高考数学难点之直线与圆锥曲线
高考数学复习考点题型专题讲解 题型29 直线与圆锥曲线(解析版)
高考数学复习考点题型专题讲解题型:之直线与圆锥曲线【高考题型一】:直线与圆锥曲线在简答题中的步骤体现。
『解题策略』:答题规范模板:步骤1:设直线方程:注意设直线的技巧。
①当斜率不存在的直线不满足,斜率为零的直线满足时,一般设为b kx y +=; ②当斜率为零的直线不满足,斜率不存在的直线满足时,一般设为n my x +=;③两类直线均满足或均不满足时,两种设法均可,但两类直线均满足时,注意要对取不到的直线补充验证。
)。
步骤2:直线与曲线联立,整理成关于x(或y)的一元二次方程。
步骤3:写出根与系数的关系(如果求范围或直线与曲线不是恒有公共点,则写出)0(0≥∆>∆)。
步骤4:转化已知条件,转化为两根的关系。
步骤5:把根与系数的关系代入转化的条件中。
※注:若题目中不涉及根与系数,则.............步骤..4.\.步骤..5.可省略。
.... 弦长公式:弦长:直线与曲线相交中两交点的距离。
弦长公式:直线与曲线联立,若消y ,转化为关于x 的一元二次方程,20,ax bx c ++=则弦长=a ;若消x ,则转化为关于y 的一元二次方程:20,ay by c ++=则弦长。
【题型1】:直线与椭圆的位置关系。
『解题策略』:直线0:=++C By Ax l ,椭圆C :221(0,0,)mx ny m n m n +=>>≠;判定方法:∆法:直线与椭圆方程联立:220,00,10,Ax By c mx ny ∆>⎧++=⎧⎪⇒∆=⎨⎨+=⎩⎪∆<⎩相交相切相离。
1.(高考题)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点。
(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,请说明理由。
【解析】:(1)c=2,设椭圆方程为:142222=-+a y a x ,代入点A 得椭圆方程为2211612x y +=。
高考数学复习考点题型专题讲解22 直线与圆锥曲线
高考数学复习考点题型专题讲解专题22 直线与圆锥曲线高考定位 直线与圆锥曲线的位置关系是高考的必考内容,涉及直线与圆锥曲线的相交、相切、弦长、面积以及弦中点等问题,难度中等.1.(2021·新高考Ⅱ卷)抛物线y 2=2px (p >0)的焦点到直线y =x +1的距离为2,则p =( )A.1B.2C.22D.4 答案 B解析 抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,其到直线x -y +1=0的距离d =⎪⎪⎪⎪⎪⎪p 2-0+112+(-1)2=2,解得:p =2(p =-6舍去).2.(2022·全国甲卷)记双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值________. 答案 2((1,5]内的任意值均可)解析 双曲线C 的渐近线方程为y =±b ax ,若直线y =2x 与双曲线C 无公共点,则2≥b a ,∴b 2a 2≤4,∴e 2=c 2a 2=1+b 2a 2≤5,又e >1,∴e ∈(1,5], ∴填写(1,5]内的任意值均可.3.(2021·浙江卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0),焦点为F 1(-c ,0),F 2(c ,0)(c >0).若过F 1的直线和圆⎝ ⎛⎭⎪⎫x -12c 2+y 2=c 2相切,与椭圆在第一象限交于点P ,且PF 2⊥x 轴,则该直线的斜率是________;椭圆的离心率是________. 答案25555解析 设过F 1的直线与圆的切点为M ,圆心A ⎝ ⎛⎭⎪⎫12c ,0,则|AM |=c ,|AF 1|=32c ,所以|MF 1|=52c , 所以该直线的斜率k =|AM ||MF 1|=c 52c =255. 因为PF 2⊥x 轴,所以|PF 2|=b 2a ,又|F 1F 2|=2c ,所以k =255=b 2a 2c =a 2-c 22ac =1-e 22e ,解得e =55(e =-5舍去).4.(2022·新高考Ⅱ卷)已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴、y 轴分别交于M ,N 两点,且|MA |=|NB |,|MN |=23,则l 的方程为________. 答案 x +2y -22=0解析 法一 设直线l 的方程为x m +yn =1(m >0,n >0),分别令y =0,x =0,得点M (m ,0),N (0,n ).设A (x 1,y 1),B (x 2,y 2).由题意知线段AB 与线段MN 有相同的中点,所以⎩⎪⎨⎪⎧x 1+x 22=m +02,y 1+y 22=0+n 2,即⎩⎨⎧x 1+x 2=m ,y 1+y 2=n .因为k AB =k MN , 所以y 1-y 2x 1-x 2=0-n m -0=-n m. 将A (x 1,y 1),B (x 2,y 2)代入椭圆方程,得⎩⎪⎨⎪⎧x 216+y 213=1,x 226+y 223=1,相减得(x 1+x 2)(x 1-x 2)6+(y 1+y 2)(y 1-y 2)3=0,由题意知x 1+x 2≠0,x 1≠x 2, 所以y 1+y 2x 1+x 2·y 1-y 2x 1-x 2=-12, 即n m ·⎝ ⎛⎭⎪⎫-n m =-12, 整理得m 2=2n 2.① 又|MN |=23,所以由勾股定理,得m 2+n 2=12,② 由①②并结合m >0,n >0, 得⎩⎨⎧m =22,n =2, 所以直线l 的方程为x 22+y2=1,即x +2y -22=0.法二 设直线l 的方程为x m +yn=1(m >0,n >0),分别令y =0,x =0,得点M (m ,0),N (0,n ).由题意知线段AB 与线段MN 有相同的中点,设为Q ,则Q ⎝ ⎛⎭⎪⎫m 2,n 2,则k AB =0-n m -0=-nm ,k OQ =n2m 2=n m.由椭圆中点弦的性质知,k AB ·k OQ =-b 2a 2=-12,即⎝ ⎛⎭⎪⎫-n m ·nm=-12,以下同法一.热点一 中点弦问题已知A (x 1,y 1),B (x 2,y 2)为圆锥曲线E 上两点,AB 的中点C (x 0,y 0),直线AB 的斜率为k .(1)若椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),则k =-b 2a 2·x 0y 0;(2)若双曲线E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则k =b 2a 2·x 0y 0;(3)若抛物线E 的方程为y 2=2px (p >0),则k =py 0.例 1 (1)(2022·宝鸡二模)椭圆x 29+y 22=1中以点M (2,1)为中点的弦所在直线方程为( )A.4x +9y -17=0B.4x -9y -17=0C.7x +3y -27-3=0D.7x -3y -27+3=0(2)(2022·广州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,过点F 的直线x -y+2=0与椭圆C 相交于不同的两点A ,B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为-12,则椭圆C 的方程为( )A.x 23+y 2=1 B.x 24+y 22=1 C.x 25+y 23=1 D.x 26+y 23=1 答案 (1)A (2)B解析 (1)设以点M (2,1)为中点弦的两端点为A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 219+y 212=1,x 229+y 222=1,两式相减得x 21-x 229+y 21-y 222=0,因为M (2,1)为中点, 所以x 1+x 22=2,y 1+y 22=1,所以斜率k =y 1-y 2x 1-x 2=-2(x 1+x 2)9(y 1+y 2)=-49(或直接利用结论k =-b 2a 2·x 0y 0=-29×21=-49),所以所求直线方程为y-1=-49(x-2),即4x+9y-17=0.(2)因为直线x-y+2=0过点F(-2,0),所以c=2,设A(x1,y1),B(x2,y2),由x21a2+y21b2=1,x22a2+y22b2=1两式相减并化简得-b2a2=y1+y2x1+x2·y1-y2x1-x2,即-b2a2=⎝⎛⎭⎪⎫-12·1,所以b2a2=12,所以a2=2b2=b2+c2,所以b=c=2,a=2,所以椭圆C的方程为x24+y22=1.规律方法 1.处理中点弦问题的常用方法:(1)根与系数的关系,(2)点差法.2.利用点差法需注意保证直线与曲线相交.训练1 已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F,虚轴的上端点为B,点P,Q在双曲线上,且点M(-2,1)为线段PQ的中点,PQ∥BF,双曲线的离心率为e,则e2等于( )A.2+12B.3+12C.2+22D.5+12答案 A解析法一由题意知F(c,0),B(0,b),则k PQ =k BF =-bc .设P (x 1,y 1),Q (x 2,y 2),则⎩⎪⎨⎪⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1,两式相减,得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2).因为线段PQ 的中点为M (-2,1), 所以x 1+x 2=-4,y 1+y 2=2, 又k PQ =y 1-y 2x 1-x 2=-bc, 所以-b c =-4b 22a 2,整理得a 2=2bc ,所以a 4=4b 2c 2=4c 2(c 2-a 2), 即4e 4-4e 2-1=0, 得e 2=2+12,或e 2=1-22(舍去). 法二 由题意知F (c ,0),B (0,b ),则k BF =-bc. 设直线PQ 的方程为y -1=k (x +2), 即y =kx +2k +1,代入双曲线方程,得(b 2-a 2k 2)x 2-2a 2k (2k +1)x -a 2(2k +1)2-a 2b 2=0. 设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=-4,所以2a 2k (2k +1)b 2-a 2k 2=-4,又k =k BF =-b c,所以2a 2·⎝ ⎛⎭⎪⎫-b c ⎣⎢⎡⎦⎥⎤2·⎝ ⎛⎭⎪⎫-b c +1=-4b 2+4a 2⎝ ⎛⎭⎪⎫-b c 2.整理得a 2=2bc , 所以c 2-b 2-2bc =0, 即⎝ ⎛⎭⎪⎫c b 2-2cb -1=0,得c b =2+1,或c b=1-2(舍去),则e 2=c 2a 2=c 2c 2-b 2=⎝ ⎛⎭⎪⎫c b 2⎝ ⎛⎭⎪⎫c b 2-1=(2+1)2(2+1)2-1=2+12.热点二 弦长问题已知A (x 1,y 1),B (x 2,y 2),直线AB 的斜率为k (k ≠0), 则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2| =1+k 2(x 1+x 2)2-4x 1x 2 或|AB |=1+1k 2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2.例2(2022·青岛模拟)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点P ⎝ ⎛⎭⎪⎫1,22在椭圆E 上.(1)求椭圆E 的标准方程;(2)设直线l :x =my +1(m ∈R )与椭圆E 相交于A ,B 两点,与圆x 2+y 2=a 2相交于C ,D 两点,当|AB |·|CD |2的值为82时,求直线l 的方程.解 (1)因为点P ⎝ ⎛⎭⎪⎫1,22在椭圆上,根据椭圆定义可得|PF 1|+|PF 2|=2a ,又|PF 1|=4+12=322,|PF 2|=22, 所以2a =322+22=22,即a =2,∵c =1,∴b 2=a 2-c 2=1, 故椭圆E 的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2), 联立⎩⎨⎧x =my +1,x 2+2y 2=2,消去x , 整理得(m 2+2)y 2+2my -1=0, 所以Δ=8m 2+8>0,y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2, 则|AB |=1+1k2(y 1+y 2)2-4y 1y 2=1+m 24m 2(m 2+2)2+4m 2+2=22(m 2+1)m 2+2.设圆x 2+y 2=2的圆心O 到直线l 的距离为d , 则d =|-1|(-m )2+1,所以|CD |=22-d 2=22-1m 2+1=22m 2+1m 2+1, 则|AB |·|CD |2=22(m 2+1)m 2+2×4×2m 2+1m 2+1=82(2m 2+1)m 2+2=82,解得m =±1,经验证m =±1符合题意. 故所求直线的方程为x -y -1=0或x +y -1=0.规律方法 1.设直线方程要注意斜率不存在的情况.若已知直线过(t ,0),可设直线方程为x =my +t (m ≠0);2.联立直线、曲线的方程组消元后,一需要二次项系数不等零,二需要Δ>0;3.点差法,要检验中点是否在圆锥曲线内部,若中点在曲线内部,可不必检验Δ>0. 训练2(2022·温州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝ ⎛⎭⎪⎫1,22,且两焦点与短轴的两个端点的连线构成一个正方形. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 作直线l 交C 于A ,B 两点,且AF →=2FB →,求|AB |. 解 (1)∵两焦点与短轴的两个端点的连线构成一个正方形,∴b =c , ∵椭圆过点P ⎝ ⎛⎭⎪⎫1,22,∴1a 2+12b 2=1, 又a 2=b 2+c 2, 解得a 2=2,b 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)∵F (1,0),设l AB :x =my +1,A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎨⎧x =my +1,x 22+y 2=1,得(m 2+2)y 2+2my -1=0,∴⎩⎪⎨⎪⎧y 1+y 2=-2mm 2+2,y 1y 2=-1m 2+2,∵AF →=2FB →,∴y 1=-2y 2, ∴⎩⎪⎨⎪⎧-y 2=-2m m 2+2,-2y 22=-1m 2+2,∴2⎝ ⎛⎭⎪⎫2m m 2+22=1m 2+2,∴m 2=27,∴|AB |=1+m 2·|y 1-y 2|=1+m 2·4m 2+4(m 2+2)m 2+2=928.热点三 圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x 2a 2+y 2b 2=1(a >b >0)在(x 0,y 0)处的切线方程为x 0x a 2+y 0y b 2=1;双曲线x 2a 2-y 2b 2=1(a >0,b >0)在(x 0,y 0)处的切线方程为x 0x a 2-y 0y b2=1;抛物线y 2=2px (p >0)在(x 0,y 0)处的切线方程为y 0y =p (x +x 0).例3 (1)已知椭圆E :x 28+y 24=1,点P 是直线l :x =4上的任意一点,过点P 作椭圆E的两条切线,切点分别是A ,B ,则|AB |的最小值是________.(2)(2022·北京石景山区模拟)设A ,B 为抛物线C :y =x 2上两个不同的点,且直线AB过抛物线C 的焦点F ,分别以A ,B 为切点作抛物线C 的切线,两条切线交于点P .则下列结论:①点P 一定在抛物线C 的准线上; ②PF ⊥AB ;③△PAB 的面积有最大值无最小值. 其中,正确的个数是( ) A.0 B.1 C.2 D.3答案 (1)2 2 (2)C解析 (1)设P (4,t ),A (x 1,y 1),B (x 2,y 2), 则切线PA 的方程为x 1x 8+y 1y 4=1,切线PB 的方程为x 2x 8+y 2y 4=1.因为它们都经过点P ,所以⎩⎪⎨⎪⎧x 12+ty 14=1,x 22+ty 24=1,故直线AB 的方程为x 2+ty4=1,即x =-t2y +2.联立⎩⎪⎨⎪⎧x 28+y 24=1,x =-t2y +2,消去x 得,(t 2+8)y 2-8ty -16=0,所以y 1+y 2=8t t 2+8,y 1y 2=-16t 2+8, 所以|AB |=1+⎝ ⎛⎭⎪⎫-t 22(y 1+y 2)2-4y 1y 2=4+t 24⎝ ⎛⎭⎪⎫8t t 2+82-4⎝ ⎛⎭⎪⎫-16t 2+8 =42⎝⎛⎭⎪⎫1-4t 2+8,所以当t =0时,|AB |min =2 2. (2)由抛物线知焦点F ⎝ ⎛⎭⎪⎫0,14,可设直线AB 方程为y =kx +14,设A (x 1,y 1),B (x 2,y 2),联立直线与抛物线方程得x 2-kx -14=0,则x 1+x 2=k ,x 1x 2=-14,y 1+y 2=k 2+12,y 1y 2=116,切线AP 的方程为y -y 1=2x 1(x -x 1),化简得y +y 1=2x 1x , 同理切线BP 的方程为y +y 2=2x 2x ,⎩⎨⎧y +y 1=2x 1x ,y +y 2=2x 2x ,联立解得P ⎝ ⎛⎭⎪⎫k2,-14,故①正确;∴k PF =-14-14k 2=-1k,∴k PF ·k =-1,故②正确;S △PAB =12|AB |d =12·(k 2+1)·⎪⎪⎪⎪⎪⎪k 22+12k 2+1=14(k 2+1)3,当k =0时,S △PAB 有最小值,无最大值,故③错误,故选C.规律方法 1.圆锥曲线在某点处的切线方程可通过求导的方法来解决.2.过圆锥曲线外一点作曲线的两条切线,过两切点的直线方程与曲线在该点处的切线方程相同.例如:过椭圆C :x 2a 2+y 2b 2=1(a >b >0)外一点P (x 0,y 0)作椭圆的两条切线PA ,PB (A ,B 为切点),则直线AB 的方程为x 0x a 2+y 0yb2=1.训练3 (1)(2022·石家庄模拟)已知抛物线y 2=2px (p >0)上一点A (x 0,y 0)处的切线l 与圆M :(x +2)2+y 2=4相切于另一点B ,则抛物线焦点F 与切点A 距离|AF |的最小值为________.(2)如图,已知点P (x 0,y 0)是双曲线C 1:x 24-y 23=1上的点,过点P 作椭圆C 2:x 24+y 23=1的两条切线,切点为A ,B ,直线AB 交C 1的两渐近线于点E ,F ,O 是坐标原点,则OE →·OF →的值为( )A.34B.1 C.43D.916答案 (1)8 (2)B解析 (1)抛物线y 2=2px (p >0)上一点A (x 0,y 0)处的切线l 方程为y 0y =p (x 0+x ), 整理得px -y 0y +px 0=0, 因为切线l 与圆M 相切, 则d =|-2p +px 0|p 2+(-y 0)2=2, 同时平方化简得-4p 2x 0+p 2x 20=4y 20,又y 20=2px 0,∴-4p 2x 0+p 2x 20=8px 0,解得x 0=4+8p ,即x A =4+8p,此时|AF |=4+8p +p2≥28p ·p2+4=8, 当且仅当8p =p2,即p =4时取等号,故|AF |的最小值为8.(2)椭圆C 2关于点P (x 0,y 0)的切点弦AB 的方程为x 0x 4+y 0y 3=1,即3x 0x +4y 0y =12,由⎩⎨⎧3x 0x +4y 0y =12,y =32x ,解得E ⎝ ⎛⎭⎪⎫433x 0+2y 0,63x 0+2y 0,同理F ⎝ ⎛⎭⎪⎫433x 0-2y 0,-63x 0-2y 0,则OE →·OF →=483x 20-4y 20+-363x 20-4y 20=123x 20-4y 20=1,故选B.热点四 直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法 (1)联立直线的方程与圆锥曲线的方程. (2)消元得到关于x 或y 的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.例4 (1)已知直线l 与椭圆x 2a 2+y 2b 2=1(a >b >0)相切,与直线x =-a ,x =a 分别交于点M ,N ,F 为椭圆的左焦点,若以MN 为直径的圆为E ,则F ( ) A.在圆E 上B.在圆E 内C.在圆E 外D.以上三种情况都有可能(2)(2022·长沙模拟)已知椭圆Г:x 24+y 23=1,过其左焦点F 1作直线l 交椭圆Г于P ,A 两点,取P 点关于x 轴的对称点B .若G 点为△PAB 的外心,则|PA ||GF 1|=( ) A.2 B.3C.4D.以上都不对 答案 (1)A (2)C解析 (1)显然直线l 的斜率存在,设直线l 的方程为y =kx +m ,由⎩⎨⎧y =kx +m ,x 2a 2+y 2b2=1,可得(a 2k 2+b 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0, 因为直线l 与椭圆相切,所以Δ=(2a 2km )2-4(a 2k 2+b 2)(a 2m 2-a 2b 2)=0, 故m 2=a 2k 2+b 2.