一元一次方程鸡兔同笼

合集下载

常用的鸡兔同笼方程公式及解题方法

常用的鸡兔同笼方程公式及解题方法

常用的鸡兔同笼方程公式及解题方法
学习是一件快乐的事情,想要了解鸡兔同笼方程的小伙伴快来看看吧!下面由小编为你精心准备了“常用的鸡兔同笼方程公式及解题方法”,持续关注本站将可以持续获取更多的考试资讯!
常用的鸡兔同笼方程公式
1、(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数
2、兔子只数=(总腿数-总头数×2)÷2
3、鸡的只数=(总头数×4-总腿数)÷2
4、(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数
鸡兔同笼方程解题方法
设有鸡x只,则兔有(总数-x)只,因为每只兔有4只脚,每只鸡有2只脚。

因此有鸡脚2x只,兔脚4(总数-x)只。

所以可以得到方程:2x+4(总数-x)=总足数。

鸡兔同笼是中国古代的数学名题之一。

大约在1500年前,《孙子算经》中就记载了这个有趣的问题。

书中是这样叙述的:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有多少只鸡和兔?
鸡兔同笼最简单的算法:(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数,即(94-35×2)÷2=12(兔子数)。

总头数(35)-兔子数(12)=鸡数(23)。

一元一次方程应用题类型全概括

一元一次方程应用题类型全概括

应用题类型1:鸡兔同笼鸡兔同笼问题即问题中存在两个未知数、两个等量关系的问题。

这时我们往往利用简单的等量关系设未知数,复杂的等量关系列方程。

在鸡兔同笼问题中,等量关系为:鸡的数量×2+兔的数量×4 =总脚数(兔的数量=总数量-鸡的数量)典型例题:集贸市场有一些鸡和兔,总共有头56个,脚160只,则集贸市场鸡和兔各有多少只?变式1:购物、奖金典型例题:课本83页第6题:把1400元奖学金按照两种奖项发给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?跟踪练习1:两种布料共138m,花了540元。

其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少米?跟踪练习2:某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张?变式2:球赛积分球赛分篮球赛与足球赛两种,前者一般没有平局,胜得2分,负得一分或不得分;后者有胜平负三种情况,各得3、1、0分,以足球赛为问题背景时,因为多了一种情况,所以需要给出关于胜平负三种情况间的条件。

这类问题,球队比赛总场数相当于鸡兔头的数量,球队所得总分相当于鸡兔腿的数量,胜负得分的分值相当于每种动物各有几条腿。

一一对应后,球赛积分就变成了鸡兔同笼问题。

以篮球赛为例,等量关系如下:胜场数×胜场得分+(总场数-胜场数)×负场得分=总得分典型例题:在全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?跟踪练习:中国男篮CBA职业联赛的积分办法是胜一场积2分,负一场积1分,某球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜多少场?变式3:竞赛题积分竞赛题积分与球赛积分问题非常类似,唯一不同之处就是球赛不论胜负不会得负分,但竞赛题做错一般是要倒扣分,即得负分的,弄明白了这点,竞赛题积分就转化为了球赛积分,也就是鸡兔同笼问题了。

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法一、方法与技巧解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法。

(1)方程法:通过一元一次方程或者二元一次方程组求解;(2)十字交叉图法:第一部分的平均值总数量的平均11则可得两部分的数量比为总量-第—部分的平均值兀总个数竿一翊八苹几抽第二部分的平均値—第一部分的平均值—床—即'纱、鸡兔同笼问题举例例:现有鸡兔同笼,已知鸡兔数头35,数脚94,求鸡和兔的个数。

(鸡兔同笼原型)方程法:设鸡的个数为x,则兔的个数为35-x,则有2x 4(35-x)=94,解得x=23。

故有鸡23只,兔12只。

第二却分的平均值h假设求法;十字交叉法:平均每个头对应澄只脚,根据十字交叉團法,有:所加兔的个数之比为:鸡1兔= ^<|| = 23J2,所以漏的个数为 廿冥」_“3,所以兔的个数为3%丄诂12+23 12+2^假设法:假设35只都罡馮 刑用公式解題;兔的只数=/.=12,则漓有4-2三、鸡兔同笼解题技巧的运用例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。

两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。

两教室当月共举办该培训 27次,每次培训均 座无虚席,当月共培训 1290人次。

问甲教室当月共举办了多少次这项培训【答案】D【方程法】甲教室一次可坐 10X 5=50人,乙教室一次可坐 9X 5=45人,设甲教室举办 了 x 次培训,则有: 50x 45(27-x)=1290 ,解得 x=15。

