等差数列前n项和的最值问题及拓展 Word版含解析
数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析
第2讲 等差数列及前n 项和考纲展示 命题探究1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2.3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( )A .1 B.53 C .2D .3答案 C解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2.3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14 答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4. ∵a 1=2,∴d =a 2-a 1=4-2=2.∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50. 解得a 1=12,d =2.所以a n =2n +10;(2)由S n =na 1+n (n -1)2d ,S n =242,得方程12n +n (n -1)2×2=242,解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2,∴b n +1-b n =a n +2-a n +1-(a n +1-a n )=2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列.(2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5,…,a n -a n -1=2n -3,累加法可得a n -a 1=1+3+5+…+(2n -3)=(n -1)2,∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立.(3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )扫一扫·听名师解题A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,而S1,S2,S4成等比数列,所以(2a1-1)2=a1(4a1-6),整理得2a1+1=0,解得a1=-1 2.4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.等差数列及其前n项和的性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a1+a n=a2+a n-1=a3+a n-2=…=a k+a n-k+1=….(2)等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(3)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m∈N*).(4)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为n2d.(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a n a n +1. ②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1. (7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( )(3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .44答案 C 解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13.由a 3+a 6+a 9=27,得3a 6=27,a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C.[答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n=a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. (2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m +a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d=-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0, 即⎩⎪⎨⎪⎧ a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,≤n ≤n =7时,S n 最大.解法四:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确.2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能.∴a 2012>0,a 2013<0.再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0, 而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n 3n +1,则a n b n=( ) A.23B.2n -13n -1C.2n +13n +1D.2n -13n +4 答案 B解析 a n b n =2a n 2b n=2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4.所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c , 所以2c 2+c =0,所以c =-12或c =0(舍去), 故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32. ∴当n =1或n =2时,S 1=S 2且最小. [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学猜题]已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.[2016·武邑中学仿真]已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C. 3.[2016·冀州中学期末]在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1n B .a n =2n +1C .a n =2n +2D .a n =3n答案 A 解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .4.[2016·衡水中学预测]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27答案 B解析 S 3=9,S 6-S 3=36-9=27,根据S 3,S 6-S 3,S 9-S 6成等差数列,S 9-S 6=45,S 9-S 6=a 7+a 8+a 9=45,故选B.5.[2016·衡水二中期中]已知等差数列{a n }中,前四项和为60,最后四项和为260,且S n =520,则a 7=( )A .20B .40C .60D .80答案 B解析 前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n =520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a 7是中间项,所以a 7=40.6.[2016·枣强中学模拟]已知等差数列{a n }的前n 项和为S n ,且S 4S2=4,则S 6S 4=( )A.94B.32C.53 D .4答案 A解析 由S 4S 2=4,可设S 2=x ,S 4=4x .∵S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4).则S 6=3S 4-3S 2=12x -3x =9x ,因此,S 6S 4=9x 4x =94.7.[2016·衡水二中热身]设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =______.答案 13解析 由S k +1=S k +a k +1=-12+32=-212,又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝ ⎛⎭⎪⎫-3+322=-212,解得k =13.8.[2016·武邑中学期末]设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案 14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n , ∴S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.[2016·衡水中学周测]已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________.答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎨⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39.10.[2016·冀州中学月考]设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝ ⎛⎭⎪⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝ ⎛⎭⎪⎫a 2a 12=3+2 2.11.[2016·衡水中学模拟]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛ 110-3n -⎭⎪⎫113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 12.[2016·冀州中学期中]已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n-1S n -1=2(n ≥2),又S 1=a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n=2+(n -1)×2=2n ,故S n =12n .∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). ∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.[2016·衡水中学猜题]已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.[2016·衡水中学一轮检测]已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B解析 ∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.15.[2016·武邑中学猜题]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n (20-2n +22)2=(21-n )n ;当n >11时,S n =S 11+2+4+…+(2n -22)=110+(n -11)(2+2n -22)2=n 2-21n +220. 综上所述,S n =⎩⎪⎨⎪⎧(21-n )n ,n ≤11n 2-21n +220,n >11.16.[2016·冀州中学仿真]已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4.(1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解 (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1, 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2.。
(文章)等差数列前n项和最值的求法
等差数列前n 项和最值的求法根据等差数列{a n }的前n 项和公式S n =na 1+2)1(-n n d=2d n 2+(a 1-2d )n ,当a 1>0,d <0时,S n 有最大值,当a 1<0,d >0时,Sn 有最小值。
下面以最大值为例,探讨求Sn 的最值的一般方法。
方法一:S n =2d n 2+(a 1-2d )n ,d <0,S n 可看作开口向下的抛物线,离对称轴最近的自然数n 是S n 取得最大值的n 。
(注:若对称轴为212+n ,则S n 与S n+1同时取得最大值) 方法二:由⎩⎨⎧≥+001n a an ,解出n 的范围,从而确定此范围中的自然数n 。
方法三:设法确定前几项为正,或是否有零项,那么所有非负数项的和最大,若有零项,会有两个和相等并且最大例1 等差数列{a n }中,a 1>0,公差d <0,如果S 7=S 12,求数列{a n }前n 项和S n 的最大值。
分析:用上述三种方法分别求。
解法一:由S 7=S 12,得d=-91a 1,∴S n =na 1+21n (n-1)d=-181a 1(n-219)2+72361a 1。
故当n=9,n=10时,(9-219)2=(10-219)2,所以S 9=S 10并且最大。
