数值分析试卷09计科专升本(A)卷 参考答案
2009数值分析试题_A卷与答案
注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考试题__2009___年~__2010___年第 一学期课程名称: 数值分析 专业年级: 2009级(研究生) 考生学号: 考生姓名: 试卷类型: A 卷 √ B 卷 □ 考试方式: 开卷 √ 闭卷 □………………………………………………………………………………………………………一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y2412注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考2,又*3x a =10=≠。
《数值分析》A卷期末考试试题及参考答案
一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
《数值分析》参考答案
参考答案第1章一、选择题1. D2. C3. A4. B5. B二、填空题1. 函数题头 H1行 帮助信息 函数体 注释部分 函数题头2. nargin varargin3. A=rand(4)4. 单引号三、解答题1. for 语句和while 语句均可以实现循环执行的功能。
二者的区别在于,for 循环语句一般适用于已知道循环次数,而不知道循环运算的目标的问题,而while 循环语句则相反,一般适用于已知循环目标,而循环次数未知的问题。
2. 程序如下:function [highavg,weightavg]=avg_high_weight(varargin) n=length(varargin); highsum=0; weightsum=0; for i=1:n highsum=highsum+varargin{i}(1);weightsum=weightsum+varargin{i}(2);endhighavg=highsum/n; weightavg=weightsum/n;第2章一、选择题1. A2. B3. A4. C5. D二、填空题1. 1.7 1.73 1.7322. 3 13. 5%4. 3三、解答题1. 解:1*()()nn x nxx x ε-≈-1***()()n nr nxx x x x x nnxxε---≈=()0.02r ne x n ==2数值分析2. 解:*1 1.1021x =有五位有效数字;*20.031x =有两位有效数字;*3385.6x =有四位有效数字;*47 1.0x =⨯有一位有效数字。
3. 解:(1)*******124124()()()()x x x x x x εεεε++≤++433111101010222---=⨯+⨯+⨯3*1.0510ε-=⨯=(2)*********123231113()()x x x x x x x x x ε⋅⋅≈⋅-+⋅****221233()()x x x x x x -+⋅-*0.197ε≈=(3)******2242244**2441(/) |()()|()x x x x x x x xx ε≤---****2224**44|()()|r r x x x x xxεε=-***224*4||[|()||()|]r r x e x e x x≤+331110100.0312256.4800.03156.480--⎡⎤⨯⨯⎢⎥=+⎢⎥⎢⎥⎣⎦5*10ε-≤=4. 解:33**34433()43r R RV Rππεπ-=*2**2R R R R R RRR R-++=⋅*223R R R RR-≈⋅*3R R R-=⋅1%=故*1300R R R-=5. 解:设Y =*27.983Y =,*31102Y Y δ-=-≤⨯,028Y =,*028Y =,*0000Y Y δ=-=*111282827.983100Y Y ⎛⎛⎫-=---⨯ ⎪⎝⎝⎭1100δ≤,**22111127.983100100Y Y Y Y ⎛⎛⎫-=-⨯--⨯ ⎪⎝⎝⎭**111()()100Y Y Y Y =---112100100100δδδ≤+=仿此可得:*100n n n Y Y δ-≤则*31001001001101002Y Y δδ--≤==⨯即计算100Y 的误差界不超过31102-⨯参考答案 36. 解:解方程25610x x -+=得:28282x =±±由第5题知27.983具有五位有效数字,故可取:1282827.98355.983x =++=21280.0178655.983x =-≈=7. 解:设正方形的边长为x ,则其面积为2y x =。
东北大学09数值分析(研)答案
。 2 − n ,...,2,1 = k � 0 =
i≠ j
k
i
∑ �即
) 4 h(O + ) 2n f
2 n
x∂ 61 y∂ y∂x∂ y∂ x∂ 2 + n fh + n y = + ) nf n + n ( + nf n 2 + n2 ( f 2∂ f 2 ∂ 3 h3 f 2∂ f∂ f∂ 2 h
3 n 2
1+ k
i)
1= i j − i 1= j 1= i ∏ ( ∑ = i y ) x ( i l ∑ = ) x ( nL = ) x ( f = j −x n n n
x
�有性一唯的式项多值插由
i≠ j
j i 1= j j − i 1= j ∏ x− x∏ = = )x ( il jx − x j −x n n
x−
) k(
x 使若� T )4 / 3 ,3 / 2 ,2 / 1( =
)1(
x �得步一代迭
解
�有且而。3�n 取应�故
