第三届华杯赛复赛试题

合集下载

第三届华杯赛全程详解

第三届华杯赛全程详解

第三届“华罗庚金杯”少年数学邀请赛初赛部分复赛部分决赛第一试决赛第二试团体决赛口试初赛试题与解答(1)光的速度是每秒30万千米,太阳离地球1亿5千万千米。

问:光从太阳到地球要用几分钟(得数保留一位小数)?[分析]知道距离和速度,求通过全程的时间,这是很容易做的一道题。

但是因为给出的数字很大,同学们在大数算术运算时一定要注意计量单位,不然便会出错。

[解法1] 将距离单位换为“万千米”,时间单位用“分”。

光速=30万千米/秒=1800万千米/分,距离=1亿5千万千米=15000万千米,时间=距离÷速度=15000÷1800[解法2]如果时间单位用“秒”,最后必须按题目要求换算为“分”.光速=30万千米/秒,距离=15000万千米,时间=15000÷30=500(秒),答:光从太阳到地球约需8.3分钟。

(2)计算[分析]这是一道很简单的分数四则运算题,但要在30秒钟内算出正确答案,需要平时养成简捷的思维习惯。

同学们可以比较一下后面的两种解法。

[解法1] 先求出30,35,63的最小公倍数。

30=2×3×5;35=5×7;63=3×3×7;所以公倍数是2×3×3×5×7=630。

原式通分,有〔解法2〕[注] 两种解法同样都用到通分和约分的技巧,只有一点小区别:解法2在通分时不急于把公分母算出来,而是边算边约分。

这一点小小的不同,却节省了求连乘积的运算,约分也简单些,使计算快了不少哩!(3)有3个箱子,如果两箱两箱地称它们的重量,分别是83公斤、85公斤和86公斤。

问:其中最轻的箱子重多少公斤?[分析]如果将3个箱子按重量区分为大、中、小,在草稿纸上可以这样写:83=中+小,85=大+小,86=大+中.这样分析后,便很容易想到简单的解法。

[解法1](83+85+86)是3箱重量之和的2倍,所以小箱重量是[解法2] (83+85)=中+大+2×小,所以小箱重量=(83+85-86)×答:最轻的箱子重41公斤。

03华杯复赛—计数及数论

03华杯复赛—计数及数论

03华杯复赛—计数及数论第三讲计数、数论综合2021.2知识概述1.计数计数题量约为2道,难度中等偏上.涉及的知识点包括枚举法、加乘原理、排列组合等,需要将问题考虑全面,个别题需要递推计数的思想.2.数论数论一般为1道题,难度中等偏上.涉及的知识点包括整数、质数合数、约数倍数以及余数、位值原理.需要对数论基础知识全面了解.真题精讲计数部分:【例1】从1~8这八个自然数中取三个数,其中有连续自然数的取法有________种.(19届复赛)【例2】如图所示,一只蚂蚁从正方体的顶点A出发,沿正方体的棱爬到顶点B,要求行走的路线最短,那么蚂蚁有_______种不同的走法.(17届复赛A卷)【例3】将1、2、3、4、5分别填入图2的格子中,要求填在黑格里的数比它旁边的两个数都大.共有________种不同的填法.(19年南宁营)【例4】将1和2填入的网格中,要求每个格只填一个数,每行每列至少一个1和至少一个2,则有________种不同的填法.(19年南宁营)【例5】黑板上顺次写下连续自然数1,2,3,4,5,6, (99)得到一串数1234567891011…,则相邻数字构成的两位数有________个被3整数(重复的计算多次).(19年太原营)【例6】亚瑟王在王宫中召见6名骑士,这些骑士中每个骑士恰好,2名朋友.他们围着一张圆桌坐下(骑士姓名与座位如右图),结果发现这种坐法,任意相邻的两名骑士恰好都是朋友.亚瑟王想重新安排座位,那么亚瑟王有________种不同方法安排座位,使得每一个骑士都不与他的朋友相邻.(旋转以后相同的,算同一种方法).(22届复赛)【例7】将下图左边的大三角形纸板剪3刀,得到4个大小相同的小三角形纸板(第一次操作),见下图中间.再将每个小三角形纸板剪3刀,得到16个大小相同的更小的三角形纸板(第二次操作),见下图右边.这样继续操作下去,完成前六次操作共剪了________刀.(21届复赛A卷)【例8】某班同学做游戏,把3个相同的白球与2个相同的黑球放入3个不同的篮子中(每个篮子中至少放一个球),结果发现任两个同学的放的方法都不一样.全班最多有________名同学.(19年太原营)【例9】用五种不同的颜色涂正方体的六个面.如果相邻的两个面不能涂同种颜色,则共有多少种不同的涂色方法?(将正方体任意翻转后仍然不同的涂色方法才被认为是不同的)(20届复赛卷)【例10】右图中的网格是由6个相同的小正方形构成.将其中4个小正方形涂上灰色,要求每行每列都有涂色的小正方形.经旋转后两种涂色的网格相同,则视为相同的涂法,那么有________种不同的涂色方法.(21届复赛A卷)数论部分:【例11】在除法算式中,被除数为2016,余数为7,则满足算式的除数共有_______个.(21届初赛)【例12】一个两位数与109的乘积为四位数,它能被23整除且商是一位数,这个两位数最大等于________.(21届复赛A卷)【例13】某个两位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,那么这个两位数是________.(20届复赛A 卷)【例14】3个连续的自然数介于100到200之间,其中最小的能被3整除,中间的能被5整除,最大的能被7整除,这3个自然数的和是________.(19年南宁营)【例15】一个三位数交换个位和百位后的新的三位数称为原三位数的逆序数,某个三位数和它的逆序数的和是928,差是198(大减小),则这个三位数是_______.(18年深圳营)【例16】从连续自然数1至9中取出7个,其和是7的倍数,共有________种不同的取法.(19年太原营)【例17】从1到200这200个自然数中任意选数,至少要选出多少个才能确保其中必有2个数的和是5的倍数?(21届复赛B 卷)【例18】三位数中,有些数本身是该数的数字和的19倍,如()19019190=?++,请写出所有这样的三位数.(19届复赛)课后巩固1.一个自然数的各位数字没有重复的数字,并且数字和等于19,那么这类自然数中最小是________.(19年南宁营)2.小明行李箱锁的密码是由两个数字与构成的三位数.某次旅行,小明忘记了密码,他最少要试________次,才能确保打开箱子.(22届初赛)3.编号从1到10的10个白球排成一行,现按照如下方法涂红色:(1)涂2个球;(2)被涂色的2个球的编号之差大于2.不同的涂色方法有多少种?(18届复赛A 卷)4.从1,2,3,4,5这5个数中选出4个不同的数填入下面4个方格中+>+有________种不同的填法使式子成立.(提示:1523+>+和5123+>+是不同的填法)(21届复赛A 卷)5.能被自己的数字之和整除的两位数中,奇数共有________个.(22届复赛)6.在除以7余1、除以11也余1的自然数中,大于1的最小自然数是________.(18届初赛)。

