b a b R =-+∈.(1)当2a =时,记函数|()|f x 在[0,4]上的最大值为()g b ,求()g b 的最小值;(2)存在实数a ,使得当[0,]x b ∈时,2()6f x ≤≤恒成立,求b 的最大值及此时a 的值. 【答案】(1)92;(2)2a = 【解析】试题分析:(1)当2a =,2()2f x x x b =-+,对称轴为01x =.所以()f x 的最大值|1|,|1||8|()max{|(1)(4)|}|8|,|1||8|b b b g b f f b b b --≥+⎧==⎨+-<+⎩|,|,即可得到()g b 的最小值.(2)显然0b >.22()24a a f x x b ⎛⎫=-+- ⎪⎝⎭.然后再对<02a ,2a b >和02a b ≤≤进行分类讨论,借助函数的单调性即可求出结果.试题解析:(1)第一步,通过观察函数的特征,分析参数的位置在什么位置: 由题意可得:参量在函数的常量位置;第二步,通过讨论含参函数的单调性和已知区间之间的关系进行分类讨论:当2a =,2()2f x x x b =-+,对称轴为01x =.所以()f x 在[]20,上单调递减,在(]42,上单调递增, 第三步,根据含参函数的图像与性质可判断函数在区间上的单调性,并根据函数的单调性求出 其最值:所以()f x 的最大值|1|,|1||8|()max{|(1)(4)|}|8|,|1||8|b b b g b f f b b b --≥+⎧==⎨+-<+⎩|,|,第四步,得出结论:即可得到()g b 的最小值,所以()g b 的最小值为92. (2)第一步,通过观察函数的特征,分析参数的位置在什么位置: 由题意可得:参量在函数的对称轴和常量位置;第二步,通过讨论含参函数的单调性和已知区间之间的关系进行分类讨论:∵当<02a时,函数()x f y =在[]b ,0上为增函数, ∵当2ab >时,函数()x f y =在[]b ,0上为减函数,∵当02ab ≤≤时,函数()x f y =在[]b ,0上先减后增,第三步,根据含参函数的图像与性质可判断函数在区间上的单调性,并根据函数的单调性求出 其最值:∵当<02a 时,只需满足()()⎩⎨⎧+-==bab b b f b f 20由0a <及2b ≥,得()26f b b b >≥+,与()6f b ≤矛盾. ∵当2a b >时,只需满足()()2062.f b f b b ab b =≤⎧⎪⎨=-+≥⎪⎩由20a b >>,得22ab b <--,∵222111()2244f b b b b b ⎛⎫<-+=--+≤ ⎪⎝⎭,与()2f b ≥矛盾.∵当02a b ≤≤时,只需满足()()22206,224624f b a a fb a a f b b b ⎧⎪=≤⎪⎪⎪⎛⎫=-≥⎨ ⎪⎝⎭⎪⎪⎛⎫⎪=-+-≤ ⎪⎪⎝⎭⎩①,②,③第四步 得出结论.由∵,∵得26b ≤≤.由∵,∵得2-+262a b ⎛⎫≤ ⎪⎝⎭,又02a b ≤≤,∵022a b ≤-≤,即022a b ≤-≤,再结合∵得222()24a b b ≤≤-,∵∵23b ≤≤.当3b =时,由∵得2a =,此时满足∵,∵,∵及02ab ≤≤. 综上所述,b 的最大值为3,此时2a =.12.已知函数,,若在区间上的最大值是3,则的取值范围是______.【答案】 【分析】先通过取x 的特殊值0,1,-1得到a ≤0,然后,利用分类讨论思想,分和两个范围分别证明a ≤0时符合题意. 【详解】由题易知,即, 所以, 又, 所以.下证时,在上最大值为3.当时,,;当,若,即, 则,满足; 若,即, 此时, 而,满足; 因此,符合题意.13.已知函数,则的值域是___________.设函数,若对于任意实数,总存在,使得成立,则实数的取值范围是___________ 【答案】 【分析】(1)求出导数即可判断出的单调性,进而求出最值; (2)讨论的范围求出的最大值,即可求出的范围.2()2f x x ax a =-++a ∈R ()f x [1,1]-a (,0]-∞(]0,1x ∈(]1,0x ∈-(0)23f a =+≤1a ≤()1333f a a a a =-+=-+=(1)|3|3f a a -=++≤0a ≤0a ≤()f x [1,1]-(0,1]x ∈22()22f x x ax a x ax a =-++=-++max ()(1)3f x f ==[1,0]x ∈-12a≤-2a ≤-{}max ()max (1),(0)f x f f =-102a-<≤20a -<≤222122(2)332444a a a f a a a ⎛⎫=-+=-+=--+≤ ⎪⎝⎭max ()max (1),,(0)2a f x f f f ⎧⎫⎛⎫=-⎨⎬ ⎪⎝⎭⎩⎭0a ≤9()(),[1,9]g x x a a R x x=+-∈∈()g x ()|()|f x g x =a 0[1,9]x ∈()0f x t ≥t []6,10a a --(],2-∞()g x a ()f x t【详解】 (1), 当,,单调递减;当,,单调递增;,又,, 故的值域是; (2),当,即时,恒成立,则, 当,即时,恒成立,则, 综上,实数的取值范围是. 故答案为:;14.已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若()63f f ⎡⎤=⎣⎦,则a =___________. 【答案】2【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值. 【详解】()()()6642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.15.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 ()()()223391x x g x x x +-'=-=[]1,3x ∈()0g x '<()g x []3,9x ∈()0g x '>()g x ()()min 36g x g a ∴==-()()110,910g a g a =-=-()max 10g x a ∴=-()g x []6,10a a --()|()|f x g x =610a a -≥-8a ≥()max 66f x a a t =-=-≥2t ≤610a a -<-8a <()max 1010f x a a t =-=-≥2t ≤t (],2-∞[]6,10a a --(],2-∞即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2y x 相切时,联立方程得220x kx -+=, 令0∆=得280k -=,解得22k =(负值舍去),所以22k >.综上,k 的取值范围为(,0)(22,)-∞+∞,故选D .16.已知函数设,若关于x 的不等式在R 上恒成立,则a 的取值范围是(A)(B)(C)(D)【答案】当时,(*)式为,,又(当时取等号),(当时取等号),所以,综上.故选A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分段函数应用题
甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.
(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.
(1)求一次至少买多少只,才能以最低价购买?(2)写出该专卖店当一次销售x(只)时,所获利润y(元)与x (只)之间的函数关系式,并写出自变量x的取值范围;
(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?
为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?
某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y (万件),当35≤x<50时,y与x之间的函数关系式为y=20-0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.
(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.
(2)若公司第一年的年销售量利润(年销售利润=年销售收入-生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?
(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和-投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.
某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,
12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)。