4
� 4 /1 − 2 /1 − � � � 0 6 0 3 / 1 − � = B 为阵矩代迭 . = 1 B, � 3 / 1 − i b o c a J 于由 5 � � � 2 /1 2 /1 − 0 �
2
解
。线曲合拟的 2 xb + a = y 如形求试 1 0 3 1�
i y
… … … … 密 … … … …
○
。步 2 5 代迭应即。 2 5� k 取�以所
1
4 2
2 1
82.15 ≈
ix
x − )1( x 6 21 / 32 )0 ( nl ÷ nl = 1 B nl ÷ 1 nl > k 5 6 / 3− 01 ) B − 1( ε
(完整)数值分析试题库与答案解析,推荐文档
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设,,则=.,= ______.152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A 342⎛⎫⎪=- ⎪ ⎪⎝⎭x ∞A1x3.已知y =f (x )的均差(差商),,,01214[,,]3f x x x =12315[,,] 3f x x x =23491[,,]15f x x x =, 那么均差=.0238[,,] 3f x x x =423[,,]f x x x 4.已知n =4时Newton -Cotes 求积公式的系数分别是:则,152,4516,907)4(2)4(1)4(0===C C C = .)4(3C 5.解初始值问题的改进的Euler 方法是阶方法;0(,)()y f x y y x y '=⎧⎨=⎩6.求解线性代数方程组的高斯—塞德尔迭代公式为,123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩若取, 则.(0)(1,1,1)=- x(1)=x 7.求方程根的牛顿迭代格式是 .()x f x =8.是以整数点为节点的Lagrange 插值基函数,则01(), (),, ()n x x x 01, ,, ,n x x x =.()nk jk k x x =∑9.解方程组的简单迭代格式收敛的充要条件是.=Ax b (1)()k k +=+x Bx g 10.设,则的三次牛顿插值多项式为(-1)1,(0)0,(1)1,(2)5f f f f ====()f x ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式满足:,,()p x (1)15p =(1)20p '=(1)30p ''=,.(2)57p =(2)72p '=2.构造代数精度最高的形式为的求积公式,并求出10101()()(1)2xf x dx A f A f ≈+⎰其代数精度.3.用Newton 法求方程在区间内的根, 要求.2ln =-x x ) ,2(∞8110--<-kk k x x x 4.用最小二乘法求形如的经验公式拟合以下数据:2y a bx=+i x 19253038iy 19.032.349.073.35.用矩阵的直接三角分解法解方程组.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x 6 试用数值积分法建立求解初值问题的如下数值求解公式0(,)(0)y f x y y y '=⎧⎨=⎩,1111(4)3n n n n n hy y f f f +-+-=+++其中.(,),1,,1i i i f f x y i n n n ==-+三、证明题(10分)设对任意的,函数的导数都存在且,对于满足x ()f x ()f x '0()m f x M '<≤≤的任意,迭代格式均收敛于的根.20Mλ<<λ1()k k k x x f x λ+=-()0f x =*x 参考答案一、填空题1.5; 2. 8, 9 ; 3.; 4. ; 5. 二; 911516456. , (0.02,0.22,0.1543)(1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩7. ; 8. ; 9. ;1()1()k k k k k x f x x x f x +-=-'-j x ()1B ρ<10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题1.差商表:11122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+令,,求出a 和b.(2)57p =(2)72p '=2.取,令公式准确成立,得:()1,f x x =,, , .0112A A +=011123A A +=013A =116A =时,公式左右;时,公式左, 公式右2()f x x =14=3()f x x =15=524=∴ 公式的代数精度.2=3.此方程在区间内只有一个根,而且在区间(2,4)内。
2009年山东专升本(数学)真题试卷(题后含答案及解析)
2009年山东专升本(数学)真题试卷(题后含答案及解析)题型有:1. 填空题 2. 单选题 3. 计算题一 5. 综合题填空题1.A.B.C.D.正确答案:A解析:2.A.B.C.D.正确答案:D解析:3.A.B.C.D.正确答案:B解析:4.A.B.C.D.正确答案:B解析:5.A.B.C.D.正确答案:C解析:导数为零的点为驻点。