易知F (-c ,0),M (-a ,-ak +m ),N (a ,ak +m ), 则FM →=(c -a ,m -ak ),FN →=(c +a ,m +ak ),则FM →·FN →=c 2-a 2+m 2-a 2k 2=-b 2+a 2k 2+b 2-a 2k 2=0,故∠MFN =90°, 即点F 在圆E 上.(2)根据题意可得F 1(-1,0),显然直线PA 的斜率存在, 故可设方程为y =k (x +1),由⎩⎨⎧x 24+y 23=1,y =k (x +1)联立消去y , 可得(3+4k 2)x 2+8k 2x +4k 2-12=0, 设P (x 1,y 1),A (x 2,y 2), 故x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,y 1+y 2=k (x 1+x 2)+2k =6k3+4k 2, 故|PA |=1+k2(x 1+x 2)2-4x 1x 2=12(k 2+1)3+4k 2,设PA 的中点为H ,则其坐标为⎝ ⎛⎭⎪⎫-4k 23+4k 2,3k 3+4k 2,显然x 轴垂直平分PB ,故可设G (x 3,0),又GH 直线方程为: y -3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x +4k 23+4k 2,令y =0,解得x =-k23+4k 2,故|GF 1|=⎪⎪⎪⎪⎪⎪-k 23+4k 2+1=3+3k23+4k2,故|PA ||GF 1|=12(k 2+1)3+3k 2=4,故选C. 易错提醒 1.直线与双曲线只有一个交点,包含直线与双曲线相切或直线与双曲线的渐近线平行.2.直线与抛物线只有一个交点包含直线与抛物线相切、直线与抛物线的对称轴平行(或重合).训练4 已知F 1,F 2是椭圆E 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,曲线E 2:y 2=4x 的焦点恰好也是F 2,O 为坐标原点,过椭圆E 1的左焦点F 1作与x 轴垂直的直线交椭圆于M ,N ,且△MNF 2的面积为3. (1)求椭圆E 1的方程;(2)过F 2作直线l 交E 1于A ,B ,交E 2于C ,D ,且△ABF 1与△OCD 的面积相等,求直线l 的斜率.解 (1)因为曲线E 2:y 2=4x 的焦点恰好也是F 2,所以椭圆中c =1,2c =2, 因为△MNF 2的面积为3,所以|MN |=3,所以⎩⎪⎨⎪⎧c =1,2b2a =3,a 2=b 2+c 2,解得a =2,c =1,b =3, 所以椭圆的方程为x 24+y 23=1.(2)因为O 为F 1,F 2的中点,所以O 到直线l 的距离为F 1到l 距离的一半,又因为△ABF 1与△OCD 的面积相等,所以|CD |=2|AB |, 因为F 2(1,0),设l 的方程为y =k (x -1), 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立方程组⎩⎨⎧y =k (x -1),3x 2+4y 2=12, 可得(3+4k 2)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,由两点间距离公式可得,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2 =4-4k 23+4k 2,联立方程组⎩⎨⎧y =k (x -1),y 2=4x ,可得k 2x 2-(2k 2+4)x +k 2=0, 则x 3+x 4=2+4k2,x 3x 4=1,所以|CD |=x 3+x 4+2=4+4k2,因为|CD ||AB |=4+4k 24-4k 23+4k 2=2,解得k =±62, 故直线l 的斜率为±62.一、基本技能练1.椭圆x 216+y 29=1中,以点M (-1,2)为中点的弦所在直线斜率为( )A.916B.932C.964D.-932答案 B解析 设以M 为中点的弦为弦AB ,弦AB 的端点为A (x 1,y 1),B (x 2,y 2), 则x 2116+y 219=1,x 2216+y 229=1,两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)9=0,又弦AB 中点为M (-1,2), ∴x 1+x 2=-2,y 1+y 2=4, 即-2(x 1-x 2)16+4(y 1-y 2)9=0,∴k =y 1-y 2x 1-x 2=932.2.(2022·广州二模)抛物线y 2=4x 的焦点为F ,点A 在抛物线上.若|AF |=3,则直线AF 的斜率为( ) A.±2B.±2 2 C.2D.2 2答案 B解析 由题意得F (1,0),设点A (x 0,y 0), 则|AF |=x 0+1=3, 故x 0=2,y 0=±22,故点A 坐标为(2,22)或(2,-22), 所以直线AF 的斜率为±2 2.故选B.3.(2022·金华调研)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆x 2+y 2-4y +2=0所截得的弦长为2,则双曲线C 的离心率为( ) A.3B.233C.2D. 2 答案 C解析 不妨设双曲线的一条渐近线方程为:bx +ay =0, 圆x 2+y 2-4y +2=0的圆心为(0,2),半径为2, 可得圆心到直线的距离为 2a a 2+b 2=(2)2-12, 整理得4a 2=a 2+b 2,即4a 2=c 2,∴e =c a=2,故选C.4.(2022·福州二模)F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,B 是椭圆的上顶点,过点F 1作BF 2的垂线交椭圆C 于P ,Q 两点,若3PF 1→=7F 1Q →,则椭圆C 的离心率是( )A.33或63B.255或55C.217或277D.59或2149答案 B解析 由椭圆C 的方程可得B (0,b ),F 2(c ,0),F 1(-c ,0), 所以k BF 2=-bc,设直线PQ 的方程为y =cb (x +c ),即x =b cy -c ,设P (x 1,y 1),Q (x 2,y 2),联立⎩⎨⎧b 2x 2+a 2y 2=a 2b 2,x =bc y -c ,整理得(b 4+a 2c 2)y 2-2b 3c 2y -b 4c 2=0, 可得y 1+y 2=2b 3c 2b 4+a 2c 2,①y 1y 2=-b 4c 2b 4+a 2c 2,②因为3PF 1→=7F 1Q →,则3(-c -x 1,-y 1)=7(x 2+c ,y 2), 可得y 1=-73y 2代入①可得y 2=-3b 3c 22(b 4+a 2c 2).③将y 1=-73y 2代入②可得y 22=3b 4c 27(b 4+a 2c 2),④③代入④可得9b 6c 44(b 4+a 2c 2)2=3b 4c 27(b 4+a 2c 2)化简,得25c 4-25a 2c 2+4a 4=0, 即25e 4-25e 2+4=0, 解得e 2=15或e 2=45,即e =55或e =255,故选B. 5.已知椭圆M :x 2a 2+y 22=1(a >2),过焦点F 的直线l 与M 交于A ,B 两点,坐标原点O在以AF 为直径的圆上,若|AF |=2|BF |,则M 的方程为( ) A.x 23+y 22=1 B.x 24+y 22=1 C.x 25+y 22=1 D.x 26+y 22=1 答案 A解析 由题意不妨设F (-c ,0), 因为原点O 在以AF 为直径的圆上, 所以OA ⊥OF ,可得A 为椭圆M 短轴的端点,则A (0,2), 因为|AF |=2|BF |,所以B ⎝ ⎛⎭⎪⎫-32c ,-22代入椭圆M 方程中可得9c 24a 2+14=1,即a 2=3c 2,又c 2=a 2-2,所以a 2=3(a 2-2),解得a 2=3,所以椭圆M 的方程为x 23+y 22=1,故选A.6.(多选)(2022·烟台模拟)已知双曲线C :x 24-y 25=1,F 1,F 2为C 的左、右焦点,则( )A.双曲线x 24+m -y 25+m=1(m >0)和C 的离心率相等B.若P 为C 上一点,且∠F 1PF 2=90°,则△F 1PF 2的周长为6+214C.若直线y =tx -1与C 没有公共点,则t <-62或t >62D.在C 的左、右两支上分别存在点M ,N ,使得4F 1M →=F 1N →答案 BC解析 选项A :双曲线C :x 24-y 25=1的离心率e =32,双曲线x 24+m -y 25+m=1(m >0)的离心率e =4+m +5+m 4+m =9+2m4+m,则双曲线x 24+m -y 25+m =1(m >0)和C 的离心率不一定相等.判断错误;选项B :P 为C :x 24-y 25=1上一点,且∠F 1PF 2=90°,则有⎩⎨⎧|PF 1|2+|PF 2|2=36,|PF 1|-|PF 2|=4,整理得|PF 1|+|PF 2|=214,则△F 1PF 2的周长为6+214.选项B 判断正确;选项C :由⎩⎨⎧x 24-y 25=1,y =tx -1,可得(5-4t 2)x 2+8tx -24=0,由题意可知,方程(5-4t 2)x 2+8tx -24=0无解.当5-4t 2=0时,方程(5-4t 2)x 2+8tx -24=0有解; 当5-4t 2≠0时,则有⎩⎨⎧5-4t 2≠0,(8t )2+96(5-4t 2)<0,解之得t <-62或t >62, 故若直线y =tx -1与C 没有公共点,则t <-62或t >62.判断正确;选项D :根据题意,过双曲线C 的左焦点F 1的直线MN 方程可设为x =ty -3, 令M (x 1,y 1),N (x 2,y 2), 由4F 1M →=F 1N →,可得y 2=4y 1,由⎩⎨⎧x 24-y 25=1,x =ty -3,可得(5t 2-4)y 2-30ty +25=0, 则有⎩⎪⎨⎪⎧y 1+y 2=30t5t 2-4,y 1y 2=255t 2-4,则有⎩⎪⎨⎪⎧5y 1=30t 5t 2-4,4y 21=255t 2-4,整理得19t 2+100=0,显然不成立.当过双曲线C 的左焦点F 1的直线MN 为水平直线时, 方程为y =0,则M =(-2,0),N (2,0),F 1M →=(1,0),F 1N →=(5,0),即5F 1M →=F 1N →.综上可知,不存在分别在C 的左、右两支上M ,N 使得4F 1M →=F 1N →.判断错误. 故选BC.7.(2022·西安模拟)已知直线y =kx -1与焦点在x 轴上的椭圆x 22+y 2b =1总有公共点,则b 的取值范围是________. 答案 [1,2)解析 由题意直线y =kx -1恒过定点N (0,-1),要使直线y =kx -1与焦点在x 轴上的椭圆x 22+y 2b =1总有公共点,则只需要点N (0,-1)在椭圆上或椭圆内, 即(-1)2b≤1,解得b ≥1,又焦点在x 轴上,∴b <2.∴1≤b <2.8.已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,则四边形PF 1QF 2的面积为________. 答案 8解析 因为P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|, 所以四边形PF 1QF 2为矩形, 设|PF 1|=m ,|PF 2|=n ,由椭圆定义可得|PF 1|+|PF 2|=m +n =2a =8, 所以m 2+2mn +n 2=64,又|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2=4(a 2-b 2)=48, 即m 2+n 2=48,所以mn =8,即四边形PF 1QF 2的面积为|PF 1||PF 2|=mn =8,故答案为8.9.(2022·南通、泰州等七市调研)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别是F 1,F 2,P (x 1,y 1),Q (x 2,y 2)是双曲线右支上的两点,x 1+y 1=x 2+y 2=3.记△PQF 1,△PQF 2的周长分别为C 1,C 2,若C 1-C 2=8,则双曲线的右顶点到直线PQ 的距离为________. 答案22解析 根据双曲线的定义,若C 1-C 2=(|PQ |+|PF 1|+|QF 1|)-(|PQ |+|PF 2|+|QF 2|)=4a =8,所以a =2. 故双曲线右顶点为(2,0), 因为x 1+y 1=x 2+y 2=3, 所以P ,Q 在x +y =3上, 即直线PQ 的方程为x +y =3,所以双曲线的右顶点到直线PQ 的距离为d =22. 10.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过原点的直线l 与双曲线在第一象限和第三象限的交点分别为A ,B ,∠F 1AF 2=60°,四边形AF 1BF 2的周长p 与面积S 满足p 2=12839S ,则该双曲线的离心率为________. 答案72解析 由题知|AF 1|-|AF 2|=2a ,四边形AF 1BF 2是平行四边形, |AF 1|+|AF 2|=p2,联立解得|AF 1|=a +p 4,|AF 2|=p4-a ,∵∠F 1AF 2=60°,四边形AF 1BF 2的面积S =32|AF 1||AF 2|=32⎝⎛⎭⎪⎫p 216-a 2, ∵p 2=12839S ,∴p 2=12839×32⎝ ⎛⎭⎪⎫p 216-a 2,即p 2=64a 2,由|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos 60°=(|AF 1|-|AF 2|)2+|AF 1||AF 2|, 可得4c 2=4a 2+p 216-a 2=4a 2+3a 2=7a 2,即e =72,故答案为72. 11.(2022·临汾二模)已知抛物线C :y 2=2px (p >0)的焦点为F ,其准线与x 轴交于点P ,过点P 作直线l 与C 交于A ,B 两点,点D 与点A 关于x 轴对称. (1)证明:直线BD 过点F ; (2)若DF →=3FB →,求l 的斜率.(1)证明 设点A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),直线l 的斜率为k ,由题可知k 一定存在,直线l 的方程为:y =k ⎝ ⎛⎭⎪⎫x +p 2.由⎩⎨⎧y =k ⎝ ⎛⎭⎪⎫x +p 2,y 2=2px ,得ky 2-2py +kp 2=0, Δ=4p 2-4k 2p 2>0,则-1<k <1.y 1+y 2=2pk ,y 1y 2=p 2,k BD =y 2+y 1x 2-x 1=y 2+y 112p(y 22-y 21)=2py 2-y 1, 故直线BD 的方程为y +y 1=2p y 2-y 1⎝ ⎛⎭⎪⎫x -y 212p , 即y =2p y 2-y 1⎝ ⎛⎭⎪⎫x -p 2, 故直线BD 过点F ⎝ ⎛⎭⎪⎫p 2,0.(2)解由DF →=3FB →可得⎩⎨⎧-x 1+p 2=3⎝ ⎛⎭⎪⎫x 2-p 2,y 1=3y 2,由(1)可知,y 1+y 2=4y 2=2pk ,故y 2=p2k, 又x 1+3x 2=2p ,故y 212p +3y 222p =2p ,即y 21+3y 22=4p 2=12y 22,故y 22=p 24k 2=p 23,所以k 2=34,满足Δ>0,故k =±32. 12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且经过点⎝ ⎛⎭⎪⎫-3,12.(1)求椭圆C 的方程;(2)如图,点M 是x 轴上的一点,过点M 的直线l 与椭圆C 交于A ,B 两点(点A 在x 轴的上方),若|AM |=2|MB |,且直线l 与圆O :x 2+y 2=47相切于点N ,求△OMN 的面积.解 (1)由题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,c a =32,(-3)2a 2+⎝ ⎛⎭⎪⎫122b2=1,解得⎩⎨⎧a 2=4,b 2=1,c 2=3,所以椭圆C 的方程为x 24+y 2=1.(2)设M (m ,0),直线l :x =ty +m ,A (x 1,y 1),B (x 2,y 2), 由|AM |=2|MB |,得y 1=-2y 2,由⎩⎨⎧x 24+y 2=1,x =ty +m ,得(t 2+4)y 2+2mty +m 2-4=0. Δ=-16(m 2-t 2-4)>0,即m 2<t 2+4.由根与系数的关系得y 1+y 2=-2tm t 2+4,y 1y 2=m 2-4t 2+4.由y 1y 2=-2y 22,y 1+y 2=-2y 2+y 2=-y 2, 得y 1y 2=-2[-(y 1+y 2)]2=-2(y 1+y 2)2,即m 2-4t 2+4=-2⎝ ⎛⎭⎪⎫-2tm t 2+42, 化简得(m 2-4)·(t 2+4)=-8t 2m 2,所以原点O 到直线l 的距离d =|m |1+t2, 又直线l 与圆O :x 2+y 2=47相切,所以|m |1+t 2=47,即t 2=74m 2-1. 由⎩⎨⎧(m 2-4)(t 2+4)=-8t 2m 2,t 2=74m 2-1,得21m 4-16m 2-16=0, 即(3m 2-4)(7m 2+4)=0,解得m 2=43,此时t 2=43,满足Δ>0,此时点M 的坐标为⎝ ⎛⎭⎪⎫±233,0,在Rt△OMN 中,|MN |=43-47=42121, 所以S △OMN =12×42121×277=4321.二、创新拓展练13.(2022·丽水调研)在平面直角坐标系xOy 中,点A (1,0),B (9,6),动点C 在线段OB 上,BD ⊥y 轴,CE ⊥y 轴,CF ⊥BD ,垂足分别是D ,E ,F ,OF 与CE 相交于点P .已知点Q 在点P 的轨迹上,且∠OAQ =120°,则|AQ |=( ) A.4 B.2 C.43D.23 答案 A解析设P(x,y),则y C=y,∵直线OB为y=23x,∴C⎝⎛⎭⎪⎫32y,y,E(0,y),F⎝⎛⎭⎪⎫32y,6,∵FC∥y轴,∴△OPE∽△FPC,∴EPPC=OEFC,∴x32y-x=y6-y,即y2=4x,∴P的轨迹方程为:y2=4x(0≤x≤9),故A(1,0)为该抛物线的焦点,设Q(x0,y0),则y20=4x0,AQ→=(x0-1,y0),AO→=(-1,0),∴cos∠OAQ=AO→·AQ→|AO→||AQ→|=1-x0(x0-1)2+y20=1-x0x+1=-12,解得x0=3,∴|AQ|=x0+p2=3+1=4.故选A.14.(多选)(2022·苏北四市调研)已知椭圆C:mx2+ny2=1与直线y=x+1交于A,B两点,且|AB|=823,M⎝⎛⎭⎪⎫-23,13为AB的中点,若P是直线AB上的点,则( )A.椭圆C的离心率为2 2B.椭圆C 的短轴长为 3C.OA →·OB →=-3D.P 到C 的两焦点距离之差的最大值为2 2 答案 ACD解析 令A (x 1,y 1),B (x 2,y 2), 则⎩⎨⎧mx 21+ny 21=1,mx 22+ny 22=1,则m (x 21-x 22)+n (y 21-y 22)=0,则m n +y 21-y 22x 21-x 22=0, 则m n +y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=0,则m n +k AB k OM =0,所以m n +1×⎝ ⎛⎭⎪⎫-12=0,所以m n =12,则m <n ,1m >1n ,椭圆的标准方程为x 21m +y 21n =1,所以椭圆C 的焦点在x 轴上,即b 2a 2=1n 1m=m n =12, ∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=12,即e =22,A 正确;椭圆C 的方程为x 2+2y 2=2b 2,联立⎩⎨⎧x 2+2y 2=2b 2,y =x +1,消y 可得3x 2+4x +2-2b 2=0,Δ=16-12(2-2b 2)=24b 2-8>0,可得b 2>13,则⎩⎪⎨⎪⎧x 1+x 2=-43,x 1x 2=2-2b23,∴|AB |=2(x 1+x 2)2-4x 1x 2=2169-8-8b 23=823, 所以b 2=3,则b =3,所以椭圆C 短轴长为2b =23,B 错误;OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(x 1+1)·(x 2+1)=2x 1x 2+(x 1+x 2)+1=-43×3+1=-3,C正确;椭圆C 的方程为x 2+2y 2=6,其标准方程为x 26+y 23=1,c =6-3=3,椭圆C 的左焦点为F 1(-3,0),右焦点为F 2(3,0),如图所示:设点F 1关于直线AB 的对称点为点E (m ,n ),则⎩⎪⎨⎪⎧n 2=m -32+1,n m +3=-1解得⎩⎨⎧m =-1,n =1-3,即点E (-1,1-3), 易知|PF 1|=|PE |,则||PF 2|-|PF 1||=||PF 2|-|PE ||≤|EF 2|=(3+1)2+(1-3)2=22, 当且仅当点P ,E ,F 2三点共线时,等号成立,D 正确.