滞回比较器详解

合集下载

滞回比较器原理

滞回比较器原理

滞回比较器原理滞回比较器是一种常见的电子元件,用于电子电路中比较两个电压的大小关系,并输出相应的信号。

它的原理基于滞回效应,通过设置阈值来判断输入信号的高低电平。

滞回比较器通常由一个比较器和一个正反馈网络组成。

比较器是一个电子元件,可以将输入信号与参考电压进行比较,并输出高电平或低电平的信号。

而正反馈网络则是为了引入滞回效应,使得比较器的输出信号在达到阈值后保持稳定的状态。

滞回比较器的工作原理如下:当输入信号的电压超过阈值电压时,比较器的输出信号会发生翻转,从高电平变为低电平或从低电平变为高电平。

而当输入信号的电压低于阈值电压时,比较器的输出信号保持不变。

这种在阈值电压上下产生不同输出的现象就是滞回效应。

滞回比较器在电子电路中有广泛的应用。

首先,它可以用作触发器,用于控制数字电路中的时序问题。

比如,在计数器中,滞回比较器可以用来检测计数值是否达到设定的阈值,从而触发相应的操作。

其次,滞回比较器也常用于电压检测和开关控制。

比如,在电源管理电路中,滞回比较器可以用来检测电池电压是否低于安全阈值,从而触发低电量警报或关闭设备。

除了以上应用,滞回比较器还可以用于信号整形和滤波。

在信号处理中,滞回比较器可以将输入信号转换为方波信号,从而方便后续的数字处理。

此外,滞回比较器还可以用于去除信号中的噪声和干扰,提高信号质量和可靠性。

要想实现一个滞回比较器,需要根据具体的应用需求来选择合适的比较器和正反馈网络。

比较器的选择要考虑工作电压范围、响应时间、功耗等因素,正反馈网络的设计要考虑阈值电压、滞回量和稳定性等因素。

此外,还需要注意信号的输入电平和输出电平的匹配,以确保整个电路的正常工作。

总结起来,滞回比较器是一种常见的电子元件,基于滞回效应来比较输入信号的电压大小。

它的工作原理是通过比较器和正反馈网络的相互作用来实现的。

滞回比较器在电子电路中有广泛的应用,如触发器、电压检测和开关控制、信号整形和滤波等。

在设计滞回比较器时,需要考虑比较器和正反馈网络的选择和设计,以及输入输出电平的匹配。

理解滞回比较器 -回复

理解滞回比较器 -回复

理解滞回比较器-回复什么是滞回比较器?滞回比较器也被称为突变比较器或带滞回的比较器。

它是一种基础的电子元件,被广泛应用于电子电路中,用于检测电压的变化并产生相应的输出信号。

滞回比较器的主要特点是具有一个或多个滞回阈值,允许输入信号的电压在升高和降低过程中触发不同的阈值来产生稳定的输出。

滞回比较器的工作原理滞回比较器的工作原理可以通过一个简单的非反相比较器电路来解释。

这种电路包括一个比较器、两个输入端口(正和负)以及一个输出端口。

输入信号将与一个参考电压在比较器中进行比较。

当输入信号电压高于参考电压时,比较器的输出将高电平(通常为正电压);当输入信号电压低于参考电压时,输出将低电平(通常为零电压或接近于负电压)。

然而,滞回比较器的关键之处在于它具有滞回特性,也就是阈值的差异。

滞回比较器的高阈值和低阈值不同,这使得输出信号独立于输入信号的速率变化。

如果我们将输入信号增加或减小,滞回比较器只有在输入电压高于(或低于)特定阈值时才会改变输出状态。

这种特性是通过内部反馈回路和阻尼电容来实现的。

当输入信号跨过滞回阈值时,反馈电容存储了正或负电荷,这样电路就能保持特定的输出状态。

滞回比较器的应用滞回比较器在现代电子电路中有着广泛的应用,常用于以下几个方面:1. 触发器和频率比较器:滞回比较器可用作触发器电路,用于将输入信号从一个状态传送到另一个状态。