6.A.B.C.D.正确答案:A解析:7.A.B.C.D.正确答案:A解析:8.A.B.C.D.正确答案:A9.A.B.C.D.正确答案:B解析:10.A.B.C.D.正确答案:C解析:单选题11.正确答案:e解析:12.正确答案:x-2y-z=0解析:13.正确答案:单调递减14.正确答案:第一类间断点15.正确答案:解析:16.正确答案:2x+ 1/x解析:17.正确答案:解析:18.正确答案:x=1解析:19.正确答案:1解析:20.正确答案:y=2x2解析:计算题一21.正确答案:22.正确答案:23.正确答案:24.正确答案:25.正确答案:26.正确答案:27.正确答案:28.正确答案:29.正确答案:30.正确答案:综合题31.正确答案:32.正确答案:。
数值分析试题及答案
武理数值分析考试试题纸(A 卷)课程名称 数值分析 专业年纪 一、计算题(本题满分100分,共5小题,每小题20分) 1. 已知函数表(1) 求f(x)的三次Lagrange 型插值多项式及其插值余项(要求化成最简形式). (2) 求f(x)的Newton 插值多项式(要求化成最简形式). 2. 已知A=[212013612],求‖A ‖1,‖A ‖∞,A 的LU 分解.3. 叙述m 阶代数精度的定义,写出求∫f (x )dx ba 的Simpson 公式,并验证Simpson 公式的代数精度为3阶.4. 设矩阵A=012α11,求当α为何值时,解线性方程组Ax=b 的Gauss-Seidel 迭代法收敛.5. 叙述最小二乘法的基本原理,并举例说明其应用.参考答案一、计算题1、解:(1)L 3(x )=l 0(x )y 0+l 1(x )y 0+l 2(x )y 2+l 3(x )y 3=(x−0)(x−2)(x−2)(−1−0)(−1−1)(−1−2)×0+(x+1)(x−1)(x−2)(0+1)(0−1)(0−2)×(−1)+(x+1)(x−0)(x−2)(1+1)(1−0)(1−2)×2+(x+1)(x−0)(x−1)(2+1)(2−0)(2−1)×15=x 3+2x 2−1R 3(x )=f (x )−L 3(x )=f (4)(ε)4!ω4(x )(2) 均差表如下:N (x )=f (x 0)+f ,x 0,x 1-(x −x 0)+f ,x 0,x 1,x 2-(x −x 0)(x −x 1)+f ,x 0,x 1,x 2,x 3-(x −x 0)(x −x 1)(x −x 2)=0+(−1)(x +1)+2×(x +1)(x −0)+1×(x +1)(x −0)(x −1) =x 3+x 2−12、 解: ‖A ‖1=max 1≤j≤3∑|a ij |3i=1=2+0+6=8‖A ‖∞=max 1≤i≤3∑|a ij |3j=1=6+1+2=9A =LU =[1l 211l 31l 321][u 11u 12u 13u 22u 23u 33]=[212013612] 由u 11=2 u 12=1 u 13=2l 21=0 u 22=1 u 23=3 l 31=3 l 32=−2 u 33=2所以 A =LU =[1013−21][212132] 3. 解:定义:如果某个求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次的多项式就不准确成立,则称该求积公式具有m 次代数精度。
(完整)数值分析学期期末考试试题与答案(A),推荐文档
期末考试试卷(A 卷)2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟学号 姓名 年级专业一、判断题(每小题2分,共10分)1. 用计算机求1000100011n n=∑时,应按照n 从小到大的顺序相加。
( )2. 为了减少误差,进行计算。
( )3. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。
( )二、填空题(每空2分,共36分)1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________.2. 设1010021,5,1301A x -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦则1A =_____,2x =______,Ax ∞=_____.3. 已知53()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= .4. 为使求积公式11231()((0)f x dx A f A f A f -≈++⎰的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。
5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 .6. 用迭代法解线性方程组AX B =时,使迭代公式(1)()(0,1,2,)k k XMX N k +=+=K 产生的向量序列{}()k X收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即.A LU = 若采用高斯消元法解AX B =,其中4221A -⎡⎤=⎢⎥⎣⎦,则L =_______________,U =______________;若使用克劳特消元法解AX B =,则11u =____;若使用平方根方法解AX B =,则11l 与11u 的大小关系为_____(选填:>,<,=,不一定)。
(完整word版)数值分析考试试卷和答案(word文档良心出品)