六年级下册奥数专题练习-分数与繁分数化简-全国通用

六年级下册奥数专题练习-分数与繁分数化简-全国通用

分数与繁分数化简【分数化简】讲析:容易看出,分子中含有因数37,分母中含有因数71。

所以可得(长沙地区小学数学奥林匹克选拔赛试题)讲析:注意到,4×6=24,2+4=6,由此产生的一连串算式:16×4=64166×4=6641666×4=6664……(全国“育苗杯”小学数学竞赛试题)讲析:容易看出分子中含有因数3。

把48531分解为48531=3×16177,然后可试着用16177去除分母:【繁分数化简】(1990年马鞍山市小学数学竞赛试题)讲析:如果分别计算出分子与分母的值,则难度较大。

观察式子,可发现分子中含有326×274,分母中含有275×326。

于是可想办法化成相同的数:(全国第三届“华杯赛”复赛试题)讲析:可把小数化成分数,把带分数都化成假分数,并注意将分子分母同乘以一个数,以消除各自中的分母。

于是可得例3 化简(全国第三届“华杯赛”复赛试题)讲析:由于分子与分母部分都比较复杂,所以只能分别计算。

计算时,哪一步中能简算的,就采用简算的办法去计算。

所以,原繁分数等于1。

(北京市第一届“迎春杯”小学数学竞赛试题)讲析:连分数化简,通常要从最下层的分母开始,自下而上逐步化简。

依此法计算,题目的得数是2。

(计算过程略)55、对称变换【将军饮马】据说古代希腊有一位将军向当时的大学者海伦请教一个问题:从A地出发到河边饮马,再到B地(如图4.32所示),走什么样的路最近?如何确定饮马的地点?海伦的方法是这样的:如图4.33,设L为河,作AO⊥L交L于O点,延长AO至A',使A'O=AO。

连结A'B,交L于C,则C点就是所要求的饮马地点。

再连结AC,则路程(AC+CB)为最短的路程。

为什么呢?因为A'是A点关于L的对称点,AC与A'C是相等的。

而A'B 是一条线段,所以A'B是连结A'、B这两点间的所有线中,最短的一条,所以AC+CB=A'C+CB=A'B也是最短的一条路了。

小学组华杯赛试题及答案

小学组华杯赛试题及答案

小学组华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的3倍加上4等于20,这个数是多少?A. 4B. 5C. 6D. 7答案:B3. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 30B. 50C. 60D. 70答案:B4. 一个数的5倍减去3等于12,这个数是多少?A. 3B. 2C. 1D. 0答案:A二、填空题(每题5分,共20分)5. 一个数加上10等于20,这个数是______。

答案:106. 一个数的4倍是24,这个数是______。

答案:67. 一个数的2倍加上3等于15,这个数是______。

答案:68. 一个数的3倍减去5等于10,这个数是______。

答案:5三、计算题(每题10分,共20分)9. 计算下列算式:(23 + 45) × (12 - 8)答案:68 × 4 = 27210. 计算下列算式:(36 ÷ 4) + (54 ÷ 6)答案:9 + 9 = 18四、解答题(每题15分,共30分)11. 一个班级有48名学生,如果每排坐8名学生,可以坐满几排?答案:48 ÷ 8 = 6(排)12. 一个长方形的长是15厘米,宽是9厘米,求它的周长。

答案:(15 + 9) × 2 = 24 × 2 = 48(厘米)五、应用题(每题20分,共20分)13. 小明有36个苹果,他打算每4个苹果装一袋,可以装几袋?答案:36 ÷ 4 = 9(袋)。

各届华杯赛真题集锦-含答案哦!

各届华杯赛真题集锦-含答案哦!