此外,它还可用作频率比较器,以检测和计算信号的频率。

2. 稳压器:滞回比较器可以用来控制稳压器电路,以稳定输出电压并提供保护功能。

通过与稳压器电路结合使用,滞回比较器能够在输出电压超出设定范围时自动进行断电或保护。

3. 触发电路:在数字电子电路中,滞回比较器可以用于触发信号的产生和传输,例如在计数器电路或时序电路中。

4. 电源管理:滞回比较器可以被用作电源管理电路的一部分,用于电池充电和放电控制,以及开关模式电源和逆变器等应用中。

总结滞回比较器是一种非常有用的电子元件,在电子电路中的应用非常广泛。

滞回比较器原理

滞回比较器原理

滞回比较器原理
滞回比较器是一种电子设备,主要用于比较两个电压信号的大小,并根据比较结果输出高或低电平信号。

滞回比较器的原理是通过正反馈来达到滞回效果,即输出信号在输入信号改变方向时,需要经过一个特定的阈值才能改变状态。

滞回比较器通常由一个差分放大器和一个参考电压源组成。

差分放大器根据输入信号的差异来控制输出信号,参考电压源则用于设置一个固定的阈值。

当输入信号大于阈值时,输出信号为高电平;当输入信号小于阈值时,输出信号为低电平。

滞回比较器的关键在于它的正反馈作用,这意味着一旦输出状态改变,它会继续保持新的状态,即使输入信号回到阈值附近也不会改变。

这种滞回效应可以避免输入信号的噪声导致频繁的输出状态变化,提高系统的稳定性。

滞回比较器广泛应用于模拟电路和数字电路中,常见的应用包括报警系统、自动控制系统、电力电子等。

它可以根据输入信号的特性,产生相应的输出信号,用于触发其他设备或控制电路的操作。

总之,滞回比较器通过正反馈原理和阈值设置,实现了对输入信号的比较和输出控制。

它在电子系统中具有重要的作用,能够提高系统的稳定性和可靠性。

电路中的滞回与比较器

电路中的滞回与比较器

电路中的滞回与比较器在电子学中,滞回是指当输入信号经过一个特定的电路后,输出信号的响应呈现出一种非线性的特性。

而比较器是一种将输入电压与某一个标准电压进行比较,并输出高电平或低电平的电路。

本文将介绍滞回现象与比较器的工作原理以及应用。

一、滞回现象滞回现象在日常生活中也有很多实例,比如温控器中的滞回现象使得温度在达到设定值后不会立即停止加热或制冷,而会有一段时间的延迟。

在电路中,滞回现象是由于非线性元件(如二极管、变压器等)或者反馈回路的存在造成的。

在滞回现象中,输入信号的变化与输出信号的变化之间存在一定的差异以及延迟。

当输入信号从低电平逐渐增加到高电平时,输出信号不会立即跟随上升,而是在一段电压范围内保持不变,称为上升滞回。

同样地,当输入信号从高电平逐渐降低到低电平时,输出信号也不会立即跟随下降,而是在一段电压范围内保持不变,称为下降滞回。

滞回现象使得电路具有一定的记忆性能,有助于稳定和控制系统。

二、比较器的工作原理比较器是一种常见的电路元件,它能够将输入信号与某一参考电压进行比较,并输出相应的高电平或低电平信号。

比较器一般由一个运放和一些外围元件组成,如负反馈电阻、正反馈电阻等。

当输入信号大于参考电压时,比较器的输出信号会变为高电平。

而当输入信号小于参考电压时,比较器的输出信号则变为低电平。

通过这种方式,比较器能够对输入信号进行被动比较,从而实现不同电压范围的判断和控制。

三、比较器的应用比较器作为一种常用的电路元件,被广泛应用于各个领域。

其中一个典型的应用是在模拟转数字转换电路(ADC)中,比较器用于将模拟输入信号与参考电压进行比较,从而将模拟信号转换为数字信号。

比较器还被用于电压检测和电压比较,以及模拟信号的门限控制和判断。

对于电池管理电路,比较器可以用于判断电池的电压是否低于某一门槛值,从而提醒用户更换电池。

此外,比较器也常用于信号处理领域中的阈值检测、波形整形以及触发器的设计等。

通过合理地选择参考电压和外围元件的参数,比较器能够实现不同应用场景下的各种功能。

滞回比较器的工作原理

滞回比较器的工作原理

滞回比较器的工作原理
1、同相滞回比较器:当输入的比较电压相对于参考点电压的大小,如果大于参考点,则输出高电平,反之则输出低电平。

2、反相滞回比较器:电路接法是参考点位来自本比较器的输出端,并接在同相端,输入信号接在反相端。

当输入电压大于参考电压时,输出低电位;输出端输出低电位,参考电压也随之变得更低,当输入电压降低时,只有降到低于这个更低参考点位后,比较器是输出才能变成高电平输出。

扩展资料:
比较器的输入接在同相输入端还是反相输入端,这将决定输出电压值与输入电压之间的关系。

虽然比较器有同相和反相两个输入端,但因为其内部没有相位补偿电路,所以,如果接入负反馈,电路不能稳定工作。

内部无相位补偿电路,这也是比较器比运放速度快很多的主要原因。

不论是反相的还是同相的滞回比较器,在现实生活中都有具体的应用,除了空调的温度设定,如高于某温度就启动,低于某温度停止就可以根据比较器比较的电压信号大小来判断并运作。

滞回比较器详解

滞回比较器详解

滞回比较器详解 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】滞回比较器关于比较器滞回的讨论需要从“滞回”的定义开始, 与许多其它技术术语一样, “滞回”源于希腊语, 含义是“延迟”或“滞后”, 或阻碍前一状态的变化。

工程中, 常用滞回描述非对称绝大多数比较器中都设计带有滞回电路, 通常滞回电压为5mV到10mV。

内部滞回电路可以避免由于输入端的寄生反馈所造成的比较器输出振荡。

但是内部滞回电路虽然可以使比较器免于自激振荡, 却很容易被外部振幅较大的噪声淹没。

这种情况下需要增加外部滞回, 以提高系统的抗干扰性能。

首先, 看一下比较器的传输特性。

图1所示是内部没有滞回电路的理想比较器的传输特性, 图2所示为实际比较器的传输特性。

从图2可以看出, 实际电压比较器的输出是在输入电压(VIN)增大到2mV时才开始改变。

图1. 理想比较器的传输特性图2. 实际比较器的传输特性运算放大器在开环图3. 无滞回电路时比较器输出的模糊状态和频繁跳变举个例子, 考虑图4所示简单电路, 其传输特性如图5所示。