线封密三峡大学试卷班级姓名学号2011年春季学期《数值分析》课程考试试卷( A 卷)答案及评分标准注意:1、本试卷共3页;2、考试时间:120 分钟;3、姓名、学号必须写在指定地方;一、(16分)填空题1. 已知1125A ⎡⎤=⎢⎥⎣⎦,则1A 6= (1分),∞A 7= . (1分)2.迭代过程),1,0)((1 ==+n x x n n ϕ收敛的一个充分条件是迭代函数)(x ϕ满足1|)(|<'x ϕ. (2分)3. 设),,2,1,0(,,53)(2==+=k kh x x x f k 则差商0],,,[321=+++n n n n x x x x f .(2分)4. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是.2,1,0,)(1)(1='---=+k x f x f x x x k k k k k (2分)5. 用二分法求方程01)(3=-+=x x x f 在区间]1,0[内的根,迭代进行二步后根所在区间为]75.0,5.0[.(2分)6.为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -+1改写为xx ++11以保证计算结果比较精确.(2分)7. 将2111A ⎛⎫= ⎪⎝⎭作Doolittle 分解(即LU 分解),则100.51L ⎛⎫= ⎪⎝⎭(2分),2100.5U ⎛⎫= ⎪⎝⎭(2分)二、(10分)用最小二乘法解下列超定线性方程组:⎪⎩⎪⎨⎧=-=+=+2724212121x x x x x x 解:23222121,e e e x x ++=)(ϕ221221221)2()72()4(--+-++-+=x x x x x x由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212211x x x x x x ϕϕ(8分)得法方程组 ⎩⎨⎧=+=+166213232121x x x x 7231=⇒x , 7112=x所以最小二乘解为: 7231=x 7112=x . (10分)三、(10分)已知)(x f 的函数值如下表25.15.001)(15.005.01---x f x用复合梯形公式和复合Simpson 公式求dx x f ⎰-11)(的近似值.解 用复合梯形公式,小区间数4=n ,步长5.0)]1(1[41=--⨯=h )]1())5.0()0()5.0((2)1([24f f f f f hT +++-+-=.线封密三峡大学试卷班级姓名学号25.1]2)5.15.00(21[25.0=++++-=(5分) 用复合Simpson. 小区间数2=n ,步长1)]1(1[21=--⨯=h)]1())5.0()5.0((4)0(2)1([62f f f f f hS ++-+⨯+-=33.168]2)5.10(45.021[61≈=+++⨯+-= (10分)四、(12分)初值问题 ⎩⎨⎧=>+='0)0(0,y x b ax y有精确解 bx ax x y +=221)(, 试证明: 用Euler 法以h 为步长所得近似解n y 的整体截断误差为n n n n ahx y x y 21)(=-=ε证: Euler 公式为:),(111---+=n n n n y x hf y y代入b ax y x f +=),(得:)(11b ax h y y n n n ++=-- 由0)0(0==y y 得:bh b ax h y y =++=)(001; 11122)(ahx bh b ax h y y +=++= )(3)(21223x x ah bh b ax h y y ++=++=……)()(12111---++++=++=n n n n x x x ah nbh b ax h y y (10分)因nh x n =,于是 )]1(21[2-++++=n ah bx y n n 2)1(2nn ah bx n -+==n n n bx x x a+-12∴n n n y x y -=)(ε)2(2112n n n n n bx x x abx ax +-+=-=n n n x x x a )(21--=n hx a 2 =221anh (12分)五、(10分) 取节点1,010==x x ,写出x e x y -=)(的一次插值多项式),(1x L 并估计插值误差.解: 建立Lagrange 公式为()=x L 110100101y x x x x y x x x x --+--=10101101-⨯--+⨯--=e x x x e x 11-+-=.(8分)())1)(0(!2)()()(11--''=-=x x y x L x y x R ξ )10(<<ξ ()811)0(max 2110≤--≤≤≤x x x(10分)六、(10分) 在区间]3,2[上利用压缩映像原理验证迭代格式,1,0,4ln 1==+k x x k k 的敛散性.解 : 在]3,2[上, 由迭代格式 ,1,0,4ln 1==+k x x k k , 知=)(x ϕx 4ln .因∈x ]3,2[时,]3,2[]12ln ,8[ln )]3(),2([)(⊂=∈ϕϕϕx (5分) 又1|1||)(|<='xx ϕ,故由压缩映像原理知对任意]3,2[0∈x 有收敛的迭代公式),1,0(,4ln 1 ==+k x x k k (10分)线封密三峡大学试卷班级姓名学号七、(10分)试构造方程组⎩⎨⎧=+=+423322121x x x x 收敛的Jacobi 迭代格式和Seidel Gauss -迭代格式,并说明其收敛的理由. 解:将原方程组调整次序如下:⎩⎨⎧=+=+324232121x x x x 调整次序后的方程组为主对角线严格占优方程组,故可保证建立的J 迭代格式和GS 迭代格式一定收敛.