MonteCarlo-ch03-05

合集下载

Casa Matriz Sucursal La Boca 产品参数说明书

Casa Matriz Sucursal La Boca 产品参数说明书

CPS-HP3Set Manguera 0.9m premiumCPS-HP5Set Manguera 1.5m premiumCPS-HP5E Set Manguera 1.5m premium c/valvulaCPS-HS10Set Manguera 3.0m standarCPS-HS3Set Manguera 0.9m standarCPS-HS5Set Manguera 1.5m standarCPS-HXD Depresor p/manguera 1/4 x 10CPS-HXGA Gomita p/manguera 1/4 antiblowCPS-HXGB Gomitas p/manguera 1/4 x 100CPS-HXTG Junta de teflon p/manguera 1/4 x 10MANIFOLDSADAP1/2ACMEX1/4FH Adaptador rosca Acme flare hembra 1/2"x1/4" p/mang R-134a ADAP1/2ACMEX1/4FM Adaptador rosca Acme flare macho 1/2"x1/4" p/garrafa R-134a ADAP1/4X5/16VR Adaptador 1/4"FM x 5/16"FH c/valvula retención UNIWELD 92863 CPS-M2TP3Manifold R-22 y R-407 c/mangueraCPS-M2YP3Manifold R-22 y R-404 c/mangueraCPS-MBYP3Manifold R-22 y R-407 c/manguera negraCPS-MBZS3Manifold R-22 y R-12 c/manguera negraCPS-MEBP3Manifold R-410 c/manguera rosaCPS-MSTG3Manifold R404A, R22, R134A c/manguera 36" BAR/PSI/CCPS-MT2O7P5S Manifold R410A, R22, R407C c/manguera 36" BAR/PSI/CCPS-MV12B Manifold R-410 c/manguera VORTECHCPS-MV13B Manifold R-410 1/4 VORTECHCPS-MV4Z Manifold R-22 y R-134 VORTECHCPS-MV4ZP5Manifold R-22 y R-134 c/manguera VORTECHMANÓMETROSCPS-RGBH Manómetro R410 alta 68mmCPS-RGBL Manómetro R410 baja 68mmCPS-RGX68BB Protector goma azul 68mmCPS-RGX68L Lente para manometro 68mmCPS-RGX68RB Protector goma rojo 68mmCPS-RGYH Manómetro R22/407 alta 68mmCPS-RGYL Manómetro R22/407 baja 68mmCPS-RGZH Manómetro R22/12 alta 68mmCPS-RGZL Manómetro R22/12 baja 68mmPESTAÑADORAS Y EXPANSORASCPS-FT195Pestañadora 3/16" - 5/8" standarCPS-FT203Pestañadora 5/8" - 1 1/8" standarCPS-FT500Pestañadora 3/16" - 5/8" especialCPS-FT525Pestañadora ajustable 5/8"CPS-TLE6Expansora tubo 3/8" - 1 1/8"CPS-TLH06Reemplazo Cabezal Expansora 3/8"CPS-TLH08Reemplazo Cabezal Expansora 1/2"CPS-TLH10Reemplazo Cabezal Expansora 5/8"CPS-TLH12Reemplazo Cabezal Expansora 3/4"CPS-TLH14Reemplazo Cabezal Expansora 7/8"CPS-TLH16Reemplazo Cabezal Expansora 1"CPS-TLH18Reemplazo Cabezal Expansora 1 1/8"CPS-TLH22Reemplazo Cabezal Expansora 1 3/8"REMOVEDOR DE NÚCLEOCPS-TLVC1Sacaóvulo standar c/4 nucleosCPS-TLVC2Sacaóvulo dual 1/4" + autoCPS-TLVC410A Sacaóvulo R410 c/portCPS-TLVCS Sacaóvulo standar c/portRECUPERADORA DE GASES REFRIGERANTESCPS-CR300S Recuperadora gases economica 220V 282K/h LiqCPS-CR500S Recuperadora gases apta R410 220V 332K/h Liq comp 1/3HP oil less CPS-CR700S Recuperadora gases Cyclone R410 220V 430K/h Liq comp 1HP oil less CPS-TR21S Recuperadora gases liviana R410 220V 858K/h Liq comp 1HP oil less CPS-MT69Acelarador Molecular CPS para recuperadorasTERMÓMETROS DE BOLSILLOCPS-TM50Termómetro digital de bolsillo, rango -58 a 260°CCPS-TMAPC Termómetro analógico de bolsilloCPS-TMDP Termómetro digital de bolsilloCPS-TMINI12Termómetro infrarrojo 8/1VACUÓMETROSCódigo DescripciónCPS-VG100A Vacuómetro digital ledCPS-VG200Vacuómetro digital display。

Monte Carlo(蒙特卡洛方法)

Monte Carlo(蒙特卡洛方法)

P(n 1) U P(n)
则令 X取值
xn.
例1:
离散型随机变量X有如下分布律: X 0 1 2 P(x) 0.3 0.3 0.4 设 U1 ,U 2 ,,U 是 (0,1)上均匀分布的随机数,令 N
0, 0 U i 0.3 xi 1, 0.3 U i 0.6 2, 0.6 U i
ˆ f n ( A) 。 在 n 次中出现的频率。假如我们取 fn ( A) 作为 p P( A) 的估计,即 p
ˆ 然后取 2l a.s. ˆ fn ( A) 作为 的估计。根据大数定律,当 n 时, p p. af n ( A) 2l P 。这样可以用随机试验的方法求得 的估计。历史上 af成器的周期 长度是 10,而后两个生成器的周期长度只有 它的一半。我们自然希望生成器的周期越长 越好,这样我们得到的分布就更接近于真实 的均匀分布。
在给定 m 的情况下,生成器的周期与 a 和 初值 x0 (种子)选择有关。
线性同余生成器(混合同余法) (Linear Congruential Generator )
证明: 由 F 1 (U ) 的定义和均匀分布的分布函数可得: P ( X x) P ( F 1 (U ) x) P (U F ( x )) F ( x )
由定理 1 ,要产生来自 F ( x) 的随机数,只要先 产生来自U (0,1) 随机数 u ,然后计算 F 1 (u ) 即 可。具体步骤如下:
一般形式: xi 1 (axi c) mod m ui 1 xi 1 / m
1. c是非负整数.通过适当选取参数c可以改善 随机数的统计性质(独立性,均匀性).
2. 线性同余器可以达到的最长周期为 m 1 ,我们 可以通过适当的选择 m 和 a ,使无论选取怎样的 初值 x0 都可以达到最大周期(一般选取 m 为质数)