目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A 的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.。

小学数学难题解法大全 第五部分 典型难题讲析(七~一) 数的计算

小学数学难题解法大全 第五部分 典型难题讲析(七~一) 数的计算

小学数学难题解法大全第五部分典型难题讲析(七之一)数的计算(一)数的计算1.四则计算【基本题】例1 计算7142.85÷3.7÷2.7×1.7×0.7(1991年全国小学数学奥林匹克初赛试题)讲析:本题的两个除数和乘数依次是3.7,2.7,1.7,0.7。

从数字上分析,不能运用简便运算。

所以,只能从左至右依次计算。

结果是850.85。

(1990年江西省“八一杯”小学数学竞赛试题)成假分数之后,分子都含有22的约数,于是可采用分配律计算。

(1994年全国小学数学奥林匹克决赛试题)讲析:两个分数的分母都是3,所以,可把小数化成分数计算。

【巧算题】(全国第三届“华杯赛”初赛试题)讲析:括号中的三个数如果直接通分,则比较繁琐。

经观察,可将三个分母分解质因数,求出公分母;在求公分母的过程中,不必急于求出具体的数,而可边算边约分,能使计算简便一些。

(1993年全国小学数学奥林匹克决赛试题)讲析:当把两个带分数化成假分数时,分子都是65。

于是,第一个括号中可提出一个65,第二个括号中可提出一个5,能使计算变得比较简便。

例3 计算:(全国第四届“华杯赛”复赛试题)讲析:经观察发现,可将整数部分与分数部分分开计算。

这时,每个带分数的分数部分,都可以拆分成两个单位分数之差,然后互相抵消。

计算就很简便了例4 计算:(1990年《小学生数学报》小学数学竞赛试题)除以两数之积,就等于分别除以这两个数。

然后可将它们重新组合计算为法分配律计算。

于是可将10.375分开,然后重新组合。

(1990年小学数学奥林匹克初赛试题)用字母代替去计算。

(长沙市小学数学奥林匹克集训队选拔赛试题)26.3乘以2.5。

这样计算,可较为简便。

原式=2.5×24.7+29×2.5+26.3×2.5=2.5×(24.7+29+26.3)=200。

例8 已知11×13×17×19=46189计算:3.8×8.5×11×39(广州市小学数学竞赛试题)讲析:根据已知条件来计算另一个算式的结果,应尽量将计算式化成与已知条件式相同或相似的式子。

“华杯赛”复赛模拟试题(四年级组)附答案

“华杯赛”复赛模拟试题(四年级组)附答案

一、填空题(每题10分,共80分)1、计算:123456+234567+345678+456789+567901+679012+790123+901234= __________.2、国庆节接受检阅的一列车队共52辆,每辆车长4米,每相邻两辆车相隔6米,车队每分钟行驶105米。

这列车队要通过536米长的检阅场地,要分钟。

3、把长2厘米宽1厘米的长方形如图(1)一层、两层、三层地摆下去,摆完第十五层,这个图形的周长是厘米。

4、北京某四合院子正好是个边长10米的正方形,在院子中央修了一条宽2米的“十字形”甬路,如图(2)这条“十字形”甬路的面积是平方米。

图(1)图(2)5、哥哥和弟弟共有故事书120本,哥哥的故事书本数是弟弟的3倍,哥哥有故事书本,弟弟有故事书本.6、甲、乙两个粮仓共存粮320吨,后来从甲粮仓运出40吨,给乙粮仓运进20吨,这时甲仓存粮是乙仓的2倍,甲、乙两个粮仓原来各存粮分别为吨和吨.7、今年爸爸的年龄是小芳年龄的3倍,几年前,爸爸的年龄是小芳年龄的5倍,再几年前,爸爸的年龄是小芳年龄的7倍.他们的年龄差在20岁至30岁之间,爸爸今年岁.8、篮中有许多李子,如果将其中的一半又1个给第一个人,将余下的一半又2个给第二个人,然后将剩下的一半又3个给第三个人,篮中刚好一个也不剩,篮中原来有个李子.二、解答题(共70分,要求写出解答过程)9、如果小方给小明一个玻璃球,两人的玻璃球数相等;如果小明给小方一个玻璃球,则小方的玻璃球数就是小明的两倍.问小明、小方原来各有多少个玻璃球?(本题15分)10、原计划有420块砖让若干学生搬运,每人运砖一样多,实际增加了一个学生,这样每个学生就比原计划少搬2块.问:原有学生多少人?(本题15分)11、把99粒棋子放在两种型号的17个盒子里,每个大盒子里放12粒,每个小盒子里放5粒,恰好放完.问大、小盒子各多少个?(本题20分)12、有A、B、C、D、E五个小足球队参加足球比赛,到现在为止,A队赛了4场,B队赛了3场,C队赛了2场,D队赛了1场.那么E队赛了几场?(本题20分)参考答案一、填空(每题10分,共80分)注:第5题、6题,每空5分.填空题参考详解:1. 4098760解:123456+234567+345678+456789+567901+679012+790123+901234=(123456+901234)+(234567+790123)+(345678+679012)+(456789+567901)=1024690+1024690+1024690+1024690=1024690×4=40987602.10解:因为车队行驶的路程等于检阅场地的长度与车队长度的和。

第四讲立体图形的体积 小学数学五年级下册 竞赛试题及答案 人教版

第四讲立体图形的体积 小学数学五年级下册 竞赛试题及答案 人教版

第四讲立体图形的体积小学数学五年级下册竞赛试题及答案人教版基础班练习四1.(第三届小数报数学竞赛预赛)一个正方体的棱长扩大a倍,那么它的体积扩大__倍.解答:它的体积扩大a×a×a倍.2.如右图,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?解答:圆锥的体积是,圆柱的体积是.所以,圆锥体积与圆柱体积的比是.3.(第三届华杯赛复赛)如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?解答:容器的底面积是:(13—4)×(9—4)=45(平方厘米),高为2厘米,所以容器的体积是:45×2=90(立方厘米).4.(第七届小数报数学竞赛决赛)一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?解答:把放入铁块后的玻璃杯看作一个底面如右图的新容器,底面积是:72—6×6=36(平方厘米),水的体积是:72×2.5=180(立方厘米),后来水面的高为:180÷36=5(厘米).5.用一块长30厘米,宽20厘米的长方形铁皮做圆柱形容器的侧面,再用另一块铁皮做底,问怎样做才能使这个圆柱形容器的容积为最大?6.(第二届希望杯第1试)如果一个边长为2厘米的正方体的体积增加208立方厘米后仍是正方形,则边长增加______厘米。