收敛的J 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=++)3(21)24(31)(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (5分)收敛的GS 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=+++)3(21)24(31)1(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (10分)八、(12分)已知43,21,41210===x x x 1)推导以这3个点作为求积节点在[0,1]上的插值型求积公式;2)指明求积公式所具有的代数精度.解:1)过这3个点的插值多项式)())(())(()())(())(()(121012002010212x f x x x x x x x x x f x x x x x x x x x p ----+----=+)())(())((2021201x f x x x x x x x x ----⎰⎰=∑=≈∴)()()(221010k k k x f A dx x p dx x f ,其中: ⎰⎰=----=----=32)4341)(2141()43)(21())(())((10201021100dx x x dx x x x x x x x x A ⎰⎰-=----=----=31)4321)(4121()43)(41())(())((10210120101dx x x dx x x x x x x x x A ⎰⎰=----=----=322143)(4143()21)(41())(())((10120210102dx x x dx x x x x x x x x A ∴所求的插值型求积公式为:⎰+-≈)]43(2)21()41(2[31)(10f f f dx x f (10分) 2)上述求积公式是由二次插值函数积分而来的,故至少具有2次代数精度,再将43,)(x x x f =代入上述求积公式,有:⎰+-==]43(2)21()41(2[3141333310dx x ⎰+-≠=])43(2)21(41(2[3151444410dx x 故上述求积公式具有3次代数精度. (12分)九、(10分)学完《数值分析》这门课程后,请你简述一下“插值、逼近、拟合”三者的区别和联系.。
数值分析试卷及答案
数值分析试卷及答案**注意:以下是一份数值分析试卷及答案,试卷和答案分别按照题目和解答的格式排版,以确保整洁美观,语句通顺。
**---数值分析试卷一、选择题(每题2分,共20分)1. 数值分析是研究如何用计算机处理数值计算问题的一门学科。
以下哪个选项不是数值分析的应用领域?A. 金融风险评估B. 天气预测C. 数据挖掘D. 图像处理2. 在数值计算中,稳定性是指算法对于输入数据的微小扰动具有较好的性质。
以下哪个算法是稳定的?A. 高斯消元法B. 牛顿迭代法C. 不动点迭代法D. 雅可比迭代法二、填空题(每题3分,共30分)1. 下面关于插值多项式的说法中,不正确的是:一般情况下,插值多项式的次数等于插值点的个数减1。
2. 线性方程组中,如果系数矩阵A是奇异的,则该方程组可能无解或有无穷多解。
......三、解答题(共50分)1. 请给出用割线法求解非线性方程 f(x) = 0 的迭代格式,并选择合适的初始值进行计算。
解:割线法的迭代公式为:x_(k+1) = x_k - f(x_k) * (x_k - x_(k-1)) / (f(x_k) - f(x_(k-1)))选择初始值 x0 = 1,x1 = 2 进行计算:迭代1次得到:x2 = x1 - f(x1) * (x1 - x0) / (f(x1) - f(x0))迭代2次得到:x3 = x2 - f(x2) * (x2 - x1) / (f(x2) - f(x1))继续迭代直至满足精度要求。
2. 对于一个给定的线性方程组,高斯消元法可以用来求解其解空间中的向量。
请简要描述高斯消元法的基本思想并给出求解步骤。
高斯消元法的基本思想是通过一系列的行变换将线性方程组化为上三角形式,然后再通过回代求解方程组的未知数。
求解步骤如下:步骤1:将方程组表示为增广矩阵形式,即将系数矩阵和常数向量连接在一起。
步骤2:从第一行开始,选取第一个非零元素作为主元,然后通过行变换将其它行的该列元素消去。
2009福建专升本计科类真题
C 012009年福建省高职专升本科入学考试软件工程专业知识试卷计算机科学与技术(考试时间150分钟,满分300份,共三部分)答题说明:请将答案写在答题纸相应的位置上。
注意事项:答案写在试卷上一律不给分。
第一部分C语言程序设计(共100分)一、单项选择题(本大题共30小题,每小题2份,共60份)在每小题列出的四个备选项中只有一个是符合题目要求的,请将正确答案代码填写在答题纸相应位置上。
1. 下列选项中,合法的C语言标识符是________。
A. my_nameB. $234C. my nameD. 23b2. 已知:int x= 5;执行完printf("%d",++x);后,输出的结果是:________。
A. 4B. 5C. 6D. 不确定3. 已知:int x = 5,y = 3;则逻辑表达式(x-y)&&(y-3)的值为________。
A. 7B. 2C. 1D. 04. 已知:int a = 3,b = 6,c = 8;则执行完语句:a=a>b?a(b<c?b:c);后,a的值是________。
A. 3B. 6C. 8D. 175. 有如下程序段执行后的结果是________。