Sciamachy mission objectives and measurement modes

Sciamachy  mission objectives and measurement modes

V OL .56,N O .215J ANUARY 1999J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S ᭧1999American Meteorological Society127SCIAMACHY:Mission Objectives and Measurement ModesH.B OVENSMANN ,J.P .B URROWS ,M.B UCHWITZ ,J.F RERICK ,S.N OE¨L ,ANDV .V .R OZANOVInstitute of Environmental Physics,University of Bremen,Bremen,GermanyK.V .C HANCEHarvard–Smithsonian Center for Astrophysics,Cambridge,MassachusettsA.P .H.G OEDESRON Ruimetonderzoek,Utrecht,the Netherlands(Manuscript received 5September 1997,in final form 16June 1998)ABSTRACTSCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography)is a spectrometerdesigned to measure sunlight transmitted,reflected,and scattered by the earth’s atmosphere or surface in the ultraviolet,visible,and near-infrared wavelength region (240–2380nm)at moderate spectral resolution (0.2–1.5nm,␭/⌬␭ഠ1000–10000).SCIAMACHY will measure the earthshine radiance in limb and nadir viewing geometries and solar or lunar light transmitted through the atmosphere observed in occultation.The extraterrestrial solar irradiance and lunar radiance will be determined from observations of the sun and the moon above the atmosphere.The absorption,reflection,and scattering behavior of the atmosphere and the earth’s surface is determined from comparison of earthshine radiance and solar irradiance.Inversion of the ratio of earthshine radiance and solar irradiance yields information about the amounts and distribution of important atmospheric constituents and the spectral reflectance (or albedo)of the earth’s surface.SCIAMACHY was conceived to improve our knowledge and understanding of a variety of issues of importance for the chemistry and physics of the earth’s atmosphere (troposphere,stratosphere,and mesosphere)and potential changes resulting from either increasing anthropogenic activity or the variability of natural phenomena.Topics of relevance for SCIAMACHY areR tropospheric pollution arising from industrial activity and biomass burning,R troposphere–stratosphere exchange processes,R stratospheric ozone chemistry focusing on the understanding of the ozone depletion in polar regions as well as in midlatitudes,andR solar variability and special events such as volcanic eruptions,and related regional and global phenomena.Inversion of the SCIAMACHY measurements enables the amounts and distribution of the atmospheric con-stituents O 3,O 2,O 2(1⌬),O 4,BrO,OClO,ClO,SO 2,H 2CO,NO,NO 2,NO 3,CO,CO 2,CH 4,H 2O,N 2O,and aerosol,as well as knowledge about the parameters pressure p,temperature T,radiation field,cloud cover,cloud-top height,and surface spectral reflectance to be determined.A special feature of SCIAMACHY is the combined limb–nadir measurement mode.The inversion of the combination of limb and nadir measurements will enable tropospheric column amounts of O 3,NO 2,BrO,CO,CH 4,H 2O,N 2O,SO 2,and H 2CO to be determined.1.IntroductionLarge and significant changes in the composition and behavior of the global atmosphere have emphasized the need for global measurements of atmospheric constit-uents.Examples are (i)the precipitous loss of Antarctic (WMO 1995)and Arctic stratospheric ozone (O 3)(New-Corresponding author address:Dr.Heinrich Bovensmann,Institute of Environmental Physics,University of Bremen (FB1),P .O.Box 330440,D-28334Bremen,Germany.E-mail:bov@gome5.physik.uni-bremen.deman et al.1997;Mu ¨ller et al.1997)resulting from the tropospheric emission of chlorofluorocarbon com-pounds (CFCs,halones,and HFCs)(WMO 95);(ii)the global increase of tropospheric O 3(WMO 1995);(iii)the observed increase of tropospheric ‘‘greenhouse gas-es’’such as CO 2,CH 4,N 2O,and O 3(IPCC 1996);and (iv)the potential coupling between polar stratospheric ozone loss and increased greenhouse gas concentrations (Shindell et al.1998).To assess the significance of such changes a detailed understanding of the physical and chemical processes controlling the global atmosphere is required.Similarly knowledge about the variability and temporal behavior128V OLUME56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E Sof atmospheric trace gases is necessary to test the pre-dictive ability of the theories currently used to model the atmosphere.Consequently,the accurate assessment of the impact of current and future anthropogenic ac-tivity or natural phenomena on the behavior of the at-mosphere needs detailed knowledge about the temporal and spatial behavior of several atmospheric trace con-stituents(gases,aerosol,clouds)on a global scale,in-cluding the troposphere.Over the past two decades pioneering efforts have been made by the scientific community to establish both ground-based networks and satellite projects that will eventually result in an adequate global observing sys-tem.Examples of satellite borne elements of such pro-grams are the Solar Backscatter Ultraviolet(SBUV)and Total Ozone Mapping Spectrometer(TOMS)on NASA’s Nimbus-7satellite(Heath et al.1975);the Stratospheric Aerosol and Gas Experiment(SAGE)(McCormick et al.1979);the Upper Atmosphere Research Satellite (UARS)(Reber et al.1993)with the Microwave Limb Sounder(MLS),the Halogen Occultation Experiment (HALOE),the Cryogenic Limb Array Etalon Spectrom-eter(CLAES),and the Improved Stratospheric and Me-sospheric Sounder(ISAMS)instruments on board;and the Second European Remote Sensing satellite(ERS-2), which carries the Global Ozone Monitoring Experiment (GOME)(Burrows et al.1999).In the near future,sev-eral new missions will be launched and will contribute significantly to research in thefields of atmospheric chemistry and physics:NASA’s Earth Observing System (EOS)satellites EOS-AM and EOS-CHEM,the Japa-nese Advanced Earth Observing System(ADEOS),and the European Space Agency’s(ESA)Environmental Satellite(ENVISAT).The Scanning Imaging Absorption Spectrometer for Atmospheric Chartography(SCIAMACHY)is part of the atmospheric chemistry payload onboard ENVISAT being prepared by ESA.Following the call for earth observation instrumentation in the Announcement of Opportunity for the Polar Platform issued by ESA,the SCIAMACHY proposal(Burrows et al.1988)was sub-mitted to ESA by an international team of scientists led by Principal Investigator J.P.Burrows.After peer re-view SCIAMACHY was selected as part of the payload for the satellite now known as ENVISAT,which is planned to be launched in2000.The heritage of SCIAMACHY(Burrows et al.1988) lies in both the ground-based measurements using Dif-ferential Optical Absorption Spectroscopy(DOAS) (Brewer et al.1973;Platt and Perner1980;Solomon et al.1987)and previous satellite atmospheric remote sensing missions.SCIAMACHY combines and extends the measurement principles and observational modes of the nadir scattered sunlight measuring instruments SBUV and TOMS(Heath et al.1975),the solar occul-tation instrument SAGE(McCormick et al.1979;Maul-din et al.1985),and the limb scattered sunlight mea-suring instrument Solar Mesospheric Explorer(SME)(Barth et al.1983)within one instrument.SCIAMA-CHY measures in the wavelength range from240nm to2380nm the following:R The scattered and reflected spectral radiance in nadir and limb geometry,R the spectral radiance transmitted through the atmo-sphere in solar and lunar occultation geometry,and R the extraterrestrial solar irradiance and the lunar ra-diance.Limb,nadir,and occultation measurements are planned to be made during every orbit.Trace gases,aerosols, clouds,and the surface of the earth modify the light observed by SCIAMACHY via absorption,emission, and scattering processes.Inversion of the radiance and irradiance measurements enables the amounts and dis-tributions of a significant number of constituents to be retrieved from their spectral signatures and is discussed in section4.Figure1shows the wavelength range to be observed by SCIAMACHY and the position of spec-tral windows where atmospheric constituents are to be retrieved.SCIAMACHY and GOME,which is a small-scale version of SCIAMACHY(see Burrows et al.1999and references therein),represent a new generation of space-based remote sounding sensors,which rely on and uti-lize the simultaneous spectrally resolved measurement of light upwelling from the atmosphere to determine amounts of atmospheric constituents.Using data from GOME,which was launched on board the European Remote Sensing satellite ERS-2in April1995,the feasibility of the instrument and retrieval concepts have been successfully demonstrated for nadir observations.The trace gases O3,NO2,BrO,OClO, SO2,and H2CO have been observed as predicted(Bur-rows et al.1999),and studies of ClO,NO,and aerosol retrieval are proceeding.The determination of O3profile information,including tropospheric O3,from GOME measurements(Burrows et al.1999;Munro et al.1998; Rozanov et al.1998)has a large number of potential applications.In addition,the retrieval of tropospheric column information of SO2,H2CO,NO2,and BrO from GOME measurements was demonstrated(Burrows et al. 1999).The goal of this paper is to provide a comprehensive overview of the SCIAMACHY mission and instrument, to summarize the retrieval strategies,to report on planned data products and expected data quality,and to demonstrate the range of applications and the potential that lies in the concept of this new generation of hy-perspectral UV–VIS–NIR sensors.Section2provides details about the targeted constituents.In section3the instrument design and observational modes are pre-sented.The proposed retrieval strategies are summa-rized in section4.Section5focuses on the expected data precision and section6summarizes the current sta-tus of operational data products.15J ANUARY 1999129B O V E N S M A N N E T A L.F IG .1.Wavelength range covered by SCIAMACHY and absorption windows of the targeted constituents.2.Scientific objectives and targeted constituents The main objective of the SCIAMACHY mission is to improve our knowledge of global atmospheric change and related issues of importance to the chemistry and physics of our atmosphere (cf.WMO 1995and IPCC 1996)such asR the impact of tropospheric pollution arising from in-dustrial activity and biomass burning,R exchange processes between the stratosphere and tro-posphere,R stratospheric chemistry in the polar regions (e.g.,un-der ‘‘ozone hole’’conditions)and at midlatitudes,and R modulations of atmospheric composition resulting from natural phenomena such as volcanic eruptions,solar output variations (e.g.,solar cycle),or solar pro-ton events.Figure 2lists the constituents targeted by SCIA-MACHY and shows the altitude where measurements are to be made.In Fig.2,the combined use of nadir and limb measurements is assumed to yield tropospheric amounts of the constituents down to the ground or the cloud top,depending on cloud cover.a.Tropospheric chemistrySCIAMACHY will measure the backscattered sun-light that reaches the earth’s surface (␭Ն280nm).The retrieval of tropospheric constituents is influenced and limited by clouds.SCIAMACHY is the only atmo-spheric chemistry sensor on ENVISAT capable of de-termining trace gases and aerosol abundances in the lower troposphere including the planetary boundary lay-er under cloud-free conditions.From the SCIAMACHY nadir and limb measurements tropospheric columns of O 3,NO 2,BrO,CO,CH 4,H 2O,N 2O,SO 2,and H 2CO (cf.Fig.2)will be retrieved.In addition,surface spectral reflectance,aerosol and cloud parameters (cover and cloud-top height),and the tropospheric flux from 280to 2380nm will be retrieved.These data are required for studies of the oxidizing capacity of the troposphere,photochemical O 3production and destruction,and tro-pospheric pollution (biomass burning,industrial activ-ities,aircraft).b.Stratosphere–troposphere exchangeFor the investigation of stratosphere–troposphere ex-change (Holton et al.1995)SCIAMACHY measure-130V OLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C ES F IG .2.Altitude ranges of atmospheric constituents targeted by SCIAMACHY.Retrieval from the occultation measurements yields infor-mation over a wider altitude range than the limb measurements,due to its higher S/N ratio.ments of the height-resolved profiles of the tracers O 3,H 2O,N 2O,CH 4,and aerosol will be of primary sig-nificance.These measurements enable investigations of the downward transport of stratospheric O 3and upward transport of important species (e.g.,aerosol,CH 4,H 2O,and N 2O).The CH 4and N 2O molecules are emitted into the planetary boundary layer.Their long tropospheric lifetime results in being transported to the stratosphere,where they are the dominant source of the ozone-de-stroying HO x and NO x radicals.Studies of relatively small-scale features such as tropopause folding at mid-latitudes require a high spatial resolution and are un-likely to be unambiguously observed by SCIAMACHY .However,larger-scale stratosphere–troposphere ex-change as envisaged by Holton et al.(1995)will be readily observed.In the neighborhood of the tropopause the different measurements modes of SCIAMACHY will have dif-ferent vertical and horizontal resolutions.Solar and lu-nar occultation modes yield measurements with a ver-tical resolution of 2.5km and a horizontal resolution of 30km across track,determined by the solar diameter,and extending roughly 400km along track.For the limb measurements the geometrical spatial resolution is ap-proximately 3km vertically and typically 240km hor-izontally across track,determined by scan speed and integration time,and extending roughly 400km along track (see Table 3).More details about the geometricalresolution of the different measurement modes will be given in section 3b.c.Stratospheric chemistry and dynamicsThe study of the stratospheric chemistry and dynam-ics will utilize the simultaneous retrieval of total col-umns from nadir measurements and vertical stratospher-ic profiles from limb and occultation measurements of O 3,NO 2,BrO,H 2O,CO,CH 4,and N 2O (and OClO and possibly ClO under ozone hole conditions),as well as aerosol and stratospheric cloud information.Tem-perature and pressure profiles can be determined from limb and occultation observations of the well-mixed gases CO 2and O 2assuming local thermal equilibrium.SCIAMACHY will be making measurements when halogen loading of the stratosphere maximizes around the turn of the century (WMO 1995).It has recently been pointed out by Hofmann (1996)that the springtime polar lower-stratospheric O 3,specifically the layer from 12to 20km,will be the first region to show a response to the international control measures on chlorofluoro-carbon compounds (CFCs)defined in the Montreal Pro-tocol of 1987and its Copenhagen and London amend-ments.SCIAMACHY will enable this preposition to be studied in detail.In general,SCIAMACHY measurements will yield detailed information about the development of strato-15J ANUARY 1999131B O V E N S M A N N E T A L .spheric O 3above the Arctic and Antarctica,the global stratospheric active halogen species (BrO,ClO,OClO),and the global O 3budget as a function of the height in the atmosphere.As SCIAMACHY measures simulta-neously the backscattered radiation field and constituent profiles,an important objective is to test the accuracy of current stratospheric photochemical models and their predictive capability.d.Mesospheric chemistry and dynamicsIn the upper stratosphere and lower mesosphere SCIAMACHY measurements yield profiles of O 3,H 2O,N 2O,NO,O 2,and O 2(1⌬).These measurements will be used to study the distribution of H 2O and O 3and their global circulation.There has recently been much dis-cussion of upper-stratospheric and mesospheric chem-istry in the context of the ‘‘ozone deficit problem’’(Crutzen at al.1995;Summers et al.1997).It has also been suggested that monitoring of H 2O in the lower mesosphere may offer an opportunity for the early de-tection of climate change (Chandra et al.1997).The O 3destruction by mesospheric and upper-stratospheric NO will be investigated.Finally,the mesospheric source of stratospheric NO x will be quantified.In contrast to the retrieval of the majority of trace gases from SCIAMACHY data,NO and O 2(1⌬)profiles are to be determined from their emission features rather than their absorptions.Satellite measurements of NO via the ␥-band emission had been demonstrated by SME to determine profile information from the limb scan (Barth et al.1983,1988)and by SBUV to determine column amounts above 45km from nadir measurements (McPeters 1989).NO can be detected above 40km via the emission from the excited A 2⌺ϩstate into the ground state X 2⌸1/2,3/2(NO ␥-band transitions,200–300nm)as determined in a model sensitivity study by Frederick and Abrams (1982).SCIAMACHY will be able to detect several bands in the 240–300-nm spectral region of the ␥-band emissions of NO in limb as well as in nadir observation mode.O 2(1⌬)can be detected using its emission around 1.27␮m as shown by results from the SME (Thomas et al.1984).The combination of height-resolved O 3,O 2(1⌬),and UV radiance products from SCIAMACHY provides detailed information about the photolysis of O 3in the upper stratosphere and mesosphere.This will provide an excellent opportunity to test our current photochem-ical knowledge of the mesosphere.e.Climate researchFor use in climate research,SCIAMACHY measure-ments will provide the distributions of several important greenhouse gases (O 3,H 2O,CH 4,N 2O,and CO 2),aero-sol and cloud data,surface spectral reflectance (280–2380nm),the incoming solar spectral irradiance and the outgoing spectral radiance (240–2380nm),and pro-files of p and T (via O 2and CO 2).As it is intended that SCIAMACHY observations are to be made for many years,this long-term dataset will provide much unique information useful for the study of the earth–atmosphere system and variations of the solar output and its impact on climate change.To reach continuity with other spec-trometers measuring solar spectral irradiance such as SBUV or GOME,it is foreseen that SCIAMACHY will be calibrated with standard methods also applied to the GOME or SBUV calibration (Weber et al.1998).3.The instrumentDetails of the instrument concept and design have been given by Burrows and Chance (1991),Goede et al.(1994),Burrows et al.(1995),and Mager et al.(1997).The design is summarized in the following sub-sections.Since the development of the design of SCIA-MACHY two significant changes have occurred.1)The original concept (Burrows and Chance 1991;Burrows et al.1995)used an active Stirling cooler to maintain the infrared detectors of SCIAMACHY at their operational temperature of 150K.During the development phase it was found that a passive cooler could be used for this purpose.This has the advantage of reducing the electrical power con-sumption and potentially extending the lifetime of the mission.2)As an outcome of phase B studies an additional sev-enth polarization measurement device (PMD),mea-suring the 45Њcomponent of the incoming radiance,was added to the spectrometer,to improve the ra-diometric accuracy for the limb mode.a.Design and performanceThe SCIAMACHY instrument is a passive remote sensing moderate-resolution imaging spectrometer.It comprises a mirror system,a telescope,a spectrometer,and thermal and electronic subsystems.A schematic view of the light path within the instrument is depicted in Fig.3.The incoming radiation enters the instrument via one of three ports.1)For nadir measurements the radiation from the earth’s scene is directed by the nadir mirror into a telescope (off-axis parabolic mirror),which focuses the beam onto the entrance slit of the spectrometer.2)For limb and solar/lunar occultation measurements the radiation is reflected by the limb (elevation)mir-ror to the nadir (azimuth)mirror and then into the telescope,which focuses the beam onto the entrance slit of the spectrometer.3)For internal and subsolar calibration measurements the radiation of internal calibration light sources or the solar radiation is directed by the nadir mirror into the telescope.Except for the scan mirrors,all spectrometer parts are132V OLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C ES F IG .3.Schematic view of the SCIAMACHY optical layout.All imaging optical components (mirrors,redirecting prisms,lenses,etc.)areomitted.All used gratings are in a fixed position.Each detector contains a 1024-pixel photo diode array.fixed and the spectra are recorded simultaneously from 240to 1750nm and in two smaller windows,1940–2040nm and 2265–2380nm,in the near-infrared.The solar radiance varies by a factor of about 100between 240and 400nm.In comparison,the earthshine radiance varies approximately four orders of magnitude over the same spectral range.Spectrometers that measure these quantities therefore need to suppress well any stray light within the instrument.The SCIAMACHY spectrometer achieves this by the combination of a predispersing prism and gratings.This is equivalent in principle to a double spectrometer design.Initially light from the spectrometer slit is collimated and directed onto the pre-dispersing prism.The main beam of light leaving the predispersing prism forms a spectrum in the middle of the instrument.Reflective optics are used to separate the spectrum into four parts.The shorter wavelengths of the spectrum are directed to channel 1(240–314nm)and channel 2(314–405nm)respectively.The majority of the light in the spectrum (405–1750nm)passes without reflection to channels 3–6.The infrared part of the spec-trum (1940–2380nm)is reflected toward channels 7and 8.Dichroic mirrors are used to select the wavelength ranges for channels 3,4,5,and 6,and to separate light for channel 7from that for channel 8.Each individual channel comprises a grating,transmission optics,and a diode array detector.The grating further disperses the light,which is then focused onto eight linear 1024pixel detector arrays.To minimize detector noise and dark current,the diode arrays are cooled:the detector for channels 1and 2to 200K,those for channels 3–5to 235,that for channel 6to 200K,and those for channels 7and 8to 150K.The entire instrument is cooled to 253K in order to minimize the infrared emission from the instrument that might influence the detectors of channels 6–8.In channels 1–5the detectors are silicon monolithic diode arrays (EG&G Reticon RL 1024SR).For the NIR channels 6to 8InGaAs detectors were developed by Epitaxx,Inc.(Joshi et al.1992),and space qualified specifically for SCIAMACHY (see, e.g.,Goede et al.1993;van der A et al.1997).The spectral and radiometric characteristics of the SCIAMACHY spectrometer are summarized in Table 1.The spectral resolution of the spectrometer varies be-tween 0.24and 1.48nm depending on channel number (see Table 1).For DOAS retrieval (see section 4)a high spectral stability is required.The instrument is designed to have a spectral stability of 1/50of a detector pixel,which requires a temperature stability of the spectrom-eter of better than 250mK over one orbit in combination with dedicated calibration measurements.The second relevant retrieval strategy (see section 4),the Full Re-trieval Method (FURM)based on optimal estimation (Rodgers 1976),requires in addition to high spectral stability a high radiometric accuracy of the SCIAMA-CHY measurements.Knowledge of the state of polar-ization of the incoming light and the polarization re-sponse of the instrument determines the radiometric ac-curacy of the radiance,irradiance,and higher-level data products.To achieve the required radiometric accuracy15J ANUARY1999133B O V E N S M A N N E T A L.T ABLE1.Optical parameters of the spectrometer from the designanalysis.ChannelSpectralrange(nm)Resol-ution(nm)Stability(nm)High-resolution channels 1234240–314309–405394–620604–8050.240.260.440.480.0030.0030.0040.005 5678785–10501000–17501940–20402265–23800.541.480.220.260.0050.0150.0030.003Polarization measurement devices PMD1PMD2PMD3PMD4310–377450–525617–705805–900broadbandbroadbandbroadbandbroadband PMD5PMD6PMD71508–16452265–2380802–905broadbandbroadbandbroadbandRadiometric accuracy2–4%Ͻ1%absoluterelativeof2%–4%(depending on the spectral region),dedicated on-ground and in-flight radiometric calibration mea-surements have to be performed in combination with measurements of the polarization properties of the at-mosphere.For the latter purpose SCIAMACHY is equipped with seven polarization measurement devices. Six of these devices(PMD1–6)measure light polarized perpendicular to the SCIAMACHY optical plane,gen-erated by a Brewster angle reflection at the second face of the predispersing prism.This polarized beam is split into six different spectral bands,as described in Table 1.The spectral bands are quite broad and overlap with spectral regions of channels2,3,4,5,6,and8.The PMDs and the light path to the array detectors(including the detectors)have different polarization responses. Consequently,the appropriate combination of PMD data,array detector data,and on-ground polarization calibration data enables the polarization of the incoming light for the nadir measurements(Kruizinga et al.1994; Frerick et al.1997)to be determined.For atmospheric limb measurements,where both limb and nadir mirrors are used,the light is off the optical plane of the spec-trometer.This requires the measurement of additional polarization information of the incoming light.A sev-enth PMD(PMD7)will therefore measure the45Њcom-ponent of the light extracted from the channels3–6light path,as depicted in Fig.3.All PMDs are read out every 1/40s and they observe the same atmospheric volume as channels1–8.In addition to these PMD data being used for the determination of the polarization charac-teristics of the incoming light,they are also planned to be used to determine the fractional cloud cover of the observed ground scene.Additional information about the polarization of the incoming light can be obtained from the diode array overlap regions1/2(309–314nm),2/3(394–405nm), 3/4(604–620nm),4/5(785–805nm),and5/6(1000–1050nm).The polarization efficiency is different for the measurements of the same wavelength in the dif-ferent channels.Inversion of these measurements yields the ratio of plane to parallel polarization components of the incoming light in a manner similar to that used for the array and PMD detectors.The advantage of the over-lap regions is that they are in small wavelength bands, having the same spectral resolution as the corresponding channel.SCIAMACHY aims to retrieve trace gas amounts of relatively weak absorbers.For example,the dif-ferential optical density due to the BrO absorption around350nm detected with GOME(Burrows et al. 1999)is in the order of10Ϫ3and below.Therefore, to achieve a high retrieval precision,a high signal-to-noise ratio(S/N)is required for the scattered ra-diance as well as for the solar irradiance and lunar radiance from the UV to the NIR.The predicted in-strumental S/N values as a function of wavelength are depicted in Fig.4.These S/N values are calculated for an individual detector pixel,for example,of nadir, limb,and occultation measurements.In most cases the predicted S/N is well above103.Exceptions are found in channels1,7,and8.In channel1S/N de-creases toward the UV primarily because the sun is weaker and ozone absorption increases strongly from 320to250nm.In the IR channels7and8the lower S/N values arise from the higher noise of the InGaAs detectors.For these channels the S/N is limited by the detector noise.The apparent missing S/N in Fig. 4c for channel1is the result of the almost complete absorption of the solar photons by the ozone layer when observing the tangent height of15km.In gen-eral,higher S/N values can be obtained by averaging measurements either temporally or spectrally at the cost of losing temporal(and consequently spatial)or spectral resolution.This strategy enables the optimal set of radiance and irradiance data to be generated for a given inversion.Summation of succeeding mea-surements on board(so-called onboard co-adding)is to be used to match optimally the amount of down-linked data to the ENVISAT data rate allowed for SCIAMACHY.In order to cope with the large dy-namic range of the input signals(limb scattered ra-diance vs solar irradiance),which is of six to eight orders of magnitude,the exposure time of each chan-nel can be selected independently over a wide range of values from0.03125to80s.In addition,an ar-rangement involving an aperture stop and a neutral densityfilter is used to limit the intensity of the in-coming light during solar occultation measurements. To optimize S/N over the orbit,exposure times are varied as a function of the solar zenith angle.To calibrate the instrument inflight and to monitor the instrument performance,SCIAMACHY is equipped with a Pt/Cr/Ne hollow cathode(spectral calibration),a。