解法二:由S 7=S 12,得d=-91a 1,由⎪⎪⎩⎪⎪⎨⎧≤-=+=≥-=-+=+0)9(910)10(91)1(11111n a nd a a n a d n a a n n 得9≤n ≤10,故当n=9,n=10时,(9-219)2=(10-219)2,所以S 9=S 10并且最大。
解法三:由S 7=S 12,得d=-91a 1<0,知{a n }是递减的等差数列。
∵S 7=S 12,∴a 8+a 9+…+a 12=0∴5a 10=0,由此必有a 1>a 2>…>a 10=0>a 11>…,故S 9=S 10并且最大。
等差数列前n项和例题及答案
等差数列前n项和例题及答案在数学中,等差数列是每个数与它后面的有固定差值的一种数列。
这个差值被称为公差。
等差数列有许多有用的应用,例如在金融中进行利率计算,或在物理学中进行匀速直线运动的计算。
在这篇文章中,我们将探讨如何计算等差数列的前n项和。
等差数列的通项公式首先,让我们回顾一下等差数列的公式。
如果我们有一个等差数列,第一个数为a1,公差为d,那么该数列的通项公式为:an = a1 + (n-1)d其中n表示数列中的数字的位置。
例如,a2表示数列中的第二个数字,a3表示数列中的第三个数字,以此类推。
前n项和的公式接下来,我们将探讨如何计算等差数列的前n项和。
作为例子,让我们考虑以下等差数列:2, 4, 6, 8, 10, 12, 14, 16, 18, 20我们将使用以下公式来计算此等差数列的前n项和:S = (n/2) * (a1 + an)其中S表示前n项和,a1表示数列的第一个数字,an表示数列的第n个数字,n表示数列中数字的总数。
例如,对于上面的等差数列,我们要计算前5项的和。
因此,我们需要计算数列的前5个数字的和。
根据等差数列的公式,a1=2,d=2,因此:a5 = a1 + (5-1)d = 2 + 4 = 6现在我们有了S的公式和数列中的a1和an的值,我们可以将这些值代入公式中:S = (5/2) * (2 + 6) = 5 * 4 = 20因此,前5项的总和为20。
我们可以通过计算不同数量的项来计算不同数量项的总和。
更通用的公式我们注意到,前n项和的公式使用了等差数列的通项公式来计算数列的第n项。
然而,在某些情况下,我们可能不知道数列中的特定数字。
在这种情况下,我们可以使用以下更通用的公式来计算前n项和:S = (n/2) * [ 2a1 + (n-1)d ]例如,对于以下等差数列:1, 4, 7, 10, 13, 16, 19, 22, 25, 28我们可以使用此公式来计算前6项的和。
等差数列前n项和的最值问题(精品文档)
等差数列前n 项和的最值问题问题引入:已知数列{},n a 的前n 项和212n S n n =+,求这个数列的通项公式.数列是等差数列吗?如果是,它的首项与公差分别是什么? 解:当n>1时:1122n n n a s s n -=-==-当n=1时:211131122a s ==+⨯= 综上:122na n =-,其中:132a =,2d =探究1:一般地,如果一个数列{}n a 的前n 项和为:2,ns pn qn r =++其中:p.q.r 为常数,且p ≠0,那么这个数列一定是等差数列吗?如果是,它的首项和公差分别是什么?结论:当r=0时为等差,当r ≠0时不是一、 应用二次函数图象求解最值 例1:等差数列{}n a 中, 1490,a S S >=,则n 的取值为多少时?n S 最大分析:等差数列的前n 项和n S 是关于n 的二次函数,因此可从二次函数的图象的角度来求解。
解析:由条件1490,a S S >=可知,d<0,且211(1)()222n n n d dS na d n a n -=+=+-, 其图象是开口向下的抛物线,所以在对称轴处取得最大值,且对称轴为496.52n +==,而n N *∈,且6.5介于6与7的中点,从而6n =或7n =时n S 最大。
1.已知等差数列{n a }中1a =13且3S =11S ,那么n 取何值时,n S 取最大值.解析:设公差为d ,由3S =11S 得:3×13+3×2d/2=11×13+11×10d/2 d= -2,n a =13-2(n-1), n a =15-2n,由⎩⎨⎧≤≥+0a 0a 1n n 即⎩⎨⎧≤+-≥-0)1n (2150n 215得:6.5≤n ≤7.5,所以n=7时,n S 取最大值.2.已知a n 是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,求数列a n 前 5 项和取得最大值.结合二次函数的图象,得到二次函数图象的开口向下,根据图象关于对称轴对称的特点,得到函数在对称轴处取到最大值,,注意对称轴对应的自变量应该是整数或离对称轴最近的整数.a n 是各项不为零的等差数列,其中a 1>0,公差d <0,S 10=0,根据二次函数的图象特点得到图象开口向下,且在n=错误!未找到引用源。
等差数列前n项和的最值问题精编版
等差数列前n 项和的最值问题问题引入:已知数列{},n a 的前n 项和212n S n n =+,求这个数列的通项公式.数列是等差数列吗?如果是,它的首项与公差分别是什么?解:当n>1时:1122n n n a s s n -=-==-L 当n=1时:211131122a s ==+⨯= 综上:122na n =-,其中:132a =,2d =探究1:一般地,如果一个数列{}n a 的前n 项和为:2,ns pn qn r =++其中:p.q.r 为常数,且p ≠0,那么这个数列一定是等差数列吗?如果是,它的首项和公差分别是什么?结论:当r=0时为等差,当r ≠0时不是一、 应用二次函数图象求解最值 例1:等差数列{}n a 中, 1490,a S S >=,则n 的取值为多少时?n S 最大分析:等差数列的前n 项和n S 是关于n 的二次函数,因此可从二次函数的图象的角度来求解。
解析:由条件1490,a S S >=可知,d<0,且211(1)()222n n n d dS na d n a n -=+=+-, 其图象是开口向下的抛物线,所以在对称轴处取得最大值,且对称轴为496.52n +==,而n N *∈,且6.5介于6与7的中点,从而6n =或7n =时n S 最大。
1.已知等差数列{n a }中1a =13且3S =11S ,那么n 取何值时,n S 取最大值.解析:设公差为d ,由3S =11S 得:3×13+3×2d/2=11×13+11×10d/2 d= -2, n a =13-2(n-1), n a =15-2n,由⎩⎨⎧≤≥+0a 0a 1n n 即⎩⎨⎧≤+-≥-0)1n (2150n 215得:6.5≤n ≤7.5,所以n=7时,n S 取最大值.2.已知a n 是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,求数列a n 前 5 项和取得最大值.结合二次函数的图象,得到二次函数图象的开口向下,根据图象关于对称轴对称的特点,得到函数在对称轴处取到最大值,,注意对称轴对应的自变量应该是整数或离对称轴最近的整数.a n 是各项不为零的等差数列,其中a 1>0,公差d <0,S 10=0,根据二次函数的图象特点得到图象开口向下,且在n=错误!未找到引用源。
求等差数列前n项和的最值问题的两种常用解法
求等差数列前n 项和的最值问题的两种常用解法【必备方法】1.函数法:利用等差数列前n 项和的函数表达式bn an S n +=2,通过配方或借助图象求二次函数最值的方法求解,一定注意n 是正整数。
2.邻项变号法:①0,01<>d a 时,满足⎩⎨⎧≤≥+001n n a a 的项数m 使得n S 取得最大值为m S ; ②当0,01><d a 时,满足⎩⎨⎧≥≤+001n n a a 的项数m 使得n S 取得最小值为m S . 【典例示范】例1、等差数列}{n a 前n 项和为n S ,已知1131,13S S a ==,当n S 最大时,n 的值是( )(A)5 (B)6 (C)7 (D)8解:方法一:由113S S =得01154=+++a a a ,根据等差数列性质可得087=+a a ,根据首项等于13可推知这个数列递减,从而得到0,087<>a a ,故n=7 时,n S 最大.方法二:由113S S =可得d a d a 55113311+=+,把131=a 代入得2-=d ,故n n n n n S n 14)1(132+-=--=,根据二次函数性质,当n=7时,n S 最大. 方法三:根据131=a ,113S S =,知这个数列的公差不等于零.由于113S S =说明这个数列的和先是单调递增的然后又单调递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,当113S S =时,只有72113=+=n 时,n S 取得最大值. 答案:C练习:1.已知在等差数列}{n a 中,311=a ,n S 是它的前n 项的和,2210S S =.(1)求n S ;(2)这个数列前多少项的和最大,并求出这个最大值. 解析:(1)∵102110a a a S ++= ,222122a a a S ++= ,又2210S S =, ∴0221211=++a a a ,则031212211=+=+d a a a ,又311=a ,2-=∴d ,∴21322)1(n n d n n na S n -=-+=。
新教材高考数学第二课时等差数列前n项和的最值及应用练习含解析选修2
等差数列前n 项和的最值及应用课标要求素养要求能在具体的问题情境中,发现数列的等差关系,并解决相应的问题.通过利用等差数列的前n 项和公式解决实际应用问题,提升学生的数学建模和数学运算素养.新知探究公元前二千多年的巴比伦人就提出了等差数列问题,“十兄弟分银子”就是其中之一.有100两银子要分给10个兄弟,按年龄的不同分给不同的数量,老大要比老二多,老二要比老三多,依次类推,都相差一级,每一级相差数都一样,但不知是多少,只知道老八分到的银子是6两.问题 每一级的差额是多少?提示 设十兄弟所分得的银子从多到少依次为a 1,a 2,…,a 10,易知其为等差数列,且a 8=6,由⎩⎪⎨⎪⎧S 10=10a 1+12×9×10d =100,a 8=a 1+7d =6,解得a 1=865,d =-85.故每一级的差额是85两.1.前n 项和公式:S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .2.等差数列前n 项和的最值d 的符号决定S n 有最大值还是最小值(1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取到最值的n 可由不等式组⎩⎪⎨⎪⎧a n ≥0,a n +1≤0确定;当a 1<0,d >0时,S n 有最小值,使S n 取到最值的n 可由不等式组⎩⎪⎨⎪⎧a n ≤0,a n +1≥0确定.(2)因为S n =d2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值,且n 取最接近对称轴的自然数时,S n 取到最值.拓展深化[微判断]1.若等差数列{a n }的前n 项和S n =An 2+Bn (A ≠0),则其最大值或最小值一定在n =-B2A 取得.(×)提示 只有当-B2A是正整数时才成立.2.若等差数列{a n }的公差d >0,则{a n }的前n 项和一定有最小值.(√)3.设等差数列{a n }的前n 项和为S n ,且S p =S q (p ,q ∈N *),则S n 在n =12(p +q )处取得最大值或最小值.(×)提示 当12(p +q )是正整数,即p +q 是偶数时结论才成立.[微训练]1.等差数列{a n }的前n 项和S n =n 2-3n ,则其最小值为________.解析 由S n =n 2-3n =⎝ ⎛⎭⎪⎫n -322-94,可知当n =1或2时,S n 的最小值为-2.答案 -22.设a n =14-3n ,则数列{a n }的前n 项和S n 有最________(填“大”或“小”)值为________. 解析 由于a 1=11>0,d =-3<0,所以S n 有最大值. 由⎩⎪⎨⎪⎧a n =14-3n ≥0,a n +1=14-3(n +1)≤0,得n =4,则其最大值为S 4=a 1+a 2+a 3+a 4=11+8+5+2=26.答案 大 26 [微思考]1.在等差数列{a n }中,若a 1>0,d >0或a 1<0,d <0时,S n 能否取得最值?提示 当a 1>0,d >0时,S n 的最小值为a 1,无最大值;当a 1<0,d <0时,S n 的最大值为a 1,无最小值.2.若数列{a n }的通项公式为a n =2n -37,则当n 为何值时S n 取得最小值? 提示 ∵a n =2n -37,a n +1-a n =2>0, ∴{a n }为递增数列.由a n =2n -37≥0,得n ≥18.5.∴a 18<0,a 19>0,∴S 18最小, 即当n =18时,S n 取得最小值.题型一 等差数列前n 项和最值问题的判断【例1】 (多选题)在等差数列{a n }中,首项a 1>0,公差d ≠0,前n 项和为S n (n ∈N *),则下列命题正确的是( ) A.若S 3=S 11,则必有S 14=0B.若S 3=S 11,则S 7是{S n }中的最大项C.若S 7>S 8,则必有S 8>S 9D.若S 7>S 8,则必有S 6>S 9解析 根据等差数列的性质,若S 3=S 11,则S 11-S 3=4(a 7+a 8)=0,则a 7+a 8=0,S 14=14(a 1+a 14)2=7(a 7+a 8)=0;根据S n 的图象,当S 3=S 11时,对称轴是 3+112=7,且d <0,那么S 7是最大值;若S 7>S 8,则a 8<0,且d <0,所以a 9<0,所以S 9-S 8<0,即S 8>S 9;S 9-S 6=a 7+a 8+a 9=3a 8<0,即S 6>S 9,所以ABCD 都正确.