main(){ int a = 11,b = 3;printf("%d,%d",a/b,a%b);}A. 3,2B. 11,2C. 3,3D. 3.3,26. 有如下程序段:main(){scanf("%c",&c);switch(c){ case 'A':printf("5");case 'B':printf("4");case 'C':printf("3");case 'D':printf("2");default : printf("1");}}当运行时输入“B回车”,则输出结果是________。
数值分析课程考试试卷(A)及答案
《 数值分析 》课程考试试卷(A )考试形式:闭卷√□、开卷□,允许带 计算器 入场考生姓名: 学号: 专业: 班级:一、填空(每个空3分,共30分)1,设 *3.1415, 3.141x x ==,则*x 有__________位有效数字。
2,*3587.6x =是经四舍五入得到的近似值,则其相对误差≤*r e ___________. 3,已知=⎪⎭⎫⎝⎛-=1,4032A A 则_______, =∞A _______.4,设0)(≥''x f , 则由梯形公式计算的近似值T 和定积分⎰=badx x f I )(的值的大小关系为___________.(大于或者小于)5, 已知,3,2,1,03210====x x x x 4,5.2,1.1,03210====f f f f ,则均差],,,[3210x x x x f _______________.6, 已知A=⎪⎪⎪⎭⎫ ⎝⎛2021012a a ,为使A 可分解为TLL A =,其中L 为对角线元素为正的下三角形矩阵,则a 的取值范围为_______________,如果a =1,则L =______________.7,若b a ,满足的正规方程组为:⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====n i n i ni i i i i n i ni i i y x b x a x y b x na 1112111 则x y 与之间的关系式为______________________8,若1λ是1-A 的按模最大的特征值,则A 的按模最小的特征值为___________二、设(1)0,(0)2,(1)4f f f -===,求 )(x p 使 )()(i i x f x p =,)2,1,0(=i ;又设 M x f ≤''')( ,则估计余项 )()()(x p x f x r -= 的大小 。
数值分析试题及答案
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
2009数值分析试卷A答案
南京工业大学 数值分析 试题(A )答案2009--2010 学年第一学期 使用班级 信科0701应数0701一、填空题 (每小题3分,共30分)1.已知974997.999995≈,则≈-9995100 0.025003126 具有 8 位有效数字。
2.对f(x)=2x 4+x+1,差商f[0,1,2,3,4]= 2 ;f[0,1,2,3,4,5]= 0 。
3.设方程x=ϕ(x)有根x *,且设ϕ(x)在含x *的区间(a,b)内可导,设x 0∈(a,b)则迭代格式x k+1=ϕ(x k )收敛的充要条件为 1|)(|*<'x ϕ 。
4.⎪⎪⎭⎫ ⎝⎛=011001001001....A ,||A||∝= 2.01 ,cond(A)∝= 404.01 。
5.中矩形公式:)()2()(a b b a f dx x f ba -+=⎰的代数精度为 2 。
6.在区间[1,2]上满足插值条件⎩⎨⎧==1)2(2)1(P P 的一次多项式P(x)= 3-x 。
7.设∑==n k k k n x f A f I 0)()(是函数f(x)在区间[a,b]上的插值型型求积公式,则 ∑=n k k A0= a b - 。
8.梯形公式和改进的Euler 公式都是 2 阶的。
9.在区间[0,1]上,函数a x x +=)(1ϕ与函数22)(x x =ϕ正交,则a= -0.75 。
10.求解线性方程组Ax=b 的迭代格式x (k+1)=Jx (k)+f 收敛的充要条件为 1)(<J ρ 。
二、计算题 (每题8分,共48分)1.试用Gauss 消元法解下列方程组,计算过程按5位小数进行:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---08.255.190.05.11.40.10.15.26.15.05.12.3321x x x (写出详细过程!) 解:A=⎪⎪⎪⎭⎫ ⎝⎛--2524.01010.0001000.12500.12500.309000.05000.05000.12000.3 (4分) ⎪⎪⎪⎭⎫ ⎝⎛ 2.5000 1.0000 0 0 1.3000 0 1.0000 0 0.5000 0 0 1.0000~ (3分)所以方程组的解为:5.2,3000.1,5000.0321===x x x (1分)2. 给出f(x)的函数表,(1)在表中填上指定阶的差商;(2)写出f(x)的2次牛顿插值多项式;解:(一)表如上 (3分)(二))55.0x )(4.0x (28000.0)4.0x (116.141075.0)x (f --+-+≈ (3分)(三)截断误差)65.0x )(55.0x )(4.0x (6)(f R )3(---=ξ (2分)3.求解超定方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛32121111121x x 的最小二乘解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析2011-2012第1学期09计算专升期末试卷A 参考答案及评分标准一、判断题(每小题2分,共20分) 1、F2、T3、F4、F5、T6、F7、T8、F9、T10、F二、计算题(每题8分,共40分) 1、设有微分方程()⎩⎨⎧=--=2042'y xy y 。