解答:边长为2厘米的正方体的体积是2×2×2=8立方厘米,增加208后是8+208=216立方厘米。

因为216=6×6×6,所以边长增加了6-2=4厘米。

提高班练习四1.(第三届小数报数学竞赛预赛)一个正方体的棱长扩大a倍,那么它的体积扩大__倍.解答:它的体积扩大a×a×a倍.2.有大、中、小3个正方形水池,它们的内边长分别是6厘米、3厘米、2厘米.把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6米和4米.如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米。

历届华杯赛初赛、复赛真题及答案

历届华杯赛初赛、复赛真题及答案

华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动,由中国少年报社(现为中国少年儿童新闻出版社)、中国优选法、统筹法与经济数学研究会、中央电视台青少中心等单位联合发起主办的。

华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。

对一个对于学校课堂内容学有余力的学生来讲,适当学习小学奥数能够有以下方面的好处
1、促进在校成绩的全面提高,培养良好的思维习惯;
2、使学生获得心理上的优势,培养自信;
3、有利于学生智力的开发;
4、数学是理科的基础,学习奥数对于这个学生进入初中后的学习物理化学都非常有好处(很多重点中学就是因为这个原因招奥数好的学生)。

5、很多重点中学招生要看学生的奥数成绩是否优秀。

您可能还感兴趣的有:。

华杯赛试题及答案初中

华杯赛试题及答案初中

华杯赛试题及答案初中一、选择题(每题3分,共30分)1. 已知函数y=f(x)在点x=a处的导数为f'(a),那么曲线y=f(x)在点(a, f(a))处的切线斜率为:A. f(a)B. f'(a)C. f(a) - f'(a)D. f'(a) - f(a)2. 一个数列的前三项为1,1,2,从第四项开始,每一项是前三项的和,那么这个数列的第10项是:A. 76B. 89C. 144D. 2333. 一个圆的直径为10,那么这个圆的面积是:A. 25πB. 50πC. 100πD. 200π4. 一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是:A. 7B. 10C. 11D. 145. 一个数的平方根是2和-2,那么这个数是:A. 4B. -4C. 2D. -26. 一个直角三角形的两条直角边长分别为3和4,那么这个三角形的斜边长是:A. 5B. 6C. 7D. 87. 一个数列的前三项为2,4,8,从第四项开始,每一项是前三项的乘积,那么这个数列的第5项是:A. 64B. 128C. 256D. 5128. 一个圆的半径为5,那么这个圆的周长是:A. 10πB. 20πC. 30πD. 40π9. 一个等边三角形的边长为6,那么这个三角形的高是:A. 3√3B. 4√3C. 6√3D. 9√310. 一个数的立方根是3,那么这个数是:A. 27B. 81C. 243D. 729二、填空题(每题4分,共20分)1. 如果一个数的倒数是它本身,那么这个数是______。