答案 ABCD规律方法 一般地,在等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则①若p +q 为偶数,则当n =p +q2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.【训练1】 设等差数列{a n }的前n 项和为S n ,若S 15>0,S 16<0,则数列⎩⎨⎧⎭⎬⎫S n a n 的前15项中最大的项是( ) A.第1项 B.第8项 C.第9项 D.第15项解析 S 15=15(a 1+a 15)2=15a 8>0,S 16=16(a 1+a 16)2=8(a 8+a 9)<0,故a 8>0,a 9<0,公差d <0,所以数列{a n }是递减数列,所以a 1,…,a 8均为正,a 9,…,a n 均为负,且S 1,…,S 15均为正,S 16,…,S n 均为负,则S 1a 1>0,S 2a 2>0,…,S 8a 8>0,S 9a 9<0,S 10a 10<0,…,S 15a 15<0. 又S 8>S 7>…>S 1>0,a 1>a 2>…>a 8>0,所以S 8a 8>S 7a 7>…>S 1a 1>0,所以最大的项是S 8a 8,即第8项. 答案 B题型二 等差数列前n 项和最值的计算【例2】 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知a 2+a 5=1,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和. (1)求S n ;(2)求T n 及T n 的最小值. 解 (1)设数列{a n }的公差为d .依题意有⎩⎪⎨⎪⎧a 1+d +a 1+4d =1,15a 1+15×142d =75,解得⎩⎪⎨⎪⎧a 1=-2,d =1, ∴S n =na 1+n (n -1)2d =-2n +n (n -1)2=n 2-5n2.(2)法一 由(1)知S n =n 2-5n2,∴S n n =n -52.设b n =S n n =n -52,则b n +1-b n =(n +1)-52-n -52=12,∴数列{b n }是公差为12的等差数列,首项b 1=S 11=a 1=-2.又T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,∴T n =-2n +n (n -1)2×12=n 2-9n 4=14⎝ ⎛⎭⎪⎫n -922-8116.∴当n =4或n =5时,(T n )min =-5.法二 易知b n =n -52,由⎩⎪⎨⎪⎧b n ≤0,b n +1≥0,解得4≤n ≤5.故T n 的最小值为T 4=T 5=-5.规律方法 求等差数列前n 项和的最值的方法有:(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解;(2)通项公式法,求使a n ≥0(a n ≤0)成立时最大的n 即可.【训练2】 已知等差数列{a n }中,a 1=9,a 4+a 7=0. (1)求数列{a n }的通项公式;(2)当n 为何值时,数列{a n }的前n 项和取得最大值? 解 (1)由a 1=9,a 4+a 7=0, 得a 1+3d +a 1+6d =0,解得d =-2, ∴a n =a 1+(n -1)·d =11-2n . (2)法一 ∵a 1=9,d =-2,S n =9n +n (n -1)2×(-2)=-n 2+10n =-(n -5)2+25,∴当n =5时,S n 取得最大值.法二 由(1)知a 1=9,d =-2<0,∴{a n }是递减数列. 令a n ≥0,则11-2n ≥0,解得n ≤112.∵n ∈N *,∴n ≤5时,a n >0,n ≥6时,a n <0. ∴当n =5时,S n 取得最大值.题型三 等差数列求和的实际应用【例3】 7月份,有一新款服装投入某市场.7月1日该款服装仅售出3件,以后每天售出的该款服装都比前一天多3件,当日销售量达到最大(只有1天)后,每天售出的该款服装都比前一天少2件,且7月31日当天刚好售出3件. (1)问7月几日该款服装销售最多?最多售出几件?(2)按规律,当该市场销售此服装达到200件时,社会上就开始流行,而日销售量连续下降并低于20件时,则不再流行.问该款服装在社会上流行几天?解 (1)设7月n 日售出的服装件数为a n (n ∈N *,1≤n ≤31),最多售出a k 件.由题意知⎩⎪⎨⎪⎧a k =3+3(k -1),a k -2(31-k )=3,解得⎩⎪⎨⎪⎧k =13,a k =39, ∴7月13日该款服装销售最多,最多售出39件. (2)设S n 是数列{a n }的前n 项和,∵a n =⎩⎪⎨⎪⎧3n ,1≤n ≤13,65-2n ,14≤n ≤31,∴S n =⎩⎪⎨⎪⎧(3+3n )n 2,1≤n ≤13,273+(51-n )(n -13),14≤n ≤31. ∵S 13=273>200,∴当1≤n ≤13时,由S n >200,得12≤n ≤13,当14≤n ≤31时,日销售量连续下降,由a n <20,得23≤n ≤31,∴该款服装在社会上流行11天(从7月12日到7月22日).规律方法 应用等差数列解决实际问题的一般思路:【训练3】 某地去年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天新感染者人数增加40.从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到有效控制,每天的新感染者人数比前一天的新感染者人数减少10.(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数; (2)该地区9月份(共30天)流感病毒的新感染者共有多少人?解 (1)由题意,知该地区9月份前10天每天新感染者人数构成一个首项a 1=40,公差d =40的等差数列{a n },所以9月10日的新感染者人数为a 10=40+(10-1)×40=400.从9月11日起,每天的新感染者人数比前一天的新感染者人数减少10,所以9月11日的新感染者人数为400-10=390.(2)9月份前10天流感病毒的新感染者人数的和为S 10=10×(40+400)2=2 200,9月份后20天每天新感染者人数构成一个首项b 1=390,公差d 1=-10的等差数列{b n }, 又b 20=390-10×19=200,所以后20天流感病毒的新感染者人数的和为T 20=20×(390+200)2=5 900,所以该地区9月份流感病毒的新感染者共有 2 200+5 900=8 100(人).一、素养落地1.通过学习等差数列前n 项和最值的求法,提升数学运算素养,通过学习利用等差数列前n 项和解决实际问题,提升数学建模素养.2.求等差数列前n 项和最值的方法:(1)二次函数法:用求二次函数的最值方法来求其前n 项和的最值,但要注意n ∈N *,结合二次函数图象的对称性来确定n 的值,更加直观.(2)通项法:当a 1>0,d <0,⎩⎪⎨⎪⎧a n ≥0,a n +1≤0时,S n 取得最大值;当a 1<0,d >0,⎩⎪⎨⎪⎧a n ≤0,a n +1≥0时,S n 取得最小值.3.解决与等差数列有关的实际应用题时,要抓住其反映等差数列的特征,仔细审题,用心联想.要明确该问题是求a n 还是求S n ?要特别注意弄清项数是多少. 二、素养训练1.设a n =2n -9,则当数列{a n }的前n 项和取得最小值时,n 的值为( ) A.4 B.5 C.4或5D.5或6解析 由⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,解得72≤n ≤92,故n =4.答案 A2.设等差数列{a n }的前n 项和为S n ,且S 7=S 12,则( ) A.S 9最大B.S 10最大C.S 9与S 10相等且最大D.以上都不对解析 由于不能明确公差的符号,所以S 9与S 10相等可能是最大值也可能是最小值. 答案 D3.若在数列{a n }中,a n =43-3n ,则当S n 取最大值时,n =( ) A.13 B.14 C.15D.14或15解析 ∵数列{a n }中,a n =43-3n ,∴a 1=40,∴S n =n (40+43-3n )2是关于n 的二次函数,函数图象是开口向下的抛物线上的一些横坐标为正整数的点,对称轴为n =836,又n 为正整数,与836最接近的一个正整数为14,故S n 取得最大值时,n =14.故选B.答案 B4.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为a n ,则a 1=( )A.35B.32C.23D.38解析 由题意可知,九个儿子的年龄成公差d =-3的等差数列,且九项之和为207.故S 9=9a 1+9×82d =9a 1-108=207,解得a 1=35.答案 A5.某抗洪指挥部接到预报,24小时后有一洪峰到达,为确保安全,指挥部决定在洪峰到来之前临时筑一道堤坝作为第二道防线.经计算,除现有的参战军民连续奋战外,还需调用20台同型号翻斗车,平均每辆车工作24小时.从各地紧急抽调的同型号翻斗车目前只有一辆投入使用,每隔20分钟能有一辆翻斗车到达,一共可调集25辆,那么在24小时内能否构筑成第二道防线?解 从第一辆车投入工作算起各车工作时间(单位:小时)依次设为a 1,a 2,…,a 25. 由题意可知,此数列为等差数列,且a 1=24,公差d =-13.25辆翻斗车完成的工作量为a 1+a 2+…+a 25=25×24+25×12×⎝ ⎛⎭⎪⎫-13=500,而需要完成的工作量为24×20=480.∵500>480,∴在24小时内能构筑成第二道防线.基础达标一、选择题1.已知数列{a n }满足a n =26-2n ,则使其前n 项和S n 取最大值的n 的值为( ) A.11或12 B.12 C.13D.12或13解析 ∵a n =26-2n ,∴a n -a n -1=-2, ∴数列{a n }为等差数列. 又a 1=24,d =-2, ∴S n =24n +n (n -1)2×(-2)=-n 2+25n=-⎝⎛⎭⎪⎫n -2522+6254. ∵n ∈N *,∴当n =12或13时,S n 最大. 答案 D2.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和最大时,n 的值为( ) A.6B.7C.8D.9解析 因为a n +1-a n =-3,所以数列{a n }是以19为首项,-3为公差的等差数列,所以a n =19+(n -1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,所以⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,即193≤k ≤223.因为k ∈N *,所以k =7.故满足条件的n 的值为7. 答案 B3.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安四百二十里,良马初日行九十七里,日增一十五里;驽马初日行九十二里,日减一里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( ) A.4日 B.3日 C.5日D.6日解析 由题意,可知良马第n 日行程记为a n ,则数列{a n }是首项为97,公差为15的等差数列,驽马第n 日行程记为b n ,则数列{b n }是首项为92,公差为-1的等差数列,则a n =97+15(n -1)=15n +82,b n =92-(n -1)=93-n . 因为数列{a n }的前n 项和为n (97+15n +82)2=n (179+15n )2,数列{b n }的前n 项和为n (92+93-n )2=n (185-n )2,∴n (179+15n )2+n (185-n )2=840,整理得14n 2+364n -1 680=0,即n 2+26n -120=0,解得n =4(n =-30舍去),即4日相逢. 答案 A4.设等差数列{a n }的前n 项和为S n ,n ∈N *.若S 12>0,S 13<0,则数列{|a n |}的最小项是( ) A.第6项 B.第7项 C.第12项D.第13项解析 由题意S 12>0,S 13<0及S 12=6(a 1+a 12)=6(a 6+a 7),S 13=13a 7,得a 6+a 7>0,a 7<0,所以a 6>0,a 6>|a 7|,且公差d <0,所以|a 7|最小.答案 B5.已知S n 是等差数列{a n }的前n 项和,且S 6>S 7>S 5,有下列四个命题:①d <0;②S 11>0;③S 12<0;④数列{S n }中的最大项为S 11,其中正确命题的序号是( ) A.②③ B.①② C.①③D.①④解析 ∵S 6>S 7,∴a 7<0,∵S 7>S 5,∴a 6+a 7>0,∴a 6>0,∴d <0,①正确. 又S 11=112(a 1+a 11)=11a 6>0,②正确.S 12=122(a 1+a 12)=6(a 6+a 7)>0,③不正确.{S n }中最大项为S 6,④不正确. 故正确的是①②. 答案 B 二、填空题6.已知等差数列{a n }中,|a 5|=|a 9|,公差d >0,则使得前n 项和S n 取得最小值的正整数n 的值是________.解析 由|a 5|=|a 9|且d >0得a 5<0,a 9>0,且a 5+a 9=0,∴2a 1+12d =0,∴a 1+6d =0,即a 7=0,故S 6=S 7且最小. 答案 6或77.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,数列{a n }的前n 项和最大.解析 ∵a 7+a 8+a 9=3a 8>0,∴a 8>0. ∵a 7+a 10=a 8+a 9<0,∴a 8>0,a 9<0. 