比较器的反相输入电压从0开始线性变化,由分压电阻R1、R2构成正反馈。

当输入电压从1点开始增加(图6), 在输入电压超过同相阈值VTH+ = VCCR2/(R1 + R2)之前, 输出将一直保持为VCC。

在阈值点, 输出电压迅速从VCC跳变为VSS,因为, 此时反相端输入电压大于同相端的输入电压。

输出保持为低电平, 直到输入经过新的阈值点5 ,VTH- = VSSR2/(R1 + R2)。

在5点, 输出电压迅速跳变回VCC, 因为这时同相输入电压高于反相输入电压。

图4. 具有滞回的简单电路图5. 图4电路的传输特性图6. 图4电路的/输出电压波形图4所示电路中的输出电压VOUT与输入电压VIN的对应关系表明, 输入电压至少变化2VTH 时, 输出电压才会变化。

因此, 它不同于图3的响应情况(放大器无滞回), 即对任何小于2VTH的噪声或干扰都不会导致输出的迅速变化。

迟滞比较器运算

迟滞比较器运算

迟滞比较器运算
滞回比较器又称迟滞比较器,是一个具有迟滞回环传输特性的比较器。

它的运算过程相对复杂,下面以一个实例进行说明:
假设要设计一个电池欠压保护电路,该电路使用双阈值迟滞比较器,以18.5V作为低阈值电压,高阈值电压在18.5V到24V之间,即选择21V作为高阈值电压。

首先,确定比较器的负输入端。

通过两个分压电阻进行分压,这两个分压电阻的取值既不能过大也不能过小。

电池的阈值设置为18.5V到21V,而电池标称电压值为24V,最大值为29V,综合考虑后选择在21V时保证流过分压电阻的电流为1mA左右。

因此,选择R1=20K,R6=1K。

其次,计算阈值电压变化时U1的值。

当BATT=18.5V时,U1=18.5乘以R6/R1+R6=0.88V;当BATT=21.0V时,U1=21.0乘以
R6/R1+R6=1V。

然后,计算比较器输出高电平和低电平时的等效电路。

当U1=0.88V 时,比较器输出低电平,忽略R3、R4支路,此时电源电压为5V,保持电路1mA电流,可确定R5+R2等于5K上下,选择R5=1K,
R2=4K。

最后,确定R3的阻值。

通过以上步骤,就可以完成双阈值迟滞比较器的运算。

需要注意的是,上述示例仅为基本原理,实际运算过程中还需要考虑许多因素,如输入信号的频率、噪声、比较器的响应时间等。

滞回比较器又称施密特触发器

滞回比较器又称施密特触发器

在单限比较器中,输入电压在阈值电压附近的任何微小变化,都会引起输出电压的跃变,不管这种电压是来自输入信号还是外部干扰。

因此,虽然单限比较器很灵敏,但是抗干扰能力差,滞回比较器具有滞回特性,即具有惯性,因而也就具有一定的抗干扰能力。

滞回比较器又称施密特触发器,迟滞比较器。

这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。

滞回比较器也有反相输入和同相输入两种方式。

UR是某一固定电压,改变UR值能改变阈值及回差大小。

以图4(a)所示的反相滞回比较器为例,计算阈值并画出传输特性图4 滞回比较器及其传输特性 66666(a)反相输入;(b)同相输入1,正向过程正向过程的阈值为形成电压传输特性的abcd段2,负向过程负向过程的阈值为形成电压传输特性上defa段。

由于它与磁滞回线形状相似,故称之为滞回电压比较器。

利用求阈值的临界条件和叠加原理方法,不难计算出图4(b)所示的同相滞回比较器的两个阈值两个阈值的差值ΔUTH=UTH1–UTH2称为回差。

由上分析可知,改变R2值可改变回差大小,调整UR可改变UTH1和UTH2,但不影响回差大小。

即滞回比较器的传输特性将平行右移或左移,滞回曲线宽度不变。

图5 比较器的波形变换(a)输入波形;(b)输出波形例如,滞回比较器的传输特性和输入电压的波形如图6(a)、(b)所示。

根据传输特性和两个阈值(UTH1=2V, UTH2=–2V),可画出输出电压uo的波形,如图6(c)所示。

从图(c)可见,ui在UTH1与UTH2之间变化,不会引起uo的跳变。

但回差也导致了输出电压的滞后现象,使电平鉴别产生误差。

图6 说明滞回比较器抗干扰能力强的图(a)已知传输特性;(b)已知ui 波形;(c)根据传输特性和ui波形画出的uo波形因为矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;因为输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。

滞回比较器原理

滞回比较器原理

滞回比较器原理
滞回比较器是一种常用的电子元件,它在电子电路中起着重要的作用。

滞回比
较器的原理和应用十分广泛,下面我们将对滞回比较器的原理进行详细介绍。

滞回比较器是一种特殊的比较器,它具有滞回特性,即当输入信号超过一定阈
值时,输出状态发生改变,并在输入信号回到另一阈值时才恢复原状态。

这种特性使得滞回比较器在数字电路中具有重要的应用,例如在开关电路、触发器、振荡器等电路中起着关键作用。

滞回比较器的原理主要是基于正反馈回路的作用。

当输入信号超过阈值时,输
出状态发生改变,这种改变会通过正反馈回路影响输入端的信号,使得输入信号在回到另一阈值时才能使输出状态恢复。

这种正反馈回路的作用使得滞回比较器具有了滞回特性,从而实现了对输入信号的比较和判别。

在电路设计中,滞回比较器的原理可以通过运算放大器和反馈电阻来实现。


过合理选择反馈电阻和阈值电压,可以实现滞回比较器的不同工作状态和滞回特性。

这种设计灵活性使得滞回比较器可以适用于不同的电子电路中,满足不同的设计要求。

滞回比较器的原理应用非常广泛,例如在数字信号处理中,可以用来实现信号
的比较和判别;在电源管理电路中,可以用来实现电压的监测和控制;在通信系统中,可以用来实现信号的检测和解调。