Omega CSi32 温度传感器说明书

Omega CSi32 温度传感器说明书
小型台式控制器
CSi32系列
CSi32,图片为实际尺寸。
U 坚固耐用的台式金属外壳 U 4位数字显示屏,1或0.1°
分辨率
U 基于OMEGA荣获奖项且取 得专利的iSeries控制器
U 5年保修期 U 配置和使用都很简便 U 完全自动调谐PID加热—
冷却控制
U 单斜坡和恒值控制功能 U 精度高达±0.5°C (±0.9°F) U 各型号均接受专用热电
模数转换:双斜率
读取速率:每秒3次采样
数字滤波器:可编程
显示屏:4位数字9段式LED; 10.2 mm (0.40”);用于显示过程变量、 设定值和温度单位的红色、绿色和琥珀 色三种可编程颜色
输入类型:热电偶、RTD、模拟电压、 模拟电流
热电偶导线电阻: 最大100 Ω
热电偶类型(ITS 90): J、K、T、E、R、S、B、C、N、L
P-85
外形尺寸:mm (inch)
厚 155 (6.1)
125 (4.9)
规格
精度:参见下一页的表格
分辨率:1°/0.1°;10 µV过程
温度稳定性: RTD:0.04°C/°C
热电偶:25°C (77°F);0.05°C/°C冷端 补偿
过程:50 ppm/°C
NMRR:60 dB
CMRR:120 dB
-50 ~ 100°C/100 ~ 1768°C -58 ~ 212°F/212 to 3214°F
100 ~ 640°C/640 ~ 1820°C 212 ~ 1184°F/1184 ~ 3308°F
0 ~ 2320°C/32 ~ 4208°F
-250 ~ -100°C/-100 ~ 1300°C -418 ~ -148°F/-148 ~ 2372°F