故前8项的和最大. 答案 88.已知正项等差数列{a n }的前n 项和为S n ,S 10=40,则a 3·a 8的最大值为________. 解析 ∵正项等差数列{a n }的前n 项和为S n ,S 10=10(a 3+a 8)2=40,∴⎩⎪⎨⎪⎧a 3>0,a 8>0,a 3+a 8=40×210=8,∴a 3·a 8=a 3(8-a 3)=-a 23+8a 3=-(a 3-4)2+16≤16.当且仅当a 3=4时取等号. 答案 16 三、解答题9.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0. (1)求公差d 的取值范围;(2)问前几项的和最大,并说明理由.解 (1)∵a 3=12,∴a 1=12-2d .∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧12a 1+66d >0,13a 1+78d <0,即⎩⎪⎨⎪⎧24+7d >0,3+d <0, ∴-247<d <-3. 即d 的取值范围为⎝ ⎛⎭⎪⎫-247,-3. (2)∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧a 1+a 12>0,a 1+a 13<0,∴⎩⎪⎨⎪⎧a 6+a 7>0,a 7<0, ∴a 6>0,又由(1)知d <0.∴数列前6项为正,从第7项起为负.∴数列前6项和最大.10.某工厂用分期付款的方式购买40套机器设备,共需1 150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为1%,若交付150万元后的第1个月开始算分期付款的第1个月,问分期付款的第10个月应付多少钱?全部按期付清后,买这40套机器设备实际花了多少钱?解 因为购买设备时已付150万元,所以欠款为1 000万元,依据题意,知其后应分20次付款,则每次付款的数额顺次构成数列{a n },且a 1=50+1 000×1%=60,a 2=50+(1 000-50)×1%=59.5,a 3=50+(1 000-50×2)×1%=59,…,a n =50+[1 000-50(n -1)]×1%=60-0.5(n -1)(1≤n ≤20,n ∈N *),所以数列{a n }是以60为首项,-0.5为公差的等差数列,所以a 10=60-9×0.5=55.5, S 20=20[60+(60-19×0.5)]2=1 105. 所以全部按期付清后,买这40套机器设备实际共花费了1 105+150=1 255(万元).故分期付款的第10个月应付55.5万元,全部按期付清后,买这40套机器设备实际花了1 255万元.能力提升11.《张邱建算经》是中国古代数学史上的杰作,该书中有首民谣记载了一数列问题:“南山一棵竹,竹尾风割断,剩下三十节,一节一个圈.头节高五寸①,头圈一尺三②,逐节多三分③,逐圈少分三④.一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是多远?”(注释:①第一节的高度为0.5尺;②第一圈的周长为1.3尺;③每节比其下面的一节多0.03尺;④每圈周长比其下面的一圈少0.013尺)问:此民谣提出的问题的答案是( )A.61.395尺B.61.905尺C.72.705尺D.73.995尺解析 设从地面往上,每节竹长为a 1,a 2,a 3,…,a 30,∵每节竹节间的长相差0.03尺,∴{a n }是以a 1=0.5为首项,以d ′=0.03为公差的等差数列.由题意知竹节上一圈比下一圈细0.013尺,设从地面往上,每圈周长为b 1,b 2,b 3,…,b 30,可得{b n }是以b 1=1.3为首项,d =-0.013为公差的等差数列.∴一蚂蚁往上爬,遇圈则绕圈,爬到竹子顶,行程S 30=(a 1+a 2+…+a 30)+(b 1+b 2+…+b 30)=⎝ ⎛⎭⎪⎫30×0.5+30×292×0.03+⎣⎢⎡⎦⎥⎤30×1.3+30×292×(-0.013)=61.395,故选A. 答案 A12.某电站沿一条公路竖立电线杆,相邻两根电线杆的距离都是50 m ,最远一根电线杆距离电站1 550 m ,一汽车每次从电站运出3根电线杆供应施工.若该汽车往返运输总行程为17 500 m ,共竖立多少根电线杆?第一根电线杆距离电站多少米?解 由题意知汽车逐趟(由近及远)往返运输行程组成一个等差数列,记为{a n },则a n =1 550×2=3 100,d =50×3×2=300,S n =17 500.由等差数列的通项公式及前n 项和公式,得⎩⎪⎨⎪⎧a 1+(n -1)×300=3 100, ①na 1+n (n -1)2×300=17 500. ② 由①得a 1=3 400-300n .代入②得n (3 400-300n )+150n (n -1)-17 500=0,整理得3n 2-65n +350=0,解得n =10或n =353(舍去), 所以a 1=3 400-300×10=400.故汽车拉了10趟,共拉电线杆3×10=30(根),最近的一趟往返行程400 m ,第一根电线杆距离电站12×400-100=100(m). 所以共竖立了30根电线杆,第一根电线杆距离电站100 m.创新猜想13.(多选题)首项为正数,公差不为0的等差数列{a n },其前n 项和为S n ,现有下列四个命题,其中正确的命题有( )A.若S 10=0,则S 2+S 8=0B.若S 4=S 12,则使S n >0的n 的最大值为15C.若S 15>0,S 16<0,则{S n }中S 8最大D.若S 7<S 8,则S 8<S 9解析 对于A ,若S 10=0,则S 10=(a 1+a 10)·102=0, 则a 1+a 10=0,即2a 1+9d =0,则S 2+S 8=(2a 1+d )+(8a 1+28d )=10a 1+29d ≠0,A 不正确;对于B ,若S 4=S 12,则S 12-S 4=0,即a 5+a 6+…+a 11+a 12=4(a 8+a 9)=0,由于a 1>0,则a 8>0,a 9<0,则有S 15=15(a 1+a 15)2=15a 8>0,S 16=16(a 1+a 16)2=16(a 8+a 9)2=0,故使S n >0的n 的最大值为15,B 正确;对于C ,若S 15>0,S 16<0,则S 15=15(a 1+a 15)2=15a 8>0, S 16=16(a 1+a 16)2=8(a 8+a 9)<0, 则有a 8>0,a 9<0,故{S n }中S 8最大,故C 正确;对于D ,若S 7<S 8,即a 8=S 8-S 7>0,而S 9-S 8=a 9,不能确定其符号,D 错误. 答案 BC14.(多空题)已知{a n }是等差数列,首项为a 1,其公差d <0,前n 项和为S n ,设数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和为T n .(1)若a 1=-4d ,则当n =________时,T n 有最大值;(2)若当且仅当n =6时,T n 有最大值,则a 1d 的取值范围是________.解析 易知S n n =d 2n +⎝ ⎛⎭⎪⎫a 1-d 2, 若a 1=-4d ,则S n n =d 2n -92d ,由⎩⎪⎨⎪⎧S n n ≥0,S n +1n +1≤0,解得8≤n ≤9. 即n =8或9时,T n 有最大值;若当且仅当n =6时,T n 有最大值,则⎩⎪⎨⎪⎧S 66=a 1+52d >0,S 77=a 1+3d <0,d <0,解得-3<a 1d <-52. 答案 8或9 ⎝⎛⎭⎪⎫-3,-52。
等差数列前n项和的最值问题
等差数列前n项和的最值问题数列(二)一、数列的最大与最小项和最值问题1.直接求函数)(n f a n =的最大值或最小值,根据)(n f 的类型,并作出相应的变换,运用配方、重要不等式性质或根据)(n f 本身的性质求出)(n f 的最值。
2.研究数列)(n f a n =的正数与负数项的情况,这是求数列}{n a 的前n 项和n S 的最大值或最小值的一种重要方法.二、数列的求和1.拆项求和法:将一个数列拆成若干个简单数列(如等差数列、等比数列、常数数列等等),然后分别求和. 2.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列. 3.裂项求和法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项. 4.错位求和法:将一个数列的每一项都作相同的变换,然后将得到的新数列错动一个位置与原数列的各项相减,这是仿照推导等比数列前n 项和公式的方法. 三、数列其他知识 1.(1) {}{}成等比数列成等差数列na n ba ?{}2n n n a a a n b S A n B n ?=+?=+成等差数列(2){}{}成等比数列成等比数列kn n a a ? {}{}成等差数列成等比数列n ba n a a n log>2.递推数列:(1)能根据递推公式写出数列的前n 项(2)由n n n n S a a S f ,,0),(求= 解题思路:利用)2(,1≥-=-n S S a n n n 变化(1)已知0),(11=--n n a S f (2)已知0),(1=--n n n S S S f 四、例题解析例1(1)已知n a =,则 n S =___________。
(2)从盛满a 升酒精的容器里倒出b 升,然后再用水加满,再倒出b 升,再用水加满;这样倒了n 次,则容器中有纯酒精_________升。
(3)3571013{}3224n a a a a a a ++++=在等差数列中,()(),则此数列的前13项之和等于_______。
等差数列前n项和最值问题
等差数列前n项和最值问题Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT等差数列前n 项和的最值问题问题引入:已知数列{},n a 的前n 项和212n S n n =+,求这个数列的通项公式.数列是等差数列吗如果是,它的首项与公差分别是什么 解:当n>1时:1122n n n a s s n -=-==-当n=1时:211131122a s ==+⨯= 综上:122na n =-,其中:132a =,2d = 探究1:一般地,如果一个数列{}n a 的前n 项和为:2,n s pn qn r =++≠0,那么这个数列一定是等差数列吗如果是,它的首项和公差分别是什么结论:当r=0时为等差,当r ≠0时不是一、 应用二次函数图象求解最值 例1:等差数列{}n a 中, 1490,a S S >=,则n 的取值为多少时n S 最大分析:等差数列的前n 项和n S 是关于n 的二次函数,因此可从二次函数的图象的角度来求解。
解析:由条件1490,a S S >=可知,d<0,且211(1)()222n n n d dS na d n a n -=+=+-, 其图象是开口向下的抛物线,所以在对称轴处取得最大值,且对称轴为496.52n +==,而n N *∈,且介于6与7的中点,从而6n =或7n =时n S 最大。
1.已知等差数列{n a }中1a =13且3S =11S ,那么n 取何值时,n S 取最大值.解析:设公差为d ,由3S =11S 得:3×13+3×2d/2=11×13+11×10d/2 d= -2, n a =13-2(n-1), n a =15-2n,由⎩⎨⎧≤≥+0a 0a 1n n 即⎩⎨⎧≤+-≥-0)1n (2150n 215得:≤n ≤,所以n=7时,n S 取最大值.2.已知a n 是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,求数列a n 前 5 项和取得最大值.结合二次函数的图象,得到二次函数图象的开口向下,根据图象关于对称轴对称的特点,得到函数在对称轴处取到最大值,,注意对称轴对应的自变量应该是整数或离对称轴最近的整数.a n 是各项不为零的等差数列,其中a 1>0,公差d <0,S 10=0,根据二次函数的图象特点得到图象开口向下,且在n==5时,数列a n 前5项和取得最大值.二、转化为求二次函数求最值例2、在等差数列{n a }中, 4a =-14, 公差d =3, 求数列{n a }的前n 项和n S 的最小值 分析:利用条件转化为二次函数,通过配方写成顶点式易求解。
等差数列前n项和及其应用(可编辑修改word版)