试以0.1为步长的Euler 方法,计算()()()()4.0,3.0,2.0,1.0y y y y 的近似值:4.03.02.01.0,,,y y y y解:Euler 方法是以()n n y x ,为起点,以n n n x y y 42'--=为切线,构造直线,并以所构造直线在1+n x 点处的值1+n y 作为()1+n x y 的近似,写成表达式有 ()114211++-+=n n n hx y hy (5分) 依次计算的结果6390.0,9363.0,2550.1,6000.1,24.03.02.01.00=====y y y y y (8分) 2、设()x x f sin =,已知节点3.0,2.0,1.0210===x x x ,上的函数值为:()()()2955.0,1987.0,0998.0210===x f x f x f ,试构造Lagrange 插值函数()x L 2,并计算()15.0f 的近似值,并估计误差。
解:构造Lagrange 插值基函数()()()()()()()()()()()()()()()()()()()()()2.01.0503.01.01003.02.050120210221012012010210--=----=---=----=--=----=x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l 则Lagrange 插值函数为()()()()()()()()()()()()()2.01.0775.143.01.087.193.02.099.42211002--+-----=++=x x x x x x x l x f x l x f x l x f x L所以 ()()1495.015.015.02=≈L f (6分) 由Lagrange 插值余项知 ()()()()()()()2102!3x x x x x x f x L x f x R ---'''=-=ξ 所以()()()()()43.01.010625.03.015.02.015.01.015.0!3max -≤≤⨯<---'''≤x f x R x (8分)3、设有实验数据试求y 与x 解:由图上可以看出y 与x 大致呈线性关系。
设 b ax y += 记()[]∑=-+=412,i i i y b ax b a ϕ,现在的目标是确定b a ,使()b a ,ϕ达到最小。
为此,令 ()[]()[]⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛-+=-+=∂∂=⎪⎭⎫⎝⎛-+=-+=∂∂∑∑∑∑∑∑∑=======0422,022,414141414141241i i i i i i i i i i i i i i i i i i y b x a y b ax bb a x y x b x a x y b ax a b a ϕϕ 写成矩阵的形式有 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛376.7012985.132432.732.78434.13b a (6分) 解之,得4626.7,9374.3==b a ,即y 与x 的函数关系大致为 4626.79374.3+=x y (8分) 4、Leonardo 于1225年研究了方程02010223=-++x x x并得出了368808107.1=x 是这个方程的一个根,当时无人知晓这个解是如何得到的,你能用Newton 迭代法求出来吗?(提示:验证这个方程只有一个根,找出有根区间,再作迭代)解:记()2010223-++=x x x x f ,因为()R x x x x x f ∈∀>+⎪⎭⎫ ⎝⎛+=++=,03263231043'22,所以()x f 是单调增加的,并且()()0162,0200>=<-=f f ,所以()x f 在()2,0上必有一个根,这个根也是方程()x f 的唯一一个根。
构造Newton 迭代方法()()⎪⎩⎪⎨⎧=++-++-=-=+1104320102'0231x x x x x x x x f x f x x k k k k k k k k k k (5分) 计算3次的结果 368808107.1368814819.1373626373.15.13210====x x x x (3分) 5、试用列选主元素高斯消去法求线性方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛201814513252321321x x x 的解。
解:列选主元素方法的目标是为了保证在高斯消去的过程中保证分母不会是最小的。