Omega FL-1500流量计说明书

Omega FL-1500流量计说明书

B-45e Exatidão de ±2% do Fundo de Escala e R epetibilidade de Fundo de Escala de ±1⁄2%e C onstrução em Vidro e Aço Inoxidável Proporcionando Compatibilidade com Vários Meios e E quações de Correlação para Uso com Diversos Fluidose Construção com Chapa Laterale Escala de 250 mm (9,85")e Escala de Fluxo de 10 a 100%e B lindado para Uso em Sistemas Pressurizados e Somente para Montagem VerticalOs medidores de vazão FL-1500 da OMEGA™ combinam exatidão de 2% e construção com chapalateral. Estes medidores apresentam construção em vidro e açoinoxidável 316, com chapas lateraisde alumínio e proteções de plástico acrílico. O desenho do flutuador oferece alta imunidade à variação de viscosidade e as conexões de rosca NPT facilitam a instalação emsistemas industriais e laboratoriais.ROTÂMETROS DE ALTA EXATIDÃOCAPACIDADES: 0,078 a 6,28 GPM para Água,FL-1501A-B, mostrado com conexões terminais de latão opcionais (o padrão é aço inox 316), em tamanho menorque o real.Vem completo, com manual do usuário.Para modelos com conexões terminais de latão, adicione o sufixo “-B” ao código do produto; consulte a engenharia de fluxos.Exemplos de Pedido: rotâmetros FL-1503A-B com conexão terminal de latão; 1,045 a 10,45 SCFM, 0,253 a 2,53 GPM.FL-1501A, conexão terminal de aço inoxidável 316, 0,317 a 3,17 SCFM, 0,078 a 0,78 GPM.ESPECIFICAÇÕESEscala: fundida no tubo medidor, 10 a 100% da escala do fluxoTubo Medidor: vidro borossilicato Flutuador e Limitadores: aço inoxidável 316Conexões Terminais:Padrão: aço inoxidável 316 Opcional: latãoAnel de Vedação: FKM-A Estrutural:Chapa Lateral: proteções de alumínio; de plástico acrílico, na frente e atrásPressão Máxima:FL-1501 e FL-1502: 20,68 bar (300 psig)FL-1503: 12,06 bar (175 psig) FL-1504: 6,9 bar (100 psig)Temperatura Máxima: 121°C (250°F)Exatidão: ±2% do fundo de escala Repetibilidade: ±0,5% do fundo de escalaSérie FL-1500A。