等差数列前n 项和及其应用一.选择题(共8 小题)1.已知数列{a n}的通项公式a n=26﹣2n,要使此数列的前n 项和S n 最大,则n 的值为()A.12 B.13 C.12 或13 D.142.等差数列{a n}的前n 项和为S n,已知a1=13,S3=S11,当S n 最大时,n 的值是()A.5 B.6 C.7 D.83.若{a n}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n} 的前n 项和S n>0 成立的最大自然数n 是()A.4027 B.4026 C.4025 D.40244.已知数列{a n}为等差数列,其前n 项和为S n,2a7﹣a8=5,则S11 为()A.110 B.55 C.50 D.不能确定5.在等差数列{a n}的前n 项和为S n,若a2+a4+a15 的值为常数,则下列为常数的是()A.S7 B.S8 C.S13 D.S156.设等差数列{a n}的前n 项和为S n,若S23>0,S24<0,则S n 取最大值时n 的值为()A.11 B.12 C.13 D.237.在等差数列{a n}中,,若它的前n 项和S n 有最大值,则当S n>0 时,n 的最大值为()A.11 B.12 C.13 D.148.等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,则()A.S10<0,S11>0 B.S19<0,S20>0C.S5<0,S6>0 D.S20<0,S21>0二.填空题(共4 小题)9.已知等差数列{a n},{b n}前n 项和分别为S n 和T n,若=,则=.10.设等差数列{a n}的前n 项和为S n,若3a5﹣a1=10,则S13=.11.数列{a n}的前n 项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n=.12.已知两个等差数列{a n}、{b n}的前n 项和分别为S n、T n.且,则=.三.解答题(共4 小题)13.等差数列{a n}的前n 项和为S n,且a3+a5=a4+7,S10=100.(1)求{a n}的通项公式;(2)求满足不等式S n<3a n﹣2 的n 的值.14.记S n 为等差数列{a n}的前n 项和,已知a1=10,S3=24.(1)求{a n}的通项公式;(2)求S n,并求S n 的最大值.15.在等差数列{a n}中,a10=18,前5 项的和S5=﹣15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n 项和的最小值,并指出何时取最小.16.已知等差数列{a n}中,a1=1,a3=﹣3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k 项和S k=﹣35,求k 的值.等差数列前n 项和及其应用参考答案与试题解析一.选择题(共8 小题)1.已知数列{a n}的通项公式a n=26﹣2n,要使此数列的前n 项和S n 最大,则n 的值为()A.12 B.13 C.12 或13 D.14【分析】数列{a n}是首项为24,公差为2 的等差数列,从而S n=24n+=﹣n2+25n=﹣(n﹣)2+.由此能求出要使此数列的前n 项和S n 最大,n 的值.【解答】解:∵数列{a n}的通项公式a n=26﹣2n,∴a1=26﹣2=24,d=a n﹣a n﹣1=(26﹣2n)﹣[26﹣2(n﹣1)]=﹣2,∴数列{a n}是首项为24,公差为2 的等差数列,∴S n=24n+=﹣n2+25n=﹣(n﹣)2+.∴要使此数列的前n 项和S n 最大,则n 的值为12 或13.故选:C.【点评】本题考查等差数列的前n 项和最大时项数n 的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.等差数列{a n}的前n 项和为S n,已知a1=13,S3=S11,当S n 最大时,n 的值是()A.5 B.6 C.7 D.8【分析】由等差数列的性质可得a7+a8=0,可得该数列的前7 项均为正数,从第8 项开始全为负数,故数列的前7 项和最大,进而可得答案.【解答】解:∵S3=S11,∴S11﹣S3=a4+a5+a6+…+a11=0,故可得(a4+a11)+(a5+a10)+…+(a7+a8)=4(a7+a8)=0,∴a7+a8=0,结合a1=13 可知,该数列的前7 项均为正数,从第8 项开始全为负数,故数列的前7 项和最大,故选:C.【点评】本题考查等差数列的前n 项和,涉及等差数列的性质,从数列自身的特点入手是解决问题的关键,属中档题.3.若{a n}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n}的前n 项和S n>0 成立的最大自然数n 是()A.4027 B.4026 C.4025 D.4024【分析】由题意可知数列是递减数列,由a2013(a2012+a2013)<0,知a2012>0,a2013<0,由此推得答案.【解答】解:由题意可得数列{a n}单调递减,由a2013(a2012+a2013)<0 可得:a2012>0,a2013<0,|a2012|>|a2013|.∴a2012+a2013>0.则S4025=4025a2013<0,故使数列{a n}的前n 项和S n>0 成立的最大自然数n 是4024.故选:D.【点评】本题考查了等差数列的前n 项和,考查了对递减数列的项的符号的判断,关键在于分清从那一项开始为负值,且判出正负相邻两项和的符号,是中档题.4.已知数列{a n}为等差数列,其前n 项和为S n,2a7﹣a8=5,则S11 为()A.110 B.55 C.50 D.不能确定【分析】利用等差数列的通项公式与性质及其求和公式即可得出.【解答】解:2a7﹣a8=2(a1+6d)﹣(a1+7d)=a1+5d=a6=5,∴.故选:B.【点评】本题考查了等差数列的通项公式与性质及其求和公式,考查了推理能力与计算能力,属于中档题.5.在等差数列{a n}的前n 项和为S n,若a2+a4+a15 的值为常数,则下列为常数的是()A.S7 B.S8 C.S13 D.S15【分析】利用等差数列的通项公式及其性质即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2+a4+a15=3a1+18d=3a7 为常数,∴S13==13a7 为常数.故选:C.【点评】本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.6.设等差数列{a n}的前n 项和为S n,若S23>0,S24<0,则S n 取最大值时n 的值为()A.11 B.12 C.13 D.23【分析】等差数列{a n}的前n 项和为S n,S23>0,S24<0,从而a12>0,a13<0,由此能求出S n 取最大值时n 的值.【解答】解:等差数列{a n}的前n 项和为S n,S23>0,S24<0,,a12>0,a13<0,∴S n 取最大值时n 的值为:12.故选:B.【点评】本题考查等差数列的前n 项和取最大值时n 的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想.7.在等差数列{a n}中,,若它的前n 项和S n 有最大值,则当S n>0 时,n 的最大值为()A.11 B.12 C.13 D.14【分析】公差d<0,首项a1>0,{a n}为递减数列,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,由此能求出结果.【解答】解:∵数列{a n}是等差数列,它的前n 项和S n 有最大值,∴公差d<0,首项a1>0,{a n}为递减数列,∵<0,∴a6•a7<0,a6+a7<0,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,∵S n=(a1+a n),∴S n>0 时,n 的最大值为11.故选:A.【点评】本题考查等差数列中满足前n 项和为正的n 的最大值的求法,考查等差数列的性质等基础知识,考查推运算求解能力,考查函数与方程思想,是基础题.8.等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,则()A.S10<0,S11>0 B.S19<0,S20>0C.S5<0,S6>0 D.S20<0,S21>0【分析】由等差数列的性质可得:S20=>0,S19=19•a10<0.【解答】解:∵等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,∴由等差数列的性质可得:S20=>0,S19=19•a10<0,故选:B.【点评】本题考查命题真假的判断,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.二.填空题(共4 小题)9.已知等差数列{a n},{b n}前n 项和分别为S n 和T n,若=,则=.【分析】由等差数列的求和公式和性质可得:=,问题得以解决.【解答】解:=======,故答案为:【点评】本题考查等差数列的求和公式和等差数列的性质,属基础题.10.设等差数列{a n}的前n 项和为S n,若3a5﹣a1=10,则S13=65 .【分析】利用等差数列通项公式求出2a7=10,由此能求出S13 的值.【解答】解:∵等差数列{a n}的前n 项和为S n,3a5﹣a1=10,∴3(a1+4d)﹣a1=2a1+12d=2a7=10,∴S13===.故答案为:65.【点评】本题考查等差数列的前13 项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.1.数列{a n}的前n 项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n= 2n﹣2 .【分析】由已知条件利用能求出结果.【解答】解:∵S n=n2﹣n(n∈N*),∴a1=S1=1﹣1=0,n≥2 时,=(n2﹣n)﹣[(n﹣1)2﹣(n﹣1)]=2n﹣2.当n=1 时,2n﹣2=0=a1,∴a n=2n﹣2.故答案为:2n﹣2.【点评】本题考查数列的通项公式的求法,是基础题,解题时要认真审题,注意公式的灵活运用.12.已知两个等差数列{a n}、{b n}的前n 项和分别为S n、T n.且,则=.【分析】题目给出了两个等差数列的前n 项和的比值,求解两个数列的第11 项的比,可以借助等差数列的前n 项和在n 为奇数时的公式进行转化.【解答】解:因为数列{a n}、{b n}都是等差数列,根据等差中项的概念知数列中的第11 项为数列前21 项的等差中项,所以S21=21a11,T21=21b11,所以.故答案为.【点评】本题主要考查了等差数列的性质和数列的求和.解题的关键是利用了等差数列的前n 项和在n 为奇数时的公式,若n 为奇数,则.三.解答题(共4 小题)13.等差数列{a n}的前n 项和为S n,且a3+a5=a4+7,S10=100.(1)求{a n}的通项公式;(2)求满足不等式S n<3a n﹣2 的n 的值.【分析】(1)由a3+a5=a4+7,S10=100,列出方程组,求出首项和公差,由此能求出{a n} 的通项公式.(2)由a1=1,a n=2n﹣1,求出S n=n2,从而得到n2﹣6n+5<0,由此能求出n 的值.【解答】(本题10 分)解:(1)设数列{a n}的公差为d,由a3+a5=a4+7,得2a1+6d=a1+3d+7,①.…(1 分)由S10=100,得10a1+45d=100,②…(2 分)解得a1=1,d=2,…(4 分)所以a n=a1+(n﹣1)d=2n﹣1.…(5 分)(2)因为a1=1,a n=2n﹣1,所以=n2,…(7 分)由不等式S n<3a n﹣2,得n2<3(2n﹣1)﹣2,所以,n2﹣6n+5<0,解得1<n<5,…(9 分)因为n∈N*,所以n 的值为2,3,4.…(10 分)【点评】本题考查等差数列的通项公式、项数n 的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.14.记S n 为等差数列{a n}的前n 项和,已知a1=10,S3=24.(1)求{a n}的通项公式;(2)求S n,并求S n 的最大值.【分析】(1)设等差数列{a n}的公差为d,由a1=10,S3=24.利用求和公式解得d,即可得出a n.(2)利用求和公式、二次函数的单调性即可得出.【解答】解:(1)设等差数列{a n}的公差为d,∵a1=10,S3=24.∴3×10+d=24,解得d=﹣2.∴a n=10﹣2(n﹣1)=12﹣2n.(2)S n==﹣n2+11n=﹣+.∴当n=5 或 6 时,S n 最大,S n=﹣52+55=30.【点评】本题考查了等差数列的通项公式与求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.在等差数列{a n}中,a10=18,前5 项的和S5=﹣15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n 项和的最小值,并指出何时取最小.【分析】(1)由等差数列{a n}中,a10=18,前5 项的和S5=﹣15,,由此能求出数列{a n}的通项公式.(2)由a1=﹣9,d=3,a n=3n﹣12,知=﹣,由此能求出当n=3 或4 时,前n 项的和S n 取得最小值S3=S4=﹣18.【解答】解:(1)∵等差数列{a n}中,a10=18,前5 项的和S5=﹣15,∴,解得a1=﹣9,d=3,∴a n=3n﹣12.(2)∵a1=﹣9,d=3,a n=3n﹣12,∴==﹣,∴当n=3 或 4 时,前n 项的和S n 取得最小值S3=S4=﹣18.【点评】本题考查等差数列的通项公式和前n 项和公式的灵活运用,是基础题.解题时要认真审题,仔细解答,注意配方法的合理运用.16.已知等差数列{a n}中,a1=1,a3=﹣3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k 项和S k=﹣35,求k 的值.【分析】(1)根据等差数列的通项公式,先求出d,即可得到答案,(2)根据等差数列的前n 项和公式即可求出.【解答】解:(1)设等差数列{a n}的公差为d,由a1=1,a3=﹣3,得a3=a1+2d,解得d=﹣2,∴a n=a1+(n﹣1)d=1﹣2(n﹣1)=3﹣2n,(2)S k==﹣35,即k2﹣2k﹣35=0,解得k=7 或k=﹣5(舍去)故k=7.【点评】本题考查了等差数列的通项公式和前n 项和公式,属于基础题.。
4.2.2 等差数列的前n项和公式 (精讲)(解析版)