滞回比较器的原理在实际应用中发挥着重要作用,为电子电路的设计和应用提供了便利。

总之,滞回比较器是一种重要的电子元件,它具有滞回特性,通过正反馈回路
实现对输入信号的比较和判别。

滞回比较器的原理应用非常广泛,可以适用于不同的电子电路中,满足不同的设计要求。

希望本文对滞回比较器的原理有所帮助,谢谢阅读!。

理解滞回比较器 -回复

理解滞回比较器 -回复

理解滞回比较器-回复滞回比较器是一种常见的模拟电路元件,用于将输入信号与预设的参考电压进行比较,并输出高或低电平信号。

它可用于电压比较、数字信号转换、开关控制等应用。

本文将详细介绍滞回比较器的原理、工作方式和常见应用。

第一部分:原理和结构滞回比较器由比较器、正反馈电路和参考电压三部分组成。

# 比较器比较器是滞回比较器的核心部分,它接收输入信号和参考电压,并根据二者之间的关系输出高或低电平信号。

比较器通常由差分放大器构成,包括两个输入端和一个输出端。

差分放大器通过对输入信号进行放大并相减,得到输入信号和参考电压的差值,然后将差值反馈到输出端。

根据差值的正负,输出端产生高电平或低电平信号。

# 正反馈电路正反馈电路为滞回比较器引入滞回特性。

它将比较器的输出信号通过正反馈回馈到比较器的某个输入端。

当输出信号从低电平变为高电平时,经过正反馈的放大器将进一步提高该输入端的电压,从而加大输出的高电平信号。

反之,当输出信号从高电平变为低电平时,正反馈电路也会减小该输入端的电压,进一步降低输出的低电平信号。

通过正反馈,滞回比较器实现了滞回特性。

当输入信号超过一定阈值时,输出信号会从一个极限状态迅速切换到另一个极限状态。

这种滞回特性使得滞回比较器对于噪声和波形畸变具有较好的抗干扰能力。

# 参考电压参考电压是滞回比较器的参考基准,用于确定输入信号与之进行比较。

参考电压可以通过调整电路中的稳压器或电位器来设定。

根据参考电压的不同,滞回比较器可以实现不同的功能。

例如,当参考电压设定为一个固定值时,滞回比较器可以用作电压比较器,用于判断输入信号是否超过设定的阈值。

当参考电压设定为一个变化的波形时,滞回比较器可以用作数字信号转换器,将输入信号转换为离散的高低电平信号。

第二部分:工作原理和信号处理滞回比较器的工作原理可以通过信号处理的过程来解释。

# 信号比较首先,输入信号和参考电压经过比较器进行比较。

当输入信号大于参考电压时,比较器输出高电平;当输入信号小于参考电压时,比较器输出低电平。

滞回比较器解析

滞回比较器解析

滞回比较器2009-03-19 10:19:15| 分类:学习中|字号订阅长期以来,关于比较器滞回的讨论需要从“滞回”的定义开始, 与许多其它技术术语一样, “滞回”源于希腊语, 含义是“延迟”或“滞后”, 或阻碍前一状态的变化。

工程中, 常用滞回描述非对称绝大多数比较器中都设计带有滞回电路, 通常滞回电压为5mV到10mV。

内部滞回电路可以避免由于输入端的寄生反馈所造成的比较器输出振荡。

但是内部滞回电路虽然可以使比较器免于自激振荡, 却很容易被外部振幅较大的噪声淹没。

这种情况下需要增加外部滞回, 以提高系统的抗干扰性能。

首先, 看一下比较器的传输特性。

图1所示是内部没有滞回电路的理想比较器的传输特性, 图2所示为实际比较器的传输特性。

从图2可以看出, 实际电压比较器的输出是在输入电压(VIN)增大到2mV时才开始改变。

图1. 理想比较器的传输特性图2. 实际比较器的传输特性运算放大器在开环图3. 无滞回电路时比较器输出的模糊状态和频繁跳变举个例子, 考虑图4所示简单电路, 其传输特性如图5所示。

比较器的反相输入电压从0开始线性变化,由分压电阻R1、R2构成正反馈。

当输入电压从1点开始增加(图6), 在输入电压超过同相阈值VTH+ = VCCR2/(R1 + R2)之前, 输出将一直保持为VCC。

在阈值点, 输出电压迅速从VCC跳变为VSS,因为, 此时反相端输入电压大于同相端的输入电压。

输出保持为低电平, 直到输入经过新的阈值点5 ,VTH- = VSSR2/(R1 + R2)。

在5点, 输出电压迅速跳变回VCC, 因为这时同相输入电压高于反相输入电压。

图4. 具有滞回的简单电路图5. 图4电路的传输特性图6. 图4电路的/输出电压波形图4所示电路中的输出电压VOUT与输入电压VIN的对应关系表明, 输入电压至少变化2VTH时, 输出电压才会变化。