2. 一个长方体的长、宽、高分别为2、3、4,那么这个长方体的体积是______。

3. 一个数的绝对值是5,那么这个数可以是______。

4. 一个圆的半径为7,那么这个圆的面积是______。

5. 一个直角三角形的两条直角边长分别为5和12,那么这个三角形的斜边长是______。

三、解答题(每题10分,共50分)1. 已知函数y=x^2-4x+3,求函数的顶点坐标。

华杯赛历年真题

华杯赛历年真题

华杯赛历年真题1. 简介华杯赛是中国知名的大学生科技创新大赛,旨在发掘和培养高校学生的创新能力和实践能力。

自1998年首次举办以来,华杯赛已经成为中国高校学生科技创新的重要舞台之一。

每年,来自全国各地的大学生团队在华杯赛上展示他们的创新项目,并与其他团队进行竞争。

在华杯赛的过程中,参赛团队需要解决一系列的科学和技术问题,所以往年的比赛真题是很好的学习资源。

本文将梳理华杯赛历年真题,并为读者提供学习华杯赛相关知识的指导。

2. 历年真题2.1 2020年华杯赛2.1.1 题目一:智能交通题目描述:设计一个智能交通系统,能够实时监测道路交通流量并进行智能调度。

要求考虑城市交通特点和实际情况,使交通系统更加高效和安全。

解题思路:首先,需要收集、分析和处理交通数据,可以利用传感器、摄像头等设备获取实时数据。

然后,需要设计一个算法来实时监测交通情况,并进行智能调度。

最后,需要将结果展示给用户,例如通过移动应用或网页。

2.1.2 题目二:智能农业题目描述:设计一个智能农业系统,能够自动监测和控制农作物的生长环境,提高农作物的产量和质量。

要求考虑土壤湿度、气温、光照等因素,并能够实时告警和调整环境参数。

解题思路:首先,需要收集土壤湿度、气温、光照等环境数据,可以利用传感器和气象站等设备获取实时数据。

然后,需要设计一个算法来分析环境数据,并根据需要调整环境参数。

最后,需要将结果展示给用户,例如通过移动应用或网页。

2.2 2019年华杯赛2.2.1 题目一:智能家居题目描述:设计一个智能家居系统,能够自动控制家庭设备,提高生活的便利性和舒适性。

要求考虑家庭成员的习惯和需求,使系统能够根据不同的场景做出相应的调整。

解题思路:首先,需要收集家庭成员的习惯和需求数据,可以通过家庭问卷调查等方式获取信息。

然后,需要设计一个算法来分析数据,并根据需要调整家庭设备的状态。

最后,需要将结果展示给用户,例如通过移动应用或智能音箱。

华杯赛历届试题

华杯赛历届试题

第一届华杯赛决赛一试试题1. 计算:2.975×935×972×(),要使这个连乘积的最后四个数字都是“0”,在括号内最小应填什么数?3.把+、-、×、÷分别填在适当的圆圈中,并在长方形中填上适当的整数,可以使下面的两个等式都成立,这时,长方形中的数是几?9○13○7=100 14○2○5=□4.一条1米长的纸条,在距离一端0.618米的地方有一个红点,把纸条对折起来,在对准红点的地方涂上一个黄点然后打开纸条从红点的地方把纸条剪断,再把有黄点的一段对折起来,在对准黄点的地方剪一刀,使纸条断成三段,问四段纸条中最短的一段长度是多少米?5.从一个正方形木板锯下宽为米的一个木条以后,剩下的面积是平方米,问锯下的木条面积是多少平方米?6.一个数是5个2,3个3,2个5,1个7的连乘积。

这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?7.修改31743的某一个数字,可以得到823的倍数,问修改后的这个数是几?8.蓄水池有甲、丙两条进水管,和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有池水,如果按甲、乙、丙、丁的顺序,循环各开水管,每天每管开一小时,问多少时间后水清苦始溢出水池?9.一小和二小有同样多的同学参加金杯赛,学校用汽车把学生送往考场,一小用的汽车,每车坐15人,二小用的汽车,每车坐13人,结果二小比一小要多派一辆汽车,后来每校各增加一个人参加竞赛,这样两校需要的汽车就一样多了,最后又决定每校再各增加一个人参加竞赛,二小又要比一小多派一辆汽车,问最后两校共有多少人参加竞赛?10.如下图,四个小三角形的顶点处有六个圆圈。

如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等。

问这六个质数的积是多少?11.若干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了,小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排了一下,小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子,问共有多少个盒子?12.如右图,把1.2,3.7, 6.5, 2.9, 4.6,分别填在五个○内,再在每个□中填上和它相连的三个○中的数的平均值,再把三个□中的数的平均值填在△中,找出一个填法,使△中的数尽可能小,那么△中填的数是多少?13.如下图,甲、乙、丙是三个站,乙站到甲、丙两站的距离相等。

华杯赛决赛试题及答案

华杯赛决赛试题及答案

华杯赛决赛试题及答案一、选择题1. 下列哪个选项是正确的?A. 2 + 3 = 5B. 3 + 4 = 7C. 5 - 2 = 2D. 4 - 3 = 2答案:A2. 如果一个数的平方根是正数,那么这个数是:A. 负数B. 零C. 正数D. 任意实数答案:C二、填空题1. 圆的周长公式是 ________ 。

答案:2πr2. 一个直角三角形的两个直角边长分别为3和4,斜边长为________ 。

答案:5三、简答题1. 请解释什么是质数,并给出一个质数的例子。

答案:质数是指在大于1的自然数中,除了1和它本身以外,不能被其他自然数整除的数。

例如,2是一个质数,因为它只能被1和2整除。

2. 什么是勾股定理,并给出一个应用的例子。

答案:勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。

例如,如果一个直角三角形的两个直角边长分别为3和4,根据勾股定理,斜边的长度应该是√(3² + 4²) = 5。

四、计算题1. 计算下列表达式的值:(3 + 4) × (8 - 2) ÷ 2答案:352. 一个数的平方是36,求这个数的值。

答案:±6五、证明题1. 证明:对于任意正整数n,n² - 1总是能被8整除。

答案:对于任意正整数n,可以表示为n = 8k + r,其中k是整数,r是0到7之间的整数。

那么n² - 1 = (8k + r)² - 1 = 64k² +16kr + r² - 1 = 8(8k² + 2kr) + (r² - 1)。

由于r² - 1是8的倍数或者-1,所以n² - 1能被8整除。

2. 证明:在一个直角三角形中,如果斜边是直角边的两倍,那么这个三角形是等腰直角三角形。

答案:设直角三角形的直角边长分别为a和b,斜边为c。

根据题意,c = 2a。

初中华杯赛试题及答案

初中华杯赛试题及答案

初中华杯赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方等于4B. 3的立方等于27C. 4的平方等于16D. 5的立方等于125答案:A2. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个是质数?A. 4B. 6C. 8D. 11答案:D4. 一个三角形的三个内角之和等于:A. 90度B. 180度C. 270度D. 360度答案:B5. 以下哪个选项是正确的等式?A. 2x + 3 = 5x - 7B. 3x - 2 = 2x + 3C. 4x = 2x + 8D. 5x + 6 = 5x - 6答案:C6. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 20厘米D. 15厘米答案:A7. 以下哪个选项是正确的不等式?A. 3 > 4B. 2 < 1C. 5 ≥ 5D. 6 ≤ 7答案:C8. 以下哪个选项是正确的分数?A. 1/2B. 2/3C. 3/4D. 4/5答案:A9. 以下哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 4:5 = 8:10D. 5:6 = 10:12答案:B10. 以下哪个选项是正确的几何图形?A. 正方形B. 矩形C. 菱形D. 梯形答案:A二、填空题(每题4分,共20分)1. 一个数的绝对值是5,这个数可以是______。

答案:±52. 一个数的平方根是3,这个数是______。

答案:93. 一个数的立方根是2,这个数是______。

答案:84. 一个数的倒数是1/4,这个数是______。

答案:45. 一个数的两倍是8,这个数是______。

答案:4三、解答题(每题10分,共50分)1. 解方程:2x - 5 = 9答案:x = 72. 计算:(3x^2 - 2x + 1) / (x - 1),当x = 2时的值。