4.2.2等差数列的前n项和公式一、等差数列的前n 项和公式1、等差数列的前n 项和公式已知量首项,末项与项数首项,公差与项数选用公式()12n n n a a S +=()112n n S na d-=+n 2、等差数列前n 项和公式的推导对于公差为d 的等差数列,()()()111121n S a a d a d a n d ⎡⎤=+++++++-⎣⎦①()()()21n n n n n S a a d a d a n d ⎡⎤=+-+-++--⎣⎦②由①+②得()()()()11112n n n n S a a a a a a a a =++++++++n n 个=()1n n a a +,由此得等差数列前n 项和公式()12n n n a a S +=,代入通项公式()11n a a n d =+-得()112n n n S na d -=+.二、等差数列的前n 项和常用的性质1、设等差数列{}n a 的公差为d ,n S 为其前n 项和,等差数列的依次k 项之和,k S ,2k k S S -,32k k S S -…组成公差为2k d 的等差数列;2、数列{}n a 是等差数列⇔2n S an bn =+(a ,b 为常数)⇔数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,公差为2d;3、若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d;①当项数为偶数2n 时,()21n n n S n a a +=+,S S nd -=奇偶,1nn S a S a +=奇偶;②当项数为奇数21n +时,()21121n n S n a ++=+,n S S a -=奇偶,1S n S n+=奇偶.4、在等差数列{}n a ,{}n b 中,它们的前n 项和分别记为,n n S T 则2121n n n n a S b T --=将等差数列前n 项和公式()112n n n S na d -=+,整理成关于n 的函数可得2122n d d S n a n ⎛⎫=+- ⎪⎝⎭.当0d ≠时,n S 关于n 的表达式是一个常数项为零的二次函数式,即点(),n n S 在其相应的二次函数的图象上,这就是说等差数列的前n 项和公式是关于n 的二次函数,它的图象是抛物线2122d d y x a x ⎛⎫=+- ⎪⎝⎭上横坐标为正整数的一系列孤立的点.四、求等差数列的前n 项和S n 的最值的解题策略1、将()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭配方,若0d ≠,则从二次函数的角度看:当0d >时,S n 有最小值;当0d <时,n S 有最大值.当n 取最接近对称轴的正整数时,n S 取到最值.2、邻项变号法:当10a >,0d <时,满足100n n a a +≥⎧⎨≤⎩的项数n 使n S 取最大值;当10a <,0d >时,满足10n n a a +≤⎧⎨≥⎩的项数n 使n S取最小值。
等差数列及其前n项和Word版含答案
等差数列及其前n 项和【课前回顾】1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质. ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.【课前快练】1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.3.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 4.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:55.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.【典型例题】1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72考点二 等差数列的判定与证明等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n -a n -1=1(n ≥3)的数列{a n }而言并不能判定其为等差数列,因为不能确定起始项a 2-a 1是否等于1.【典型例题】(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .【针对训练】1.(2018·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R)且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B 由S n =an 2+bn (a ,b ∈R)可知数列{a n }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1(n ≥2), ∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.考点三 等差数列的性质及前n 项和的最值1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.【典型例题】1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.【针对训练】1.(2018·岳阳模拟)在等差数列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8=() A.95B.100C.135 D.80解析:选B由等差数列的性质可知,a1+a2,a3+a4,a5+a6,a7+a8构成新的等差数列,于是a7+a8=(a1+a2)+(4-1)[(a3+a4)-(a1+a2)]=40+3×20=100.2.设等差数列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然数n的值为()A.6 B.7C.12 D.13解析:选C因为a1>0,a6a7<0,所以a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,所以S12>0,S13<0,所以满足S n>0的最大自然数n的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18【课后演练】1.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.在数列{a n }中,a 1=3,a n +1=3a na n +3,则a 4=( ) A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A .9 B .15 C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________.解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:1011.已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( ) A .72 B .88 C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 12.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0, 解得n =9(负值舍去),故选B.13.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.14.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧ d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧ d <0,7+7d >0,7+8d <0,解得-1<d <-78. 答案:⎝⎛⎭⎫-1,-78 15.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0, 解得m =5.答案:516.已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1, ∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12, 则b n +1-b n =n +22-n +12=12, ∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 17.已知递增等差数列{a n }的前n 项和为S n ,且a 2a 3=15,S 4=16.(1)求数列{a n }的通项公式以及S n 的表达式;(2)若数列{b n }满足:b 1=1,b n +1-b n =1a n a n +1,求数列{b n }的通项公式. 解:(1)设数列{a n }的公差为d (d >0), 则⎩⎪⎨⎪⎧ a 2a 3=(a 1+d )(a 1+2d )=15,S 4=4a 1+6d =16, 解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去), ∴a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,n ∈N *. (2)由(1)知,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎛⎭⎫12n -1-12n +1, b n -b 1=(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -3-12n -1=12⎝⎛⎭⎫1-12n -1=n -12n -1(n ≥2),∴b n =3n -22n -1. 当n =1时,b 1=1也符合上式, ∴b n =3n -22n -1(n ∈N *). 18.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得a 1+nd +a 1+(n -1)d =4n -3, ∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =4n +1-(4n -3)=4,∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=1,∴a 1=-12. (2)由题意知,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7)=2n 2-3n 2. 综上,S n =⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n 2,n 为偶数.。
题型04 等差数列前n项和最大最小问题(解析版)
秒杀题型一:等差数列前n 项和最大、最小值问题秒杀策略:处理思路有三种:①.当10,0a d ><时,解不等式组10n n a a +≥⎧⎨≤⎩,可得n S 取到最大值时n 的值;当10,0a d <>时,解不等式组10n n a a +≤⎧⎨≥⎩,可得n S 取到最小值时n 的值;②.找到数列中的正负(或负正)转化项,即令0n a =,求出n ,如n 为整数(即存在为零项),则答案为两个,1,n n a a -,如n 不为整数(不存在为零项),答案为一个,即[]0n n a ==(取整(或高斯)函数);③.利用bn an S n +=2(二次函数)来求最值,但注意n 取整数,不一定取对称轴,所以要看对称轴,当对称轴含有12时,答案有两个,其余为一个。
〖母题1〗(1)已知等差数列245,4,3,...77的前n 项和为n S ,求使得n S 最大的序号n 的值.【解析】:两种方法均可,4075+-=n a n ,08=a ,n S 最大的序号n 为7或8。
(2)已知数列{}211n -,那么n S 的最小值是()A.1S B.5S C.6S D.11S 【解析】:05<a ,06>a ,选B 。
(3)已知等差数列{}n a 中,1583,115,a a a =-=求前n 项和n S 的最小值.【解析】:52-=n a n ,最小值是42-=S 。
(4)等差数列{}n a 的前n 项和为n S ,已知14150,0S S ><,则此等差数列的前n 项和中,n 是多少时取得最大值?【解析】:0)78714>+=a a S (,087>+∴a a ,015815<=a S ,08<a ,07>a ,当7=n 时n S 最大。
1.(2010年新课标全国卷17)设等差数列{}n a 满足35a =,109a =-.(1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值.【解析】:(1)2759310310-=--=--=a a d ,∴2d =-,∴211n a n =-+;(2)法一:二次函数法:代入等差数列求和公式,得210n S n n =-+,当5n =时取到最大。
高中数学解决等差数列前n项和的最值问题
高中数学解决等差数列前n项和的最值问题
解决等差数列前n项和的最值问题,有三种解法,函数法是通解通法,其他两种方法则要根据条件决定能否使用。
若数列是等差数列,是其前n项和,则
,其结构是以n为自变量的二次函数,从而数列的最值问题可转化为二次函数的最值问题。
例1、等差数列中,,是前n项和且,求当n为何值时,最大。
解法1(图象法):设,由,,可知
d<>且二次函数图象的对称轴,故当n=13或14时,最大。
解法2(利用):由,知,
,可得,即。
又,可知当n<>时,。
当n>14时,。
可得。
故当n=13或14时,最大。
解法3(函数法):由,可知
,整理得。
所以。
故当n=13或14时,最大。
例2、是等差数列,,,是前n项和,求当n 为何值时,最大。
分析:,。
由,得。
然后解法同上(有兴趣的同学不妨试一试。
)
例3 等差数列中,,,是其前n项和,求当n为何值时,最大。
分析:该题从形式上完全等同于例2,但却不能化为例2的形式。
好友都在看:
又到了吃饺子的时候!白白胖胖、热热乎乎的饺子,是冬天的最大慰籍
小明学校的幽默故事搞笑的很呐!
爱上就不会轻易放弃的星座
150-170cm外套穿搭指南,比例好不好就看这一波!
'有本事冲我来,别在家长会上吓唬我爸!'看完这些孩子的诗,甘拜下风
高中数学解题的七层境界,你修炼到了第几层?