故选ACD.15.(多选)(2022·重庆诊断)已知F 为抛物线C :y 2=6x 的焦点,过直线x =-32上一动点P 作C 的两条切线,切点分别为A ,B ,则下列恒为定值的是( ) A.|PA |·|PB ||AB | B.|FA |·|FB ||AB |C.PA →·PB →PF →2D.FA →·FB →FP →2答案 BCD解析 根据题意,得x =-32为抛物线的准线,焦点为F ⎝ ⎛⎭⎪⎫32,0,设P ⎝ ⎛⎭⎪⎫-32,y 0,设过点P 与曲线C 相切的直线方程为:y -y 0=k ⎝ ⎛⎭⎪⎫x +32(k ≠0),由⎩⎨⎧y -y 0=k ⎝ ⎛⎭⎪⎫x +32,y 2=6x ,得ky 2-6y +6y 0+9k =0,由直线与曲线相切得Δ=36-4k (6y 0+9k )=0, 整理得3k 2+2ky 0-3=0,设切线PA 的斜率为k 1,切线PB 的斜率为k 2, 则k 1+k 2=-2y 03,k 1k 2=-1,即切线PA 与PB 垂直.由3k 2+2ky 0-3=0得y 0=3-3k22k并代入ky 2-6y +6y 0+9k =0,整理得k 2y 2-6ky +9=0,解得y =3k,再由y =3k ,y 0=3-3k 22k 代入y -y 0=k ⎝⎛⎭⎪⎫x +32,得x =32k 2,所以A ⎝ ⎛⎭⎪⎫32k 21,3k 1,B ⎝ ⎛⎭⎪⎫32k 22,3k 2,所以k AB =3k 2-3k 132k 22-32k 21=2k 1k 2k 1+k 2=3y 0,k PF =y 0-32-32=-y 03,所以AB ⊥PF , 因为3k 21+2k 1y 0-3=0,k AF =3k 132k 21-32=6k 13-3k 21=3y 0, 所以A ,B ,F 三点共线(如图)所以△PAB 为直角三角形,PF 为边AB 上的高.对于A ,由等面积法得S △PAB =12|PA ||PB |=12|AB |·|PF |,即|PA ||PB ||AB |=|PF |, 由于P 为动点,故|PF |不为定值,故A 错误;对于B ,由过焦点弦的性质|FA ||FB ||AB |=⎝ ⎛⎭⎪⎫32k 21+32⎝ ⎛⎭⎪⎫32k 22+3232k 21+32k 22+3=94k 21+94k 22+18432k 21+32k 22+3=32⎝ ⎛⎭⎪⎫32k 21+32k 22+332k 21+32k 22+3=32(定值),B 正确; 对于C ,由切线PA 与切线PB 垂直, 故PA →·PB →=0, 即PA →·PB →PF →2=0(定值),C 正确;对于D ,由题知△PBF ∽△APB , 所以|PF |2=|AF |·|BF |,所以FA →·FB →FP →2=|FA →|·|FB →|cos α|FP →|2=cos α=cos 180°=-1(定值),故D 正确,故选BCD.16.(2022·沈阳模拟)双曲线T :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,圆x 2+y 2=c 2与T 及T 的渐近线分别在第一象限交于点M ,N .若M ,N 关于直线y =x 对称,则T 的离心率为________. 答案1+52解析 双曲线x 2a 2-y 2b 2=1(a >0,b >0),一条渐近线方程为y =b ax ,设M (x 1,y 1),N (x 2,y 2),其中x 1,x 2,y 1,y 2>0,联立方程组⎩⎨⎧y =b a x ,x 2+y 2=c2可得x 2=a 2, ∴x =±a ,即M 的横坐标为x 1=a .联立方程组⎩⎨⎧x 2+y 2=c 2,x 2a 2-y2b 2=1整理得b 2(c 2-y 2)-a 2y 2=a 2b 2,即y 2=b 4c 2,解得y =±b 2c,即点N 的纵坐标为y 2=b 2c.因为点M 与点N 关于直线y =x 对称可得x 1=y 2,即a =b 2c ,即b 2=ac ,∴c 2-a 2=ac ,即e 2-e -1=0, 解得e =1+52或e =1-52, 又∵双曲线离心率e >1,∴e =1+52.17.(2022·丽水质检)在平面直角坐标系中,顶点在原点、以坐标轴为对称轴的抛物线C 经过点(1,2).(1)求抛物线C 的方程;(2)已知抛物线C 关于x 轴对称,过焦点F 的直线交C 于A ,B 两点,线段AB 的垂直平分线交直线AB 于点P ,交C 的准线于点Q .若|AB |=|PQ |,求直线AB 的方程. 解 (1)当焦点在x 轴时,设抛物线C :y 2=2px (p >0).将点(1,2)代入得p =2, 此时抛物线的方程为y 2=4x . 当焦点在y 轴时,设抛物线C :x 2=2py (p >0), 将点(1,2)代入得p =14,此时抛物线的方程为x 2=12y .综上,抛物线C 的方程为y 2=4x 或x 2=12y .(2)当抛物线C 的焦点在x 轴时,其方程为y 2=4x ,焦点坐标为(1,0),准线方程为x =-1.∵当直线AB 的斜率不存在时,|AB |=4,|PQ |=2,不符合题意,∴直线AB 的斜率存在,设直线AB 的方程为y =k (x -1)(k ≠0),与抛物线的交点为A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y =k (x -1),y 2=4x消去y 得,k 2x 2-(2k 2+4)x +k 2=0. ∴Δ=16k 2+16>0,x 1+x 2=2k 2+4k 2,∴|AB |=x 1+x 2+2=4+4k2,线段AB 的中点P 为⎝⎛⎭⎪⎫1+2k 2,2k ,∴直线PQ 的方程为y -2k =-1k ⎝⎛⎭⎪⎫x -1-2k 2.令x =-1,得y =4k +2k3,∴Q ⎝ ⎛⎭⎪⎫-1,4k +2k 3,∴|PQ |=⎝ ⎛⎭⎪⎫1+2k 2+12+⎝ ⎛⎭⎪⎫2k -4k -2k 32=2⎝⎛⎭⎪⎫1+1k 21+1k2.由|PQ |=|AB |得, 2⎝ ⎛⎭⎪⎫1+1k 21+1k 2=4+4k2,解得k =±33, ∴直线AB 的方程为y =33x -33或y =-33x +33.。
高三数学直线与圆锥知识点
高三数学直线与圆锥知识点在高三数学学习中,直线与圆锥是重要的知识点之一。
本文将介绍直线与圆锥的基本概念、性质以及相关的解题方法,帮助同学们更好地掌握这一知识点。
一、直线的基本概念与性质直线是由无数个点构成的,在数学中用于表示两个点之间最短距离的轨迹。
直线的特点是无限延伸,不弯曲,也没有宽度。
直线的方程一般形式为 Ax + By + C = 0,其中 A、B、C 为常数,A 和 B 不同时为0。
通过直线的方程可以确定直线的斜率和截距等性质。
二、圆锥的基本概念与性质圆锥是由一个圆和与该圆上各点连线恒过一个定点的轨迹形成的立体图形。
该定点称为顶点,圆称为底面圆,连接顶点与底面圆上各点的线段称为母线。
根据顶点与底面圆之间的位置关系,圆锥可以分为直角圆锥、锐角圆锥和钝角圆锥三种类型。
圆锥的体积和表面积是圆锥的重要性质。
圆锥的体积公式为 V = (1/3)πr²h,其中 r 为底面圆的半径,h 为顶点到底面圆的高;圆锥的表面积公式为 S = L + B,其中 L 为母线的长度,B 为底面圆的面积。
三、直线与圆锥的交点及切线问题1. 直线与圆锥的交点直线与圆锥的交点有以下几种情况:(1) 直线与底面圆相交于两点;(2) 直线与底面圆相切于一点;(3) 直线在底面圆之上或之下,与底面圆没有交点。
2. 直线与圆锥的切线问题当直线与圆锥相切时,直线与圆锥的切点即为切线与圆锥的交点。
根据切线的性质,可利用直线与圆锥的切点的坐标和圆锥方程求解切线方程。
四、解题方法与技巧解题时,需要熟练掌握直线与圆锥的相关概念和性质,并运用几何知识和代数知识进行分析和推理。
在解决直线与圆锥的交点问题时,可以手工画图,根据几何图形进行分析,并根据题目给出的条件列方程,联立方程求解交点。
而在解决直线与圆锥的切线问题时,可以先求解交点,然后利用切点的坐标和圆锥方程确定切线方程。
此外,还可以利用向量方法、三角函数、相似三角形等解题技巧,根据具体题目的情况选择合适的方法进行求解。
高考数学微专题4直线与圆锥曲线4.2直线与双曲线的位置关系 课件
12345
内容索引
x1x2=k2-1 3,所以 AB 的中点 P 的坐标 xP=x1+2 x2=k22-k 3,yP=kxP-2=
k2-6 3,则 Pk22-k 3,k2-6 3.由圆的性质可知,圆心与弦中点连线的斜率垂
直于弦所在的直线,所以 kPG=kk22-2-6k33--0t =-1k,整理可得 t=k28-k 3(*),则
内容索引
【解析】 (1) 因为点 A(2,1)在双曲线 C:ax22-a2y-2 1=1(a>1)上, 所以a42-a2-1 1=1,解得 a2=2, 所以双曲线 C:x22-y2=1. 易知直线 l 的斜率存在,设直线 l:y=kx+m,P(x1,y1),Q(x2,y2),
y=kx+m, 联立x22-y2=1, 消去 y 并整理,得(1-2k2)x2-4mkx-2m2-2=0,
内容索引
由 Δ=16m2k2+4(2m2+2)(1-2k2)>0,得 m2+1-2k2>0, 所以 x1+x2=-2k42m-k1,x1x2=22mk22-+12, 所以由 kAP+kAQ=0,得yx22--12+yx11--12=0, 即(x1-2)(kx2+m-1)+(x2-2)(kx1+m-1)=0, 即 2kx1x2+(m-1-2k)(x1+x2)-4(m-1)=0, 所以 2k×22mk22-+12+(m-1-2k)-2k42m-k1-4(m-1)=0,
内容索引
同理可得 xQ=10+34
2,yQ=-4
2-5 3.
所以直线 PQ:x+y-53=0,PQ=136,
点 A 到直线 PQ 的距离 d=|2+12-35|=232,
故△PAQ
的面积为12×136×2 3 2=169
数学高职高考专题复习直线、圆锥曲线问题
数学高职高考专题复习直线、圆锥曲线问题数学高职高考专题复习:直线与圆锥曲线问题在数学高职高考中,直线与圆锥曲线问题是一个重要的考点,也是考生在复习过程中需要重点掌握的内容。
本文将从以下几个方面对这一问题进行专题复习:一、直线的倾斜角与斜率直线的倾斜角与斜率是直线的重要属性,也是解决直线问题的基础。
在高职高考中,倾斜角与斜率的计算、斜截式方程以及直线的平行与垂直等都是需要考生熟练掌握的内容。
例题1:已知直线过点A(3,2),且与直线y=x+1平行,求该直线的方程。
解析:根据直线的平行关系,可设所求直线的方程为y=x+c。
由于直线过点A(3,2),将该点坐标代入方程得:2=3+c,解得c=-1。
因此,所求直线的方程为y=x-1。
二、圆锥曲线的定义与标准方程圆锥曲线是平面解析几何中的一个重要内容,包括椭圆、双曲线和抛物线等。
在高职高考中,考生需要掌握圆锥曲线的定义、标准方程以及它们的几何性质。
例题2:已知椭圆的两焦点为F1(-2,0)、F2(2,0),且椭圆经过点(0,2),求该椭圆的标准方程。
解析:根据椭圆的定义,可知该椭圆的焦点在x轴上,且半焦距c=2。
再由椭圆的性质可知,a=√(b^2+c^2)=2√2,从而得出b=√(a^2-c^2)=√(8-4)=2。
因此,所求椭圆的标准方程为:x^2/8+y^2/4=1。
三、直线与圆锥曲线的综合问题直线与圆锥曲线的综合问题往往是高职高考中的难题,这类问题需要考生综合运用直线和圆锥曲线的知识进行求解。
考生在复习时,应注重对这类问题的练习和掌握。
例题3:已知直线l过点(1,-2),且与椭圆5x^2+4y^2=20相交于A、B两点,求弦AB的长度。
解析:设直线l的方程为y+2=k(x-1)。
然后,将该方程代入椭圆方程5x^2+4y^2=20中,得到一个关于x的二次方程。
再根据韦达定理,可以求出交点A、B的横坐标之和x1+x2和纵坐标之和y1+y2。
利用两点间的距离公式求出|AB|的值。
高考数学复习点拨 直线与圆锥曲线问题解析
直线与圆锥曲线问题解析直线与圆锥曲线的位置关系是圆锥曲线与方程中的重点内容,特别是公共点,弦长及最值等方面的内容更是本章的热点.下面就其三个方面进行说明.1.直线与圆锥曲线的交点问题,考查用方程组的方法求交点的个数及交点坐标,培养方程思想例1 讨论直线:1l y kx =+与双曲线22:1C x y -=的公共点的个数.解:联立方程2211y kx x y =+⎧⎨-=⎩,,整理得22(1)220k x kx ---=, 当1k =±时,1x =.当1k ≠±时,22248(1)84k k k ∆=+-=-,若0∆>,则k <若0∆=,则k =若0∆<,则k <或k >综上所述,当k =时,直线与双曲线相切于一点;1k =±时,直线与双曲线相交于一点;k <或k >时,直线与双曲线没有公共点;1k <<或11k -<<或1k <-时,直线与双曲线有两个公共点.说明:直线与圆锥曲线有无公共点的问题,实际上就是相应的方程组有无实数解的问题.直线与双曲线公共点的个数,特别是只有一个公共点时,除了相切的情况之外,还有直线与双曲线渐近线相平行时的情况.抛物线同样也存在这样的问题,应特别引起注意.2.直线与圆锥曲线的相交弦中点问题,考查运用一元二次方程根与系数的关系,考查用点差法与中点建立联系的能力例2 已知倾斜角为45°的直线l 过点(12)A -,,若直线l 与双曲线222:1(0)x C y a a-=>相交于E F ,两点,且线段EF 的中点坐标为(41),,求a 的值. 解:由题意易知,直线l 的方程为3y x =-, 由方程组22231y x x y a=-⎧⎪⎨-=⎪⎩,,得22116100x x a ⎛⎫-+-= ⎪⎝⎭.设两个交点分别为1122()()E x y F x y ,,,, 则212261a x x a +=--,因为EF 的中点坐标为(41),, 所以1242x x +=,即22341a a =-,得2a =. 注:本题同样也可用“点差法”解.说明:(1)求弦中点(轨迹)问题一般解题步骤:①联立解方程组转化为一元二次方程;②应用根与系数的关系;③消参数(注意检验).(2)求弦的中点及与中点有关的问题,常用根与系数的关系;有时采用“点差法”,可优化解题方法,简化运算.3.圆锥曲线的弦长问题,考查两点的距离公式,弦长公式,以及分类讨论思想 例3已知点(A和B ,动点C 到A B ,两点的距离之差的绝对值为2,点C 的轨迹与直线2y x =-交于D E ,两点,求线段DE 的长.解:设点()C x y ,,则2CA CB -=±,根据双曲线的定义,可知点C 的轨迹是双曲线22221x y a b-=.由222a c AB ===,,得2212a b ==,,故点C 的轨迹方程是2212y x -=. 由22122y x y x ⎧-=⎪⎨⎪=-⎩,,消去y ,得2460x x +-=. 因为0∆>,所以直线与双曲线有两个交点.设交点为1122()()D x y E x y ,,,,则124x x +=-,126x x =-.故DE(或12DE x -=.说明:(1)当弦的两端点的坐标易求时,可直接求出交点坐标,再用两点间距离公式求弦长;(2)当弦的两端点的坐标不易求时,可用弦长公式12d x -或12d y =-;如果直线方程涉及斜率,要注意斜率不存在的情况.。
直线与圆锥曲线
直线与圆锥曲线一、基本知识:1.直线与圆锥曲线的位置关系:相交、相切、相离。
从代数的角度看是直线方程和圆锥曲线的方程组成的方程组,无解时必相离;有两组解必相交;一组解时,若化为x 或y 的方程二次项系数非零,判别式⊿=0时必相切,若二次项系数为零,有一组解仍是相交。
2. 弦:直线被圆锥曲线截得的线段称为圆锥曲线的弦。
焦点弦:若弦过圆锥曲线的焦点叫焦点弦;通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径。
3.①当直线的斜率存在时,弦长公式: 2121x x k l -+==[]2122124)()1(x x x x k -+⋅+或当k 存在且不为零时 21211y y kl -+=,(其中(11,y x ),(22,y x )是交点坐标)。
②抛物线px y 22=的焦点弦长公式|AB|=α221sin 2p p x x =++,其中α为过焦点的直线的倾斜角。
4.重点难点:直线与圆锥曲线相交、相切条件下某些关系的确立及其一些字母范围的确定。
5.思维方式: 方程思想、数形结合的思想、设而不求与整体代入的技巧。
6.特别注意:直线与圆锥曲线当只有一个交点时要除去两种情况,直线才是曲线的切线。
一是直线与抛物线的对称轴平行;二是直线与双曲线的渐近线平行。
二、例题:【典例精析】热点一 直线与圆锥曲线的交点问题例1. 直线1+-=k kx y 与椭圆14922=+y x 有_ _个公共点 A. 0个 B. 一个 C. 二个 D. 不确定变式迁移1 不论k 为何值,如果直线 y=kx+b 与椭圆14922=+y x 总有公共点,求b 的取值范围?热点二 中点弦问题例2 在椭圆x 2+4y 2=16中,求通过点M(2,1)且被这点平分的弦所在直线的方程和弦长. 变式迁移 2 (2010山东)已知抛物线 y 2 =2px ,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,求该抛物线的准线方程。
圆锥曲线问题在高考的常见题型及解题技巧
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线作为高等数学中的重要内容,在高考中常常出现,并且是考察学生数学运算能力和理解能力的重要方面。
圆锥曲线问题在高考中的常见题型有:直线与圆锥曲线的交点问题、圆锥曲线的参数方程问题、圆锥曲线的性质和应用问题等。
下面我们来一一介绍这些常见题型的解题技巧。
一、直线与圆锥曲线的交点问题这是圆锥曲线问题中最常见的一个题型,题目通常要求求出直线与圆锥曲线的交点坐标。
解题技巧如下:1. 分析题目给出的直线和圆锥曲线,确定直线方程和圆锥曲线方程;2. 将直线方程代入圆锥曲线方程中,解方程得出交点坐标;3. 特别要注意,当圆锥曲线为椭圆或双曲线时,有两个交点,需要分别求解;4. 当圆锥曲线为抛物线时,还需要注意直线的位置与抛物线的开口方向。
二、圆锥曲线的参数方程问题圆锥曲线的参数方程问题通常考查学生对参数方程的理解和应用能力,解答这类问题的关键在于用参数代换替换变量。
解题技巧如下:1. 给出的圆锥曲线通常可以用参数方程表示,将已知的参数方程代入题目求解;2. 注意参数方程的参数范围,有时需要根据范围重新调整参数;3. 对于给出的参数方程,需要将参数代换替换变量,进而得出答案。
三、圆锥曲线的性质和应用问题圆锥曲线的性质和应用问题通常要求学生掌握圆锥曲线的基本性质,以及如何应用这些性质解决实际问题。
解题技巧如下:1. 需要牢记圆锥曲线的基本性质,例如椭圆的焦点、双曲线的渐近线等;2. 掌握各种类型圆锥曲线的标准方程和参数方程;3. 对于应用问题,需要在掌握了基本性质的前提下,将问题转化为数学模型,进而解决。
以上就是圆锥曲线问题在高考中的常见题型及解题技巧,希望对大家备战高考有所帮助。
在复习期间,建议大家多做练习题,加深对圆锥曲线知识的理解,提高解题能力。
多思考,灵活运用各种解题技巧,相信大家一定能在高考中取得好成绩!。
直线与圆锥曲线知识点与题型归纳总结
直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。
直线与圆锥曲线题型总结
直线与圆锥曲线题型总结1. 直线和圆锥曲线的基本知识首先,我们需要理解直线和圆锥曲线的基本知识。
* 直线:直线是由无限多个点组成的,其特点是任意两点可以确定一条直线。
* 圆锥曲线:圆锥曲线是由一个平面和一个圆锥共同产生的曲线。
常见的圆锥曲线有直线、抛物线、椭圆和双曲线。
2. 直线和圆锥曲线的交点问题直线和圆锥曲线的交点问题是常见的题型。
我们可以通过以下步骤来解决这类问题:* 确定直线和圆锥曲线的方程* 将直线和圆锥曲线的方程联立* 求解方程组,得到交点的坐标3. 直线和圆锥曲线的性质问题除了求解交点外,直线和圆锥曲线的性质问题也是需要掌握的。
常见的性质问题包括:* 判断直线和圆锥曲线是否相交* 判断直线是否切线或法线* 判断直线和圆锥曲线的交点个数4. 示例题目分析下面是几个直线和圆锥曲线题目的示例分析:示例题目1已知直线方程为 y = mx + b,圆锥曲线方程为 x^2 + y^2 = r^2,求直线和圆锥曲线的交点。
解析:将直线方程代入圆锥曲线方程,得到一个二次方程。
通过求解该二次方程,可以得到直线和圆锥曲线的交点坐标。
示例题目2已知直线方程为 y = kx + c,圆锥曲线方程为 (x - a)^2 + (y -b)^2 = r^2,判断直线和圆锥曲线的交点情况。
解析:将直线方程代入圆锥曲线方程,得到一个关于 x 的二次方程。
通过判别二次方程的根的情况,可以判断直线和圆锥曲线的交点情况。
5. 总结直线和圆锥曲线题型是数学中的重要内容,需要掌握其基本知识和解题方法。
通过理解直线和圆锥曲线的基本性质,我们可以解决交点问题和性质问题。
练更多的示例题目,将有助于提高解题能力和理解能力。
以上是直线与圆锥曲线题型总结的内容。
参考资料:。
备战2021高考数学二轮复习专题方法技巧专题21 直线与圆锥曲线 (解析版)
一、 知识框架
二、直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系:
1.代数法:把圆锥曲线方程 C 与直线方程 l 联立,消去 y (也可以消去 x ),整理得到关于 x (或者 y )
的一元方程 ax2 bx c 0 . (1)当 a 0 时:计算 b2 4ac.