因此, 它不同于图3的响应情况(放大器无滞回), 即对任何小于2VTH的噪声或干扰都不会导致输出的迅速变化。

滞回比较器

滞回比较器

关于比较器滞回的讨论需要从“滞回”的定义开始, 与许多其它技术术语一样, “滞回”源于希腊语, 含义是“延迟”或“滞后”, 或阻碍前一状态的变化。

工程中, 常用滞回描述非对称绝大多数比较器中都设计带有滞回电路, 通常滞回电压为5mV到10mV。

内部滞回电路可以避免由于输入端的寄生反馈所造成的比较器输出振荡。

但是内部滞回电路虽然可以使比较器免于自激振荡, 却很容易被外部振幅较大的噪声淹没。

这种情况下需要增加外部滞回, 以提高系统的抗干扰性能。

首先, 看一下比较器的传输特性。

图1所示是内部没有滞回电路的理想比较器的传输特性, 图2所示为实际比较器的传输特性。

从图2可以看出, 实际电压比较器的输出是在输入电压(VIN)增大到2mV时才开始改变。

图1. 理想比较器的传输特性图2. 实际比较器的传输特性运算放大器在开环图3. 无滞回电路时比较器输出的模糊状态和频繁跳变举个例子, 考虑图4所示简单电路, 其传输特性如图5所示。

比较器的反相输入电压从0开始线性变化,由分压电阻R1、R2构成正反馈。

当输入电压从1点开始增加(图6), 在输入电压超过同相阈值VTH+ = VCCR2/(R1 + R2)之前, 输出将一直保持为VCC。

在阈值点, 输出电压迅速从VCC跳变为VSS,因为, 此时反相端输入电压大于同相端的输入电压。

输出保持为低电平, 直到输入经过新的阈值点5 ,VTH- = VSSR2/(R1 + R2)。

在5点, 输出电压迅速跳变回VCC, 因为这时同相输入电压高于反相输入电压。

图4. 具有滞回的简单电路图5. 图4电路的传输特性图6. 图4电路的/输出电压波形图4所示电路中的输出电压VOUT与输入电压VIN的对应关系表明, 输入电压至少变化2VTH时, 输出电压才会变化。

因此, 它不同于图3的响应情况(放大器无滞回), 即对任何小于2VTH的噪声或干扰都不会导致输出的迅速变化。

在实际应用中, 正、负电压的阈值可以通过选择适合的反馈设置。

理解滞回比较器

理解滞回比较器

理解滞回比较器滞回比较器是一种电路,它可以将输入信号与一个预先设定的阈值进行比较,并输出高电平或低电平的信号。

它主要用于电压比较、电压判断和触发等应用中。

滞回比较器的工作原理是基于滞回特性。

滞回特性又称为迟滞特性,指的是比较器在输出状态改变之前,对输入信号必须越过一个阈值才能触发。

而在输出状态改变后,输入信号不论增加或减小,都不会触发输出状态的改变。

这种特性使得滞回比较器在实际应用中非常重要。

滞回比较器的应用非常广泛。

例如,在模拟电子系统中,滞回比较器常用于阈值判断、振荡器、触发电路、比较电路等。

在数字电子系统中,滞回比较器常用于电平转换、触发延时、A/D转换、数字信号处理中的噪声过滤等。

滞回比较器的设计可以基于各种电子元件,如晶体管、操作放大器、比较器芯片等。

其中,以操作放大器作为基本元件的滞回比较器常常被应用。

下面将以操作放大器为例,介绍滞回比较器的设计和工作原理。

滞回比较器的基本电路由一个操作放大器、两个反馈电阻和一个正馈电阻组成。

其中,一个反馈电阻通过连接到操作放大器的负输入端,另一个反馈电阻通过连接到操作放大器输出端。

正馈电阻连接到操作放大器的正输入端。

输入信号通过连接到操作放大器的负输入端。

在滞回比较器中,输入信号通过操作放大器的负输入端并与参考电压进行比较。

如果输入信号高于参考电压,则操作放大器的输出会变为高电平;反之,如果输入信号低于参考电压,则操作放大器的输出会变为低电平。

这种输出电平的改变是滞回特性的结果。

滞回比较器的输出状态将保持不变,直到输入信号跨过滞回比较器的另一个阈值。

当输入信号从高电平降到低电平时,输出状态将保持不变,直到输入信号降低到比参考电压低一个阈值;反之,当输入信号从低电平升到高电平时,输出状态将保持不变,直到输入信号升高到比参考电压高一个阈值。

通过调整滞回比较器的阈值和滞回量,可以使得滞回比较器适应各种应用需求。

阈值决定了输入信号与参考电压的比较条件,而滞回量决定了输出状态的稳定性。

理解滞回比较器 -回复

理解滞回比较器 -回复

理解滞回比较器-回复理解滞回比较器(Hysteresis Comparator)作为一种重要的电子元器件,滞回比较器在电路设计、开关控制、传感器和通信系统等领域都有广泛的应用。