英语常用的62个英语句型,学英语须掌握
高考英语作文:能加分的100个好句子!(附译文+同类句型)。
等差数列及其前n项和(解析版)
等差数列及其前n 项和一、学习目标1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 二、知识讲解知识点一 等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 知识点二 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n = 通项公式的推广:a n = (2)等差数列的前n 项和公式 S n =知识点三 等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 知识点四 等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 知识点五 等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 三、例题辨析考点一 等差数列基本量的运算【典例1】记nS 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( )A .25n a n =-B .310n a n =-C .228n S n n=- D .2122n S n n =-【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A 。
高中数学必修五:等差数列求前n和 (最全整理)含解析
第二章等差数列前n 和(最全整理)含解析第1课时基础巩固一、选择题1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .2[答案] A[解析] 本题考查数列的基础知识和运算能力.⎩⎪⎨⎪⎧ S 3=4a 3a 7=-2⇒⎩⎪⎨⎪⎧ 3a 1+3d =4a 1+8d a 1+6d =-2⇒⎩⎪⎨⎪⎧a 1=10d =-2. ∴a 9=a 1+8d =-6.2.四个数成等差数列,S 4=32,a 2a 3=,则公差d 等于( )A .8B .16C .4D .0[答案] A [解析] ∵a 2a 3=,∴a 1+d a 1+2d =13,∴d =-2a 1. 又S 4=4a 1+4×32d =-8a 1=32,∴a 1=-4,∴d =8.3.等差数列{a n }中,a 3+a 7-a 10=8,a 11-a 4=14.记S n =a 1+a 2+a 3+…+a n ,则S 13=( ) A .168 B .156 C .152 D .286[答案] D[解析] ∵⎩⎪⎨⎪⎧ a 3+a 7-a 10=8a 11-a 4=14,∴⎩⎪⎨⎪⎧a 1-d =87d =14,∴⎩⎪⎨⎪⎧d =2a 1=10,∴S 13=13a 1+13×122d =286.4.在等差数列{a n }和{b n }中,a 1=25,b 1=15,a 100+b 100=139,则数列{a n +b n }的前100项的和为( )A .0B .4475C .8950D .10 000[答案] C[解析] 设c n =a n +b n ,则c 1=a 1+b 1=40,c 100=a 100+b 100=139,{c n }是等差数列,∴前100项和S 100=100(c 1+c 100)2=100×(40+139)2=8950.5.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3 D .2[答案] C[解析] 设等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 3+a 5+a 7+a 9=15a 2+a 4+a 6+a 8+a 10=30, ∴5d =15,∴d =3.6.设S n 是等差数列{a n }的前n 项和,若a 7a 5=913,则S 13S 9=( ) A .1 B .-1 C .2 D .12[答案] A [解析]S 13S 9=13a 79a 5=139×913=1,故选A . 二、填空题7.已知数列{a n }的通项公式a n =-5n +2,则其前n 项和S n =________. [答案] -5n 2+n2[解析] ∵a n =-5n +2, ∴a n -1=-5n +7(n ≥2),∴a n -a n -1=-5n +2-(-5n +7)=-5(n ≥2). ∴数列{a n }是首项为-3,公差为-5的等差数列. ∴S n =n (a 1+a n )2=n (-5n -1)2=-5n 2+n 2.8.设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________. [答案] 24[解析] ∵S 9=9·(a 1+a 9)2=72,∴a 1+a 9=16,即a 1+a 1+8d =16, ∴a 1+4d =8,又a 2+a 4+a 9=a 1+d +a 1+3d +a 1+8d =3(a 1+4d )=3×8=24. 三、解答题9.已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求n 和d ;(2)a 1=4,S 8=172,求a 8和D . [解析] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2·d =-5,解得n =15,n =-4(舍).(2)由已知,得S 8=8(a 1+a 8)2=8(4+a 8)2,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.10.设{a n }是等差数列,前n 项和记为S n ,已知a 10=30,a 20=50. (1)求通项a n ;(2)若S n =242,求n 的值. [解析] (1)设公差为d , 则a 20-a 10=10d =20, ∴d =2.∴a 10=a 1+9d =a 1+18=30, ∴a 1=12.∴a n =a 1+(n -1)d =12+2(n -1)=2n +10. (2)S n =n (a 1+a n )2=n (2n +22)2=n 2+11n =242, ∴n 2+11n -242=0, ∴n =11.能力提升一、选择题1.等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值为一个确定的常数,则下列各数中也是常数的是( )A .S 7B .S 8C .S 13D .S 15[答案] C[解析] ∵a 2+a 4+a 15=3a 1+18d =3(a 1+6d )=3a 7为常数,∴S 13=13(a 1+a 13)2=13a 7为常数.2.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24 D .42 [答案] C[解析] ∵S 2,S 4-S 2,S 6-S 4成等差数列, ∴2(S 4-S 2)=S 2+S 6-S 4, ∴2(10-2)=2+S 6-10,∴S 6=24.3.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A .310B .13C .18D .19[答案] A[解析] 据等差数列前n 项和性质可知:S 3,S 6-S 3,S 9-S 6,S 12-S 9仍成等差数列. 设S 3=k ,则S 6=3k ,S 6-S 3=2k , ∴S 9-S 6=3k ,S 12-S 9=4k ,∴S 9=S 6+3k =6k ,S 12=S 9+4k =10k , ∴S 6S 12=3k 10k =310. 4.(2013·新课标Ⅰ理,7)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6[答案] C[解析] 本题考查数列的前n 项和S n 与通项a n 的关系及等差数列的定义. S m -S m -1=a m =2,S m +1-S m =a m +1=3, ∴d =a m +1-a m =3-2=1. S m =a 1m +m (m -1)2·1=0,①a m =a 1+(m -1)·1=2, ∴a 1=3-m .②②代入①得3m -m 2+m 22-m2=0,∴m =0(舍去),m =5,故选C . 二、填空题5.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=________.[答案] 100[解析] ∵OB →=a 1OA →+a 200OC →,且A 、B 、C 三点共线, ∴a 1+a 200=1,∴S 200=200×(a 1+a 200)2=100.6.已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则S 3等于________. [答案] 14[解析] 对于S n =2a n -2,当n =1时,有a 1=2a 1-2,解得a 1=2;当n =2时,有S 2=2a 2-2,即a 1+a 2=2a 2-2,所以a 2=a 1+2=4;当n =3时,有S 3=2a 3-2,即a 1+a 2+a 3=2a 3-2,所以a 3=a 2+a 1+2,又a 1=2,a 2=4,则a 3=8,所以S 3=2a 3-2=14.三、解答题7.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. [解析] 设等差数列{a n }的公差为d ,前n 项和为S n ,则 S n =na 1+n (n -1)2D .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①得,a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100=-110.8.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{S nn }的前n 项和,求数列{S nn}的前n 项和T n .[解析] 设等差数列{a n }的公差为d ,则 S n =na 1+12n (n -1)D .∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =715a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1a 1+7d =5,解得a 1=-2,d =1.∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列{S n n }是等差数列,其首项为-2,公差为12,∴T n =14n 2-94n .2.3 第2课时基础巩固一、选择题1.记等差数列{a n }的前n 项和为S n .若d =3,S 4=20,则S 6=( ) A .16 B .24 C .36 D .48[答案] D[解析] 由S 4=20,4a 1+6d =20,解得a 1=12⇒S 6=6a 1+6×52×3=48.2.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18 [答案] B[解析] 由题设求得:a 3=35,a 4=33,∴d =-2,a 1=39,∴a n =41-2n ,a 20=1,a 21=-1,所以当n =20时S n 最大.故选B .3.13×5+15×7+17×9+…+113×15=( ) A .415B .215C .1415D .715[答案] B[解析] 原式=12(13-15)+12(15-17)+…+12(113-115)=12(13-115)=215,故选B .4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A .100101B .99101C .99100D .101100[答案] A[解析] 本小题主要考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用.∵a 5=5,S 5=15∴5(a 1+5)2=15,∴a 1=1. ∴d =a 5-a 15-1=1,∴a n =n .∴1a n a n +1=1n (n +1)=1n -1n +1. 则数列{1a n a n +1}的前100项的和为:T 100=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101.故选A .5.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为( )A .5B .6C .7D .8[答案] B[解析] 解法一:∵a 1>0,S 4=S 8,∴d <0,且a 1=112d ,∴a n =-112d +(n -1)d =nd -132d ,由⎩⎪⎨⎪⎧a n ≥0a n +1<0,得⎩⎨⎧nd -132d ≥0(n +1)d -132d <0,∴512<n ≤612,∴n =6,解法二:∵a 1>0,S 4=S 8, ∴d <0且a 5+a 6+a 7+a 8=0, ∴a 6+a 7=0,∴a 6>0,a 7<0, ∴前六项之和S 6取最大值.6.设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值[答案] C[解析] 由S 5<S 6知a 6>0,由S 6=S 7知a 7=0,由S 7>S 8知a 8<0,C 选项S 9>S 5即a 6+a 7+a 8+a 9>0,∴a 7+a 8>0,显然错误. 二、填空题7.设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________. [答案] 25[解析] 由⎩⎪⎨⎪⎧ a 1=1a 4=7得⎩⎪⎨⎪⎧a 1=1d =2, ∴S 5=5a 1+5×42×d =25.8.(2014·北京理,12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.[答案] 8[解析] 本题考查了等差数列的性质与前n 项和.由等差数列的性质,a 7+a 8+a 9=3a 8,a 7+a 10=a 8+a 9,于是有a 8>0,a 8+a 9<0,故a 9<0,故S 8>S 7,S 9<S 8,S 8为{a n }的前n 项和S n 中的最大值,等差数列{a n }中首项a 1>0公差d <0,{a n }是一个递减的等差数列,前n 项和有最大值,a 1<0,公差d >0,{a n }是一个递增的等差数列,前n 项和有最小值.三、解答题9.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 取最大值的n 的值.[解析] (1)设公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+2d =5a 1+9d =-9,解得⎩⎪⎨⎪⎧a 1=9d =-2.∴a n =a 1+(n -1)d =-2n +11.(2)由(1)知S n =na 1+n (n -1)2d =10n -n 2=-(n -5)2+25,∴当n =5时,S n 取得最大值.10.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .[解析] (1)设等差数列{a n }的首项为a ,公差为d , 由于a 3=7,a 5+a 7=26, ∴a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2.∴a n =2n +1,S n =n (n +2). (2)∵a n =2n +1, ∴a 2n -1=4n (n +1),∴b n =14n (n +1)=14(1n -1n +1).故T n =b 1+b 2+…+b n=14(1-12+12-13+…+1n -1n +1) =14(1-1n +1)=n4(n +1),∴数列{b n }的前n 项和T n =n4(n +1).能力提升一、选择题1.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A .12B .16C .9D .16或9[答案] C[解析] a n =120+5(n -1)=5n +115, 由a n <180得n <13且n ∈N *, 由n 边形内角和定理得,(n -2)×180=n ×120+n (n -1)2×5.解得n =16或n =9 ∵n <13,∴n =9.2.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的最大值n 为( )A .11B .19C .20D .21 [答案] B[解析] ∵S n 有最大值,∴a 1>0,d <0, ∵a 11a 10<-1, ∴a 11<0,a 10>0,∴a 10+a 11<0, ∴S 20=20(a 1+a 20)2=10(a 10+a 11)<0,又S 19=19(a 1+a 19)2=19a 10>0,故选B .3.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A .a 8B .a 9C .a 10D .a 11[答案] D[解析] S 11=5×11=55=11a 1+11×102d =55d -55, ∴d =2,S 11-x =4×10=40,∴x =15,又a 1=-5,由a k =-5+2(k -1)=15得k =11.4.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n 等于( )A .4B .5C .6D .7 [答案] A[解析] ∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5,又∵a 1·a 2·a 3=105,∴a 1a 3=21,由⎩⎪⎨⎪⎧a 1a 3=21a 1+a 3=10及{a n }递减可求得a 1=7,d =-2,∴a n =9-2n ,由a n ≥0得n ≤4,∴选A .二、填空题5.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则S 10的值为________.[答案] 110[解析] 设等差数列{a n }的首项为a 1,公差为D .a 3=a 1+2d =16,S 20=20a 1+20×192d =20, ∴⎩⎪⎨⎪⎧a 1+2d =16,2a 1+19d =2,解得d =-2,a 1=20. ∴S 10=10a 1+10×92d =200-90=110. 6.等差数列{a n }中,d <0,若|a 3|=|a 9|,则数列{a n }的前n 项和取最大值时,n 的值为______________.[答案] 5或6[解析] ∵a 1+a 11=a 3+a 9=0,∴S 11=11(a 1+a 11)2=0, 根据二次函数图象的性质,由于n ∈N *,所以当n =5或n =6时S n 取最大值.三、解答题7.一等差数列共有偶数项,且奇数项之和与偶数项之和分别为24和30,最后一项与第一项之差为10.5,求此数列的首项、公差以及项数.[解析] 解法1:设此数列的首项a 1,公差d ,项数2k (k ∈N *).根据题意,得⎩⎪⎨⎪⎧ S 奇=24S 偶=30a 2k -a 1=212,即⎩⎪⎨⎪⎧S 偶-S 奇=6,a 2k -a 1=212, ∴⎩⎪⎨⎪⎧ kd =6,(2k -1)d =212,解得⎩⎪⎨⎪⎧ k =4,d =32. 由S 奇=k 2(a 1+a 2k -1)=24,可得a 1=32. ∴此数列的首项为32,公差为32,项数为8. 解法二:设此数列的首项为a 1,公差为d ,项数为2k (k ∈N *),根据题意,得⎩⎪⎨⎪⎧ S 奇=24,S 偶=30,a 2k -a 1=212,即⎩⎪⎨⎪⎧ 12k (a 1+a 2k -1)=24,12k (a 2+a 2k )=30,(2k -1)d =212,∴⎩⎪⎨⎪⎧ k [a 1+(k -1)d ]=24,k (a 1+kd )=30,(2k -1)d =212,解得⎩⎪⎨⎪⎧ a 1=32,d =32,k =4.∴此数列的首项为32,公差为32,项数为8. 8.设等差数列的前n 项和为S n .已知a 3=12,S 12>0,S 13<0.(1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.[解析] (1)依题意⎩⎨⎧ S12=12a 1+12×112d >0S 13=13a 1+13×122d <0,即⎩⎪⎨⎪⎧ 2a 1+11d >0, ①a 1+6d <0. ② 由a 3=12,得a 1+2d =12.③将③分别代入②①,得⎩⎪⎨⎪⎧24+7d >03+d <0,解得-247<d <-3. (2)由d <0可知{a n }是递减数列,因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0,可得 a 6>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大.。