与椭圆
x2 8
y2 4
1 的右焦点重合,抛物线 C1 的准线与 x 轴
的交点为 K ,过 K 作直线 l 与抛物线 C1 相切,切点为 A ,则 △AFK 的面积为( )
A.32
B.16
C .8
D.4
【解析】抛物线 C1
的焦点为
p 2
,
0
,椭圆的焦点为 2,0
,所以
p 2
2 ,即
p
4
,
所以抛物线方程为: y2 8x ,则 K 为 2, 0 ,
)
94
A.没有交点
B.只有一个交点 C.有两个交点
D.有三个交点
【解析】当 x 0 时,曲线为 y2 x2 1,与直线方程联立得:13x2 24x 0 94
解得:
x1
0,
x2
24 13
此时直线与曲线有两个交点
当 x 0 时,曲线为 y2 x2 1,与直线方程联立得: 5x2 24x 0 94
直线与抛物线只有一个公共点⇔(*)只有一个根 ①k=0 时,y=0 符合题意 ②k≠0 时,△=(2k2﹣4)2﹣4k4=0
整理,得 k2=1,解得 k 1或 k=﹣1.综上可得, k 1或 k=﹣1 或 k=0.
故答案为﹣1 或 0 或 1
【练习
6】已知抛物线 C1
历年高三数学高考考点之〈直线与圆锥曲线〉必会题型及答案
历年高三数学高考考点之〈直线与圆锥曲线〉必会题型及答案体验高考1.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若|PC |=2|AB |,求直线AB 的方程.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意. 当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),将AB 的方程代入椭圆方程, 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±2(1+k 2)1+2k2, C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k2. 若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2),从而PC =2(3k 2+1)1+k2|k |(1+2k 2). 因为|PC |=2|AB |,所以2(3k 2+1)1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2, 解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.2.如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0), 可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy-4=0.故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又直线AB 的斜率为2tt 2-1, 故直线FN 的斜率为-t 2-12t,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t.所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).3.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P ⎝ ⎛⎭⎪⎫3,12在椭圆E 上.(1)求椭圆E 的方程;(2)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |·|MB |=|MC |·|MD |. (1)解 由已知,得a =2b ,又椭圆x 2a 2+y 2b 2=1(a >b >0)过点P ⎝⎛⎭⎪⎫3,12,故34b 2+14b 2=1,解得b 2=1.所以椭圆E 的方程是x 24+y 2=1.(2)证明 设直线l 的方程为y =12x +m (m ≠0),A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =12x +m ,得x 2+2mx +2m 2-2=0,①方程①的判别式为Δ=4m 2-4(2m 2-2),由Δ>0, 即2-m 2>0,解得-2<m < 2. 由①得x 1+x 2=-2m ,x 1x 2=2m 2-2.所以M 点坐标为⎝⎛⎭⎪⎫-m ,m 2,直线OM 方程为y =-12x ,由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =-12x ,得C ⎝ ⎛⎭⎪⎫-2,22,D ⎝ ⎛⎭⎪⎫2,-22.所以|MC |·|MD |=52(-m +2)·52(2+m )=54(2-m 2). 又|MA |·|MB |=14|AB |2=14[(x 1-x 2)2+(y 1-y 2)2]=516[(x 1+x 2)2-4x 1x 2] =516[4m 2-4(2m 2-2)]=54(2-m 2). 所以|MA |·|MB |=|MC |·|MD |.高考必会题型题型一 直线与圆锥曲线位置关系的判断及应用例1 设焦点在x 轴上的椭圆M 的方程为x 24+y 2b 2=1(b >0),其离心率为22.(1)求椭圆M 的方程;(2)若直线l 过点P (0,4),则直线l 何时与椭圆M 相交? 解 (1)因为椭圆M 的离心率为22, 所以4-b 24=⎝ ⎛⎭⎪⎫222,得b 2=2.所以椭圆M 的方程为x 24+y 22=1.(2)①过点P (0,4)的直线l 垂直于x 轴时,直线l 与椭圆M 相交.②过点P (0,4)的直线l 与x 轴不垂直时,可设直线l 的方程为y =kx +4.由⎩⎪⎨⎪⎧y =kx +4,x 24+y22=1消去y ,得(1+2k 2)x 2+16kx +28=0. 因为直线l 与椭圆M 相交,所以Δ=(16k )2-4(1+2k 2)×28=16(2k 2-7)>0, 解得k <-142或k >142. 综上,当直线l 垂直于x 轴或直线l 的斜率的取值范围为⎝ ⎛⎭⎪⎫-∞,-142∪⎝ ⎛⎭⎪⎫142,+∞时,直线l 与椭圆M 相交.点评 对于求过定点的直线与圆锥曲线的位置关系问题,一是利用方程的根的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零;二是利用图形来处理和理解;三是直线过定点位置不同,导致直线与圆锥曲线的位置关系也不同.变式训练1 (2015·安徽)设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求椭圆E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b , 又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x5b+yb=1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72,则线段NS 的中点T 的坐标为⎝⎛⎭⎪⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b +-14b +74b=1,72+12b x 1-52b =5,解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.题型二 直线与圆锥曲线的弦的问题例2 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-c ,0),F 2(c ,0)(c >0),过点E (a 2c,0)的直线与椭圆相交于A ,B 两点,且F 1A ∥F 2B ,|F 1A |=2|F 2B |. (1)求椭圆的离心率;(2)求直线AB 的斜率.解 (1)由F 1A ∥F 2B ,且|F 1A |=2|F 2B |,得|EF 2||EF 1|=|F 2B ||F 1A |=12,从而a 2c -c a 2c+c =12, 整理,得a 2=3c 2,故离心率e =33. (2)由(1)得b 2=a 2-c 2=2c 2,所以椭圆的方程可写为2x 2+3y 2=6c 2,设直线AB 的方程为y =k (x -a 2c),即y =k (x -3c ).由已知设A (x 1,y 1),B (x 2,y 2),则它们的坐标满足方程组⎩⎪⎨⎪⎧y =k (x -3c ),2x 2+3y 2=6c 2消去y 并整理,得(2+3k 2)x 2-18k 2cx +27k 2c2-6c 2=0,依题意,Δ=48c 2(1-3k 2)>0,得-33<k <33, (*)而x 1+x 2=18k 2c2+3k 2,① x 1x 2=27k 2c 2-6c 22+3k2,②由题设知,点B 为线段AE 的中点, 所以x 1+3c =2x 2,③联立①③解得x 1=9k 2c -2c 2+3k 2,x 2=9k 2c +2c2+3k 2,将x 1,x 2代入②中,解得k =±23满足(*)式, 故所求k 的值是±23. 点评 直线与圆锥曲线弦的问题包括求弦的方程,弦长,弦的位置确定,弦中点坐标轨迹等问题,解决这些问题的总体思路是设相关量,找等量关系,利用几何性质列方程(组),不等式(组)或利用一元二次方程根与系数的关系,使问题解决.变式训练2 设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求椭圆E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求椭圆E 的方程. 解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y2b2=1消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0, 则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2. 因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2], 即43a =4ab2a 2+b 2, 故a 2=2b 2,所以E 的离心率e =c a =a 2-b 2a =22.(2)设AB 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3,y 0=x 0+c =c3. 由|PA |=|PB |, 得k PN =-1,即y 0+1x 0=-1, 得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.高考题型精练1.(2015·北京)已知椭圆C :x 2+3y 2=3,过点D (1,0)且不过点E (2,1)的直线与椭圆C 交于A ,B 两点,直线AE 与直线x =3交于点M . (1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由.解 (1)椭圆C 的标准方程为x 23+y 2=1,所以a =3,b =1,c = 2. 所以椭圆C 的离心率e =c a =63. (2)因为AB 过点D (1,0)且垂直于x 轴, 所以可设A (1,y 1),B (1,-y 1), 直线AE 的方程为y -1=(1-y 1)(x -2), 令x =3,得M (3,2-y 1),所以直线BM 的斜率k BM =2-y 1+y 13-1=1.(3)直线BM 与直线DE 平行,证明如下: 当直线AB 的斜率不存在时,由(2)可知k BM =1. 又因为直线DE 的斜率k DE =1-02-1=1,所以BM ∥DE , 当直线AB 的斜率存在时,设其方程为y =k (x -1)(k ≠1),设A (x 1,y 1),B (x 2,y 2), 则直线AE 的方程为y -1=y 1-1x 1-2(x -2). 令x =3,得点M ⎝⎛⎭⎪⎫3,y 1+x 1-3x 1-2,由⎩⎪⎨⎪⎧x 2+3y 2=3,y =k (x -1),得(1+3k 2)x 2-6k 2x +3k 2-3=0, 所以x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k2,直线BM 的斜率k BM =y 1+x 1-3x 1-2-y 23-x 2,因为k BM -1=k (x 1-1)+x 1-3-k (x 2-1)(x 1-2)-(3-x 2)(x 1-2)(3-x 2)(x 1-2)=(k -1)[-x 1x 2+2(x 1+x 2)-3](3-x 2)(x 1-2)=(k -1)⎝ ⎛⎭⎪⎫-3k 2+31+3k 2+12k 21+3k 2-3(3-x 2)(x 1-2)=0,所以k BM =1=k DE . 所以BM ∥DE ,综上可知,直线BM 与直线DE 平行.2.(2016·课标全国甲)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4.又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 将直线AM 的方程y =k (x +2)(k >0)代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0,由x 1·(-2)=16k 2-123+4k 2得x 1=2(3-4k 2)3+4k 2,故|AM |=|x 1+2|1+k 2=121+k23+4k2.由题设,直线AN 的方程为y =-1k(x +2),故同理可得|AN |=12k 1+k23k 2+4. 由2|AM |=|AN |,得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0, 设f (t )=4t 3-6t 2+3t -8, 则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)单调递增, 又f (3)=153-26<0,f (2)=6>0, 因此f (t )在(0,+∞)有唯一的零点, 且零点k 在(3,2)内, 所以3<k <2.3.已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值. 解 (1)依题意知|c +2|2=322,c >0,解得c =1.所以抛物线C 的方程为x 2=4y . (2)由y =14x 2得y ′=12x ,设A (x 1,y 1),B (x 2,y 2),则切线PA ,PB 的斜率分别为12x 1,12x 2,所以切线PA 的方程为y -y 1=x 12(x -x 1), 即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0, 又点P (x 0,y 0)在切线PA 和PB 上,所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0的两组解,所以直线AB 的方程为x 0x -2y -2y 0=0.(3)由抛物线定义知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0, 所以y 1+y 2=x 20-2y 0,y 1y 2=y 20, 所以|AF |·|BF |=y 1y 2+(y 1+y 2)+1 =y 20+x 20-2y 0+1 =y 20+(y 0+2)2-2y 0+1=2y 20+2y 0+5=2⎝⎛⎭⎪⎫y 0+122+92, 所以当y 0=-12时, |AF |·|BF |取得最小值,且最小值为92. 4.已知椭圆C 1:y 2a 2+x 2b2=1(a >b >0)的右顶点为A (1,0),过C 1的焦点且垂直长轴的弦长为1. (1)求椭圆C 1的方程;(2)设点P 在抛物线C 2:y =x 2+h (h ∈R )上,C 2在点P 处的切线与C 1交于点M ,N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值. 解 (1)由题意,得⎩⎪⎨⎪⎧ b =1,2·b 2a=1, 从而⎩⎪⎨⎪⎧ a =2,b =1.因此,椭圆C 1的方程为y 24+x 2=1. (2)如图,设M (x 1,y 1),N (x 2,y 2),P (t ,t 2+h ),则抛物线C 2在点P 处的切线斜率为y ′| x =t =2t . 直线MN 的方程为y =2tx -t 2+h .将上式代入椭圆C 1的方程中,得4x 2+(2tx -t 2+h )2-4=0,即4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0. ① 因为直线MN 与椭圆C 1有两个不同的交点, 所以①式中的Δ1=16[-t 4+2(h +2)t 2-h 2+4]>0. ②设线段MN 的中点的横坐标是x 3, 则x 3=x 1+x 22=t (t 2-h )2(1+t 2).设线段PA 的中点的横坐标是x 4, 则x 4=t+12.由题意,得x 3=x 4,即t 2+(1+h )t +1=0.③由③式中的Δ2=(1+h )2-4≥0,得h ≥1,或h ≤-3.当h ≤-3时,h +2<0,4-h 2<0,则不等式②不成立,所以h ≥1.当h =1时,代入方程③得t =-1,将h =1,t =-1代入不等式②,检验成立. 所以,h 的最小值为1.。
高考数学一轮总复习第九章平面解析几何第八节直线与圆锥曲线的位置关系课件
x=- ,分别过
2
F( ,0),
2
A,B 作准线的垂线,垂足为点 A',B',
过A作BB'的垂线,垂足为M,设|AA'|=|AF|=t,
∵|BF|=3|FA|,∴|BB'|=|BF|=3t,则|BM|=2t,|AB|=4t,
∴∠ABM=60°.
即直线l的倾斜角∠AFx=120°,可得直线l的斜率为
k=tan 120°= - 3 ,故选A.
考点二
弦长问题
典例突破
例2.(多选)(2023新高考Ⅱ,10)设O为坐标原点,直线 y=- 3(x-1) 过抛物线
C:y2=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则(
A.p=2
B.|MN|=
8
3
C.以MN为直径的圆与l相切
D.△OMN为等腰三角形
21
22
(2 -1 )(2 +1 )
2
2
+1 =1, +2 =1,两式作差,得
+(y2-y1)(y2+y1)=0.因为
2
2
2
2 -1
0
x1+x2=2x0,y1+y2=2y0, - =kAB,所以 kAB=-2 .