故选 D【公式法】根据题意,甲教室一次可坐 10X 5=50人,乙教室一次可坐 9X 5=45人,则 由鸡兔同笼公式可知:甲教室举办的培训次数=94 3594 35463524 35实际垮训总人决-全部用乙載室的垮训人次 -1290 —= 15次召甲竅宣華应鬲曲人次-乙教童華次的培训人次50 -45"宀12QD 1^0人』根擔十字交夏厨E 有叶字交叉法】平均毎次培训対譬 三予田教室乙教室则甲、乙妲举办驱之比为罟:¥之4,故甲教室举办沁=15 次*故选肌27。

鸡兔同笼的例题用方程解

鸡兔同笼的例题用方程解

鸡兔同笼的例题用方程解例题:鸡兔同笼是中国古代的数学名题之一。

大约在1500年前,《孙子算经》中就记载了这个有趣的问题。

书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有多少只鸡和兔?下面是较为简单的计算方式:(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数(94-35×2)÷2=12(兔子数)总头数(35)-兔子数(12)=鸡数(23)解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。

方法/步骤1,折叠假设法:假设全是鸡:2×35=70(条)鸡脚比总脚数少:94-70=24(只)兔子比鸡多的脚数:4-2=2(只)兔子的只数:24÷2=12(只)鸡的只数:35-12=23(只)假设全是兔子:4×35=140(只)兔子脚比总数多:140-94=46(只)兔子比鸡多的脚数:4-2=2(只)鸡的只数:46÷2=23(只)兔子的只数:35-23=12(只)2,方程法1:一元一次方程(一)解:设兔有x只,则鸡有(35-x)只。

列方程:4X+2(35-x)=94解方程:4X+2*35-2X=942X+70=942X=94-702X=24解得:X=12则鸡有:35-12=23只(二)解:设鸡有x只,则兔有(35-x)只。

列方程:2X+4(35-x)=94解方程:2X+4*35-4X=94140-2X=942X=140-942X=46解得:X=23则兔有:35-23=12(只)答:兔子有12只,鸡有23只。

(注:在设方程的未知数时,通常选择腿多的动物,这将会使计算较简便)3,方程法2:二元一次方程组解:设鸡有x只,兔有y只。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼解法一:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数,总只数-鸡的只数=兔的只数;解法二:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数,总只数-兔的只数=鸡的只数;解法三:总脚数÷2—总头数=兔的只数,总只数—兔的只数=鸡的只数。

例题:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有多少只鸡和兔?(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。

一、折叠假设法:假设全是鸡:2 ×35 = 70 (条),鸡脚比总脚数少:94 - 70 = 24 (只)兔子比鸡多的脚数:4 - 2 = 2(只)兔子的只数:24 ÷2 = 12 (只)鸡的只数:35 - 12 = 23(只)假设全是兔子:4 ×35 = 140(只)兔子脚比总数多:140 - 94 = 46(只) 兔子比鸡多的脚数:4 - 2 = 2(只)鸡的只数:46 ÷2 = 23(只)兔子的只数:35 - 23 = 12(只)方程法:一元一次方程(一)解:设兔有x只,则鸡有(35-x)只。

列方程:4X+2(35-x)=94解方程:4X+2×35-2X=942X+70=942X=94-702X=24解得:X=12则鸡有:35 - 12 = 23 只(二)解:设鸡有x只,则兔有(35-x)只。

列方程:2X+4(35-x)=94解方程:2X+4×35-4X=94140-2X=942X=140-942X=46解得:X=23则兔有:35 - 23 = 12(只)答:兔子有12只,鸡有23只。

鸡兔同笼、和倍、差倍问题

鸡兔同笼、和倍、差倍问题

【鸡兔同笼】是我国著名的趣味数学题之一,实际上这题的答案多样化,可以培养学生们的思维能力。

题目是这样的:鸡兔同一个笼子,头35,脚34只,请问鸡兔各有多少只?01方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=944x+70-2x=942x=94-702x=24x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只。

2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只。

02抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。

笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡03二元一次方程解:设鸡有x只,兔有y只。

x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35) x+12=35x=35-12(只)x=23(只)答:兔子有12只,鸡有23只。

小学四年级数学奥数练习题(八)鸡兔同笼问题基本公式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)鸡兔同笼问题例题透析11、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是244÷2=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只. 上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说此题. 如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中的“鸡”,有34只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数). 上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.鸡兔同笼问题例题透析2红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚. 现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔. 对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×(11+19)=240.比280少40.40÷(19-11)=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3。