第三届华杯赛复赛试题及答案

第三届华杯赛复赛试题及答案

第三届华杯赛复赛试题1.计算:2.某年的10月里有5个星期六,4个星期日.问:这年的10月1日是星期几?3.电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈.现在,一只红跳蚤从标有数字“0”的圆圈按顺时针方向跳了1991步,落在一个圆圈里.一只黑跳蚤也从标有数字“0”的圆圈起跳,但它是沿着逆时针方向跳了1949步,落在另一个圆圈里.问:这两个圆圈里数字的乘积是多少?4.173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?5.我们知道:9=3×3,16=4×4,这里,9、16叫做“完全平方数”,在前300个自然数中,去掉所有的“完全平方数”,剩下的自然数的和是多少?6.如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?7.在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数.8.下图中有6个点,9条线段.一只甲虫从A点出发,要沿着某几条线段爬到F点.行进中,同一个点或同一条线段只能经过1次.这只甲虫最多有多少种不同的走法?9.下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?10.已知:,求:S的整数部分.11.今年,祖父的年龄是小明的年龄的6倍.几年后,祖父的年龄将是小明的年龄的5倍.又过几年以后,祖父的年龄将是小明的年龄的4倍.求:祖父今年是多少岁?12.某个班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目、人数如下表:求这个班的学生数.13.恰好能被6、7、8、9整除的五位数有多少个?14.计算:1-3+5-7+9-11+…-1999+200115.五环图由内圆直径为8,外圆直径为10的五个圆环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等.已知五个圆环盖住的总面积是112.5,求每个小曲边四边形的面积(圆周率π取3.14).16.下图中8个顶点处标注的数字:a、b、c、d、e、f、g、h,其中的每一个数都等于相邻三个顶点处数的和的1/3,求:(a+b+c+d)-(e+f +g+h)的值.参考答案1.2.星期四3.77 4.19 5.43365 6.90立方厘米7.24;28 8.9种9.48个10.165 11.72岁12.39名13.179个14.1001 15.1.1 16.01.【解】原式===解法二:原式====算这个题时,要注意两点:(1)在乘、除运算中,代分数要化为假分数,及时约分;(2)在加、减运算中,如果分数、小数同时出现,要么都化为分数,要么都化为小数。

华杯赛1-15届的真题和答案

华杯赛1-15届的真题和答案

=11111111110000000000-1111111111=111111111088888888889 于是有 10 个数字是奇数。 12.【解】10 根筷子,可能 8 根黑,1 根白,1 根黄,其中没有颜色不同的两双筷子。 如果取 11 根,那么由于 11>3,其中必有两根同色组成一双,不妨设这一双是黑色的,去掉 这两根,余下 9 根,其中黑色的至多 6(=8-2)根,因而白、黄两色的筷子至少有 3(=9-6) 根,3 根中必有 2 根同色组成一双。这样就得到颜色不同的两双筷子。所以至少要取 11 根。 13.【解】菜地的 3 倍和麦地的 2 倍是 13× 6 公顷。菜地的 2 倍和麦地的 3 倍是 12× 6 公顷, 因此菜地与麦地共:(13× 6+12× 6)÷ (3+2)=30(公顷), 菜地是 13× 6-30× 2=18(公顷)。 14. 【解】71427 被 7 除,余数是 6,19 被 7 除,余数是 5,所以 71427× 19 被 7 除,余数就 是 6× 5 被 7 除所得的余数 2。 15.【解】从第一次记录到第十二次记录,相隔十一次,共 5× 11=55(小时)。时针转一圈是 12 小时,55 除以 12 余数是 7,9-7=2 答:时针指向 2。 16.【解】因为电车每隔 5 分钟发出一辆,15 分钟走完全程。骑车人在乙站看到的电车是 15 分钟以前发出的,可以推算出,他从乙站出发的时候,第四辆电车正从甲站出发骑车人从乙 站到甲站的这段时间里,甲站发出的电车是从第 4 辆到第 12 辆。电车共发出 9 辆,共有 8 个 间隔。于是:5× 8=40(分) 。 17.【解】小数点后第 7 位应尽可能大,因此应将圈点点在 8 上,新的循环小数是 。
18.【解】三个背包分别装 8.5 千克、6 千克与 4 千克,4 千克、3 千克与 2 千克,这时最重 的背包装了 lO 千克。 另一方面最重的包放重量不少于 10 千克:8.5 千克必须单放(否则这一包的重量超过 10)6 千 克如果与 2 千克放在一起, 剩下的重量超过 10, 如果与 3 千克放在一起, 剩下的重量等于 10。 所以最重的背包装 10 千克。 19.【解】从第一排与第二排看,五个小纸片的长等于三个小纸片的长加三个小纸片的宽, 也就是说,二个小纸片的长等于三个小纸片的宽。 已知小纸片的宽是 12 厘米,于是小纸片的长是:12× 3÷ 2=18(厘米), 阴影部分是三个正方形,边长正好是小纸片的长与宽的差:18-12=6 于是,阴影部分的面积是:6× 6× 3=108(平方厘米)。

8、容斥原理

8、容斥原理

容斥原理问题(一)练习日期:练习时间:姓名:Happy:容斥问题:包含与排除的问题。

方法:文氏图,也叫“维恩图”,由英国著名数学家Venn发明。

容斥原理公式:①总数量=A+B+C-(AB+AC+BC)+ABC②总数量=A+B-AB(常用)1、江滨小学三(2)班学生采集标本,采集昆虫标本的有27人,采集植物标本的有21人,两种标本都采集的有8人,问全班共有多少学生?2、一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,每人至少参加一个队,问这个班两队都参加的有几人?(北京竞赛题)3、五(2)班有40名同学,其中25人没有参加数学小组,18人参加航模小组,有10人两个小组都没有参加,那么只参加了一个小组的学生有多少人?方法:4、李老师出了两道题,全班40人中,第一题有30人做对,第2题有12人未做对,两题都对的有20人。