2 1
0
(1)设弦中点为 M(x,y),由①式, 得
2=-2,所以
= 16 2 -4 × (1- 2 ) × (-10) > 0,
4
A(x1,y1),B(x2,y2),则 1 + 2 =
1 2 =
解得-
15
<k<-1.故选
3
高中数学齐次化妙解圆锥曲线问题 (解析版)
齐次化妙解圆锥曲线问题【微点综述】直线与圆锥曲线位置关系,是高考的一个难点,而其中一个难在于运算,本微专题的目标在于采用齐次化运算解决直线与圆锥曲线的一类:斜率之和或斜率之积的问题.本专题重难点:一是在于消元的解法,即怎么构造齐次化方程;二是本解法的适用范围.亮点是用平面几何的视角解决问题.圆锥曲线的定义、定值、弦长、面积,很多都可以转化为斜率问题,当圆锥曲线遇到斜率之和或者斜率之积,以往我们的常用解法是设直线y =kx +b ,与圆锥曲线方程联立方程组,韦达定理,再将斜率之和或之积的式子通分后,将x 1+x 2和x 1⋅x 2代入,得到关于k 、b 的式子.解法不难,计算量较为复杂.如果采用齐次化解决,直接得到关于k 的方程,会使题目计算量大大减少.“齐次”即次数相等的意思,例如f x =ax 2+bxy +cy 2称为二次齐式,即二次齐次式的意思,因为f x 中每一项都是关于x 、y 的二次项.如果公共点在原点,不需要平移.如果不在原点,先平移图形,将公共点平移到原点,无论如何平移,直线斜率是不变的.注意平移口诀是“左加右减,上减下加”,你没有看错,“上减下加”,因为是在等式与y 同侧进行加减,我们以往记的“上加下减”都是在等式与y 的异侧进行的.例:y =kx +b 向上平移1个单位,变为y =kx +b +1,即y -1=kx +b ,x 2a 2+y 2b 2=1向上平移1个单位,变为x 2a 2+y -1 2b 2=1.设平移后的直线为mx +ny =1(为什么这样设?∵这样齐次化更加方便,相当于“1”的妙用),与平移后的圆锥联立,一次项乘以mx +ny ,常数项乘以mx +ny 2,构造ay 2+bxy +cx 2=0,然后等式两边同时除以x 2(前面注明x 不等于0),得到a ⋅y x2+b ⋅y x +c =0,可以直接利用韦达定理得出斜率之和或者斜率之积,y 1x 1+y 2x 2=-b a ,y 1x 1⋅y 2x 2=c a ,即可得出答案.如果是过定点题目,还需要还原,之前如何平移,现在反平移回去.总结解法为:①平移;②联立并齐次化;③同除以x 2;④韦达定理.证明完毕,若过定点,还需要还原.优点:大大减小计算量,提高准确率!缺点:mx +ny =1不能表示过原点的直线,少量题目需要讨论.一、齐次化运算的前世--韦达定理1.韦达定理发展简史法国数学家弗朗索瓦·韦达(Fran çois Vi ète ,1540-1603)在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n =2,3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理.证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性.2.韦达定理:设关于x 的一元二次方程ax 2+bx +c =0的两根为x 1,x 2,则x 1+x 2=-b a ,x 1x 2=c a .韦达定理是本微专题的理论基础..引例1.已知x1和x2是方程2x2+3x-4=0的两个根,求1x1+1x2的值.【解析】解法1:1x1+1x2=x1+x2x1⋅x2=-b aca=-b c=34.解法2:方程两边同除以x2,得-41x2+31x +2=0,∵1x1,1x2,∴由韦达定理得1x1+1x2=34.引例2.设x1,y1,x2,y2是方程组y=x-1,y2=4x的两组根,求y1x1+y2x2,y1x1⋅y2x2的值.【分析】如果可以建立关于以yx为未知数的一元二次方程Ayx2+B⋅y x+C=0,那么y1x1+y2x2,y1x1⋅y2x2就是对应方程的两根之和了.所以本运算的关键是如何通过消元得到:Ay2+Bxy+Cx2=0,再由x≠0,方程两边同时除以x2.消元得到方程Ay2+Bxy+Cx2=0是个二次齐次式,所以把本计算方法命名为:齐次化运算.观察y=x-1,y2=4x,发现y2已经为二次式,关键在于将4x化成二次式,由y=x-1可得1=x-y,∴y2=4x⋅1=4x⋅x-y,整理可得y2+4xy-4x2=0,显然x=0不是方程y2+4xy-4x2=0的根,方程y2+4xy-4x2=0两边同时除以x2可得:关于yx为未知数的一元二次方程:yx2+4⋅y x-4=0,则由韦达定理可得:y1x1+y2x2=-4,y1x1⋅y2x2=-4.二、齐次化运算的今生--韦达定理遇到笛卡尔解析几何例1.直线mx+ny=1与抛物线y2=4x交于A x1,y1,B x2,y2,求k OA+k OB,k OA⋅k OB.(用m,n表示)【解析】联立mx+ny=1y2=4x,齐次化得y2=4x mx+ny,等式两边同时除以x2,yx2-4n y x -4m=0,∴∴k OA+k OB=y1x1+y2x2=4n,k OA k OB=y1x1⋅y2x2=-4m.例2.直线mx+ny=1与椭圆x24+y23=1交于A x1,y1,B x2,y2,求k OA⋅k OB(用m,n表示).【解析】mx+ny=1 x24+y23=1齐次化联立得:x24+y23=mx+ny2,等式两边同时除以x2,12n2-4yx2+24mn y x +12m2-3=0,∴k OA⋅k OB=y1x1⋅y2x2=12m2-312n2-4.引例3.已知动直线l的方程为mx+ny=1.(1)若m=2n,求直线l的斜率;(2)若m=-12,求直线l所过的定点;(3)若m=2n+1,求直线l所过的定点;(4)若m=2n+2,求直线l所过的定点;(5)若6+3n4+12m=1,求直线l所过的定点.【解析】(1)k =-mn=-2.(2)-12x +ny =1,消去n ,令y =0,∴过定点-2,0 .(3)整理得m -2n =1∴过定点1,-2 .(4)整理得12m -n =1,∴过定点12,-1 .(5)整理得6m -32n =1,∴过定点6,-32 .例3.抛物线y 2=4x ,直线l 交抛物线于A 、B 两点,且OA ⊥OB ,求证:直线l 过定点.【解析】设直线AB 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1y 2=4x 联立得y x 2-4n y x-4m =0,∵k OA k OB=y 1y 2x 1x 2,∴-4m =-1,∴m =14,∴直线AB :14x +ny =1过定点4,0 .例4.不过原点的动直线交椭圆x 24+y 23=1于A 、B 两点,直线OA 、AB 、OB 的斜率成等比数列,求证:直线l 的斜率为定值.【解析】设直线AB 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1x 24+y 23=1联立得12n 2-4 y x 2+24mn y x+12m 2-3=0,于是k OA k OB =y 1x 1y 2x 2=12m 2-312n 2-4,又k AB =-m n ,∴12m 2-312n 2-4=m 2n 2,得k AB=-m n =±32.三、y -nx -m型怎么采用齐次化运算解决,平移是关键引例4.已知椭圆x 24+y 2=1,按照平移要求变换椭圆方程,并化简平移后的椭圆方程.(1)将椭圆向左平移1个单位,求平移后的椭圆;(2)将椭圆向右平移2个单位,求平移后的椭圆;(3)将椭圆向上平移3个单位,求平移后的椭圆;(4)将椭圆向下平移4个单位,求平移后的椭圆;(5)将椭圆向左平移1个单位,向下平移32个单位,求平移后的椭圆;(6)将椭圆向左平移2个单位,向下平移1个单位,求平移后的椭圆.【解析】(1)x +124+y 2=1,即4y 2+x 2+2x -3=0.(2)x -224+y 2=1,即4y 2+x 2-4x =0.(3)x 24+y -3 2=1,即4y 2+x 2-24y +32=0.(4)x 24+y +4 2=1,即4y 2+x 2+32y +60=0.(5)x +124+y +322=1,即4y 2+x 2+2x +43y =0.(6)x +224+y -1 2=1,即4y 2+x 2+4x -8y +4=0.例5.抛物线y 2=4x ,P 1,2 ,直线l 交抛物线于A 、B 两点,PA ⊥PB ,求证:直线l 过定点.【解析】将图形向左平移1个单位,向下平移2个单位,平移后的抛物线方程为y +2 2=4x +1 ,整理得y 2+4y -4x =0.设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1,y 2+4y -4x =0联立得1+4n y x 2+4m -4n y x -4m =0,于是k P Ak PB=y 1x 1⋅y 2x 2=-4m1+4n=-1,整理得4m -4n =1,∴mx +ny =1过定点4,-4 ,右移1个,上移2个,直线AB 过定点5,-2 .例6.椭圆x 24+y 23=1,点P 1,32,A ,B 为椭圆上两点,k PA +k PB =0.求证:直线AB 斜率为定值.【解析】解法一:将图形向左平移1个单位,向下平移32个单位,平移后的椭圆为x +1 24+y +3223=1,整理得4y 2+3x 2+6x +12y =0,设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =14y 2+3x 2+6x +12y =0,联立得4y 2+3x 2+6x +12y mx +ny =0,12n +4 y2+62m +n xy +6m +3 x 2=0,同时除以x 2,12n +4 y x2+62m +n y x +6m +3 =0,k P A+k PB=y 1x 1+y 2x 2=-62m +n 12n +4=0,-62m +n =0,mx +ny =1的斜率-m n =12.解法二(换元法):设A x 1,y 1 ,B x 2,y 2 ,即化为y 1-32x 1-1⋅y 2-32x 2-1=0,即建立以y -32x -1为未知数的一元二次方程A y -32x -12+B⋅y -32x -1+C =0,即可解答.为了方便运算设x -1=s ,y -32=t ,代入椭圆x 24+y 23=1,得3s 2+4t 2+6t +12t =0,∴设直线ms +nt =6可方便运算,3s 2+4t 2+t (ms +nt )+2t (ms +nt )=0,化简得:4+2n t s 2+2m +n t s +(3+m )=0,∴y 1-32x 1-1⋅y 2-32x 2-1=t 1s 1⋅t 2s 2=2m +n 4+2n =0,x -1=s ,y -32=t ,n =-2m 代入ms +nt =6,得m (x -1)-2m y -32 =6,∴直线AB 的斜率是12.例7.双曲线x 22-y 22=1,P 2,0 ,A 、B 为双曲线上两点,且k PA +k PB =0.AB 不与x 轴垂直,求证:直线AB 过定点.【解析】将图形左平移2个单位,平移后的双曲线为x +222-y 22=1,整理得y 2-x 2-4x -2=0,设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1y 2-x 2-4x -2=0 ,联立得y 2-x 2-4x mx +ny -2mx +ny 2=0,1-2n 2 y 2-4n +4mn xy -2m 2+4m +1 x 2=0,同时除以x 2,1-2n 2y x 2-4n +4mn y x -2m 2+4m +1 =0,k P A+k PB=y 1x 1+y 2x 2=4n +4mn 1-2n 2=0,4n +4mn =4n m +1 =0,n =0或m =-1,AB 不与x 轴垂直,n ≠0,∴m =-1,-x +ny =1过-1,0 ,右移2个单位,原直线过1,0 .四、齐次化在解析几何中的应用例8.(2021重庆期末)已知抛物线C :y 2=2px p >0 上一点A 2,a 到其焦点的距离为3.(Ⅰ)求抛物线C 的方程;(Ⅱ)过点4,0 的直线与抛物线C 交于P ,Q 两点,O 为坐标原点,证明:∠POQ =90°.【解析】解法1:(Ⅰ)由题意知:2--p2=3⇒p =2⇒y 2=4x .(Ⅱ)证明:设该直线为my =x -4,P 、Q 的坐标分别为x 1,y 1 、x 2,y 2 ,联立方程有:my =x -4y 2=4x⇒y 2-4my -16=0,OP ⋅OQ =x 1x 2+y 1y 2=y 21y 2216+y 1y 2=116×-16 2-16=0,∴∠POQ =90°.解法2:要证明∠POQ =90°,即证k PO ⋅k QO =-1,设PQ :mx +ny =1,过4,0 ,∴4m =1,m =14,y 2=4x mx +ny ,y 2-4nxy -4mx 2=0,同除以x 2得y x 2-4n y x -4m =0,k 1⋅k 2=-4m ,∵m =14,∴k 1⋅k 2=-1即∠POQ =90°.例9.如图,椭圆E :x 2a 2+y 2b 2=1a >b >0 经过点A 0,-1 ,且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点1,1 ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.【解析】解法1:(Ⅰ)由题设知,c a =22,b =1,结合a 2=b 2+c 2,解得a =2,∴x 22+y 2=1.(Ⅱ)证明:由题意设直线PQ 的方程为y =k x -1 +1k ≠0 ,代入椭圆方程x 22+y 2=1,可得1+2k 2 x 2-4k k -1 x +2k k -2 =0,由已知得1,1 在椭圆外,设P x 1,y 1 ,Q x 2,y 2 ,x 1x 2≠0,则x 1+x 2=4k k -1 1+2k 2,x 1x 2=2k k -21+2k 2,且Δ=16k 2k -1 2-8k k -2 1+2k 2 >0,解得k >0或k <-2.则有直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +2-k 1x 1+1x 2 =2k +2-k ⋅x 1+x 2x 1x 2=2k +2-k ⋅4k k -12k k -2=2k -2k -1 =2.即有直线AP 与AQ 斜率之和为2.解法2:(2)上移一个单位,椭圆E 和直线L :x 22+y -12=1mx +ny =1,mx +ny =1过点1,2 ,m +2n =1,m =1-2n ,x 2+2y -1 2=2,x 2+2y 2-4y =0,2y 2+x 2-4y mx +ny =0,-4n +2 y2-4mxy +x 2=0,∵x ≠0,同除x 2,得-4n +2 y x2-4m yx+1=0,k 1+k 2=-4m -4n +2=2m 1-2n =2mm=2.例10.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【解析】(1)设A x 1,x 214 ,B x 2,x 224为曲线C :y =x 24上两点,则直线AB 的斜率为k =x 214-x 224x 1-x 2=14x 1+x 2 =14×4=1.(2)解法1:设直线AB 的方程为y =x +t ,代入曲线C :y =x 24,可得x 2-4x -4t =0,即有x 1+x 2=4,x 1x 2=-4t ,再由y =x 24的导数为y=12x ,设M m ,m 24 ,可得M 处切线的斜率为12m ,由C 在M 处的切线与直线AB 平行,可得12m =1,解得m =2,即M 2,1 ,由AM ⊥BM 可得,k AM ⋅k BM =-1,即为x 214-1x 1-2⋅x 224-1x 2-2=-1,化为x 1x 2+2x 1+x 2 +20=0,即为-4t +8+20=0,解得t =7,则直线AB 的方程为y =x +7.解法2:y =x 24,y =x 2=1,x =2,∴M 2,1 ,左移2个单位,下移1个单位C:y +1=x +2 24,A B :mx +ny =1,4y +4=x 2+4x +4,x 2+4x -y mx +ny =0,x 2+4mx 2+nxy -mxy -ny 2 =0,1+4m x2+4n -m xy -4ny 2=0,x ≠0,同除以x 2,得-4n y x2+4n -m yx+1+4m =0,4nk 2-4n -m k -1+4m =0,mx +ny =1,斜率-mn =1,m =-n ,k 1k 2=-1+4m 4n=-1,1+4m =4n ,n =18,m =-18,-18x +18y =1,x -y +8=0右2,上1,x -2 -y -1 +8=0,x -y +7=0.例11.(2017年全国卷理)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 ,四点P 11,1 ,P 20,1 ,P 3-1,32 ,P 41,32 中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.【解析】(1)解:根据椭圆的对称性,P 3-1,32 ,P 41,32两点必在椭圆C 上,又P 4的横坐标为1,∴椭圆必不过P 11,1 ,∴P 20,1 ,P 3-1,32,P 41,32 三点在椭圆C 上,把P 20,1 ,P 3-1,32 代入椭圆C ,得:1b 2=11a 2+34b 2=1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2)证法1:①当斜率不存在时,设l :x =m ,A m ,y A ,B m ,-y A ,∵直线P 2A 与直线P 2B 的斜率的和为-1,∴k P 2A +k P 2B =y A -1m +-y A -1m =-2m=-1,解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y =kx +t ,t ≠1 ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +tx 2+4y 2-4=0 ,整理,得1+4k 2 x 2+8ktx +4t 2-4=0,x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2,则k P 2A +k P 2B =y 1-1x 1+y 2-1x 2=x 2kx 1+t -x 2+x 1kx 2+t -x 1x 1x 2=8kt 2-8k -8kt 2+8kt 1+4k 24t 2-41+4k 2=8k t -14t +1 t -1=-1,又t ≠1,∴t =-2k -1,此时Δ=-64k ,存在k ,使得Δ>0成立,∴直线l 的方程为y =kx -2k -1,当x =2时,y =-1,∴l 过定点2,-1 .证法2:下移1个单位得E:x 24+y +1 2=1,A B :mx +ny =1,x 24+y 2+2y =0,x 2+4y 2+8y mx +ny =0,8n +4 y 2+8mxy +x 2=0,∵x ≠0同除以x 2,8n +4 y x 2+8m y x +1=0,8n +4 k 2+8mk +1=0,k 1+k 2=-8m 8n +4=-1,8m =8n +4,2m -2n =1,∴mx +ny =1过2,-2 ,上移1个单位2,-1 .例12.(2018全国一文)设抛物线C :y 2=2x ,点A 2,0 ,B -2,0 ,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .【解析】(1)当l 与x 轴垂直时,x =2,代入抛物线解得y =±2,∴M 2,2 或M 2,-2 ,直线BM 的方程:y =12x +1,或y =-12x -1.(2)解法1:证明:设直线l 的方程为l :x =ty +2,M x 1,y 1 ,N x 2,y 2 ,联立直线l 与抛物线方程得y 2=2xx =ty +2 ,消x 得y 2-2ty -4=0,即y 1+y 2=2t ,y 1y 2=-4,则有k BN +k BM =y 1x 1+2+y 2x 2+2=y 222×y 1+y 212×y 2+2y 1+y 2 x 1+2 x 2+2 =y 1+y 2 y 1y 22+2 x 1+2 x 2+2=0,∴直线BN 与BM 的倾斜角互补,∴∠ABM =∠ABN .解法2:(2)右移2个单位C :y 2=2x -2 ,l :mx +ny =1过4,0 即4m =1,m =14,y 2=2x -4,y 2=2x mx +ny -4mx +ny 2,y 2=2mx 2+2nxy -4m 2x 2+n 2y 2+2mnxy ,1+4n 2y2+8mn -2n xy +4m 2-2m x 2=0,∵x ≠0,同除以x 2,得1+4n 2 k 2+8mn -2n k +4m 2-2m =0,k 1+k 2=-8mn -2n 1+4n 2=-2n 4m -1 1+4n 2=0,∴∠ABM =∠ABN .例13.(2018全国一卷理)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为2,0 .(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠O MB .【解析】(1)c =2-1=1,∴F 1,0 ,∵l 与x 轴垂直,∴x =1,由x =1x 22+y 2=1 ,解得x =1y =22 或x =1y =-22,∴A 1,22 ,或1,-22 ,∴直线AM 的方程为y =-22x +2,y =22x -2.(2)证明:解法1:当l 与x 轴重合时,∠OMA =∠O MB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠O MB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k x -1 ,k ≠0,A x 1,y 1 ,B x 2,y 2 ,则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1-2+y 2x 2-2,由y 1=kx 1-k ,y 2=kx 2-k 得k MA +k MB =2kx 1x 2-3x 1+x 2 +4k x 1-2 x 2-2 ,将y =k x -1 代入x 22+y 2=1可得2k 2+1 x 2-4k 2x +2k 2-2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴2kx 1x 2-3k x 1+x 2 +4k =12k 2+14k 3-4k -12k 3+8k 3+4k =0,从而k MA +k MB =0,故MA ,MB 的倾斜角互补,∴∠OMA =∠O MB ,综上∠OMA =∠O MB .解法2:左移2个单位C:x +222+y 2=1,l :mx +ny =1过-1,0 即-m =1.m =-1,x 2+4x +2y 2+2=0,x 2+4x mx +ny +2y 2+2mx +ny 2=0,2+2n 2y2+4n +4mn xy +1+4m +2m 2 x 2=0,∵x ≠0,同除以x 2,得2+2n 2 k 2+4n +4mn k +1+4m +2m 2=0,k 1+k 2=4n +4mn-2+2n 2=0,∴∠OMA =∠O MB .例14.(2020·新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1a >1 的左、右顶点,G 为E 的上顶点,AG ⋅GB =8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题意A -a ,0 ,B a ,0 ,G 0,1 ,∴AG =a ,1 ,GB =a ,-1 ,AG ⋅GB =a 2-1=8,解得:a =3,故椭圆E 的方程是x 29+y 2=1.(2)证法1:由(1)知A -3,0 ,B 3,0 ,设P 6,m ,则直线PA 的方程是y =m9x +3 ,联立x 29+y 2=1y =m 9x +3⇒9+m 2 x 2+6m 2x +9m 2-81=0,由韦达定理-3x c =9m 2-819+m 2⇒x c =-3m 2+279+m 2,代入直线PA 的方程为y =m 9x +3 得:y c=6m9+m 2,即C -3m 2+279+m 2,6m9+m 2,直线PB 的方程是y =m3x -3 ,联立方程x 29+y 2=1y =m 3x -3⇒1+m 2 x 2-6m 2x +9m 2-9=0,由韦达定理3x D =9m 2-91+m 2⇒x D =3m 2-31+m 2,代入直线PB 的方程为y =m 3x -3 得y D =-2m 1+m 2,即D 3m 2-31+m 2,-2m1+m 2 ,则①当x c =x D 即27-3m 29+m 2=3m 2-3m 2+1时,有m 2=3,此时x c =x D=32,即CD 为直线x =32.②x C ≠x D 时,直线CD 的斜率K CD =y C -y D x C -x D =4m33-m 2 ,∴直线CD 的方程是y --2m 1+m 2=4m 33-m 2 x -3m 2-31+m 2 ,整理得:y =4m 33-m 2x -32 ,直线CD 过定点32,0 .综合①②故直线CD 过定点32,0 .证法2:设P 6,t ,A -3,0 ,B 3,0 ,则k AC =k AP =t 9,k BD =k BP =t 3,根据椭圆第三定义(本书后面有详细讲解),k AD ⋅k BD =b 2a2=-19,∴k AD =-13t ,则k AC ⋅k AD =-127,将图像向右移动3个单位,则椭圆E 和直线l CD :x -329+y 2=1mx +ny =1,联立得:x 2-6x +9y 2=0,x 2-6x mx +ny +9y 2=0,即9y 2-6nxy +1-6m x 2=0,两边同时除以x 2,得:9y 2x2-6n yx +1-6m =0,则k AC ⋅k AD =1-6m 9=-127,解得m =29,则直线过定点92,0 ,则平移前过32,0 .例15.(2020·山东)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为22,且过点A 2,1 .(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【解析】(1)∵离心率e =c a =22,∴a =2c ,又a 2=b 2+c 2,∴b =c ,a =2b ,把点A 2,1 代入椭圆方程得,42b 2+1b 2=1,解得b 2=3,故椭圆C 的方程为x 26+y 23=1.