本文将一步一步地解释滞回比较器的原理、功能和应用,并探讨其特性和设计考虑。

第一部分:滞回比较器的原理滞回比较器是一种基于电压比较的电路,常用于将一个输入电压信号与一个参考电压进行比较,并输出高电平或低电平信号。

滞回(Hysteresis)一词表示在输入信号发生变化时,输出信号具有一定的滞后和迟滞。

滞回比较器的核心部分是一个差分放大器,它对输入信号和参考电压进行放大并比较。

差分放大器由一个运算放大器(Operational Amplifier)和一对电阻组成,其中一个电阻与输入信号相连,另一个电阻与参考电压相连。

当输入信号超过参考电压时,差分放大器输出高电平(通常为Vcc),意味着输出信号与参考电压相比为高电平。

当输入信号低于参考电压时,差分放大器输出低电平(通常为GND),意味着输出信号与参考电压相比为低电平。

第二部分:滞回比较器的功能滞回比较器具有两个主要功能:防止输出的抖动和提供无死区的阈值控制。

抖动是指输入信号在参考电压附近的微小波动。

在普通比较器中,由于输入信号处在参考电压附近时,输出信号可能会不断切换,导致电路产生抖动。

而滞回比较器通过设置滞回阈值,在输入信号接近参考电压时,输出信号保持不变,从而消除抖动。

无死区的阈值控制是指输入信号必须经过一定的变化量,输出信号才能切换状态。

滞回比较器的滞回阈值可以通过调整电路中的电阻值来控制,因此可以实现无死区的阈值控制。

这种特性在开关控制和传感器设计中非常有用,可以减少误触发和干扰。

第三部分:滞回比较器的应用滞回比较器在电路设计中有广泛的应用。

以下是一些常见的应用场景:1. 电压参考和阈值判断:滞回比较器可用于将一个变化的输入电压与一个参考电压进行比较,并输出高电平或低电平信号,实现电压的参考和阈值判断。

集成电压比较器 滞回比较器

集成电压比较器 滞回比较器

集成电压比较器滞回比较器
集成电压比较器是一种电子元件,它可以将两个输入电压进行比较,并输出一个数字信号,表示哪个输入电压更高或更低。

滞回比较器是一种特殊的电压比较器,它具有迟滞特性,可以避免在输入电压接近阈值时产生频繁的切换。

集成电压比较器通常由运算放大器和一些附加电路组成。

运算放大器用于比较两个输入电压的大小,并输出一个数字信号。

附加电路可以提供迟滞特性,以避免在输入电压接近阈值时产生频繁的切换。

滞回比较器的工作原理是基于迟滞特性。

当输入电压超过阈值时,输出信号会发生切换,但当输入电压下降到阈值以下时,输出信号不会立即切换回来,而是会保持在原来的状态,直到输入电压再次超过阈值。

这种迟滞特性可以避免在输入电压接近阈值时产生频繁的切换,从而提高了比较器的稳定性和抗干扰能力。

集成电压比较器广泛应用于电子电路中,例如模数转换器、过压保护电路、电源管理电路等。

滞回比较器则常用于振荡器、波形发生器、定时器等电路中。

在选择集成电压比较器时,需要考虑其精度、速度、功耗、输入范围等因素。

同时,还需要考虑其是否具有迟滞特性以及迟滞量的大小。

滞回比较器的迟滞量通常可以通过外部电阻进行调整,以满足不同的应用需求。

过零比较器,单限比较器,滞回比较器,窗口比较器

过零比较器,单限比较器,滞回比较器,窗口比较器

过零比较器,单限比较器,滞回比较器,窗口比较器过零比较器、单限比较器、滞回比较器和窗口比较器是电子电路中常用的比较器类型,它们在不同的应用场景中发挥着重要的作用。