问:①第1题不对,第2题做对有几人?②两题都不对的有几人?例1 、在1至1000的自然数中,不能被5或7整除的数有______个。

(竞赛试题)讲析:能被5整除的数共有1000÷5=200(个);能被7整除的数共有1000÷7=142(个)……6(个);同时能被5和7整除的数共有1000÷35=28(个)……20(个)。

所以,能被5或7整除的数一共有(即重复了的共有):200+142—28=314(个);不能被5或7整除的数一共有1000—314=686(个)。

例2 、某个班的全体学生进行短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到了优秀。

这部分学生达到优秀的项目、人数如下表:求这个班的学生人数。

(全国第三届“华杯赛”复赛试题)讲析:如下图,图中三个圆圈分别表示短跑、游泳和篮球达到优秀级的学生人数。

只有篮球一项达到优秀的有:15—6—5+2=6(人);只有游泳一项达到优秀的有:18—6—6+2=8(人);只有短跑一项达到优秀的有:17—6—5+2=8(人)。

1-16届华杯赛复赛试题原题

1-16届华杯赛复赛试题原题

第一届华杯赛复赛试题1、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人。

问甲班和丁班共多少人?2、一笔奖金分一等奖、二等奖、三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。

如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?3、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩。

问另一个长方形的面积是多少亩?4、在一条公路上,每隔一百公里有一个仓库,共有五个仓库。

一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。

现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输一公里需要0.5元的运费,那么最少要花多少运费才行?5、有一个数,除以3余数是2,除以4余数是1。

问这个数除以12余数是几?6、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形。

大正方形的面积是49平方米,小正方形的面积是4平方米。

问长方形的短边长度是几米?7、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下同样长的一段以后,发现短纸带剩下的长度是长纸带的长度的八分之十三。

问剪下有多长?8、将0、1、2、3、4、5、6这七个数字填在圆圈的方格内,每个数字恰好出现一次,组成只有一位数和两位数的整数式。

问填在方格内的数是几?○×○=□=○÷○9、甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都比赛一盘。

到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘。

问小强赛了几盘?10、有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子。

第一队里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的五分之二,把这三堆棋子集中在一起,问白子占全部的几分之几?11、甲、乙两班的同学人数相等,各有一些同学参加课外天文小组,甲班参加天文小组的人数恰好是乙班没有参加的人数的三分之一,乙班参加天文小组的人数是甲班没有参加的人数的四分之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三届华杯赛复赛试题1.计算:2.某年的10月里有5个星期六,4个星期日.问:这年的10月1日是星期几?3.电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈.现在,一只红跳蚤从标有数字“0”的圆圈按顺时针方向跳了1991步,落在一个圆圈里.一只黑跳蚤也从标有数字“0”的圆圈起跳,但它是沿着逆时针方向跳了1949步,落在另一个圆圈里.问:这两个圆圈里数字的乘积是多少?4.173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?5.我们知道:9=3×3,16=4×4,这里,9、16叫做“完全平方数”,在前300个自然数中,去掉所有的“完全平方数”,剩下的自然数的和是多少?6.如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?7.在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数.8.下图中有6个点,9条线段.一只甲虫从A点出发,要沿着某几条线段爬到F点.行进中,同一个点或同一条线段只能经过1次.这只甲虫最多有多少种不同的走法?9.下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?10.已知:,求:S的整数部分.11.今年,祖父的年龄是小明的年龄的6倍.几年后,祖父的年龄将是小明的年龄的5倍.又过几年以后,祖父的年龄将是小明的年龄的4倍.求:祖父今年是多少岁?12.某个班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目、人数如下表:求这个班的学生数.13.恰好能被6、7、8、9整除的五位数有多少个?14.计算:1-3+5-7+9-11+…-1999+200115.五环图由内圆直径为8,外圆直径为10的五个圆环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等.已知五个圆环盖住的总面积是112.5,求每个小曲边四边形的面积(圆周率π取3.14).16.下图中8个顶点处标注的数字:a、b、c、d、e、f、g、h,其中的每一个数都等于相邻三个顶点处数的和的1/3,求:(a+b+c+d)-(e+f +g+h)的值.参考答案1.2.星期四3.77 4.19 5.43365 6.90立方厘米7.24;28 8.9种9.48个10.165 11.72岁12.39名13.179个14.1001 15.1.1 16.01.【解】原式===解法二:原式====算这个题时,要注意两点:(1)在乘、除运算中,代分数要化为假分数,及时约分;(2)在加、减运算中,如果分数、小数同时出现,要么都化为分数,要么都化为小数。

这里,还要指出:,,,,,,的小数形式0.5,0.25,0.75,0.125,0.375,0.625,0.875,一定要很熟悉,在具体计算时,可以节省时间。

2.【解】10月有31天,因为有5个星期六,只有4个星期日,所以10月31日是星期六.因为31=4×7+3,所以,3日也是星期六,1日是星期四3.【解】电子跳蚤每跳12步就回到了原来位置由于1991=165×12+11所以红跳蚤从标有数字“0”的圆圈出发,按顺时针方向跳了1991步时,跳到了标有数字“11”的圆圈同理,由1949=162x12+5,知道黑跳蚤从标有数字“0”的圆圈按逆时针方向跳了162个12步后跳到了标有数字“7”的圆圈,于是所求的乘积是11×7=77答:乘积是77。