(2)证法1:①当直线MN 的斜率存在时,设其方程为y =kx +m ,联立y =kx +mx 26+y 23=1,得2k 2+1 x 2+4km x +2m 2-6=0,由Δ=4km 2-42k 2+1 2m 2-6 >0,知m 2<6k 2+3,设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-62k 2+1,∵AM ⊥AN ,∴AM ⋅AN=x 1-2,y 1-1 ⋅x 2-2,y 2-1 =0,即k 2+1 x 1x 2+km -k -2 x 1+x 2 +m 2-2m +5=0,∴k 2+1 ⋅2m 2-62k 2+1+km -k -2 -4km 2k 2+1+m 2-2m +5=0,化简整理得,4k 2+8km +3m 2-2m -1=2k +m -1 2k +3m +1 =0,∴m =1-2k 或m =-2k +13,当m =1-2k 时,y =kx -2k +1,过定点A 2,1 ,不符合题意,舍去;当m =-2k +13时,y =kx -2k +13,过定点23,-13.设D x 0,y 0 ,则y 0=kx 0+m ,(i )若k ≠0,∵AD ⊥MN ,∴k ⋅kx 0+m -1x 0-2=-1,解得x 0=2k 2+4k +63k 2+3,y 0=3k 2+4k -13k 2+3,∴x 0-432+y 0-132=-2k 2+4k +23k 2+3 2+2k 2+4k -23k 2+3 2=8k 4+2k 2+1 9k 2+12=89,∴点D 在以43,13 为圆心,223为半径的圆上,故存在Q 43,13 ,使得DQ =223,为定值.(ii )若k =0,则直线MN 的方程为y =-13,∵AD ⊥MN ,∴D 2,-13 ,∴DQ =43-22+13+132=223,为定值.②当直线MN 的斜率不存在时,设其方程为x =t ,M t ,s ,N t ,-s ,且t 26+s 23=1,∵AM ⊥AN ,∴AM ⋅AN =t -2,s -1 ⋅t -2,-s -1 =t 2-4t -s 2+5=32t 2-4t +2=0,解得t =23或2(舍2),∴D 23,1 ,此时DQ =43-232+13-1 2=223,为定值.综上所述,存在定点Q 43,13,使得DQ 为定值,且该定值为223.证法2:将图像向左移动两个单位,向下移动一个单位,那么平移后的C 和直线M N :x +226+y +123=1mx +ny =1,联立得:x 2+2y 2+4x +4y mx +ny =0,两边同时除以x 2:4n +2 y 2+4m +4n xy +4m +1 x 2=0,得:4n +2 k 2+4m +4n k +4m +1 =0,∵AM ⊥AN ,∴k AM ⋅k AN =-1,∴4m +14n +2=-1,4m +1=-4n -2,即-43m +-43n =1,M N 过定点-43,--43 ,则平移前该直线过定点P 23,-13 .在△ADP 中,AD ⊥DP ,则D 点的轨迹是以AP 为直径,∵A 为定点,P 为定点,则AP 为定值,则Q 为AP 中点,此时DQ 为定值,∵A 2,1 ,P 23,-13,则Q 43,13 ,DQ =12AP =223.例16.(2022惠州模拟)已知左焦点为F -1,0 的椭圆过点E 1,233,过点P 1,1 分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点(1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证:直线MN 恒过定点,并求出定点坐标【解析】(1)由题意c =1,且右焦点F 1,0 ,∴2a =EF +EF =23,b 2=a 2-c 2=2,∴所求椭圆方程为x 23+y 22=1.(2)设A x 1,y 1 ,B x 2,y 2 ,则x 213+y 212=1①,x 223+y 222=1②②-①,可得k 1=y 2-y 1x 2-x 1=-2x 2+x 1 3y 2+y 1=-23.(3)证法1:由题意,k 1≠k 2,设M x M ,y M ,直线AB 的方程为y -1=k 1x -1 ,即y =k 1x +k 2,代入椭圆方程并化简得2+3k 21 x 2+6k 1k 2x +3k 22-6=0,∴x M =-3k 1k 22+3k 21,y M =2k 22+3k 21,同理,x N =-3k 1k 22+3k 22,y N =2k 12+3k 22,当k 1k 2≠0时,直线MN 的斜率k =y M -y N x M -x N =10-6k 1k 2-9k 1k 2,直线MN 的方程为y -2k 22+k 21=10-6k 1k 2-9k 1k 2x --3k 1k 22+3k 21,即y =10-6k 1k 2-9k 1k 2x -23,此时直线过定点0,-23 .当k 1k 2=0时,直线MN 即为y 轴,此时亦过点0,-23.综上,直线MN 恒过定点,且坐标为0,-23.证法2:设过点P 的弦的中点坐标为x 0,y 0 ,由点差法得y 0-1x 0-1⋅y 0x 0=-23,即中点的轨迹方程为2x 2-x +3y 2-y =0,将点P 平移到原点,整体左移1个单位,下移1个单位,设平移后的MN 方程为mx +ny =1,曲线为2x +1 2-x +1 +3y +1 2-y +1 =0,2x 2+3y 2+3y mx +ny +2x mx +ny =0,3+3n y 2+2n +3m xy +2+2m x 2=0,同除以x 2,得3+3n k 2+2n +3m k +2+2m =0,∵k 1+k 2=1,∴-2n +3m 3+3n =1,-m -35n =1,∴过定点-1,-53,则平移前的MN 过定点0,-23 .例17.(2022武汉模拟)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右顶点分别为A ,B ,过椭圆内点D 23,0 且不与x 轴重合的动直线交椭圆C 于P ,Q 两点,当直线PQ 与x 轴垂直时,PD =BD =43.(1)求椭圆C 的标准方程;(2)设直线AP ,AQ 和直线l :x =t 分别交于点M ,N ,若MD⊥ND 恒成立,求t 的值.【解析】(Ⅰ)由BD =43得a =23+43=2,故C 的方程为x 24+y 2b2=1,此时P 23,43 ,代入方程19+169b2=1,解得b 2=2,故C 的标准方程为x 24+y 22=1.(Ⅱ)解法1:设直线PQ 的方程为:x =my +23,与椭圆联立得m 2+2 y 2+4m 3y 329=0,设P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-4m 3m 2+2 y 1y 2=-329m 2+2,①此时直线PA 的方程为y =y 1x 1+2x +2 ,与x =t 联立,得点M t ,t +2 y 1x 1+2 ,同理,N t ,t +2 y 2x 2+2 ,由MD ⊥ND ,则k MD ⋅k ND =-1,即t +2 y 1t -23 x 1+2 ⋅t +2 y 2t -23 x 2+2=-1,∴t +2 2y 1y 2+t -23 2my 1+83 my 2+83 =0,即t +2 2y 1y 2+t -232m 2y 1y 2+8m 3y 1+y 2 +649 =0,把①代入得-32t +2 29m 2+2+t -23 2-32m 29m 2+2 -32m 29m 2+2 +649 =0,化简得-32t +2 2+t -23 2-32m 2-32m 2+64m 2+2 =0,即t +2 2-4t -23 2=0,t +2=±2t -23 ,解得t =-29或t =103.解法2:公共点A -2,0 ,右移2个单位后P O :mx +ny =1过D 83,0 ,∴83m +0n =1,m =38,C :x -2 24+y 22=1P O :mx +ny =1 ,x 2+2y 2-4x mx +ny =0,2y 2-4nxy +1-4m x 2=0,等式两边同时除以x ,2y x 2-4n y x +1-4m =0,k AP ⋅k AQ =k AM ⋅k AN =1-4m 2=-14,∵MD ⊥ND ,∴k MD ⋅k ND =-1,k DM ⋅k DN k AM ⋅k AN =-1-14=4,直线MN :x =t ,MTt -23⋅-NT t -23 MT t +2⋅-NT t +2=4,t +2 2t -23 2=4,解得t =-29或t =103.五、齐次化运算为什么不是解决圆锥曲线的常规武器通过上面分析,我们可以发现,齐次化运算比传统的设而不求运算量大大的降低,但为什么齐次化运算并不是常规武器呢?首先我们总结一下齐次化运算步骤f x ,y =0,g x ,y =0 ⇒A y x 2+B ⋅y x +C =0⇒y 1x 1+y 2x 2=-B A ,y 1x 1⋅y 2x 2=C A ⇒k 1+k 2=-B A ,k 1k 2=C A .通过上面的步骤可以看出,本方法适用于斜率的相关问题,有较大的局限性,当然,还有一个难点在于方程消元的基本思路是消未知数,而本方法是消去常数,这也是学生不适应之处.但更大的难点是如果通过审题,转化为斜率之积、之和问题.下面通过两道题来说明:例18.A ,B 分别是椭圆E :x 29+y 2=1左右顶点,P 是直线x =6的动点,PA 交E 于另一点C ,PB 交E 于另一点D .求证:直线CD 过定点.思路一:本问题没有直接的提到斜率之和(积),而且很容易入手,分别设直线PA ,PB ,与椭圆方程联立,消去x 得到关于y 的常数项为0的方程,即可解出C ,D 坐标,然后写出CD 方程.在实际运算中,C ,D 坐标,CD 过定点运算量巨大.本方法少思、多算.解答如下:证法一:设P 6,y 0,则直线AP 的方程为:y =y 0-06--3 x +3 ,即:y =y 09x +3 ,联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9,将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9,所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1.当y 20≠3时,直线CD 的方程为:y --2y 0y 02+1 =6y 0y 02+9--2y 0y 02+1 -3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04 x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1,整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32 ,所以直线CD 过定点32,0 .当y 20=3时,直线CD :x =32,直线过点32,0 .故直线CD 过定点32,0 .思路二:连接CB ,由椭圆第三定义得,k CA k CB =-19,而k CA k CB =-19, k CA =PQ AQ,k BD =k BP =PQ BQ =13,可得:k BC k BD =-13,就可以采用本方法解答.证法二:设交点C x 1,y 1 ,D x 2,y 2 ,即化为y 1x 1-3⋅y 2x 2-3=-13,设x -3=t ,得t 2+9y 2+6t =0, 故设6=mt +ny 易算.计算如下:9y t 2+n ⋅y t +m +1 =0⇒k 1k 2=m +19=-13⇒m =-4⇒-4x -3 +ny =6,可知直线CD 过定点32,0 .例19.A ,B 分别是椭圆E :x 24+y 2=1下上两顶点,过(1,0)的直线l 交于E 的C ,D ,设直线AC ,BD 的斜率为k 1,k 2,k 1=2k 2,求直线l 的方程.【分析】已知给出了k 1=2k 2,但还是没有斜率之积(和)为定值,还是要用到椭圆的第三定义,k AD k BD =-14,得到k AC k AD =-12,即可采用齐次化运算了.【简解】设交点C x 1,y 1 ,D x 2,y 2 ,即化为y 1x 1+1⋅y 2x 2+1=-12,设y +1=t ,得x 2+4t 2-8t =0, 所以设8=mx +n (y +1)=mx +nt 易算.计算如下:4-n t x 2-m ⋅t x +1=0,∴k 1k 2=14-n ,∴14-n =-12,∴n =6,又l 过(1,0),得m =2,∴直线l 的方程的方程:y =13x -13.六、为什么斜率为会是定值,从平面几何看众所周知,直径所对的圆周角为直角,其实圆相交弦的还有如下性质.如图圆中,AB 为直径,CD 与AB 交于F ,则有如下性质:tan αtan β=BF AF =PQ AQ ,tan ηtan β=-PQ AQ.引入坐标系,如图建系,设A (-a ,0),B (a ,0),F (m ,0),则k BC k BD =m +a m -a ,k AC k BD =a -m m +a ,且AB 与CD 的交点在直线x =a 2m 上.【简证】tan αtan β=sin αsin βcos αcos β=sin αsin βsin γsin η,分别在ΔACF ,ΔBCF ,由正弦定理得:sin αsin β=CF AF ,sin γsin η=BF CF ,所以tan αtan β=sin αsin β⋅cos αcos β=sin αsin β⋅sin γsin η=CF AF ⋅BF CF =BF AF,tan α=PQ AQ ,tan β=PQ BQ ,tan αtan β=BQ AQ,而tan ηtan β=-tan βtan α=-AQ BQ .那么椭圆怎么有这些性质呢?如图,圆的方程为x 2+y 2=a 2,椭圆方程为:x 2a 2+y 2b 2=1,设B x 1,y 1 ,D x 2,y 2 ,B x 1,y 1b ,D x 2,y 2b ,则k A Dk C B=k AD k CB ,k B A k B C=-b 2a 2,更具一般性质的椭圆的内接四边形性质如如下:在椭圆中,O 为椭圆的中心,A ,C 是椭圆上两点且关于O 对称,直线A C 上一点M ,过M 的直线交椭圆于B ,D ,则如果M 为定点,则k A D k B C为定值,反之亦成立.例20.A,B分别是椭圆E:x29+y2=1左右顶点,P是直线x=6的动点,PA交E于另一点C,PB交E于另一点D.求证:直线CD 过定点.【分析】用几何法,k ACk BD=BQAQ=EBAE,得BE=32,所以过32,0.例21.A,B分别是椭圆E:x24+y2=1下上两顶点,过(1,0)的直线l交于E的C,D,设直线AC,BD的斜率为k1,k2,k1=2k2,求直线l 的方程.【分析】用几何法,k1k2=k ACk BD=AEBE,得BE=23,所以E13,0,所以直线l的方程的方程:y=13x-13.【评注】用平面几何的视角,对本问题进行证明,使代数,解析几何,平面几何三者融合.七、微专题小结齐次化运算在解析几何中的运算,只可以处理斜率之和(积)的问题,基本步骤如下:f x,y=0,g x,y=0⇒A yx2+B⋅y x+C=0⇒y1x1+y2x2=-BA,y1x1⋅y2x2=CA⇒k1+k2=-B A,k1k2=C A,重点一在于通过分析题意,明确能不能用本方法,二在于直线方程的设元技巧,三在于消元中的齐次化运算.【针对训练训练】(2022阎良区期末)1.已知抛物线C:x2=2py p>0,直线l经过抛物线C的焦点,且垂直于抛物线C的对称轴,直线l与抛物线C交于M,N两点,且MN=4.(1)求抛物线C的方程;(2)已知点P2,1,直线m:y=k x+2与抛物线C相交于不同的两点A,B,设直线PA与直线PB的斜率分别为k1和k2,求证:k1⋅k2为定值.2.已知直线l与抛物线C:y2=4x交于A,B两点.(1)若直线l的斜率为-1,且经过抛物线C的焦点,求线段AB的长;(2)若点O为坐标原点,且OA⊥OB,求证:直线l过定点.(2022滁州期末)3.已知点A在圆C:x-2,线段AB的垂直平分线与AC相交于点D.2+y2=16上,B-2,0,P0,2(1)求动点D的轨迹方程;(2)若过点Q0,-1的直线l斜率存在,且直线l与动点D的轨迹相交于M,N两点.证明:直线PM与PN的斜率之积为定值.4.已知椭圆M:x2a2+y2b2=1(a>b>0)经过点P3,12,且椭圆M的上顶点与右焦点所在直线的斜率为-33.(1)求椭圆M的方程;(2)设B、C是椭圆上异于左顶点A的两个点,若以BC为直径的圆过点A,求证:直线BC过定点.(2022醴陵市期中)5.已知椭圆C1:x2a2+y2b2=1a>b>0的左右顶点是双曲线C2:x24-y2=1的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为215 5.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l平行于x轴时,直线l被椭圆C截得线段长为26.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案:1.(1)x 2=4y (2)证明见解析【分析】(1)将MN 用p 表示,得出p 的值,进而得抛物线方程;(2)联立直线与抛物线的方程,根据斜率计算公式结合韦达定理即可得结果.(1)由题意可得2p =4,得p =2,∴抛物线C :x 2=4y .(2)证明:m :y =k x +2 ,联立y =k x +2 x 2=4y,得x 2-4kx -8k =0.由Δ=16k 2+32k >0,得k >0或k <-2,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=4k ,x 1x 2=-8k ,∴k 1k 2=y 1-1x 1-2⋅y 2-1x 2-2=x 214-1x 1-2⋅x 224-1x 2-2=x 1+2 x 2+216=x 1x 2+2x 1+x 2 +416=-8k +8k +416=14.2.(1)8(2)证明见解析【分析】(1)联立直线与抛物线的方程,根据抛物线的焦点弦公式结合韦达定理即可得解;(2)直线AB 方程为:x =my +n ,由向量数量积公式结合韦达定理可得n 的值,进而可得结果.(1)抛物线为y 2=4x ,∴焦点坐标为1,0 ,直线AB 斜率为-1,则直线AB 方程为:y =-x +1,设A x 1,y 1 ,B x 2,y 2 ,由y =-x +1y 2=4x 得:x 2-6x +1=0,可得x 1+x 2=6,由抛物线定义可得AB =x 1+x 2+2,∴AB =8.(2)设直线AB 方程为:x =my +n ,设A x 1,y 1 ,B x 2,y 2 ,∵OA ⊥OB ,∴OA ⋅OB =0,∴x 1x 2+y 1y 2=0,由x =my +n y 2=4x得:y 2-4my -4n =0,∴y 1y 2=-4n ;x 1x 2=n 2;∴n 2-4n =0,解得n =0或n =4,当n=0时,直线AB过原点,不满足题意;当n=4时,直线AB过点4,0.故当OA⊥OB时,直线AB过定点4,0.3.(1)x24+y22=1;(2)-32-2.【解析】(1)由圆的方程可得:圆心C(2,0),半径r=4,|DA|=|DB|,|DB|+|DC|=|DA|+|DC|=|AC|=r=4>|BC|=22,由椭圆的定义即可求解;(2)设l:y=kx-1,M(x1,y1),N(x2,y2),联立直线与椭圆的方程,利用根与系数的关系计算x1+x2,x1x2,再计算k1k2=y1-2x1⋅y2-2x2=(kx1-2-1)x1⋅(kx2-2-1)x2即可求解.【详解】(1)由C:x-22+y2=16得,圆心C(2,0),半径r=4,∵点D在线段AB的垂直平分线上,∴|DA|=|DB|,∴|DB|+|DC|=|DA|+|DC|=|AC|=r=4>|BC|=22,由椭圆的定义可得动点D的轨迹是以B(-2,0),C(2,0)为焦点,长轴长为2a=4的椭圆.从而a=2,c=2,b2=a2-c2=2,故所求动点D的轨迹方程为x24+y22=1.(2)设l:y=kx-1,M(x1,y1),N(x2,y2)由y=kx-1x24+y22=1消去y得(2k2+1)x2-4kx-2=0,显然Δ=(-4k)2+8(2k2+1)=k2+8>0∴x1+x2=4k2k2+1,x1x2=-22k2+1.∵x1≠0,x2≠0,∴可设直线PM与PN的斜率分别为k1,k2则k1k2=y1-2x1⋅y2-2x2=(kx1-2-1)x1⋅(kx2-2-1)x2=k2x1x2-(2+1)k(x1+x2)+22+3x1x2=k2+-(2+1)k×4k2k2+1+22+3-22k2+1=k2+2k2+3+22-2=-32-2即直线PM与PN的斜率之积为定值.【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为x,y的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数即可求出所求轨迹的方程.4.(1)x 24+y 2=1;(2)证明见解析【分析】(1)由椭圆的定义,性质列方程,求出a ,b 的值,再得到椭圆的方程;(2)设出直线BC 方程,与椭圆联立,由题可得AB ⊥AC ,利用AB ⋅AC =0建立关系可得.【详解】(1)由已知设椭圆的上顶点的坐标为(0,b ),右焦点为(c ,0),则由已知可得-b c =-333a 2+14b 2=1a 2=b 2+c 2,解得a =2,b =1,所以椭圆方程为x 24+y 2=1;(2)可得A (-2,0),设直线BC 方程为x =my +n ,代入椭圆方程可得4+m 2 y 2+2mny +n 2-4=0,设B x 1,y 1 ,C x 2,y 2 ,则y 1+y 2=-2mn 4+m 2,y 1y 2=n 2-44+m 2,∴x 1+x 2=m y 1+y 2 +2n =8n 4+m 2,x 1x 2=my 1+n my 2+n =m 2y 1y 2+mn y 1+y 2 +n 2=4n 2-m 2 4+m 2,∵以BC 为直径的圆过点A ,∴AB ⊥AC ,即AB ⋅AC =0,∴x 1+2,y 1 ⋅x 2+2, y 2 =x 1x 2+2x 1+x 2 +4+y 1y 2=5n 2+16n +124+m 2=0,解得n =-2或n =-65,又A (-2,0),故n =-65,所以直线BC 方程为x =my -65,故直线BC 过定点-65,0 .【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为A x 1,y 1 ,B x 2,y 2 ;(2)联立直线与曲线方程,得到关于x(或y)的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为x1+x2,x1x2形式;(5)代入韦达定理求解.5.(1)x24+y23=1;(2)存在,-4,0.【分析】(1)由双曲线顶点求出a,再由点到直线距离求出b作答.(2)设出直线l的方程,与双曲线方程联立,利用韦达定理及斜率坐标公式计算、推理作答.(1)双曲线C2:x24-y2=1的顶点坐标为(±2,0),渐近线方程为x±2y=0,依题意,a=2,椭圆上顶点为0,b到直线x±2y=0的距离2b5=2155,解得b=3,所以椭圆的方程为x24+y23=1.(2)依题意,设直线l的方程为y=kx+m,A x1,y1、B x2,y2,点F-1,0,由x24+y23=1y=kx+m消去y并整理得3+4k2x2+8km x+4m2-12=0,则x1+x2=-8km3+4k2,x1⋅x2=4m2-123+4k2,直线FA、FB的斜率之和为y1x1+1+y2x2+1=kx1+mx1+1+kx2+mx2+1=2kx1x2+(k+m)(x1+x2)+2m(x1+1)(x2+1)=0,即2kx1x2+k+mx1+x2+2m=0,有2k⋅4m2-123+4k2+k+m-8km3+4k2+2m=0,整理得m=4k,此时Δ=64k2m2-16(4k2+3)(m2-3)=48(4k2+3-m2)=144(1-4k2),k≠0,否则m=0,直线l 过F点,因此当Δ>0且k≠0,即-12<k<12且k≠0时,直线l与椭圆C1交于两点,直线l:y=k(x+4),所以符合条件的动直线l过定点(-4,0).6.(Ⅰ)x28+y24=1;(Ⅱ)存在定点Q(0,4)满足题意.【详解】试题分析:(1)由椭圆C的离心率是22,直线l被椭圆C截得的线段长为26列方程组求出b 2=4,a 2=8,从而可得椭圆C 的标准方程;(2)设直线l 方程为y =kx +1,由x 2+2y 2=8y =kx +1 得2k 2+1 x 2+4kx -6=0,Δ=16k 2+242k 2+1 >0,根据韦达定理及斜率公式可得k QA +k QB =2k+1-t-4k -6=2k 4-t 3,令4-t =0,可得t =4符合题意.试题解析:(1)∵e =22,e 2=c 2a2=12,∴a 2=2c 2=b 2+c 2,b =c ·a 2=2b 2,椭圆方程化为:x 22b 2+y 2b2=1,由题意知,椭圆过点6,1 ,∴62b 2+1b 2=1,解得b 2=4,a 2=8,所以椭圆C 的方程为:x 28+y 24=1;(2)当直线l 斜率存在时,设直线l 方程:y =kx +1,由x 2+2y 2=8y =kx +1得2k 2+1 x 2+4kx -6=0,Δ=16k 2+242k 2+1 >0,设A x 1,y 1 ,B x 2,y 2 ,x 1+x 2=-4k 2k 2+1x 1x 2=-62k 2+1,假设存在定点Q 0,t (t 不为2)符合题意,∵∠PQA =∠PQB ,∴k QA =-k QB ,∴k QA +k QB =y 1-t x 1+y 2-t x 2=x 2y 1+x 1y 2-t x 1+x 2 x 1x 2=x 2kx 1+1 +x 1kx 2+1 -t x 1+x 2 x 1x 2=2kx 1x 2+1-t x 1+x 2 x 1x 2=2k +1-t -4k -6=2k 4-t 3=0,∵上式对任意实数k 恒等于零,∴4-t =0,即t =4,∴Q 0,4 ,当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点0,-2 ,0,2 ,显然此时∠PQA =∠PQB ,综上,存在定点Q 0,4 满足题意.。
高中解析几何-直线与圆锥曲线的关系
答案:x2 y2 1。
25 75
练习一:已知椭圆C:x2 y2 1 的右焦点为F,直线l:x=2,点A∈l,线段AF交椭圆C 2
于点B,若FA 3FB ,求 AF 。
答案:AF 2 。
练习二:已知动点P(x,y)在椭圆 x2 y2 1上,若A点坐标为(3,0),AM=1,
25 16
注意:1、因为圆锥曲线与直线存在两个交点,所以联立曲线和直线方程得到一元二次方 程时,△>0;
2、若中点在x轴(非原点),根据椭圆对称性可知直线斜率不存在。
例八:已知点P(4,2)是直线l被椭圆 x2 y2 1 所截得的线段的中点,求直线l的方程
36 9
答案:直线l的方程为x+2y-8=0.