本文将分别介绍这四种比较器的工作原理、特点和应用。

过零比较器。

过零比较器是一种常见的比较器,其主要功能是检测输入信号是否经过零点。

它通常由一个比较器和一个零点检测电路组成。

当输入信号经过零点时,比较器输出一个脉冲信号,用于触发其他电路或控制系统。

过零比较器的特点是灵敏度高、响应速度快,适用于需要对输入信号的过零点进行检测和触发的应用场景。

例如,交流电路中的零点检测、电机控制系统中的位置检测等。

单限比较器。

单限比较器是一种常用的比较器,其主要功能是比较输入信号与设定阈值的大小关系。

当输入信号超过设定阈值时,比较器输出高电平信号;当输入信号低于设定阈值时,比较器输出低电平信号。

单限比较器的特点是简单易用、成本低廉,适用于需要进行简单电压比较的应用场景。

例如,电压监测电路中的过压保护、温度控制系统中的温度检测等。

滞回比较器。

滞回比较器是一种特殊的比较器,其主要功能是在输入信号的上升沿和下降沿分别输出高电平和低电平信号。

这种特殊的输出方式可以有效抑制输入信号的噪声和干扰,提高比较器的稳定性和可靠性。

滞回比较器的特点是抗干扰能力强、稳定性高,适用于需要对输入信号进行精确比较和稳定输出的应用场景。

例如,数字通信系统中的信号检测、传感器系统中的信号处理等。

窗口比较器。

窗口比较器是一种特殊的比较器,其主要功能是比较输入信号与设定的上下限范围。

当输入信号超出设定的上下限范围时,比较器输出高电平信号;当输入信号在设定的上下限范围内时,比较器输出低电平信号。

窗口比较器的特点是能够同时检测输入信号的上限和下限,适用于需要进行双向电压比较的应用场景。

例如,电源管理系统中的电压监测、电动车控制系统中的电池管理等。

综上所述,过零比较器、单限比较器、滞回比较器和窗口比较器是电子电路中常用的比较器类型,它们分别适用于不同的应用场景,具有各自独特的特点和优势。

滞回比较器又称施密特触发器

滞回比较器又称施密特触发器

在单限比较器中,输入电压在阈值电压附近的任何微小变化,都会引起输出电压的跃变,不管这种电压是来自输入信号还是外部干扰;因此,虽然单限比较器很灵敏,但是抗干扰能力差,滞回比较器具有滞回特性,即具有惯性,因而也就具有一定的抗干扰能力;滞回比较器又称施密特触发器,迟滞比较器;这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状; 滞回比较器也有反相输入和同相输入两种方式; UR是某一固定电压,改变UR值能改变阈值及回差大小;以图4a所示的反相滞回比较器为例,计算阈值并画出传输特性图4 滞回比较器及其传输特性 66666a反相输入;b同相输入 1,正向过程正向过程的阈值为形成电压传输特性的abcd段 2,负向过程负向过程的阈值为形成电压传输特性上defa段;由于它与磁滞回线形状相似,故称之为滞回电压比较器;利用求阈值的临界条件和叠加原理方法,不难计算出图4b所示的同相滞回比较器的两个阈值两个阈值的差值ΔUTH=UTH1–UTH2称为回差;由上分析可知,改变R2值可改变回差大小,调整UR可改变UTH1和UTH2,但不影响回差大小;即滞回比较器的传输特性将平行右移或左移,滞回曲线宽度不变;图5 比较器的波形变换 a输入波形;b 输出波形例如,滞回比较器的传输特性和输入电压的波形如图6a、b所示;根据传输特性和两个阈值UTH1=2V, UTH2=–2V,可画出输出电压uo的波形,如图6c所示;从图c可见,ui在UTH1与UTH2之间变化,不会引起uo的跳变;但回差也导致了输出电压的滞后现象,使电平鉴别产生误差;图6 说明滞回比较器抗干扰能力强的图 a已知传输特性;b已知ui 波形; c根据传输特性和ui波形画出的uo波形因为矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;因为输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间;电路组成:如图所示为矩形波发生电路,它由反相输入的滞回比较器和RC电路组成;RC 回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换;电压传输特性如图所示。

滞回比较器计算

滞回比较器计算

滞回比较器是一种具有滞回特性的比较器电路,它在输入信号跨越某一阈值时能够产生一个输出信号,并且当输入信号回到阈值以下时,输出信号不会立即消失,而是需要一定的时间才能恢复到原始状态。

滞回比较器通常用于消除电路中的噪声和干扰,提高电路的稳定性。

滞回比较器的计算主要包括阈值电压和滞回区宽度的确定。

阈值电压是输入信号达到或超过该电压时,比较器输出发生跳变的电压值。

滞回区宽度是当输入信号在阈值电压附近波动时,输出信号保持不变的最大范围。

在实际应用中,滞回比较器的计算需要考虑电路参数、电源电压、温度等因素的影响。

通常需要根据设计要求和实际情况,通过调整电路参数来获得最佳的性能指标。

同时,为了减小误差和提高精度,还需要对滞回比较器进行校准和补偿。

总的来说,滞回比较器的计算需要根据具体的应用场景和需求进行设计和优化,以确保其具有较好的性能指标和稳定性。

滞回比较器电压传输特性测量

滞回比较器电压传输特性测量

滞回比较器电压传输特性测量
1.定义:
滞回比较器具有滞回特性即具惯性有一定的抗干扰能力。

滞回比较器又称施密特触发器,迟滞比较器。

这种比较器的特点是当输入信号ui 逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。

施密特触发器:属于电平触发器件,当输入达到一定值时输出电压突变
2.电路图
其中,输入信号采用信号发生器产生的幅值为10V、频率为20Hz的三角波电压。

电压比较其最大输出电压值设置为12V。

3.输出结果
其中,输入波形为
则输出波形为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滞回比较器
关于比较器滞回的讨论需要从“滞回”的定义开始, 与许多其它技术术语一样, “滞回”源于希腊语, 含义是“延迟”或“滞后”, 或阻碍前一状态的变化。

工程中, 常用滞回描述非对称
绝大多数比较器中都设计带有滞回电路, 通常滞回电压为5mV到10mV。

内部滞回电路可以避免由于输入端的寄生反馈所造成的比较器输出振荡。

但是内部滞回电路虽然可以使比较器免于自激振荡, 却很容易被外部振幅较大的噪声淹没。

这种情况下需要增加外部滞回, 以提高系统的抗干扰性能。

首先, 看一下比较器的传输特性。

图1所示是内部没有滞回电路的理想比较器的传输特性, 图2所示为实际比较器的传输特性。

从图2可以看出, 实际电压比较器的输出是在输入电压(VIN)增大到2mV
时才开始改变。

图1. 理想比较器的传输特性
图2. 实际比较器的传输特性
运算放大器在开环
图3. 无滞回电路时比较器输出的模糊状态和频繁跳变
举个例子, 考虑图4所示简单电路, 其传输特性如图5所示。