瑞士一类表机芯型号简介

瑞士一类表机芯型号简介

Patek Phillipe175 (8): In-house manuelt. Variant cal. 177215 (9): In-house manuelt. Variant cal. 215PS, 215/45 (small sec.), 215 PS FUS (2. timezone) 240 (9): In-house automatic. Div. Komplikationsvarianter 240 xxx.315 SC (8): In house automatic. Identisk med 330 SC p?n?r datohjulets diameter.315 xxx (8): In-house automatic. Div. komplikationsvariationer med 315 SC som basisv?rk330 SC (8): In House automatic. Tidligere versioner: 310 SC efterfulgt af 335 SC. Discontinued.330 SC xx (8): In-house automatic. Div. Komplikationsvarianter med 330 SC som basisv?rkR27 PS (9): In-house automatic minute repeater. R27 xxx (9): In-house automatic div. komplikationer med R 27 som basisv?rkRTO 27 PS (10): In-house manuelt tourbillon minute repeater. Findes i andre varianter.109 RTO 27 QR SID LUCL (10): In-house grand complication, Sky moonCH 27-70 (8): Lemania 2310 manuelt kronograf CH 27-70 /150 (8): Lemania CH 27 manuelt split-sekund kronograf m. complete calendarCHR 27-70 Q (9): Lemania 2310 manuelt split-sekund kronograf og perpetual calendar CHR 27-525 PS (9): In-house manuelt split-second kolonnehjulskronograf28-20 (9): In-house manuelt tonneau-formet. Variant 28-20/222 (tourbillon)28-255 (9): JLC 920 automatic. Discontinued.28-520 (8): In-house automatic kolonnehjul chrono og complete calendar16.250 (8): In-house manuelt. Variant 16.250 PS (small sec.), 16.250 PS/LU (moonphase) Vacheron Constantin1003 (7): JLC 8491120 (9): Tidligere JLC 920, nu Audemars P. 2120. Variant VC1121 (dato)1124 (7): JLC 889/2 automatic1125(7): JLC891 automatic calendar baseret p?JLC 889 1127 (7): JLC 928 automatic powerreserve baseret p? JLC 889 1137 (8): FP 1185 automatic kronograf1126 (7): JLC 889/2 automatic date1141 (8): Lemania 2320 manuelt kronograf1190 (7): FP 9.51. Var 11301206 (7): FP 11.50 automatic. Var 12041222 (7): JLC 889 automatic1311(7): Girard Perregaux 3100 automatic.Variant 1312 1400 (8): In-house manuelt1755 (9): in-house manuelt minute repeater1790 (9): In-house manuelt tourbillon2475 (8): in-house automatic. Varianter 24xx2750(10): In-house manuelt. Verdens mest komplicerede armb?ndsur-v?rk.Ulysse NardinUN 01 (8): In-house model FreakUN 10 (8): Lemania 389 manual minute repeaterUN 13 (4-5): ETA 2892UN16 (6): Frederic Piguet automatic complete calendar UN 20 (4-5): ETA 2892UN 22 (4-5): ETA 2892UN 26 (4-5): ETA 2892UN 32 (7): Lemania 8815. Perpetual calendarUN 33 (7): Lemania 8815. Perpetual calendarUN 44 (8): Venus 179 manuelt split-sekund kronograf UN 51 (5): Dubois-Depraz 4900UN 57 (5): ETA/V aljoux 7750 split-sekund kronograf UN 60 (4-5): ETA 2892UN 78 (9): Christoph Clarét minute repeater tourbillon UN 80 (8): ???? automatic pertetual calendarUN 97 (4-5): ETA 2892MU-RW (9): Frederic Piguet jumping hour tourbillon UN-79 (9): In-house ? manuelt tourbillonTag HeuerCal. 5-6 (2): ETA 2824Cal. 7 (3): ETA 2892Cal. 11 (3): ETA 2894 samt DD-chronomodulCal. 16 (3): ETA/Valjoux 7750Cal. 17 (3): ETA 2894 samt DD-chronomodulCal 36 (7): Zenith El Primero cal. 400 automatic chrono. Variant: SLR McLaren (7)Cal.60(3): ETA/V aljoux 7750 eller ETA 2894 samt DD-chronomodulCal. 360 (5): ETA 2824 m. in-house 1/100 sec. chrono. Cal. V4 (7): In-house belt-driveRoger DubuisRD01 (9): In-house dobbelt tourbillon automaticRD02 (9): In-house tourbillon manuelt skeletonRD 03 (9): In-house tourbillonRD 08 (9): In-house tourbillon automaticRD14 (8): In-house automatic time-onlyRD27 (7): Tavannes Watch Co. of La Chaux de Fonds NOS cal. 507RD28(8):In-house manuelt 2-counter kolonnehjulskronografRD54 (8): In-house manuelt time-onlyRD56(8): Lemania 2320 manuelt 2-counter kolonnehjulskronograf. Variant RD 10RD57(8): Lemania8815 automatic.Variant RD39, RD40 RD82 (8): In-house manuelt time-onlyRD98 (8): In-house manuelt time-onlyRD 8230 (9): ??? Manuelt 8-days kronografPiaget600P (9): In-house tourbillon9P (6): In-house manuelt. Discontinued. Forg?nger for 430P12P (6): In-house automatic. Discontinued. Forg?nger for 500P25P (6): Lemania 2010500P –561P (6): In-house automatic. Div. varianter baseret p? cal. 500P400P - 430P (6): In-house manuelt. Div. varianter baseret p? cal. 400P. Efterf?lger at 9P.8532P (5): ETA 2892 automatic complete calendar 9512P (6): Frederic Piguet 9.51automaticLonginesL650 (3): Valjoux 7750L878 (4): Longines 550 manueltL678 (3): ETA 7751L693 (3): ETA A07-161L512 (2): ETA/Unitas 6498-2L600 (3): ETA 2892A2Maurice LacroixML05 (3): ETA 2892-A2 med fly-back chronograf modulML06 (4): AS 5008 automatic alarm, 2. timezoneML07 (2): ETA/Unitas 6498ML15 (3): ETA 2892-A2 med fly-back chronograf modulML16 (4): ETA/Unitas 6498 skeletonML19 (4): Unitas 1380 Regulateur ML20 (4): AS 5008 automatic alarmML22 (4): AS 5008 automatic alarmML27 (4): ETA 2836-2 calendarML28 (4): Peseux 7046 manuel jumping hourML29 (2): ETA 2836-2 automatic 2. timezoneML30 (3): ETA/V aljoux 7750ML35 (5): Fabrique d'Horlogerie Fontainemelon cal.29 tonneau manueltML36 (8): Venus 175 kolonnehjulskronografML37 (2): ETA 2824-2 automatic DD-calendar modul ML45 (4): AS 5008 automatic alarmML46 (3): Valjoux 7736 manuelt koblingskronografML50 (4): Unitas 6376 manuelt power-reserveML51 (3): ETA 2892-2 automatic power-reserveML53 (4): Unitas 6376 manuelt regulateurML54 (2): ETA2824-2 automaticML56 (3): Unitas 6376 manueltML57 (2): ETA 2000ML58 (3): ETA 2892-2 automatic big dateML61 (5): ETA/V aljoux 7750 automatic split-second ML63 (5): AS1931 manueltML66 (3-4): ETA/Valjoux 7751ML67 (3-4): ETA/Valjoux 7750ML70 (8): Valjoux 72c manuelt kolonnehjulskronograf m. kalenderML76 (5): ETA/Unitas 6498 manuelt retrogradeML77 (7): Venus 188 manuelt koblingskronografML83 (8): Valjoux 23 manuelt kolonnehjulskronograf ML88 (3): Valjoux 7750ML91 (3): ETA 2892-2 automatic power-reserveML93 (4): Peseux 7046ML99 (7): Venus 188 manuelt koblingskronografML100(5):ETA/Unitas6497-1manuelt dobbelt retrogradeML101 (4): Peseux 7046ML102 (3): ETA 2892-2ML103 (3): ETA 2892-2 automatic big dateML104 (4): ETA 6498-1 manuelt retrograde moonML105 (5): ETA/Unitas 6498-1 manuelt regulateurML107 (3): ETA 2824-2 automatic calendarML110 (9): In-house manuelt retrograde tourbillon Omega1120 (4): ETA 28921128 (4): ETA 2893 GMT1151 (4): ETA /Valjoux 77511152 (4): ETA/Valjoux 77501164 (4): ETA/Valjoux 77501866 (5): Lemania 18741861 (5): Lemania 18732200 (4): ETA 2892 small second2201 (4): ETA/Unitas 6498-22202 (5): ETA 2892 co-axial small second2401 (4): ETA 28922403 (5): ETA 2892 co-axial2500 (5): ETA 2892 co-axial2600 (8): In-house tourbillon2610 (5): ETA 2892 co-axial big date2627 (5): ETA 2892 co-axial power-reserve2628 (5): ETA 2892 co-axial GMT3220 (3): ETA 2892 m. DD-chronograf modul3301 (6): FP 1185 Chrono3303 (6): FP 1185 Chrono3313 (7): FP 1185 co-axial Chrono3601 (4): ETA 2892 m. countdown modul3602 (4): ETA 2892 m. countdown og kronograf modul 3612 (7): FP 1185 m. splitsekundFleurier Parmigiani (8-9)PF 110 (8): In-house manuelt tonneau 8-daysPF 252 (9): In-house manuelt perpetual kalender, minuterepeaterPF 350 (8): Lemania 389 manuelt minute repeaterPF 331(8): In-house automatic. Variant PF 332 m. perpetual calendarPF 370 (8): In-house 10-days. Bugatti-modellenPF5000(10): In-house manuelt 8-days, 30 sec tourbillon Basica (7): Frederic Piguet cal. ??Kronograf (8): Zenith El Primero 400 automatic chrono Audemars PiguetAP 2003 (8): Jaeger LeCoultre (JLC) 849 manuelt. Variant AP 2003/2805 m. perpetual cal.AP 2120 (9): In-house automatic, dog tidligere JLC 920. Variant AP 2120/2802 m. perpetual cal.AP 2121 (9): In-house automatic date (basis: AP 2120)AP 2125 (7): JLC 889/2 automaticAP 2124 –2129 (7): Alle JLC 889/2 automatic. Varianter AP 21xx/xxxx har komplikationsmodulAP 2140 (7): JLC 960 automaticAP 2224 –2229 (7): Alle JLC 889/2 automatic. Varianter AP 22xx/xxxx har komplikationsmodulAP 2225 (7): JLC 889/2 automaticAP 2385 (8): Frederic Piguet 11.85 automatic kolonnehjulskronografAP2866: (9): In-house manuelt minute rep. Variant AP 2865 m. star wheelAP2868 (9): In-house manuelt. Minute rep.AP2869 (10): In-house manuelt. Perp. cal, tourbillon, minute rep.AP2871 (10): In-house manuelt. Tourbillon tonneauAP2872 (10): In-house manuelt. Tourbillon minute rep. tonneauAP2873 (10): In-house manuelt. Minute rep.AP2875 (10): In-house manuelt. Tourbillon power reserveAP2880 (10): In-house automatic. Minute rep. Perp. cal. Chrono.AP2885 (10): In-house manuelt. Minute rep. Perp. cal. split-sec.AP2887 (10): In-house automatic. Minute rep. Perp. cal. split-sec.AP2890 (10): In-house manuelt. Minute rep. V ariabel AP2891AP2896(10): In-house manuelt tourbillon dynamograph AP28xx (9-10): In-house. Div. varianter udviklet og prod. hos Audemars Piguet (Renaud et Papi)AP3090 (9): In-house manuelt. Variant AP 3091 SQ skelletonAP3120 (9): In-house automatic.AP5026 (9): star wheel manuelt.BlancpainBP Fxxx (8): Frederic Piguet (FP) 11.85 automatic med div. komplikationerBP M185 (8): FP 11.85 automatic single bottom chronographBP 5A50 (7): FP 11.50 GMTBP 5Lxx, 56F9A (7): FP 11.50 automatic m. komplikationsmodulBP 11xx (7): FP 11.50 automatic og 11.00 manuelt, m. div. komplikationerBP 21 (7): FP 21 automaticBP 23 (9): FP manuelt tourbillon 8-days for BP only. Variant BP 25 (automatic)BP 33 (9): FP manuelt minute repeater for BP only. Variant BP 35 (automatic)BP 40F6 (8): FP 11.85 automatic med split-sec chrono og power reserveBP 56F9U (9): FP for BP only tourbillon, perp. calendar, chrono-split. Var: 23F9ABP 67A6 (7): FP 11.50 m. kalender modulBP 71 (7): FP 71P automaticBP118x (8): FP 11.85 (automatic) og 11.80 (manuel) kronograf, FP 11.86 auto split-secondBP1735(10): FP automatic grand complication for BP onlyBP 558x (8): FP 11.80 (manuel) eller FP 11.85 (automatisk) med div. komplikationBP 6763 (7): FP 11.50 m. kalender modul. Var: BP 6850-6950 m. big-date, BP 5653 m. perp. cal.BP 7663 (7): FP 11.50 automatic retrograde sec. Var: BP4053 med powerreserveBreguetCal.502 (8): Frederic Piguet 71 P automatic. Modellen er nu overtaget af LemaniaCal.507 (7): In-house Lemania model ???Cal.51x automatic (8): Frederic Piguet 11.50. Div varianter med FP 1150 som basisv?rkCal.51x manuelt (8): Frederic Piguet 11.00. Div. varianter med FP11.00 som basisv?rkCal.530 (7): Jaeger LeCoultre 818 manueltCal.532 (7): In-house Lemania model ???Cal.533xx(8): In-house Lemania 2320 manuelt kolonnehjulskronograf. Variant cal. 535Cal.533NT(8): In-house Lemania 2393 manuelt split-sec chrono. Variant af cal. 2320Cal.537 (7): In-house Lemania model ??? (simpel automatic)Cal.549 (7): JLC 889/2 automaticCal.550 (7): In-house Lemania 1050Cal.552 (7): Frederic Piguet 95Cal.554 (9): In-house Lemania 2397 manuelt kronograf, tourbillonCal.558T (9): In-house Lemania 387 manuelt tourbillon. Varianter: cal. 577, cal. 587Cal.567 (9): In-house Lemania 389 manuelt minute repeaterCal.576 (8): Frederic Piguet 11.85 automaticCal.579 (7): In-house Lemania 980Cal.582 (6): In-house Lemania 1350 automatic koblingskronograf. Variant cal. 583Cal. 591 (8): In-house Lemania 8810. Variant cal. 563 CartierCal 021 (6): Frederic Piguet 21PCal 048 (4): ETA 2893Cal x49 (3): ETA 2892/A2 Cal 077 (3): ETA 2671Cal 078 (3): ETA 2512Cal 096 (5): Frederic Piguet 99PCal 191 (6): Girard Perregaux 3100Cal 200 & 220 (2): ETA 2000Cal 205 (7): Frederic Piguet 1185Cal 222P (6): Piaget 212Cal 430C (6): Piaget 430CCal 437 MC (6): Piaget 430 manueltCal 480 (6): Girard Perregaux 3100Cal 8000 MC (6): JLC automatic exclusive for Cartier onlyCal 8510 (4): ETA 2894Cal 9421MC (8): Girard Perregaux 3000 DD-perpetual calendar modulCal 9701 (6): Piaget 400P manueltCal VC200043 (6): Piaget 212Cal VC20049 (6): Piaget 9 PZChronoswissC.7xx (5): ETA/Valjoux 7750. Kronograf automatic modeller.C.12x (6): Enicar 165. Automatic Regulateur modeller C.111 (6): Marvin 700. Manuel time-onlyC.361 (8): Progress 6361.101 Manuel tourbillon (discontinued)C.672 (4): Unitas 6497C.9xx (4): ETA 2892C.1722 (6): Minerva 1722 manuelC.361 (8): STT manuelt tourbillon. Afl?ser for Progress 6361C. ??? (6): FEF 130 manuelt digital visning Kronograf manuel: Lemania 1873 (5)Daniel RothDR 052 (9): in-house tourbillonDR101(7):Girard Perregaux 3080 automatic kolonnehjulskronografDR113(7):GP3100automatic jumping hour retrograde DR 114 (7): GP 3100 automatic perpetual calendarDR 130 (8): Zenith El Primero 400 automatic chrono DR 190 (8): Zenith El Primero 400 automatic chrono DR300(8):Lemania8810 automatic perpetual calendar DR 307 (9): Lemania 2187 manuelt tourbillonDR 340 (7): Frederic Piguet 11.50DR 500 (8): Zenith El Primero 400 automatic chrono DR 600 (9): Genta 13000 minute repeaterDR 700 (x): ??DR 720 (9): In-house tourbillon. Variant DR 197.xDR 730 (9): Automatic tourbillonDR ??? (9): Lemania 389 minute repeaterDR 904 (8): Lemania 1908 manuelt power reserve EbelEbel 122 (3): ETA 2892Ebel 124 (3): ETA 2892Ebel 136 (7): Zenith El Primero 410 automaticEbel 137 (5): Lemania 1350 manuelt koblingschrono Ebel 139 (3): ETA 2892 ???Ebel Perpetual calendar (8): Zenith El Primero 400 EternaCal. 608 (3): ETA 2892Cal. 636 (2): ETA2836Cal. 1504 (6): In-house automaticFranck MullerFM 750 (7): FP 11.50 manuelt kronografFM1185 (8): Frederic Piguet 11.85 automatic kronograf FM 1870 (7): Lemania 1872FM 1751 (7):FM 2800 (5): ETA 2892FP 5000 (5): ETA/Valjoux 7750FM 7000 automatic(5): ETA/Valjoux 7750FM 7000 manuelt (8): Venus 179 manuelt split-sekund kronografFM 7500 (x):TFC 01 (8): In-house tourbillonRevo. 1 (9): In-house tourbillonRevo. 3 (10): In-house tourbillon 3-DFM 3210 (8): In-house automatic kolonnehjuls chrono FM???? (8): In-house manuelt kolonnehjulschrono RMF93 (x): ???TRM 95 (9): in-house tourbillonGDT4600 (5): ETA 2892QP4100 (9): In-house manuelt tourbillon perpetual calendarGirard-PerregauxGP 2201 (4): Peseux 7001. Manuel. Discontinued.GP220-2200(4): ETA 2892. Automatic. Discontinued. GP 2291 (5): AS 5008. Automatic. Produceres pt. af Jaquet SA.GP2280(4):ETA2892 med DD-chrono modul. Discontinued.GP 3080 (7): In-house automatic kolonnehjulschrono baseret p? GP 3000. Discontinued.GP 30CO (7): Ny version af GP 3080. GP 3100 (6): In-house Time onlyGP 3x00 (6): In-house. Benyttes ogs? som "motor" p? div. automatic komplikationerGP8381(6): Lemania 1872 manuelt 2-counter chrono GP 9780(8): In-house baseret p? manuelt Venus 179 split-second.GP 9892-070 (9): In-house. Haute Horlogerie manuelt minute repeaterGP 9981 (10): In-house three-bridge tourbillonGP V97 (9): In-house tourbillonIWC30110 (5): ETA 289230710 (5): ETA 2892 GMT33110 (5): ETA 289250900 (9): In-house automatic tourbillon 7-days 51010 (8): In-house automatic 7-days51110 (8): In-house automatic 7-days79091 (8): ETA/Valjoux 7760 Grand Complication 79230 (6): ETA/Valjoux 7750 Split-second79240 (5): ETA/Valjoux 775079261 (6): ETA/Valjoux 7750 perpetual calendar 79320 (5): ETA/Valjoux 775079350 (5): ETA/Valjoux 775079470 (6): ETA/Valjoux 7750 Split minute80110 (6): In-house. Automatic95290 (8): In-house minute repeater manuelt95611(8):In-houseperpetualcalendar 7-days automatic 98290(7):In-house. FA. Jones manuelt baseret p? lommeursv?rket IWC cal. 982887 (7): JLC 889/2. Benyttes ikke l?ngere。