例九:已知中心在原点,一个焦点为F(0,50 )的椭圆被直线l:y=3x-2截得的弦的中 点横坐标为1 ,求此椭圆的方程.
用第二种设法。
例三:已知斜率为2的直线经过椭圆 x2 y2 1 的右焦点F1,与椭圆相交于A,B两点,
54
求弦AB的长.
答案:AB 5 5 3。
x2 y2 例四:椭圆 a2 b2 1(a b 0)的离心率为
3 ,且椭圆与直线x+2y+8=0相交于P,
2
Q,且|PQ|= 10 ,求椭圆的方程。
圆锥曲线系列:直线与圆锥曲线的关系
1.直线与圆锥曲线的位置关系
(1)从几何角度看,可以分为三类:无公共点,仅有一个公共点及有两个公共点。
(2)从代数角度看,我们可以将表示直线的方程代入椭圆的方程,经过消元后得到一元二 次方程,再判断解的情况来确定公共点的个数。
由直线和圆锥曲线联立后消元,消去y后得 ax2 bx c 0。 当a不等于0时,设 b2 4ac 。 ①Δ>0时,直线和圆锥曲线相交于不同两点,直线和圆锥曲线相交; ②Δ=0时,直线和圆锥曲线相切于一点,直线和圆锥曲线相切; ③Δ<0时,直线和圆锥曲线没有公共点,直线和圆锥曲线相离。 当a等于0时,ax2 bx c 0为一元一次方程,直线和圆锥曲线相切于一点,直线和圆锥曲 线相交。曲线是双曲线时,直线斜率等于渐近线斜率;曲线是抛物线时,直线斜率为0。
高考数学复习考点题型与解题方法专题讲解46---直线与圆锥曲线
高考数学复习考点题型与解题方法专题讲解专题46 直线与圆锥曲线【考纲要求】1. 会解决直线与椭圆、抛物线的位置关系的问题. 2.了解方程与曲线的对应关系和求曲线方程的基本方法.3.理解数形结合、用代数方法处理几何问题的思想.了解圆锥曲线的简单应用.【知识清单】知识点1.直线和圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎨⎧Ax +By +C =0,F (x ,y )=0,消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 知识点2.“弦”的问题1.弦长公式设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=1+k2|x1-x2|=1+k2·x1+x22-4x1x2=1+1k2·|y1-y2|=1+1k2·y1+y22-4y1y2.2.处理中点弦问题常用的求解方法(1).点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x1+x2,y1+y 2,y1-y2x1-x2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2).根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解.注意:中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足.【考点梳理】考点一:直线和圆锥曲线的位置关系【典例1】(2020·全国高考真题(理))已知F为双曲线2222:1(0,0)x yC a ba b-=>>的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.【答案】2【解析】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2.【典例2】(2020·全国高考真题(文))已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52.【解析】 (1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率c e a ====, 解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=, 可得:21612525P x +=, 解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==,∴APQ 面积为:1522⨯=;②当P 点为(3,1)-时, 故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A-,(6,8)Q,可求得直线AQ的直线方程为:811400x y-+=,根据点到直线距离公式可得P到直线AQ的距离为:d===,根据两点间距离公式可得:AQ==,∴APQ面积为:1522=,综上所述,APQ面积为:52.【典例3】(2020·全国高考真题(文))已知椭圆C1:22221x ya b+=(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴重直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.【答案】(1)12;(2)1C:2211612x y+=,2C:28y x=.【解析】(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x y a b+=,所以当x c =时,有222221c y b y a b a +=⇒=±,因此,A B 的纵坐标分别为2b a ,2ba-;又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⋅⇒=±,所以,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⋅=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c +=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =. 【规律方法】直线与圆锥曲线位置关系的判定方法及关注点(1)判定方法:直线与圆锥曲线方程联立,消去y (或x )后当得到关于x (或y )的一元二次方程时,设其判别式为Δ, ①Δ>0⇔直线与圆锥曲线相交; ②Δ=0⇔直线与圆锥曲线相切; ③Δ<0⇔直线与圆锥曲线相离.(2)关注点:①联立直线与圆锥曲线的方程消元后,应注意讨论二次项系数是否为零.②判断直线与圆锥曲线位置关系时,判别式Δ起着关键性的作用,第一:可以限定所给参数的范围;第二:可以取舍某些解以免产生增根;第三:若Δ的表达式非常复杂,则可以采用列而不求,最后验证的策略. 提醒:过椭圆内一点的直线均与椭圆相交.【变式探究】1. (2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x .故选C2.(2020·四川遂宁�高二期末(文))已知椭圆2222:1(0)x y T a b a b+=>>长半轴为2,且过点M (0,1).若过点M 引两条互相垂直的两直线12l l 、,若P 为椭圆上任一点,记点P到两直线的距离分别为12d d 、 )A .2B .C .5D .163【答案】B【解析】由题意可得21a b ==,,则椭圆的方程为2214x y +=,设(),P x y(1)若直线12,l l 中有一条直线的斜率不存在时,则另一条直线的斜率为0. 设直线1l 的方程为0x =,则直线2l 的方程为1y =由(),P x y 在椭圆2214x y +=上,则2244x y =-所以()2222221211+15323533d d x y y y y ⎛⎫=+-=--=-+++ ⎪⎝⎭,11y -≤≤故当13y =-时,2212+d d 有最大值163(2)当直线12,l l 的斜率都存在,且不为0,时 设直线1l 的方程为1y kx =+,即10kx y -+=则直线2l 的方程为11y x k=-+,即0x ky k +-=所以12d d ==所以()()2222221221+211kx y x ky k d d x y y k-+++-==+-++2224421532y y y y y =-+-+=--由(13.故选:B3. (2019·全国高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.【答案】(1)12870x y --=;(2)413. 【解析】(1)设直线l 方程为:3y =x m 2+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+ 联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --=则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【总结提升】1.研究直线和圆锥曲线的位置关系,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数.对于选择题、填空题,常充分利用几何条件,利用数形结合的方法求解.2.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.3.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.4.直线和圆锥曲线的位置关系利用代数方法判断,其中直线和双曲线的位置关系,还可以通过比较直线的斜率和渐近线斜率来判断.考点二 : 弦长问题和中点弦问题【典例4】(2020·岳麓�湖南师大附中高三三模(文))已知椭圆222:1(02)4x y C b b+=<<,作倾斜角为34π的直线交椭圆C 于,A B 两点,线段AB 的中点为,M O 为坐标原点OM 与MA 的夹角为θ,且|tan |3θ=,则b =( )A .1 B. CD【答案】B 【解析】分析:设()()()112200,,,,,A x y B x y M x y ,利用“点差法”可得2004y b x =,设直线OM 的倾斜角为α,则4πθα=+或3tan 1,tan 41tan παθαθα+=-=±-,又200tan 4y b x α==,由2214314b b +=-,从而可得结果.详解:设()()()112200,,,,,A x y B x y M x y ,则22112222221414x y b x y b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得()()()()12121212204x x x x y y y y b -+-++=, 00122121,04x y y y x x b -=-∴-=-,即2004y b x =, 设直线OM 的倾斜角为α,则4πθα=+或3tan 1,tan 41tan παθαθα+=-=±-, 又200tan 4y b x α==,由2214314b b +=-,解得22b =,即b = B.【典例5】(2019·安徽高三月考(理))已知抛物线2:4C y x =的焦点为F ,过点F 的直线交抛物线C 于A ,B 两点,O 为坐标原点,若AOB ∆的面积为2,则线段AB 的长是( )A.9B.4C.92D.8【答案】C 【解析】当直线AB 垂直于x 轴时,()122122AOB S ∆=⨯+⨯=,不符合题设;当直线AB 不垂直于x 轴时,设AB 方程为()1(0)y k x k =≠-,即kx y k 0--=.点()0,0到直线AB距离d =.联立()21,4,y k x y x ⎧=-⎨=⎩得()2222240k x k x k -++=,设11(,),A x y 2)2(,)B x y ,则由韦达定理得,2122(24)k x x k -++=,21221k x x k==, 所以由弦长公式得,AB ==224(1)k k +=, 因为AOB ∆的面积为2,所以2214422k k +⨯=,所以28k =, 所以92AB =.故选C.【典例6】(2019·全国高考真题(理))已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE的面积.【答案】(1)见详解;(2) 3或【解析】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =.又因为212y x =,所以'y x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得112210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2. (2)由(1)得直线AB 的方程为12y tx =+.由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭,由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时2S = 因此,四边形ADBE 的面积为3或【典例7】(2018·浙江学军中学高考模拟)F 是抛物线2:2(0)C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (1)求抛物线C 的方程;(2)若点M,直线1:4l x my =+与抛物线C 有两个不同的交点,,A B l 与圆Q 有两个不同的交点,D E ,求当122m ≤≤ 时,22AB DE +的最小值.【答案】(1) 22x y =.(2)132. 【解析】(1)F 抛物线2:2(0)C x py p =>的焦点0,2p F ⎛⎫⎪⎝⎭,设()2000,(0),,2x M x x Q a b p ⎛⎫> ⎪⎝⎭由题意可知4p b =,则点Q 到抛物线C 的准线的距离为3324244p p p b p +=+== 解得1p =,于是抛物线C 的方程为22x y =.(2)∵(M ∴OM垂直平分线方程为1222y x ⎫-=--⎪⎝⎭∴1,4Q r ⎛= ⎝⎭由2214y xx my ⎧=⎪⎨=+⎪⎩得22410y my --=,设()()1122,,,A x y B x y ∵21680m ∆=+>,∴121212,2y y m y y +==-()()222142AB m m =++又∵Q 到l的距离8d =<∴()()()222222227252725251432843218181m m m DE m m m ⎛⎫ ⎪=-=--=+ ⎪+++⎝⎭∴()()()22222251142481AB DE m m m +=+++++令211,22t m m =+≤≤,则5,54t ⎡⎤∈⎢⎥⎣⎦∴2222514284AB DE t t t +=-++令()2251542,,5844g t t t t t ⎡⎤=-++∈⎢⎥⎣⎦,则 ()2255'82'6084g t t g t ⎛⎫=-+≥=> ⎪⎝⎭∴54t =时()min 132g t =. 【规律方法】1.处理有关中点弦及对应直线斜率关系的问题时,常用“点差法”,步骤如下:2.解决对称问题除掌握解决中点弦问题的方法外,还要注意“如果点A ,B 关于直线l 对称,则l 垂直于直线AB 且A ,B 的中点在直线l 上”的应用. 3.求解弦长的四种方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.(2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点间的距离公式求解.(3)联立直线与圆锥曲线方程,消元得到关于x 或y 的一元二次方程,利用根与系数的关系得到(x 1-x 2)2或(y 1-y 2)2,代入两点间的距离公式. (4)当弦过焦点时,可结合焦半径公式求解弦长.提醒:利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在,可直接求交点坐标再求弦长.涉及焦点弦长时要注意圆锥曲线定义的应用.【变式探究】1.(2019·河北高考模拟(文))已知椭圆()222210x y a b a b +=>>,点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于,A B 两点,且AB 的中点为11,2M ⎛⎫⎪⎝⎭,则椭圆的离心率为( )A .2B .12C .14D .2【答案】A 【解析】设A (1x ,1y ),B (2x ,2y ),又AB 的中点为11,2M ⎛⎫⎪⎝⎭,则121221x x y y +=+=,,又因为A 、B 在椭圆上所以22221122222211x y x y a b a b+=+=,两式相减,得:2121221212y y y y b x x x x a-+⋅=--+ ∵12121212b1c 2AB FP OM y y y y k k k x x x x ,-+===-==-+, ∴22b 2c b a =,,∴22a bc =,平方可得()42224a a c c =-, ∴22c a =12,c a 2=,故选A.2.(2019·广西高二期末)已知椭圆22:14x M y +=,直线l 与椭圆M 相交于,A B 两点,点1(1,)2D 是弦AB 的中点,则直线l 的方程为__________. 【答案】220x y +-= 【解析】设()()1122,,,A x y B x y ,因为直线l 与椭圆M 相交于,A B 两点,所以有221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得:2222211244x x y y -=-整理得121212121k 4AB y y x x x x y y -+==-⨯-+, 因为点11,2D ⎛⎫ ⎪⎝⎭是弦AB 的中点,所以121221x x y y +=+=,,所以1k 2AB =-, 所以直线l 的方程为()11y 122x -=--,整理得220x y +-= 故答案为220x y +-=3.给定双曲线2212y x -=.过21A (,)的直线与双曲线交于两点1P 及2P ,求线段12PP 的中点P 的轨迹方程.【答案】22240x y x y --+=【解析】设()()111222,,,P x y P x y ,代入方程得222212121,122y y x x -=-= 两式相减得:()()()()12121212102x x x x y y y y +--+-= 又设中点P(x y),将12122,2x x x y y y +=+=代入,当12x x ≠时得12122202y y y x x x --⋅=- 又121212y y y k x x x --==--代入得22240x y x y --+=当弦12P P 斜率不存在时,其中点20P (,)的坐标也满足上述方程 因此所求轨迹方程是 22240x y x y --+=4. (2019·浙江温州中学高三月考)已知点()00,A x y 在抛物线24y x =上,,P Q 是直线2y x =+上的两个不同的点,且线段,AP AQ 的中点都在抛物线上.(Ⅰ)求0y 的取值范围;(Ⅱ)若APQ 的面积等于0y 的值.【答案】(Ⅰ)04y >或00y <;(Ⅱ)02y =±.【解析】(Ⅰ)设(,2)P a a +,(,2)Q b b +,200(,)4y A y ,则AP 的中点20042(,)82y a y a M +++,代入24y x =得:22000(42)440a y a y y ---++=同理可得:22000(42)440b y b y y ---++=所以,,a b 是方程22000(42)440x y x y y ---++=的两个根22000(42)4(44)y y y ∴∆=---++2008320y y =->解得:04y >或00y <(Ⅱ)点A 到PQ的距离200|2|y y d -+=2= 由韦达定理可知:042a b y +=-,20044ab y y =-++则|||PQ a b =-==1||2APQ S PQ d ∆∴==212⋅=t =,则有:38240t t +-=,即:2(2)(212)0t t t -++=,解得2t =,即200440y y --=,解得:02y =±【特别提醒】1.中点坐标公式一个作用是可以利用“设而不求”技巧解题,其二是可以将未知点坐标和已知点坐标联系起来;涉及求范围问题,注意方程不等式思想的运用.2.涉及弦的中点、斜率时一般用“点差法”求解.抛物线弦的中点坐标和方程的两根之和的密切联系是解决中点弦问题的关键,方程的思想也是解析几何的核心思想.。
高考数学:专题五 第三讲 直线与圆锥曲线课件
题型与方法
第三讲
变式训练1 已知点Q是抛物线C1:y2=2px (p>0)上异于坐标原点O 的点,过点Q与抛物线C2:y=2x2相切的两条直线分别交抛物线C1 于点A,B.
得
ac bc Qc-a,c-a.
b y=-ax, 由 -x+y =1, c b
得
ac bc P-a+c,a+c,
考点与考题
∴PQ
a2c bc2 的中点坐标为c2-a2,c2-a2.
第三讲
由 a2+b2=c2 得,PQ
a2c a2c 由|MF2|=|F1F2|得 2 = 2 =2c, b c -a2 3 6 2 2 2 即 3a =2c ,∴e =2,∴e= 2 .
答案 B
考点与考题
第三讲
4.(2012· 北京)在直角坐标系 xOy 中, 直线 l 过抛物线 y2=4x 的焦点 F, 且与该抛物线相交于 A,B 两点.其中点 A 在 x 轴上方,若直线 l 的倾斜角为 60° ,则△OAF 的面积为________.
所以在 P、Q 两点处切线的斜率的值为 4 或-2.
所以这两条切线的方程为 l1:4x-y-8=0,l2:2x+y+2=0, 将这两个方程联立方程组求得 y=-4.
答案 -4
题型与方法
第三讲
本 讲 栏 目 开 关
题型一 题型概述
圆锥曲线的弦长问题 圆锥曲线的弦长可以使用弦长公式和根与系数的关系,
利用“设而不求”的思想解决这类问题.