比较器的反相输入电压从0开始线
性变化,
由分压电阻R1、R2构成正反馈。

当输入电压从1点开始增加(图6), 在输入电压超过同相阈值
VTH+ = VCCR2/(R1 + R2)之前, 输出将一直保持为VCC。

在阈值点, 输出电压迅速从VCC跳变为
VSS,
因为, 此时反相端输入电压大于同相端的输入电压。

输出保持为低电平, 直到输入经过新的阈值点5 ,
VTH- = VSSR2/(R1 + R2)。

在5点, 输出电压迅速跳变回VCC, 因为这时同相输入电压高于反相输
入电压。

图4. 具有滞回的简单电路
图5. 图4电路的传输特性
图6. 图4电路的/输出电压波形
图4所示电路中的输出电压VOUT与输入电压VIN的对应关系表明, 输入电压至少变化2VTH 时, 输出电压才会变化。

因此, 它不同于图3的响应情况(放大器无滞回), 即对任何小于2VTH的噪声或干扰都不会导致输出的迅速变化。

在实际应用中, 正、负电压的阈值可以通过选择适合的反馈设置。

其它设置可以通过增加不同阈值电压的滞回电路获得。

图7电路使用了两个MOSFET和一个电阻网络调节正负极性的阈值。

与图4所示比较器不同, 电阻反馈网络没有加载到负载环路, 图8给出了输
入信号变化时的输出响应。

图7. 通过外部MOSFET和电阻构成滞回电路
图8. 图7电路的输入/输出电压波形
比较器内部的输出配置不同, 所要求的外部滞回电路也不同。

例如, 具有内部上拉电阻的比较器, 可以在输出端和同相输入端直接加入正反馈电阻。

输入分压网络作用在比较器的同相输入端,
反相输入电压为一固定的参考电平(如图9)。

图9. 在带有上拉电阻的比较器中加滞回电路
如上所述, 具有内部滞回的比较器提供两个门限:一个用于输入上升电压(VTHR),一个用于检测输入下降电压(VTHF), 对应于图8的VTH1和VTH2。

两个门限的差值为滞回带(VHB)。

当比较器的输入电压相等时, 滞回电路会使一个输入迅速跨越另一输入, 从而使比较器避开产生振荡的区域。

图10所示为比较器反相输入端电压固定, 同相输入端电压变化时的工作过程,交换两个输入可以得到相似波形, 但是输
出电压极性相反。

图10. 图9电路的输入/输出电压波形
根据输出电压的两个极限值(两个电源摆幅), 可以很容易地计算反馈分压的电阻值。

内部有4mV滞回和输出端配有上拉电阻的比较器-- 如Maxim的MAX9015、MAX9017和MAX9019等。

这些比较器设计用于电压摆幅为VCC和0V的单电源系统。

可以按照以下步骤, 根据给定的电源电压、电压滞回(VHB)和基准电压(VREF), 选择并计算需要的元件:
第1步
选择R3, 在触发点流经R3的电流为(VREF - VOUT)/R3。

考虑到输出的两种可能状态, R3由如
下两式求得:
R3 = VREF/IR3和R3 = (VCC - VREF)/IR3.
取计算结果中的较小阻值, 例如, VCC = 5V, IR3 = 0.2µA, 使用MAX9117比较器(VREF =
1.24V), 则计算结果为6.2M和19M, 选则R3为6.2M。

第2步
选择滞回电压(VHB)。

在本例中, 选择滞回电压为50mV。

第3步
R1可按下式计算。

对于这个例子, R1的值为:
第4步
VIN上升门限(VTHR)的选择, 例如:
在该门限点, 当输入电压VIN超过阈值时, 比较器输出由低电平变到高电平。

本例中, 选择
VTHR = 3V。

第5步
计算R2, R2可按下式计算:
本例中, R2的值为44.2k。

第6步
按如下步骤验证电压和滞回电压:VIN上升门限= 2.992V, 等于VREF乘以R1,
除以R1、R2和R3并联后的阻值。

VIN下降门限= 2.942V。

因此, 滞回电压= VTHR - VTHF = 50mV.
最后, 开漏结构的比较器内部滞回电压为4mV (MAX9016、MAX9018、MAX9020),
需要外接上拉电阻, 如图11所示。

外加滞回可以通过正反馈产生, 但是计算公式与上拉输出的情况
稍有不同。

滞回电压= VTHR - VTHF = 50mV。

按如下步骤计算电阻值:
第1步
选择R3, 在IN_+端的漏电流小于2nA, 所以通过R3的电流至少为0.2µA, 以减小漏电流引起的误差。

R3可由R3 = VREF/IR3或R3 = [(VCC - VREF)/IR3] - R4两式求得, 取其较小值。

例如, 使用MAX9118 (VREF=1.24V), VCC = 5V, IR3 = 0.2μA, R4 = 1M, 计算结果为6.2M和18M, 则R3选
6.2M。

第2步
选择需要的滞回电压(VHB)。

第3步
选择R1, R1可按下式计算:
在此例中, R1为:
第4步
选择VIN上升门限(VTHR), 如下式:
在该门限点, 当输入电压VIN超过阈值时, 比较器输出由低电平变到高电平。

本例中, 选择
VTHR = 3V。

第5步
计算R2, 如下式:
本例中, R2的值为49.9k。

第6步
按如下步骤验证触发电压和滞回电压:
图11. 在输出为开漏结构的比较器中加滞回电路。

相关文档
最新文档