WSET模拟题库

WSET模拟题库
d
17
Blanco tequila布兰克特基拉的颜色是?a)Clear无色;b)Golden金色;c)Tawny茶色;d)Mahogany红褐色
a
18
Botrytis是?a)一种病毒;b)一种培形方法;c)一种霉;d)一种葡萄品种
c
19
Cote Or科多尔位于?a)Bordeaux波尔多;b)Burgundy勃艮第;c)Loire卢瓦尔;d)Provence普罗旺斯
d
23
Mildew是一种?a)影响葡萄根部的细菌;b)真菌疾病;c)葡萄园害虫;d)阻碍葡萄生长的病毒
b
24
Pomerol AC的主要葡萄品种是: a)赤霞珠(Cabernet Sauvignon);b)梅洛(Merlot);c)西拉(Syrah);d)黑皮诺(Pinot Noir)
b
25
Recioto是?a)一款来自意大利的起泡酒;b)一款来自西班牙的经橡木桶熟化的葡萄酒;c)一款来自意大利的甜型葡萄酒;d)一款来自西班牙的加强型葡萄酒
c
45
波本(Bourbon)独特的风味特征是?a)泥煤;b)烧焦的橡木桶;c)焦糖;d)木炭
b
46
波本是: a)来自苏格兰的威士忌;b)来自法国的白兰地;c)来自美国的威士忌;d)来自加勒比海的朗姆酒
c
47
波尔多被认为是什么气候类型?a)Cool凉爽;b)Moderate温和;c)Hot炎热;d)Tropical热带
b
50
波特通过什么方法加强?a)在发酵过程中加入葡萄蒸馏酒;b)在发酵结束后加入葡萄蒸馏酒;c)加糖以促进二次发酵;d)在特制的大桶中加热
a
51
勃艮第红葡萄酒的典型水果特征是: a)热带水果;b)草莓;c)黑加仑;d)桃子

炉子产品说明书

炉子产品说明书

Serie 6, Forno da incasso, 60 x 60cm, AcciaioHBA257BS0Accessori integrati1 x Griglia combinata, 1 x Leccarda universale smaltataAccessori opzionaliHEZ538000 Guide telescopiche clip a 1 livello, HEZ538200 Guide telescopiche a 2 livelli, HEZ538S00 Guide telescop. a 2 livelli+1 guida clip, HEZ625071 Teglia per grigliare adatta a pirolisi,HEZ633001 Coperchio per tegame professionale, HEZ633070 Tegame professionale, HEZ634000 Griglia combinata 455x375x31 mm (LxPxA), HEZ636000 Leccarda in vetro 455x364x30 mm (LxPxA), HEZ638000 Guide telescopiche clip a 1 livello, HEZ638200 Set griglie telesc.2 liv.ad pl, HEZ638300 Set griglie telesc.3 liv.ad pl, HEZ660050 Accessory, HEZ664000 Griglia combinata 455x375x59 mm (LxPxA), HEZ915003 Pirofila in vetro con coperchio 5,4 l., HEZG0AS00 Cavo di collegamento 3m, HEZ317000 Teglia per pizza, HEZ327000 Pietra per pane e pizza, HEZ333001 Coperchio per leccarda extra profonda, HEZ530000 2 leccarde slim 455x188x39 mm (LxPxA), HEZ531000 Leccarda bassa 455x375x30 mm (LxPxA), HEZ531010 Leccarda antiaderen 455x375x30mm (LxPxA), HEZ532000 Leccarda profonda 455x375x38 mm (LxPxA), HEZ532010 Leccarda antiaderen 455x400x38mm (LxPxA),HEZ533000 Leccarda profonda 455x375x81 mm (LxPxA)Forno da incasso di moderno ed elegante design con programmi automatici di cottura: per preparare piatti perfetti.• Programmi automatici di cottura: cucinare sarà semplicissimo grazie ai programmi con impostazioni già preselezionate.• Comode manopole a scomparsa push-pull: per una pulizia piùsemplice del panello frontale.• EcoClean Direct: facile pulizia grazie a un rivestimento che dissolve il grasso durante la cottura.Dati tecniciTipologia costruttiva del prodotto: .....................................Da incasso Sistema di pulizia: ....Idrolisi, 3 pannelli catalitici, 3 pannelli catalitici Dimensioni del vano per l'installazione (AxLxP): 585-595 x 560-568 x 550 mmDimensioni (AxLxP): ............................................595 x 594 x 548 mm Dimensioni del prodotto imballato (AxLxP): .......675 x 660 x 690 mm Materiale del cruscotto: ..............................................................vetro Materiale porta: ..........................................................................vetro Peso netto: ..............................................................................34.1 kg Volume utile: .................................................................................71 l Metodo di cottura: .Grill a superficie grande, Aria calda delicata, aria calda, Riscaldamento statico, Funzione pizza, riscaldamento inferiore, grill ventilatoMateriale della cavità: .................................................................Altro Regolazione della temperatura: ..........................................Meccanico Numero di luci interne: (1)Lunghezza del cavo di alimentazione elettrica: .....................120.0 cm Codice EAN: (4242005056309)Numero di vani - (2010/30/CE): (1)Classe di efficienza energetica: .........................................................A Energy consumption per cycle conventional (2010/30/EC): ........0.97 kWh/cycleEnergy consumption per cycle forced air convection (2010/30/EC):0.81 kWh/cycleIndice di efficienza energetica (2010/30/CE): ..........................95.3 % Potenza: ..................................................................................3400 W Corrente: .....................................................................................16 A Tensione: .............................................................................220-240 V Frequenza: ...........................................................................60; 50 Hz Tipo di spina: ..........................................................................Schuko Accessori inclusi: .......1 x Griglia combinata, 1 x Leccarda universale smaltataSerie 6, Forno da incasso, 60 x 60cm, AcciaioHBA257BS0Forno da incasso di moderno ed elegante design con programmi automatici di cottura: per preparare piatti perfetti.- Eco Clean: soffitto, parete posteriore, pareti laterale- Programma di pulizia EcoClean- Display digitale LCD a colore bianco- Programmi automatici: 10- Orologio elettronico con impostazione inizio e fine cottura- Raggiungimento temperatura- Illuminazione interna alogena- Volume cavità: 71 l- <8088brandlookup_nl(TUE,- KIN, SIK, SIB, REW, STA, TKS)>- Ventola tangenziale di raffreddamento- Assorbimento massimo elettrico: 3.4 kW- Dimensioni apparecchio (AxLxP): 595 mm x 594 mm x 548 mm- Dimensioni nicchia (AxLxP): 560 mm - 568 mm x 585 mm - 595 mm x 550 mm- Si prega di fare riferimento alle quote d'installazione mostrate nel disegno tecnicoEtichetta energetica- Classe di efficienza energetica (acc. EU Nr. 65/2014): A(in una scala di classi di efficienza energetica da A+++ a D)- Consumo energetico per ciclo durante funzionamento convenzionale:0.97 kWh- Consumo energetico per ciclo durante funzionamento ventilato:0.81 kWh- Numero di cavità: 1 Tipo di alimentazione: elettrica Volume della cavità:71 lDimensioniSerie 6, Forno da incasso, 60 x 60cm, Acciaio HBA257BS0。

基于Monte Carlo和Rosenblueth方法的边坡可靠性分析及其在工程实践中的应用

基于Monte Carlo和Rosenblueth方法的边坡可靠性分析及其在工程实践中的应用
张 颖
吉林省煤 田地质勘察设计研究 院,吉林 长春 ,10 2 3 06 摘 要 :传统上 常以安全 系数作为边坡稳定性的评价指标 ,但是 安全 系数只是 由一种确定的方法计算所得 的一个 定值 ,没有考虑设计参数的 变异性 ,因此安全 系数很难表征边坡 的安全程度 ,为此本文引入 了可靠度的概念 ,并 运 用基于概率论 和数理统计 学的蒙特卡 洛"( neca0和Roebut法进行边坡 可靠性 分析 ,有效的弥补 了边  ̄ Mo t d ) sn le h
Ab ta t Trdt n l . es ft a trwh c Sac ran v lec luae y a c ran m eh d wa fel s d a sr e : a io al t aeyf co ih i eti au ac ltd b oti t o sotru e s i yh
作者简介 :张
颖 (17 一)女 ,吉林 四平人 ,吉林省煤 田地质勘察设 计研究院T程师 0 , 9
l0 0
吉 林 地 质

第3卷 O
(一尸 ) 1 ,

学者也 逐渐将 可靠 性分析应 用到 了边 坡稳定 性分析
之 中 ,罗文 强 、光 耀华 等 【】 参数估 计 方法 和岩 式 中 : 5对 - 6
11 Mo t al模拟 方法基 本原理 . neC r o 蒙 特 卡洛 ( neC r Mo t al o)模 拟方 法 f] l 又称统 o
=ቤተ መጻሕፍቲ ባይዱ
去 {
2 可 靠 性 分 析理 论应 用实 例
21 工程概 况 .
计 实验 法 ,是一 种依据统计 抽样 理论研究 随机变量
的数 学方法 。应用蒙特 卡洛模 拟方法 ,通过构 建模

MonteCarlo(蒙特卡洛算法)算法

MonteCarlo(蒙特卡洛算法)算法
1、用此方法模拟某一过程时,需要产生 各种概率分布的随机变量。 2、用统计方法把模型的数字特征估计出 来,从而得到实际问题的数值解。
用Monte Carlo 计算定积分
考虑积分
I
x 1exdx,
0
0.
假定随机变量具有密度函数
fX (x) ex,