4.【解】∵ 能被9整除的四位数的数字和是9的倍数,并且四位数173□前三个数字的和是11,∴第一次□内只能填7,∴能被11整除的四位数的个位与百位的数字和减去十位与千位的数字和所得到的差是11的倍数,而7-(1十3)=3,∴第二次□内只能填8,∵能被6整除的自然数是偶数,并且数字和是3的倍数.而173□的前3个数字的和是11,∴第三次□内只能填4,7+8+4=19。

故所求的和是19。

5.【解】不超过300的平方数,有:1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,它们的和是1785前300个自然数的和是:1+2+3+…+300=×300=45150,于是剩下的自然数的和45150-1785=433656.【解】容器的底面积是:(13—4)×(9-4)=45(平方厘米),高为2厘米,所以容器的体积是,45×2=90(立方厘米)答:容器的体积是90立方厘米。

7.【解】∵每人的环数的积=1764≠0,∴两人每箭射中的环数里没有“0”和“10”.∵每箭射中的环数都是1764的因子,而:1764=1×2×2×3×3×7×7,并且环数是不超过10的自然数∴必有两箭是7环,其它3箭的环数是1·2·2·3·3因子。

如果最小的因子是1,那么,另外两个因子是4、9或者是6、6;如果最小的因子是2,那么,另外两个因子是2,9或者是3、6;如果最小的因子是3,那么,另外两个因子是3、4。

因此,两人5箭的环数有5种可能:7,7,1,4,9,和=28;7,7,1,6,6,和=27;7,7,2,2,9,和=27;7,7,2,3,6,和=25;7,7,3,3,4,和=24;∵甲、乙的总环数相差4,甲的总环数少,∴甲的总环数是24,乙的总环数是28。

答:甲、乙的总环数分别是24、28。

8.【解】从A点出发,经过的第一条线段,有3种可能:(1)AB;(2)AE;(3)AD在每一种可能情形下,各有3种走法.所以,一共有3×3=9种走法.答:共有9种走法.9.【解】设原正方形的边长是3.所求的三角形可分两种情形:(1)三角形的一边长2,这边上的高是3这时,长为2的边只能在原正方形的边上,这样的三角形有2×4×4=32(个);(2)三角形的一边长3,这边上的高是2,这时,长为3的边是原正方形的一边或平行于一边的分割线其中,与(1)重复的三角形不再算入,这样的三角形有8×2=16(个)因此,所求的三角形共48个(包括图中开始给出的三角形).10.【解】<12×=并且>12×=∴S>165并且s<=即S的整数部分是16511.【解】祖父的年龄比小明的年龄大,两人的年龄差是不变的.因为今年祖父的年龄是小明的年龄的6倍.所以年龄差是小明年龄的5倍,从而年龄差是5的倍数.同理,由“几年后,祖父的年龄是小明的年龄的5倍”、“又过几年以后,祖父的年龄是小明的年龄的4倍”,知道年龄差是4、3的倍数,所以,年龄差是:5×4×3=60的倍数。

而60的倍数是:60,120,…,合理的选择是60,于是,今年小明的年龄是60÷5=12(岁),祖父的年龄是12×6=72(岁).答:祖父今年是72岁【又解】设今年小明x岁,那么今年祖父6x岁。

y年后,祖父的年龄是小明的年龄的5倍,所以5(x+y)=6x+y即x=4y ,又过z年以后,祖父的年龄是小明的年龄的4倍,所以4(x+y+z)=6x+y+z即 2x=3y+3z∵祖父今年6x岁,∴ 6x≤100又∵x=4y ∴x≥4由及x=4y,知x可能是4,8,12,16.又从2x=3y+3z,即y+z=x,知x是3的倍数,所以x=12,于是6x=72。

12.【解】4+17+18+15中有两项达到优秀的学生被算了2次,应当从统计中去掉1次,成为4+17+18+15-6-6-5但其中三项达到优秀的人,开始被算了3次,然后又被去掉3次,所以还应将这部分人数加进来,即全班人数是:4+17+18+15-6-6-5+2=39【又解】先求至少有一个项目达到优秀的学生人数,看下面这个图:图中时三个圆圈分别代表短跑、游泳、篮球达到优秀的学生人数,其中的“1”表示三个项目都优秀的人数,是:2;“2”表示篮球、游泳达到优秀,但短跑没有达到优秀的人数,是:6-2=4;“3”表示篮球、短跑达到优秀,但游泳没有达到优秀的人数,是:5-2=3;“4”表示游泳、短跑达到优秀,但篮球没有达到优秀的学生数,是:6-2=4;“5”表示只有短跑一项达到优秀的人数,是:17-(2+3+4)=8;“6”表示只有游泳一项达到优秀的人数,是:18-(2+4+4)=8;“7”表示只有篮球一项达到优秀的人数,是:15-(2+4+3)=6,∴只有一个项目达到优秀的人数是:2+4+3+4+8+8+6=35还有4个人在三个项目上未达到优秀,所以全班学生数是35+4=39答:这个班有39名学生。

13.【解】6、7、8、9的最小公倍数是504;五位数中,最小的是10000,最大的是99999:∵∴五位数中,能被504整除的有198-19=179(个)答:有179个14.【解】原式=1+(5-3)+(9-7)+(13-11)+…+(2001-1999)=1+2×500=1001.15.【解】每个圆环的面积是π()=9π.如果五个圆环彼此没有重合的部分,则它们的总面积是:5×9π=45π,因为五环盖住的总面积是132.5,所以每个小曲边四边形的面积是=1.1答:每个小曲边四边形的面积是1.1。

16.【解】由题设条件知道,b+e+d=3a(1),c+f+a=3b(2),d+g+b=3c(3),a+h+e=3d(4)(1)+(2)+(3)+(4),是2(a+b+c+d)+(e+f+g+h)=3(a+b+c+d)就是e+f+g+h=a+b+c+d∴所求的值是0。

相关文档
最新文档