⎪⎪⎪⎭⎫ ⎝⎛-−−−−−→−⎪⎪⎪⎭⎫⎝⎛-−−−→−⎪⎪⎪⎭⎫ ⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫⎝⎛-⨯↔1.8462003333.13333.405133333.16667.103333.13333.40513321252513513252321323121313333.46667.13132r r r r r r r r⎪⎪⎪⎭⎫ ⎝⎛−−−−−→−⎪⎪⎪⎭⎫ ⎝⎛−−−→−⎪⎪⎪⎭⎫ ⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫⎝⎛-⨯↔5.53846667.4203333.76667.420141820201814323121313333.46667.13132r r r r r r r r (4分)求解⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛- 5.53846667.4201.8462003333.13333.40513321x x x得 1.0000881.9999852.99995323===x x x (8分) 三、计算题(第1题20分,第2题12分,共32分)1、设有线性方程组b AX =,其中⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=16148,420151024b A试求(1)给出解线性方程组的Jacobi 迭代、Gauss-Seidel 迭代矩阵(2)判断解线性方程组的Jacobi 迭代、Gauss-Seidel 迭代的收敛性; (3)选取收敛速度较快的一种迭代方法,取()TX 1,1,10=进行四次迭代计算解:(1)记⎪⎪⎪⎭⎫ ⎝⎛=400050004D ,则Jacobi 迭代矩阵与常向量分别为⎪⎪⎪⎭⎫ ⎝⎛----=-=-05.002.002.005.001A D I J ,⎪⎪⎪⎭⎫⎝⎛==-48.20.21b D f 记⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=0002.00005.00,05.00002.0000U L 则G-S 迭代矩阵与常向量分别为()()⎪⎪⎪⎭⎫⎝⎛=-=⎪⎪⎪⎭⎫ ⎝⎛---=-=--8.24.22,1.005.002.01.0005.0011f L Ig U L I G (8分)(2)由于A 是严格对角占优阵,所以两种迭代都是收敛的,且()()()()()()()4472.04472.0,4472.0,02.05.02.01.05.002.02.005.032122=⇒-===-=+--=-------=-J J J J I J ρλλλλλλλλλλλλ()[]()()()()()2.02.0,0,02.001.01.01.005.002.01.005.032122=⇒===--=---=------=-G G G G I G ρλλλλλλλλλλλ由此可知()()J G ρρ<,所以G-S 迭代比Jacobi 迭代收敛更快。
(16分)(3)选取G-S 迭代,以()TX 1,1,10=为初值,做四次迭代计算,其结果为()()()()()9988.2,0024.2,9940.09940.2,0120.2,9700.09700.2,0600.2,8500.08500.2,3000.2,5000.11,1,1342312010=+==+==+==+==g GX X g GX X g GX X g GX X X (20分)2、试用数值积分的方法计算2ln 的近似值(真值约为0.69314718)。
解:因为⎰=2112ln dx x ,记()xx f 1=,[][]2,1,=b a ,做4等分,其等分点为 2,75.1,5.1,25.1,143210=====x x x x x , 对应的函数值为()()()()()5.0,5714.0,6667.0,8.0,143210=====x f x f x f x f x f 所以()()()()[]()()()()()()[]()[]0.6970255.05714.06667.08.021125.02222ln 432103113211=++++=+++++=+-≈==∑∑⎰⎰=++=+x f x f x f x f x f hx f x f x x dx x f dx x f i i i ii i x x i i(10分)其误差为()()()()()()0.01042max 25.01212ln ,,122124424=''≤-=∈''--=≤≤x f T T R b a f h a b T R x ηη (12分)四、应用题(每题8分,共8分)1、设()n i f t f i i ,,2,1, ==表示了一段音频数据,i f 以实数的形式保存,称为音频采样数据。
试给出用最少的比特数来保存i f 的原理(假设允许有不超过E 的误差)。
解:设函数()t f 描述了音频信号,显然采样的时刻是不重复的,即j i t t ≠当j i ≠。
选择一组标准正交的函数族()()()t g t g t g m ,,,21 ,则必定存在m a a a ,,,21 使得 ()()min 21=-∑=mk kkx g a t f在离散情况下上式可改写为 ()()()()min 2/112121=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=-∑∑∑===n i m k i k k i mk kkt g a t f x g a t f只要k g 选择得当,上式总有0min →,比如选取()ikt k e t g =即可,若进一步取n m =,则还有∑==nk k a f 12||,即0→k a ,当n 较大时,若选取适当的量化系数Q ,则有Q Q a k ⎥⎥⎤⎢⎢⎡,所得到的',,','21n a a a 中将有大量的零出现,从而可用编码的方式使得用较少的比特数来保存()t f 。