第三讲
[高考数学]直线与圆锥曲线综合问题
直线与圆锥曲线综合问题一.考点分析。
⑴直线与圆锥曲线的位置关系和判定直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.直线方程是二元一次方程,圆锥曲线方程是二元二次方程,由它们组成的方程组,经过消元得到一个一元二次方程,直线和圆锥曲线相交、相切、相离的充分必要条件分别是0∆>、0∆=、0∆<.⑵直线与圆锥曲线相交所得的弦长直线具有斜率k ,直线与圆锥曲线的两个交点坐标分别为1122(,),(,)A x y B x y ,则它的弦长上面的公式实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为1212()y y x x -=-k ,运用韦达定理来进行计算. 当直线斜率不存在是,则12AB y y =-.注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算;2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理,二是点差法;3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围,二是建立不等式,通过解不等式求范围. 二.考试探究圆锥曲线是解析几何的核心内容,也是高考命题的热点之一.高考对圆锥曲线的考查,总体上是以知识应用和问题探究为主,一般是给出曲线方程,讨论曲线的基本元素和简单的几何性质;或给出曲线满足的条件,判断(求)其轨迹;或给出直线与曲线、曲线与曲线的位置关系,讨论与其有关的其他问题(如直线的方程、直线的条数、弦长、曲线中参变量的取值范围等);或考查圆锥曲线与其他知识综合(如不等式、函数、向量、导数等)的问题等. 1. (2006年北京卷,文科,19)椭圆C:22221(0)x y a b a b +=>>的两个焦点为F1,F2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥==(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M ,交椭圆C 于A 、B 两点,且A 、B 关于点M 对称,求直线l 的方程. 〖解析〗(Ⅰ)由椭圆的定义及勾股定理求出a,b,c 的值即可,(Ⅱ)可以设出A 、B 点的坐标及直线方程,联立直线方程和椭圆方程后利用一元二次方程根与系数关系即可求出直线方程,也可以利用“点差法”求出直线的斜率,然后利用点斜式求出直线方程. 〖答案〗解法一:(Ⅰ)因为点P 在椭圆C 上,所以6221=+=PF PF a ,a=3. 在Rt △PF1F2中,,52212221=-=PF PF F F 故椭圆的半焦距c=5,从而b2=a2-c2=4,所以椭圆C 的方程为4922y x +=1. (Ⅱ)设A ,B 的坐标分别为(x1,y1)、(x2,y2).已知圆的方程为(x+2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为y=k(x+2)+1,代入椭圆C 的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k -27=0. 因为A ,B 关于点M 对称.所以.29491822221-=++-=+kkk x x 解得98=k , 所以直线l 的方程为,1)2(98++=x y 即8x-9y+25=0. (经检验,所求直线方程符合题意) 解法二: (Ⅰ)同解法一.(Ⅱ)已知圆的方程为(x+2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 设A ,B 的坐标分别为(x1,y1),(x2,y2).由题意x1≠x2且,1492121=+yx①,1492222=+yx②由①-②得.04))((9))((21212121=+-++-y y y y x x x x③因为A 、B 关于点M 对称,所以x1+ x2=-4, y1+ y2=2,代入③得2121x x y y --=98,即直线l 的斜率为98,所以直线l 的方程为y -1=98(x+2),即8x -9y+25=0. (经检验,所求直线方程符合题意.) 2.(2008年山东卷,文科,22)已知曲线11(0)xyC a b a b+=>>:所围成的封闭图形的面积为曲线1C2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若MO OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程;(2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.〖解析〗(Ⅰ)由三角形面积公式和点到直线的距离公式可得关于a ,b 的方程组, 曲线1C 与坐标轴的交点为椭圆的顶点,显然2C 为焦点在x 轴的椭圆;(Ⅱ)(1)设出AB 的方程(0)y kx k =≠,()A A A x y ,,()M x y ,,联立直线与椭圆得到方程组后,由(0)MO OA λλ=≠可得M 的轨迹方程,注意0k =或不存在时所得方程仍然成立;(2)由直线l 的方程:1y x k =-和椭圆方程联立后表示出22214AMB S AB OM=△由不等式放缩即可求出最小值.〖答案〗(Ⅰ)由题意得2ab ⎧=⎪⎨=又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=.(Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545AAk k OA x y k k k+=+=+=+++. 设()M x y ,,由题意知(0)MO OA λλ=≠,所以222MO OA λ=,即2222220(1)45k x y k λ++=+,因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k=-,即x k y =-,因此22222222222220120()4545x y x y x y x y x y λλ⎛⎫+ ⎪+⎝⎭+==++, 又220x y +≠,所以2225420x y λ+=,故22245x y λ+=.又当0k =或不存在时,上式仍然成立.综上所述,M 的轨迹方程为222(0)45x y λλ+=≠.(2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k=+, 由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45AAk OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k+=+. 解法一:由于22214AMBSAB OM =△2222180(1)20(1)44554k k k k++=⨯⨯++ 2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554kk +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△. 当0k =,140229AMB S =⨯=>△.当k 不存在时,140429AMB S ==>△.综上所述,AMB △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k OA OMk k +=+++++2224554920(1)20k k k +++==+, 又22112OA OM OAOM+≥,409OA OM ≥,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△. 当0k =,140229AMB S =⨯=>△.当k不存在时,140429AMB S ==>△.综上所述,AMB △的面积的最小值为409.3.(广东省实验中学2008届高三第三次模拟考试,理科,20)已知抛物线x2=-y ,直线L :(m+1)y+(3-m)x+m+1=0 (m ∈R 且m ≠-1)与抛物线交于A ,B 两点.(1) 当m=0时,试用x,y 的不等式组表示由直线L 和抛物线围成的封闭图形所在平面区域(包边界) ,并求该区域的面积.(2)求证:对任意不为零的实数m ,抛物线的顶点都在以线段AB 为直径的圆C 上;并求圆C 的圆心的轨迹方程.(3)将抛物线x2=-y 的图像按向量a=(4,16)移动后得到函数y=f(x)的图像,若,ln 6)(m x x g +=问是否存在实数m ,使得y=f (x )的图象与y=g (x )的图象有且只有两个不同的交点?若存在,求出m 的值;若不存在,说明理由. 〖解析〗(1)所要表示的平面区域包括边界,要注意不等式取等号,由定积分即可求出相应 的面积,计算时可以整体代入;(2)证明抛物线的顶点在以线段AB 为直径的圆C 上,即证明0OA OB ⋅=,圆C 的圆心的轨迹可由中点坐标公式利用“代入法”求得;(3)构造函数2()()()86ln x g x f x x x x m ϕ=-=-++,因为0x >,所以y=f (x )的图象与y=g (x )的图象有且只有两个不同的交点问题就可以转化为函数()x ϕ有两个正零点的 问题,要对()x ϕ的单调性进行讨论,从而求出使得()x ϕ由两个正零点的m 的取值范围 解 :.()()()()()()[]()61313129310131x x 23x x x x 31x x |x 23x 3x dx13x x S 1349x x 1,x x ,3x x *x x *013x x 013x y x y ,x x ),y ,x (B ),y ,x A ;013x y 0x y ,013x y :L 0m 1212122112x x 23x x 2122121212212221122121=⎪⎭⎫ ⎝⎛++-=⎪⎭⎫⎝⎛+++-+--=⎪⎭⎫ ⎝⎛++-=++-=∴=+=--==+=--⎩⎨⎧=++-=>⎩⎨⎧≥++≤+=++=⎰所求区域面积的两解,即为方程、则得则由不妨(设对应的不等式组为故所求区域的方程为时,直线当()()()12x y ,1-2x y 12k 2x 2x x x 2x x 2y y y ,2k 2x x x y),x, AB 00AB 0.11x x x x y y x x ,1x x ,k x x x ,x ,01kx x 1kx y x y )y ,x(B ),y ,x (A ,1kx y L ,1m 3m k 22222122122212121221212121212121222211--=-=--=-+-=+-=+=-=+=∴=+-=+=+=⋅∴-=-=+=-+⎩⎨⎧-=-=-=+-=为即所求的圆心轨迹方程得则为(为直径的圆的圆心坐标设以),恒过抛物线顶点(为直径的圆以则为其两解,方程有解,且得:由设的方程为则直线令(3)依题意,f(x)=-x2+8x,令.ln 68)()()(2m x x x x f x g x ++-=-=ϕ因为x >0,要使函数f (x )与函数g (x )有且仅有2个不同的交点,则函数m x x x x ++-=ln 68)(2ϕ的图象与x 轴的正半轴有且只有两个不同的交点)0()3)(1(2682682)(2'>--=+-=+-=∴x xx x x x x x x x ϕ当x ∈(0,1)时,)(,0)('x x ϕϕ>是增函数; 当x ∈(1,3)时,)(,0)('x x ϕϕ<是减函数 当x ∈(3,+∞)时,)(,0)('x x ϕϕ>是增函数当x=1或x=3时,0)('=x ϕ∴;7)1()(-=m x ϕϕ极大值为153ln 6)3()(-+=m x ϕϕ极小值为 又因为当x →0时,-∞→)(x ϕ 当+∞→+∞→)(x x ϕ时, 所以要使0)(=x ϕ有且仅有两个不同的正根,必须且只须⎩⎨⎧>=⎩⎨⎧<=0)1(0)3(0)3(0)1('ϕϕϕϕ或 即⎩⎨⎧>-=-+⎩⎨⎧<-+=-070153ln 60153ln 607m m m m 或 ∴m=7或.3ln 615-=m∴当m=7或.3ln 615-=m 时,函数f (x )与g (x )的图象有且只有两个不同交点. 4.(2008年广东卷,文科,20)设0b >,椭圆方程为222212x y b b +=,抛物线方程为28()x y b =-.如图所示,过点(02)F b +,作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过椭圆的右焦点1F .(1)求满足条件的椭圆方程和抛物线方程;(2)设A B ,分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得ABP △为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标). 〖解析〗(1)由已知可求出G 点的坐标,从而求出抛物线在点G 的切线方程,进而求出1F 点的坐标,由椭圆方程也可以求出1F 点的坐标,从而求出1b =,得出椭圆方程和抛物线方程;(2)以PAB ∠为直角和以PBA ∠为直角的直角三角形显然各一个,以APB ∠为直角的直角三角形是否存在可以转化成0=⋅PB PA 对应的方程是否有解的问题,从而可以求出满足条件的P 点的个数.〖答案〗(1)由28()x y b =-得218y x b =+, 当2y b =+得4x =±,∴G 点的坐标为(4,2)b +,1'4y x =,4'|1x y ==, 过点G 的切线方程为(2)4y b x -+=-即2y x b =+-,令0y =得2x b =-,1F ∴点的坐标为(2,0)b -,由椭圆方程得1F 点的坐标为(,0)b ,2b b ∴-=即1b =,即椭圆和抛物线的方程分别为2212x y +=和28(1)x y =-;(2)过A 作x 轴的垂线与抛物线只有一个交点P ,∴以PAB ∠为直角的Rt ABP ∆只有一个,同理∴ 以PBA ∠为直角的Rt ABP ∆只有一个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学难点之直线与圆锥曲线直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.●难点磁场(★★★★★)已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程. ●案例探究[例1]如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为4π的直线l 与线段OA 相交(不经过点O 或点A )且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.命题意图:直线与圆锥曲线相交,一个重要的问题就是有关弦长的问题.本题考查处理直线与圆锥曲线相交问题的第一种方法——“韦达定理法”.属★★★★★级题目.知识依托:弦长公式、三角形的面积公式、不等式法求最值、函数与方程的思想. 错解分析:将直线方程代入抛物线方程后,没有确定m 的取值范围.不等式法求最值忽略了适用的条件.技巧与方法:涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,涉及垂直关系往往也是利用韦达定理,设而不求简化运算.解:由题意,可设l 的方程为y =x +m ,-5<m <0.由方程组⎩⎨⎧=+=xy mx y 42,消去y ,得x 2+(2m -4)x +m 2=0①∵直线l 与抛物线有两个不同交点M 、N , ∴方程①的判别式Δ=(2m -4)2-4m 2=16(1-m )>0, 解得m <1,又-5<m <0,∴m 的范围为(-5,0) 设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S △=2(5+m )m -1,从而S △2=4(1-m )(5+m )2 =2(2-2m )·(5+m )(5+m )≤2(35522m m m ++++-)3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82. [例2]已知双曲线C :2x 2-y 2=2与点P (1,2)(1)求过P (1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点.(2)若Q (1,1),试判断以Q 为中点的弦是否存在.命题意图:第一问考查直线与双曲线交点个数问题,归结为方程组解的问题.第二问考查处理直线与圆锥曲线问题的第二种方法——“差分法”,属★★★★★级题目.知识依托:二次方程根的个数的判定、两点连线的斜率公式、中点坐标公式.错解分析:第一问,求二次方程根的个数,忽略了二次项系数的讨论.第二问,算得以Q 为中点弦的斜率为2,就认为所求直线存在了.技巧与方法:涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率,弦的中点坐标联系起来,相互转化.解:(1)当直线l 的斜率不存在时,l 的方程为x =1,与曲线C 有一个交点.当l 的斜率存在时,设直线l 的方程为y -2=k (x -1),代入C 的方程,并整理得(2-k 2)x 2+2(k 2-2k )x -k 2+4k -6=0(*)(ⅰ)当2-k 2=0,即k =±2时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k 2≠0,即k ≠±2时Δ=[2(k 2-2k )]2-4(2-k 2)(-k 2+4k -6)=16(3-2k ) ①当Δ=0,即3-2k =0,k =23时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程(*)有两不等实根,l 与C 有两个交点.③当Δ<0,即k >23时,方程(*)无解,l 与C 无交点. 综上知:当k =±2,或k =23,或k 不存在时,l 与C 只有一个交点;当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点; 当k >23时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A (x 1,y 1),B (x 2,y 2),则2x 12-y 12=2,2x 22-y 22=2两式相减得:2(x 1-x 2)(x 1+x 2)=(y 1-y 2)(y 1+y 2)又∵x 1+x 2=2,y 1+y 2=2 ∴2(x 1-x 2)=y 1-y 1即k AB =2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.[例3]如图,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该弦椭圆的方程; (2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.命题意图:本题考查直线、椭圆、等差数列等基本知识,一、二问较简单,第三问巧妙地借助中垂线来求参数的范围,设计新颖,综合性,灵活性强,属★★★★★级题目.知识依托:椭圆的定义、等差数列的定义,处理直线与圆锥曲线的方法. 错解分析:第三问在表达出“k =3625y 0”时,忽略了“k =0”时的情况,理不清题目中变量间的关系.技巧与方法:第一问利用椭圆的第一定义写方程;第二问利用椭圆的第二定义(即焦半径公式)求解,第三问利用m 表示出弦AC 的中点P 的纵坐标y 0,利用y 0的范围求m 的范围.解:(1)由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1. (2)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2), 由|F 2A |、|F 2B |、|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2×59,由此得出:x 1+x 2=8.设弦AC 的中点为P (x 0,y 0),则x 0=221x x +=4. (3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9(x 12-x 22)+25(y 12-y 22)=0,即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0(x 1≠x 2) 将k x x y y y y y x x x 1,2,422121021021-=--=+==+ (k ≠0)代入上式,得9×4+25y 0(-k1)=0 (k ≠0)即k =3625y 0(当k =0时也成立). 由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m ,所以m =y 0-4k =y 0-925y 0=-916y 0. 由点P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的内部,得-59<y 0<59,所以-516<m <516. 解法二:因为弦AC 的中点为P (4,y 0),所以直线AC 的方程为 y -y 0=-k1(x -4)(k ≠0) ③将③代入椭圆方程92522y x +=1,得 (9k 2+25)x 2-50(ky 0+4)x +25(ky 0+4)2-25×9k 2=0所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.(当k =0时也成立)(以下同解法一). ●锦囊妙计1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.●歼灭难点训练①②一、选择题1.(★★★★)斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为( )A.2B.554 C.5104 D.51082.(★★★★)抛物线y =ax 2与直线y =kx +b (k ≠0)交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有( )A.x 3=x 1+x 2B.x 1x 2=x 1x 3+x 2x 3C.x 1+x 2+x 3=0D.x 1x 2+x 2x 3+x 3x 1=0二、填空题3.(★★★★)已知两点M (1,45)、N (-4,-45),给出下列曲线方程:①4x +2y -1=0, ②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________.4.(★★★★★)正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.5.(★★★★★)在抛物线y 2=16x 内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________.三、解答题6.(★★★★★)已知抛物线y 2=2px (p >0),过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p .(1)求a 的取值范围.(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值.7.(★★★★★)已知中心在原点,顶点A 1、A 2在x 轴上,离心率e =321的双曲线过点P (6,6).(1)求双曲线方程.(2)动直线l 经过△A 1P A 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.8.(★★★★★)已知双曲线C 的两条渐近线都过原点,且都以点A (2,0)为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称.(1)求双曲线C 的方程.(2)设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.参考答案难点磁场解:设椭圆方程为mx 2+ny 2=1(m >0,n >0), P (x 1,y 1),Q (x 2,y 2)由⎩⎨⎧=++=1122ny mx x y 得(m +n )x 2+2nx +n -1=0, Δ=4n 2-4(m +n )(n -1)>0,即m +n -mn >0, 由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+(x 1+x 2)+1=0, ∴nm nn m n --+-2)1(2+1=0,∴m +n =2 ①又2)210()(4=+-+n m mn n m 2,将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21 故椭圆方程为22x +23y 2=1或23x 2+21y 2=1.歼灭难点训练一、1.解析:弦长|AB |=55422t -⋅⋅≤5104.答案:C2.解析:解方程组⎩⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=a k ,x 1x 2=-a b ,x 3=-k b,代入验证即可.答案:B二、3.解析:点P 在线段MN 的垂直平分线上,判断MN 的垂直平分线于所给曲线是否存在交点.答案:②③④4.解析:设C 、D 所在直线方程为y =x +b ,代入y 2=x ,利用弦长公式可求出|CD |的长,利用|CD |的长等于两平行直线y =x +4与y =x +b 间的距离,求出b 的值,再代入求出|CD |的长.答案:18或505.解析:设所求直线与y 2=16x 相交于点A 、B ,且A (x 1,y 1),B (x 2,y 2),代入抛物线方程得y 12=16x 1,y 22=16x 2,两式相减得,(y 1+y 2)(y 1-y 2)=16(x 1-x 2). 即⇒+=--21212116y y x x y y k AB =8. 故所求直线方程为y =8x -15. 答案:8x -y -15=0三、6.解:(1)设直线l 的方程为:y =x -a ,代入抛物线方程得(x -a )2=2px ,即x 2-2(a +p )x +a 2=0 ∴|AB |=224)(42a p a -+⋅≤2p .∴4ap +2p 2≤p 2,即4ap ≤-p 2 又∵p >0,∴a ≤-4p. (2)设A (x 1,y 1)、B (x 2,y 2),AB 的中点 C (x ,y ), 由(1)知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p .∴线段AB 的垂直平分线的方程为y -p =-(x -a -p ),从而N 点坐标为(a +2p ,0) 点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅ 当a 有最大值-4p时,S 有最大值为2p 2. 7.解:(1)如图,设双曲线方程为2222b y a x -=1.由已知得321,16622222222=+==-ab a e b a ,解得a 2=9,b 2=12.所以所求双曲线方程为12922y x -=1.(2)P 、A 1、A 2的坐标依次为(6,6)、(3,0)、(-3,0), ∴其重心G 的坐标为(2,2)假设存在直线l ,使G (2,2)平分线段MN ,设M (x 1,y 1),N (x 2,y 2).则有34912441089121089122121212122222121==--⇒⎪⎪⎩⎪⎪⎨⎧=+=+=-=-x x y y y y x x y x y x ,∴k l =34 ∴l 的方程为y =34(x -2)+2, 由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0. ∵Δ=16-4×28<0,∴所求直线l 不存在. 8.解:(1)设双曲线的渐近线为y =kx ,由d =1|2|2+k k =1,解得k =±1.即渐近线为y =±x ,又点A 关于y =x 对称点的坐标为(0,2). ∴a =2=b ,所求双曲线C 的方程为x 2-y 2=2.(2)设直线l :y =k (x -2)(0<k <1),依题意B 点在平行的直线l ′上,且l 与l ′间的距离为2.设直线l ′:y =kx +m ,应有21|2|2=++k m k ,化简得m 2+22k m=2.②把l ′代入双曲线方程得(k 2-1)x 2+2mkx +m 2-2=0, 由Δ=4m 2k 2-4(k 2-1)(m 2-2)=0.可得m 2+2k 2=2③②、③两式相减得k =2m ,代入③得m 2=52,解设m =510,k =552,此时x =2212=--k mk,y =10.故B (22,10).。