等差数列及其前n项和 Word版含解析
课时规范练A组基础对点练1.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5 B.7C.9 D.112.(2018·合肥质量检测)已知等差数列{a n},若a2=10,a5=1,则{a n}的前7项和等于()A.112 B.51C.28 D.183.(2018·陕西省高三质量检测)设等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9=()A.27 B.36C.45 D.544.(2018·西安地区八校联考)设数列{a n}是等差数列,且a2=-6,a6=6,S n是数列{a n}的前n项和,则()A.S4<S3 B.S4=S3C.S4>S1 D.S4=S15.设等差数列{a n}的公差为d.若数列{2a1a n}为递减数列,则()A.d<0 B.d>0C.a1d<0 D.a1d>06.设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2>a1a3D.若a1<0,则(a2-a1)(a2-a3)>07.(2016·高考北京卷)已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=____.8.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为____.9.(2016·高考江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是____.10.已知S n 是等差数列{a n }的前n 项和,若S 5=5a 4-10,则数列{a n }的公差为____.11.(2016·高考全国卷Ⅱ)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.12.已知等差数列{a n }的前n 项和为S n ,n ∈N *,且点(2,a 2),(a 7,S 3)均在直线x -y +1=0上.(1)求数列{a n }的通项公式a n 及前n 项和S n ;(2)设b n =12(S n -n ),求数列{b n }的前n 项和T n . B 组 能力提升练1.(2018·广州综合测试)等差数列{a n }的各项均不为零,其前n 项和为S n ,若a 2n +1=a n +2+a n ,则S 2n +1=( )A .4n +2B.4n C .2n +1 D.2n2.已知等差数列{a n }的前n 项和为S n ,若S 10=1,S 30=5,则S 40=( )A .7B.8 C .9 D.103.(2018·沈阳质量监测)在等差数列{a n }中,若S n 为前n 项和,2a 7=a 8+5,则S 11的值是( )A .55B.11 C .50 D.604.设等差数列{a n }满足a 2=7,a 4=3,S n 是数列{a n }的前n 项和,则使得S n >0成立的最大的自然数n 是( )A .9B.10 C .11 D.125.若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A .10B.20 C .30 D.406.(2018·贵阳适应试题)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思是“已知甲、乙、丙、丁、戊五人分5钱(“钱”是古代的一种重量单位),甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得多少钱?”在这个问题中,丙所得为( )A.76钱B.56钱C.23钱D.1钱7.设等差数列{a n }的前n 项和为S n ,若S 8=32,则a 2+2a 5+a 6=____.8.(2017·保定一模)设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是____. 9.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为____.10.(2018·贵州质检)已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n=a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.11.(2018·郑州质量预测)各项均为正数的等比数列{a n }中,a 1=8,且2a 1,a 3,3a 2成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1n log 2a n,求{b n }的前n 项和S n .。
等差数列前n项和的性质与应用(含解析)
等差数列前n 项和的性质与应用班级______________ 姓名______________一、选择题1.已知数列{a n }的前n 项和为S n =-n 2,则( )A .a n =2n +1B .a n =-2n +1C .a n =-2n -1D .a n =2n -12.记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .105.D .123.等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( )A .130B .170C .210D .2604.已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n =2n 3n +1,则a 5b 5=( ) A.23B.79C.2031D.9145.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .96.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是( )A .2B .3C .4D .5二、填空题7.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.8.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________.9.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.10.设等差数列{a n }的前n 项和为S n ,且满足S 2 017>0,S 2 018<0.若对任意的正整数n ,都有S n ≤S k ,则k 的值为________.三、解答题11.已知等差数列{a n}的公差d>0,前n项和为S n,且a2a3=45,S4=28.(1)求数列{a n}的通项公式;(2)若b n=S nn+c(c为非零常数),且数列{b n}也是等差数列,求c的值.12.在等差数列{a n}中,a10=23,a25=-22.(1)数列{a n}前多少项和最大?(2)求|a1|+|a2|+...+|a24|的值.等差数列前n 项和的性质与应用(解析)班级______________ 姓名______________一、选择题1.已知数列{a n }的前n 项和为S n =-n 2,则( )A .a n =2n +1B .a n =-2n +1C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .105.D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.3.等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( )A .130B .170C .210D .260[解析]利用等差数列的性质:S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n -S n ),即30+(S 3n -100)=2(100-30),解得S 3n =210.4.已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n=2n 3n +1,则a 5b 5=( ) A.23B.79C.2031D.914 5.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .96.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是( )A .2B .3C .4D .5二、填空题7.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A8.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________.解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列, 所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:49.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1, 所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.答案:11 710.设等差数列{a n }的前n 项和为S n ,且满足S 2 017>0,S 2 018<0.若对任意的正整数n ,都有S n ≤S k ,则k 的值为________.解析:∵等差数列{a n }的前n 项和为S n ,且满足S 2 017>0,S 2 018<0,∴2 017(a 1+a 2 017)2=2 017a 1 009>0,2 018(a 1+a 2 018)2=1 009(a 1 009+a 1 010)<0,∴a 1 009>0,a 1 010<0,∴在前n 项和S n 中,S 1 009最大,∴对任意正整数n ,S n ≤S 1 009,则k =1 009.答案:1 009三、解答题11.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c(c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴(a 1+a 4)×42=28,a 1+a 4=14,a 2+a 3=14, 又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4, ∴a n =4n -3.(2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c , ∴b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去). 12.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求|a 1|+|a 2|+...+|a 24|的值.解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧a 1=50,d =-3, ∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n . 当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝⎛⎭⎫-32×172+1032×17-⎝⎛⎭⎫-32n 2+1032n=32n 2-1032n +884. ∴S n=⎩⎨⎧-32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。
等差数列前n项和的最值问题及拓展 Word版含解析
求等差数列前n 项和S n 最值的两种方法(1) 函数法:等差数列前n 项和的函数表达式S n =an 2+bn =a ⎝⎛⎭⎪⎫n +b 2a 2-b24a ,求“二次函数”最值.(2)邻项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .例题:1.等差数列{a n }中,已知a 6+a 11=0,且公差d >0,则其前n 项和取最小值时的n 的值为( )A .6B .7C .8D .9 解析 解法一:因为a 6+a 11=0,所以a 1+5d +a 1+10d =0,解得a 1=-152d ,所以S n =na 1+n n -12d =⎝ ⎛⎭⎪⎫-152d ·n +n n -12d=d2(n 2-16n )=d2[(n -8)2-64]. 因为d >0,所以当n =8时,其前n 项和取最小值. 解法二:由等差数列的性质可得a 8+a 9=a 6+a 11=0. 由公差d >0得等差数列{a n }是递增数列,所以a 8<0,a 9>0, 故当1≤n ≤8时,a n <0;n ≥9时,a n >0, 所以当n =8时,其前n 项和取最小值.2.在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17 解法一:∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n n -12×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值. 解法二:S 10=S 20,∴a 11+a 12+⋯a 20=0a 11+a 202×10=0,即a 11+a 20=0,∴a 15+a 16=0又因为a 1=29,可知等差数列{a n }为递减数列,则a 15>0,a 16<0 ∴当n =15时,S n 取得最大值.拓展:(·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:解法一: 等比数列{a n }满足a 1+a 3=10,a 2+a 4=5, 可得q (a 1+a 3)=5,解得q =12.由a 1+q 2a 1=10,解得a 1=8.解法二: 等比数列{a n }满足a 1+a 3=10,a 2+a 4=5, 可得q (a 1+a 3)=5,解得q =12.由a 1+q 2a 1=10,解得a 1=8. 数列{a n }是递减数列所以a n =8×(12)n−1=24−n =1,n =4,a n>1,n≤3,a n<1,n>4,当n=3或4时,a1a2…a n取得最大值为64.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求等差数列前n 项和S n 最值的两种方法
(1) 函数法:等差数列前n 项和的函数表达式
S n =an 2+bn =a ⎝
⎛⎭⎪⎫n +b 2a 2-b
2
4a ,求“二次函数”最值.
(2)邻项变号法
①当a 1>0,d <0时,满足⎩⎪⎨
⎪⎧ a m ≥0,
a m +1≤0
的项数m 使得S n 取得最大
值为S m
②当a 1<0,d >0时,满足⎩⎪⎨
⎪⎧
a m ≤0,
a m +1≥0
的项数m 使得S n 取得最小
值为S m .
例题:1.等差数列{a n }中,已知a 6+a 11=0,且公差d >0,则其前n 项和取最小值时的n 的值为( )
A .6
B .7
C .8
D .9 解析 解法一:因为a 6+a 11=0,
所以a 1+5d +a 1+10d =0,解得a 1=-15
2d ,
所以S n =na 1+
n n -1
2
d =⎝ ⎛⎭
⎪⎫-152d ·n +n n -1
2
d
=d
2(n 2
-16n )=d
2
[(n -8)2-64]. 因为d >0,所以当n =8时,其前n 项和取最小值. 解法二:由等差数列的性质可得a 8+a 9=a 6+a 11=0. 由公差d >0得等差数列{a n }是递增数列,所以a 8<0,a 9>0, 故当1≤n ≤8时,a n <0;n ≥9时,a n >0, 所以当n =8时,其前n 项和取最小值.
2.在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )
A .S 15
B .S 16
C .S 15或S 16
D .S 17 解法一:∵a 1=29,S 10=S 20,
∴10a 1+10×92d =20a 1+20×19
2d ,解得d =-2,
∴S n =29n +
n n -1
2
×(-2)=-n 2+30n =-(n -15)2+225.
∴当n =15时,S n 取得最大值. 解法二:S 10=S 20,∴a 11+a 12+⋯a 20=0
a 11+a 20
2
×10=0,即a 11+a 20=0,∴a 15+a 16=0
又因为a 1=29,可知等差数列{a n }为递减数列,则a 15>0,a 16<0 ∴当n =15时,S n 取得最大值.
拓展:(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________. 解析:
解法一: 等比数列{a n }满足a 1+a 3=10,a 2+a 4=5, 可得q (a 1+a 3)=5,解得q =1
2.
由a 1+q 2a 1=10,解得a 1=8.
解法二: 等比数列{a n }满足a 1+a 3=10,a 2+a 4=5, 可得q (a 1+a 3)=5,解得q =1
2.
由a 1+q 2a 1=10,解得a 1=8. 数列{a n }是递减数列
所以a n =8×(1
2)n−1=24−n =1,n =4,
a n>1,n≤3,a n<1,n>4,
当n=3或4时,a1a2…a n取得最大值为64.。