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法

鸡兔同笼问题的三种解法
一、方法与技巧
解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法..
1方程法:通过一元一次方程或者二元一次方程组求解;
2十字交叉图法:
二、鸡兔同笼问题举例
例:现有鸡兔同笼;已知鸡兔数头35;数脚94;求鸡和兔的个数..鸡兔同笼原型方程法:设鸡的个数为x;则兔的个数为35-x;则有2x435-x=94;解得x=23..故有鸡23只;兔12只..
三、鸡兔同笼解题技巧的运用
例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训..两教室均有5排座位;甲教室每排可坐10人;乙教室每排可坐9人..两教室当月共举办该培训27次;每次培训均座无虚席;当月共培训1290人次..问甲教室当月共举办了多少次这项培训
A.8
B.10
C.12
D.15
答案D
方程法甲教室一次可坐10×5=50人;乙教室一次可坐9×5=45人;设甲教室举办了x次培训;则有:50x4527-x=1290;解得x=15..故选D..
公式法根据题意;甲教室一次可坐10×5=50人;乙教室一次可坐9×5=45人;则由鸡兔同笼公式可知:甲教室举办的培训次数=。

(完整版)鸡兔同笼问题五种基本公式和例题讲解

(完整版)鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数—每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数—总脚数)÷(每只兔脚数—每只鸡脚数)=鸡数;总头数—鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一 (100—2×36)÷(4—2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36—100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数—脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数—鸡数=兔数.(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数—鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数—鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

小学六年级鸡兔同笼问题解法

小学六年级鸡兔同笼问题解法

小学六年级鸡兔同笼问题解法鸡兔同笼是中国古代的数学名题之一。

书中曾这样叙述:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有几只鸡和兔?鸡兔同笼这道题,有这样几种解法:1、假设法假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)2、方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=944x+70-2x=942x=94-702x=24x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只。

2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只。

注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。

二元一次方程解:设鸡有x只,兔有y只。

x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35) x+12=35x=35-12(只)x=23(只)答:兔子有12只,鸡有23只3、抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。

笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

鸡兔同笼的例题 (2)

鸡兔同笼的例题 (2)

鸡兔同笼的例题引言鸡兔同笼问题是一道经典的数学问题,常常被用来锻炼逻辑思维和解决问题的能力。

在这个问题中,我们将会探讨如何使用数学建模的方法来解决鸡兔同笼问题,并给出一些实际应用的例子。

问题描述假设我们有一个笼子里面关着一些鸡和兔子。

已知鸡和兔子的总数为n,同时已知它们的脚的总数为m。

问题的目标是求出鸡和兔子分别有多少只。

解题思路首先,我们可以设鸡的数量为x,兔子的数量为y。

由于题目已知鸡和兔子的总数为n,所以可以得到一个方程:x + y = n另外,由于题目已知鸡和兔子的脚的总数为m,鸡的脚数为2x,兔子的脚数为4y,所以可以得到另一个方程:2x + 4y = m通过解这个方程组,我们就可以求出鸡和兔子的数量。

解题步骤步骤1:将方程组化简为一元一次方程我们可以从第一个方程中解出x,然后将其代入第二个方程,得到一个关于y的一元一次方程。

进一步化简后就可以得到y 的值。

步骤2:求解鸡和兔子的数量将步骤1中求得的y的值代入第一个方程,即可求解出x的值。

然后将x和y的值带入原始的鸡兔总数方程,就可以得到鸡和兔子的具体数量。

实际应用鸡兔同笼问题不仅仅是一道数学题,还可以应用于实际生活中。

以下举几个例子:例子1:动物园的笼子假设有一个动物园,里面养了很多鸡和兔子。

动物园的管理员想要统计鸡和兔子的数量,但不方便一个个数。

管理员只能看到一个笼子里的总数n以及所有动物的脚数m。

通过解鸡兔同笼问题,管理员可以快速推算出鸡和兔子的数量,从而方便统计工作。

例子2:农场养殖假设有一个农场,农场主需要统计农场里的鸡和兔子的数量。

通过解鸡兔同笼问题,农场主可以根据每个笼子里鸡和兔子的总数以及它们的脚数,快速计算出鸡和兔子的具体数量,从而方便管理和安排饲养。

例子3:足球比赛假设有两个足球队进行比赛,其中一个球队的队徽是一只鸡,另一个球队的队徽是一只兔子。

比赛结束后,观众们根据球场上参赛球员的数量和脚的总数来猜测两个队伍的具体人数。

一元一次方程的运用3(鸡兔同笼问题)

一元一次方程的运用3(鸡兔同笼问题)