I E( X 1).
用Monte Carlo 计算定积分-
2
2
T
T
Monte Carlo 模拟连续过程的欧式 期权定价-
均匀分布
R=unidrnd(N),-产生1到N间的均匀分布随 机数
R=unidrnd(N,n,m),产生1到N间的均匀分布 随机数矩阵
连续均匀分布
R=unifrnd(A,B) -产生(A,B)间的均匀分布随 机数
R=unifrnd(A,B,m,n)产生(A,B)间的均匀分布 随机数矩阵
Matlab 的随机数函数-
正态分布随机数
R=normrnd(mu,sigma) R=normrnd(mu,sigma,m) R=normrnd(mu,sigma,m,n)
特定分布随机数发生器 R=random(‘name’,A1,A2,A3,m,n)

a=random(‘Normal’,0,1,3,2) a=
基本思想和原理
基本思想:当所要求解的问题是某种事件出现 的概率,或者是某个随机变量的期望值时,它 们可以通过某种“试验”的方法,得到这种事 件出现的频率,或者这个随机变数的平均值, 并用它们作为问题的解。
原理:抓住事物运动的几何数量和几何特征, 利用数学方法来加以模拟,即进行一种数字模 拟实验。
实现从已知概率分布抽样
构造了概率模型以后, 按照这个概率分 布抽取随机变量 (或随机向量),这一 般可以直接由软件包调用,或抽取均匀 分布的随机数构造。这样,就成为实现 蒙特卡罗方法模拟实验的基本手段,这 也是蒙特卡罗方法被称为随机抽样的原 因。

高光谱检测复杂混合溶液的Monte Carlo仿真研究

高光谱检测复杂混合溶液的Monte Carlo仿真研究

射光或漫透射光来反 推被 测物质的光学参量是研究复杂混合 溶液较 为常见 的方法 。C lo n和 Mat 测 量 了牛奶 和奶 汕 a u h ea 冰淇淋混合物 的折射 率和衰减 系数 ( 射系数 和吸 收系数 之 散 和)4; o i 和 Igma 利 用空 域 漫反 射光 谱技 术对 多分 l T ba s ne r 散散射液体进行 了研 究 ,获得 了描述 它 的两变 量栩 函数 ;
液检测 的实例 ,如 :液 栩 色 谱法 质谱 法 用 于检 测 农 药残 留
齄 I 、旋光法用于糖浓度 的检测[ 、分光 光度 法用于水 中余 2 ]
氯 的检 N 。其 中 , 于 L mbrB e 定 律 的分 光 光 度 法 E 胡等 基 a e er ( 称 吸 收 光 i ) 测 溶 液 的成 分 及 含 量 应 用 广 泛 ,成 果 众 义 普泼 检 ‘
引 毒 ‘
复杂混合溶 液的检测 涉及 食 品、医药 、环保 、 业等 众 农 多领域 ,其应用不仅关 系到相应 的_ 农、 品的品质 与生产 l 产 :
效 率 , 往 是 关 系 到 “ 计 民生 ” 还 国 ,如 食 品安 伞 等 的 重 大 问
频 域 分 辨 或 稳 态 漫 反 射 测 量 技 术 ) 得 被 测 物 质 表 的 漫 反 测
第 3 卷 , 1 期 1 第 1
20 11年 11月
ห้องสมุดไป่ตู้








V 13, o 1,p0431 o 1N . 1p 31 07 .
No e e ,2 1 v mb r 0 1
Sp c r s o y a d S e ta a y i e to c p n p c r lAn ls s

monte carlo计算机拟甲烷—水溶液的亨利常数

monte carlo计算机拟甲烷—水溶液的亨利常数

monte carlo计算机拟甲烷—水溶液的亨利常数
Monte Carlo计算机算法可用于计算甲烷—水溶液的Henry's Constant(亨利常数)。

亨利常数定义为气相中溶质的折叠浓度与解离的浓度成比例的常数,且该浓度单位为单位体积溶液中的单位体积飞腾气体。

Monte Carlo算法在这个领域是一种有效且可靠的计算亨利常数的方法,它是通过在小体系中重复拟合实验数据,并将结果拟合到一个更大的体系来完成的。

拟合过程通过重复运行模拟,不断优化参数,从而使获得精确结果变得可能。

另外,对亨利常数的模拟还可以通过采用实验室实验法(如测定溶液中溶质的折叠浓度和解离的浓度的比例)和理论法(如采用分子动力学,量子化学和蒙特卡罗比例)计算来实现。

总之,采用Monte Carlo算法模拟甲烷—水溶液的Henry's Constant是可行且可靠的,这需要多种方法的整合,包括实验室和理论方法。

三维随机粗糙海面的Monte-Carlo仿真

三维随机粗糙海面的Monte-Carlo仿真

三维随机粗糙海面的Monte-Carlo仿真为了更好地观察海面的动态变化,我们进行了一次三维随机粗糙海面的Monte-Carlo仿真。

在这个仿真中,我们使用了蒙特卡罗方法来生成随机海浪,并且加入了更多的噪声和动态效果,使其更加真实。

下面将具体介绍这个仿真的实现过程。

首先,我们需要确定海浪的初始状态,包括起伏、速度等参数。

在这里,我们随机生成了一组数据,以模拟海面初始化时的情况。

在这些参数的基础上,我们使用蒙特卡罗方法来模拟海浪的变化过程。

为了模拟海浪的动态效果,我们加入了其他的噪声因素。

例如,我们模拟了海面上漂浮的小物体对海浪的影响,以及海浪受到风力的影响等。

这些噪声因素的加入,使仿真结果更加具有真实性。

除了模拟海浪的动态变化外,我们还模拟了海浪照射在物体表面的效果。

在这里,我们使用了渲染技术,将模拟得到的海浪效果渲染到物体表面上。

这个过程中,我们使用了光照和阴影效果来增强渲染效果,使得观看者能够更好地感受到海浪和物体之间的互动关系。

在这个三维随机粗糙海面的Monte-Carlo仿真中,我们不仅模拟了海浪的动态变化,还考虑了一些噪声和动态效果,使得仿真结果更加真实。

同时,我们也使用了渲染技术来呈现仿真效果,从而使得观看者更加直观地感受到海浪和物体之间的交互作用。

将仿真结果输出到视频中,可以更好地展示仿真的过程和效果。

在三维随机粗糙海面的Monte-Carlo仿真中,我们生成了大量的数据,包括海浪的起伏、速度、漂浮物体对海浪的影响以及海浪照射在物体表面的效果等。

下面我们将对这些数据进行分析,并进一步了解海浪的规律和特点。

首先,我们分析了海浪起伏的数据。

我们生成的海浪起伏数据分别为0.1、0.2、0.3和0.4米,并且在不同的时间点下进行了记录。

我们发现,海浪起伏随着时间的推移而变化,而同一时间点下,不同起伏高度的海浪之间有明显的区别。

高起伏的海浪更为峻峭,波浪起伏周期更短,而低起伏的海浪则更加平缓。

MARTINAL产品规格说明书

MARTINAL产品规格说明书

Die oben genannten Werte sind nur als Richtwerte zu verstehen und nicht etwa als zugesicherte Eigenschaften.The above mentioned values should be taken only as indications and not as guaranteed properties.Stand/Issue:01.10 F Surface treated, fine precipitated MARTINAL grades give special benefits when incorporated into resins and improve the mechanical properties of cross-linked elastomers.Al(OH)3-Gehalt /-content [%]≈ 99.5≈ 99.0Feuchte / Moisture (105 °C)[%]≤ 0.3≤ 0.25Glühverlust / Loss on Ignition (1200 °C)[%]35 –36.535–36Teilchengröße (Laserbeugung, Cilas) / Particle Size (Laser scattering, Cilas)d 10[µm]0.4 –0.8 0.3 –0.9 d 50[µm] 1.1 –1.7 1.3–2.2 d 90[µm]1.5 –3.52.3–4.2Teilchenform / Particle shape plättchenförmig / platelet, pseudo-hexagonalVerhalten in Wasser /Reaction in waternicht benetzbar / no wetting of particlesBrechungsindex / Refractive index [%] 1.58 1.58Weißgrad / Whiteness(Elrepho 457 nm)[%]≥ 95≥ 94Spezifische Oberfläche /Specific Surface Area (BET)[m 2/g] 6 –8 3 –5 Ölaufnahme / Oil absorption [cm 3/100g]30 –4025 –35Dichte / Density[g/cm 3] 2.4 2.4Schüttdichte / Bulk Density[kg/m 3]≈ 500≈ 450MARTINAL ®OL-107 C / OL-104 CEUROPE, MIDDLE EAST, AFRICA Martinswerk GmbHKölner Straße 110D-50127 BergheimPhone: +49-2271-902-0Fax: +49-2271-902-710ASIA PACIFICHuber Engineered Materials Zhang Ge Zhuang Huangdao Sub-district Qingdao, Shangdon266555 ChinaAMERICASHuber Engineered Materials3100 Cumberland BoulevardSuite 600Atlanta, Georgia 30339Phone: +1 (678) 247-7300Fax: +1 (678) 247-2797THERE ARE NO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Refer to Martinswerk's Standard Conditions of Sale for the only express warranties applicable to the Martinswerk products. Products incorporating Martinswerk products are not warranted by Martinswerk. In no event is Martinswerk liable for consequential damages. MARTINAL®is used, applied for, or registered as a trademark of Martinswerk GmbH in various countries around the world.© April 2016 Martinswerk GmbHWeb:www.martinswerk.de Email:******************************************************************or customer service.。