数学
7
练习(课本第11页)第1题 1.学校田径队的小刚在400米跑测试时,先以6米/秒 的速度跑完了大部分路程,最后以8米/秒的速度冲刺 到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多 少时间?
路程
前一段 后一段 总数
400
速度
6 8
时间(秒)
65 x
x
65
解:设小刚在冲刺阶段花了
6(65 x)
x 5.
秒时间.
经检验, 符合题意 .
答:小刚在冲刺阶段花了 5
习题(课本第12页)第4、5、6题 4.足球的表面是由一些呈多边形的黑、白皮块缝而成的,共计 有32块,已知黑色皮块比白色皮块数的一半多2,问两种皮块各 有多少? 解1:设黑色皮块有 根据题意,则
x 块,则白色皮块有
1 (32 x) 2 2
①如果一个学生得90分,那么他选对几道题?
②有得83分的同学吗?
选对
数 量 x
解:设他选对了x道题,由题意得: 4x -(25-x) = 90
不选或选错
(25-x)
x = 23
若4x-(25-x)= 83 x=21.6 ∵题目选对的数量x是整数 ∴ x=21.6 不符合题意 答:如果一个学生得90分,那么他选对 23道题,没有得83分的同学.
解方程得:X=30 经检验X=30是方程的 解并符合题意 答:这些新团员中有30 名男同学
参加人数 每人共搬砖数 共搬砖数
X
65-X
65
8× 4
6× 4
32X 24(65-X) 1800
一份试卷共25题,每道题都给出四个答案,其中只有一个是正确的,
要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分。

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种根本公式和例题讲解【鸡兔问题公式】〔1〕总头数和总脚数,求鸡、兔各多少:〔总脚数-每只鸡的脚数×总头数〕÷〔每只兔的脚数-每只鸡的脚数〕=兔数;总头数-兔数=鸡数。

或者是〔每只兔脚数×总头数-总脚数〕÷〔每只兔脚数-每只鸡脚数〕=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?〞解一〔100-2×36〕÷〔4-2〕=14〔只〕………兔;36-14=22〔只〕……………………………鸡。

解二〔4×36-100〕÷〔4-2〕=22〔只〕………鸡;36-22=14〔只〕…………………………兔。

〔答略〕〔2〕总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式〔每只鸡脚数×总头数-脚数之差〕÷〔每只鸡的脚数+每只兔的脚数〕=兔数;总头数-兔数=鸡数或〔每只兔脚数×总头数+鸡兔脚数之差〕÷〔每只鸡的脚数+每只免的脚数〕=鸡数;总头数-鸡数=兔数。

〔例略〕〔3〕总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

〔每只鸡的脚数×总头数+鸡兔脚数之差〕÷〔每只鸡的脚数+每只兔的脚数〕=兔数;总头数-兔数=鸡数。

或〔每只兔的脚数×总头数-鸡兔脚数之差〕÷〔每只鸡的脚数+每只兔的脚数〕=鸡数;总头数-鸡数=兔数。

〔例略〕〔4〕得失问题〔鸡兔问题的推广题〕的解法,可以用下面的公式:〔1只合格品得分数×产品总数-实得总分数〕÷〔每只合格品得分数+每只不合格品扣分数〕=不合格品数。

或者是总产品数-〔每只不合格品扣分数×总产品数+实得总分数〕÷〔每只合格品得分数+每只不合格品扣分数〕=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

鸡兔同笼的多种解法

鸡兔同笼的多种解法

鸡兔同笼的多种解法一、假设法1. 假设全是鸡- 设鸡和兔共有m个头,n只脚。

如果全是鸡,那么脚的总数应该是2m只。

- 但实际有n只脚,多出来的脚就是兔子比鸡多的脚。

每只兔比每只鸡多4 - 2=2只脚。

- 兔的数量=(实际脚数 - 假设全是鸡的脚数)div(每只兔比鸡多的脚数),即兔的数量=(n - 2m)div2。

- 鸡的数量=m-(n - 2m)div2。

2. 假设全是兔- 如果全是兔,脚的总数应该是4m只。

- 实际有n只脚,少的脚就是鸡比兔少的脚。

每只鸡比每只兔少4 - 2 = 2只脚。

- 鸡的数量=(假设全是兔的脚数-实际脚数)div(每只兔比鸡多的脚数),即鸡的数量=(4m - n)div2。

- 兔的数量=m-(4m - n)div2。

二、方程法1. 一元一次方程- 设鸡有x只,因为鸡和兔共有m个头,所以兔有(m - x)只。

- 根据鸡兔脚数总和为n,可列方程2x+4(m - x)=n。

- 展开方程得2x + 4m-4x=n,移项得2x=4m - n,解得x=(4m - n)/(2),这就是鸡的数量,兔的数量为m - x=m-(4m - n)/(2)。

2. 二元一次方程- 设鸡有x只,兔有y只。

- 根据头的总数可得x + y=m,根据脚的总数可得2x+4y=n。

- 由x + y=m可得x=m - y,将其代入2x + 4y=n中,得到2(m -y)+4y=n,展开得2m-2y+4y=n,即2y=n - 2m,解得y=(n - 2m)/(2)。

- 再把y=(n - 2m)/(2)代入x=m - y,得x=m-(n - 2m)/(2)。

三、抬腿法(古人的解法)1. 鸡兔同时抬起两只脚- 让鸡和兔都抬起两只脚,此时共抬起2m只脚。

- 那么剩下的脚n-2m只,这些脚都是兔子的,因为鸡此时已经没有脚在地上了,每只兔还剩下4 - 2 = 2只脚在地上。

- 所以兔的数量=(n - 2m)div2,鸡的数量=m-(n - 2m)div2。

鸡兔同笼解法讲解

鸡兔同笼解法讲解

鸡兔同笼解法讲解今天咱们来唠唠鸡兔同笼这个超有趣的数学问题的解法。

这鸡兔同笼啊,就像是一场小动物们的神秘聚会,不过我们得通过数学这个魔法棒来算出里面到底有几只鸡和几只兔。

一、最基础的解法 - 假设法。

1. 假设全是鸡。

- 咱们先假设笼子里全是鸡。

那这时候,每只鸡有两条腿。

如果笼子里有n个头(因为鸡和兔都只有一个头嘛),按照全是鸡的话,腿的总数就是2n条腿。

- 可是呢,实际的腿数肯定比这个假设的腿数要多(因为里面还有兔子呢,兔子有四条腿)。

假设实际腿数是m条,那么多出来的腿数就是m - 2n条。

- 每只兔子比每只鸡多两条腿(4 - 2 = 2),所以兔子的数量就是多出来的腿数除以2,也就是兔子的数量=(m - 2n)÷2。

那鸡的数量就是n-(m - 2n)÷2啦。

- 比如说,笼子里有8个头,26条腿。

假设全是鸡,那就有2×8 = 16条腿。

实际有26条腿,多出来26 - 16 = 10条腿。

每只兔子比鸡多两条腿,所以兔子有10÷2 = 5只,鸡就有8 - 5 = 3只。

2. 假设全是兔。

- 同样的道理,我们也可以假设笼子里全是兔。

那腿的总数就是4n条。

- 但实际腿数是m条,这时候少的腿数就是4n - m条。

- 因为每只鸡比每只兔少两条腿,所以鸡的数量就是(4n - m)÷2,兔子的数量就是n-(4n - m)÷2。

二、方程法。

1. 一元一次方程。

- 我们可以设鸡有x只,因为鸡和兔一共有n个头,所以兔就有n - x只。

- 根据腿数的关系,鸡有两条腿,兔有四条腿,总共m条腿,那我们就可以列出方程2x+4(n - x)=m。

- 就拿前面那个例子,有8个头,26条腿。

设鸡有x只,兔就有8 - x只,方程就是2x + 4(8 - x)=26。

- 展开方程得到2x+32 - 4x = 26,移项合并同类项得到- 2x=26 - 32=-6,解得x = 3,那鸡就是3只,兔就是8 - 3 = 5只。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题
例今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
(1)“上有三十五头”的意思是______________________,
(2)“下有九十四足”的意思是____________________________。

(3)题中的等量关系是____________________、_______________
例某中学某班买了35张电影票,共用250元,其中甲种票每张8元,乙种票每张6元,甲、乙两种票各买多少张?
练习
1:鸡兔同笼,共有头26,足72,问鸡、兔各几何?
2.一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几何?
盈亏类问题
例幼儿园的小朋友分一袋糖,若每人4块,则分完后还剩2块;若每人5块,则还缺10块,求一共有多少块糖,小朋友一共有几人?
例分钱人二而多三,人三而少二,问:人几何,钱几何?
练习
1.问问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,问有多少房间,多少客?
2.以绳测井.若将绳三折测之,绳多五尺若将绳四折测之,绳多一尺问绳长、井深各几何?
3.有人在林中散步,无意中听到几个强盗在商量怎样分配抢来的布匹.若每人分6匹,就剩5匹;若每人分7匹,就差8匹.问共有强盗几个?布匹多少?。

相关文档
最新文档