蒙特卡洛风扇5DI52XXD 5DI52XXD-L系列 fan 安装指南说明书

蒙特卡洛风扇5DI52XXD 5DI52XXD-L系列 fan 安装指南说明书

Owner’s Guide and Installation ManualAttach sales receipt to this card and retain as your proof of purchaseDATE OF PURCHASE:MODEL NUMBER:R ETAILER NAME:RETAILER ADDRES S:To register your fixture, please visit our website 5DI52XXD/5DI52XXD-L Series FanTotal fan weight with lightUL Model No. : 5DI528.5 kgs 18.7 lbsWARNING: TO REDUCE THE RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS, OBSERVE THE FOLLOWING: READAND SAVE THESE INSTRUCTIONSInstallation work and electrical wiring must be done by qualified person(s) in accordance with applicable codes and standards (ANSI/NFPA 70-1999), including fire-rated construction.Use this unit only in the manner intended by the manufacturer . If you have any questions contact the manufacturer .After making the wire connections, the wires should be spread apart with the grounded conductor and the equipment-grounding conductor on one side of the outlet box and ungrounded conductor on the other side of the outlet box. The splices, after being made, should be turned upward and pushed carefully up into the outlet box.WARNING : Before you begin installing the fan, servicing or cleaning unit, Switch power off at Service panel and lock service disconnecting means to prevent power from being switched on accidentally. When the service disconnecting means cannot be locked, securely fasten a prominent warning device, such as a tag, to the service panel.Be cautious! Read all instructions and safety information before installing your new fan. Review the accompanying assembly diagrams.When cutting or drilling into wall or ceiling, do not damage electrical wiring and other hidden utilities.Make sure the installation site you choose allows the fan blades to rotate without any obstructions. Allow a minimum clearance of 7 feet from the floor to the trailing edge of the blade.WARNING : To Reduce The Risk Of Fire, Electric Shock, or Personal Injury, Mount To Outlet Box Marked “Acceptable for Fan Support of 15.9 kg (35 lbs) or less” And Use Mounting Screws Provided With The Outlet Box.CAUTION: For Compliance with Local Codes and Regulations, If Installing The Secondary Support Safety Cable in the U.S., Do Not Re-move Knockouts In The Outlet Box. Mount the secondary support safety cable through the reserved nail/screw hole on the outlet box to the building structure (or the ceiling joist).WARNING : T o reduce the risk of personal injury, do not bend blade holders during installation to motor, balancing or during cleaning. Do not insert foreign object between rotating blades.Attach the mounting bracket using only the hardware supplied with the outlet box.WARNING : T o reduce the risk of fire or electric shock, this fan must be installed with an isolating wall control/switch.WARNING:T o reduce the risk of fire or electric shock, do not use this fan with any solid state fan speed control device, or variable speed control.If this unit is to be installed over a tub or shower, it must be marked as appropriate for the application.Never place a switch where it can be reached from a tub or shower .The combustion airflow needed for safe operation of fuel-burning equipment may be affected by this unit’s operation. Follow the heating equipment manufac-turer’s guideline safety standards such as those published by the National Fire Protection Association (NFPA), and the American Society for Heating, Refrigera-tion and Air Conditioning Engineers (ASHRAE) and the local code authorities.CAUTION : T o Reduce the Risk of Electric Shock, Disconnect the electrical supply circuit to the fan before installing the light kit. All set screws must be checked and tightened where necessary before installation.Customer Service 800-969-3347Customer Service Center7400 Linder Ave.Skokie, IL 60077Tools Required for Assembly (not included): Electrical Tape, Phillips Screwdriver, Pliers, Safety Glasses,Stepladder and Wire Strippers.Before you begin installing the fan, Switchpower off at Service panel and lock service dis-connecting means to prevent power from being switched on accidentally. When the service dis-connecting means cannot be locked, securely fasten a prominent warning device, such as a tag, to the service panel.Before installing this fan make sure the outlet box is properly installed to the house structure. To reduce the risk of fire, electric shock, or personal injury,mount to outlet box or supporting system acceptable Use metal outlet box suitable for fan support (must support 35 lbs). Before attaching fan to outlet box, ensure the outlet box is securley fastened by at least two points to a structural ceiling member ( a loose box will cause the fan to wabble). Use only the screws provided with the outlet box.32Loosen the 2 set screws till you can not feel them on inside of yoke.Note : If install fan on vaulted ceiling,make sure open end of mounting bracket is installed facing the higher point of the ceiling and make sure the ceiling angle is not steeper than 30º.4yokePlace downrod into fan yoke.7Install the keeper to pin.9Align the hole in the Downrod with the hole in the Yoke. Insert the Pin through the Yoke and Downrod until the point appears on the other side.8Downrod mount installationRemove Keeper pin and cross pin from downrod. Place canopy and caonpy disk cover over downrod.CanopyThread leadwires and safety Downrod65Canopy diskCross pinKeeper pinDownrodHang assembled fan from the mounting bracket in-stalled to ceiling in previous step. Make sure the fan is hanging straight. Rotate fan until the tab on the Mounting bracket engages the slot on the Downrod Ball. This must be done to prevent the fan body from rotating when the blades are in motion.11Make wire connections to power source using wire nuts provided. Make sure that no filiments are outside of the wirenut. After making the wire connections, the wires should be spread apart with the grounded con-ductor and the equipment-grounding conductor on one side of the outlet box and ungrounded conductor on the other side of the outlet box.15Make sure the studs protruding from the bottom of the Mounting bracket are in-stalled with threads all the way through the bracket.13Tighten the 2 set screws on the yoke once the downrod is in place.10For Canadian installation and for USA fan and light kit combinations over 35 lbs, in both flush and downrod modes the safety cable must be installed into the house structure beams using 3” lagscrews, washers and lock washers provided. Make sure that when the safety cable is fully extended the lead wires are longer than the cable and no stress is placed on the lead wires.Note :If Installing The Secondary Support Safety Cable in the U.S., Do Not Remove Knockouts In The Outlet Box.12Safety cable installationSafety Cable Lag Screwsafety cable 3” lag screwlock washerwasherRemove every other screw as circled and save for later use.Note : Flushmount is not available with vaulted ceiling.17Flush mount installation16Cover RingLift Conopy allowing the 2 studs to protrude through the canopy.Next lift the cover ring and install knurled nuts as shown. Tighten the knurled nuts securely. The canopy should adjust for any irregularity in the ceiling or Outlet box.Check the motor for shipping stabiliz-ers and remove if present. Attach blades using screws and washers in 26Remove side covers from canopy exposing 4 holes. 2 closed holes and 2 open “L”shape holes and then Pass leadwires and safety cable through the canopy.19“L” shape slotsInstall rubber pad between fan body and canopy.18Remove the all thread studs from thelower part of the mounting bracket. Hang fan from mounting bracket by thehands free hook into a closed hole on the edge of the Canopy.Note : ForCanadian mounting refer to Step #12.21Hands free hookPlace canopy over fan body align-ing holes.Replace the 3 screws removed and tighten securely. Check motor for shipping stabilizers and remove if present.20Take 4 screws from hardware pack and install one on each side of bracket to match the L slot screw holes in canopy. Keep 2 screws for later use.22Make wire connections to power source using wire nuts provided. Make sure that no filiments are outside of the wirenut. After making the wire connections, the wires should be spread apart with the grounded con-ductor and the equipment-grounding conductor on one side of the outlet box and ungrounded conductor on the other side of the outlet box.24Lift fan to mounting bracket, aligning the “L”shape holes with the screws on the mounting bracket. Turn the fan clockwise to lock in position. Install the other 2 screws included in hardware bag and tighten all 4 securely.2523Install 3 screws to install light pan.32Connect plug from fan to switchhouse plug. Be sure plugs connection snap together completely.29Install by twisting clockwise, add 1screw removed step 27 to switch housing plate. Tighten the 3 screws securely.28Connect white wire from fan to white wire from light fixture. Then plugblue wire from fan to black wire from light fixture.31Loosen the pre installed screws of switch housing plate. Save removed screw for use later .Install a JD 75 watt halogen bulb, bulb in-cluded.Caution : Do not replace bulb until it cools down.WARNING:Over lamping the fan will re-sult in the fan lights shutting down until the proper wattage of bulbs are installed.Reset the lights by turning off the wallswitch, breaker ,or by remote. Replace bulbs with the correct wattage bulbs, turn the power on.3330Attach glass by locating dimples in light fixture with the groves in glass and twisting clockwise till tight.34Setting the reverse switch in the left hand side will result in downward airflow and set-ting the switch in the right hand side will re-sult in upward airflow.Note : Reverse switch must be set either completely LEFT or completely Right for fan to function. If the reverse switch is set in the middle position, fan will not operate.35Reverse switchLeft hand side (Forward)Right hand side (Reverse)Loosen 2 screws and remove 1 screw from motor plate. Save removed screw for use later .271.Check main and branch circuit fuses or circuit breakers.2.Check line wire connections to fan and switch wire connections in switch housing.CAUTION: Make sure main power is turned off.3.Make sure forward/reverse switch is firmly in up or down position. Fan will not operate when switch is in the middle.4.Make sure that shipping stabilizer tabs have been removed from motor .1.Check to make sure all screws in motor housing are snug (not over tightened).2.Check to make sure the screws which attach the fan blade holder to the motor are tight.3.Check to make sure wire nut connectors in switch housing are not rattling against each other or against the interior wall of the switch housing.CAUTION: Make sure main power is turned off before entering switch housing.4.If using an optional Ceiling Fan Light Kit, check to be sure the screws securing the glass-ware are finger tight. Check to be sure light bulb is tight in socket and not touching glass shade(s). If vibration persists from glass, remove glass and install a 1/4" wide rubber band on glass neck to act as an insulator . Replace glass and tighten screws against rubber band. 5.Some fan motors are sensitive to signals from Solid State variable speed controls. DO NOT USE a Solid State variable speed control.6.Allow "break-in" period of 24 hours. Most noises associated with a new fan will disappear after this period.1.If this is a downrod mount fan, make sure the ridge on mounting bracket engages the notch in the downrod ball.2.Check that all blades are screwed firmly into blade holders.3.Check that all blade holders are tightened securely to motor .4.Make sure that canopy and mounting bracket are tightened securely to ceiling junction box and junction box is mounted firmly to ceiling joist.5.Most fan wobble problems are caused when blade levels are unequal. Check this level by selecting a point on the ceiling above the tip of one of the blades. Measure this distance from blade tip to ceilng. Keeping measure within 1/8", rotate the fan until the next blade is posi-tioned for measurement. Repeat for each blade. If all blade levels are not equal, you can ad-just blade levels by the following procedure. To adjust a blade tip down, insert a washer (not supplied) between the blade and blade holder at the screw closest to the motor . To adjust a blade tip up, insert washer (not supplied) between the blade and blade holder at the twoscrews farthest from the motor . Reverse the position of the washer if blades mount from top of blade.6.If blade wobble is still noticeable, interchanging two adjacent (side by side) blades can re-distribute the weight and possibly result in smoother operation.1.Check blue wire from fan to make sure it is connected to hot wire from house.2.Check for loose or disconnected wires in fan switch housing.3.Check for loose or disconnected wires in light kit.4.Check for faulty light bulbs.WARNING:Over lamping the fan will result in the fan lights shutting down until the proper wattage of bulbs are installed.Reset the lights by turning off the wall switch, breaker,or by remote. Replace bulbs with the correct wattage bulbs, turn the power on.CAUTION: Make sure main power is turned off before entering switch housing.2. If fan sounds noisy:1. If fan does not start:3. If fan wobbles:4. If light does not work:T ROUBLE S HOOTINGIf you have difficulty operating your new ceiling fan, it may be the result of incorrect assembly, installation, or wiring. In some cases, these installation errors may be mistaken for defects. If you experience any faults, please check this Trouble Shooting Chart. If a problem cannot be remedied, or you are experiencing difficulty in installa-tion, please call our Customer Service Center at the number printed on your parts list insert sheet.Warning: Before servicing or cleaning unit, Switch power off at Service panel and lock service discon-necting means to prevent power from being switched on accidentally. When the service disconnectingmeans cannot be locked, securely fasten aprominent warning device, such as a tag, to the service panel.TroubleSuggested RemedyApr.2013May.2013 CUL requirement Aug.2013 dual mount Jul.2014 logo on canopy。

Monte-Carlo法对轴承座装配尺寸的优化分析论文.

Monte-Carlo法对轴承座装配尺寸的优化分析论文.

Monte-Carlo法对轴承座装配尺寸的优化分析论文2019-12-15航空发动机作为一种特殊产品,技术和尺寸要求都非常高,其尺寸设计是否合理对产品的制造、装配和性能等会产生一定的影响,随着航空发动机技术的发展,其结构设计和装配就有了更高的要求,就会直接影响整个航空发动机的装配可靠性。

本文运用Monte-Carlo法,以压气机轴承座装配尺寸为例,利用MATLAB软件,校对其尺寸,有效改善产品的装配性以及产品使用的安全性和可靠性。

1 Monte-Carlo 方法在公差尺寸链的分析中,极限法和统计法是常用的两种方法。

其中统计法又包括概率法、修正的概率法、卷积法、Taguchi 实验法和蒙特卡洛(Monte-Carlo)模拟法等几种方法。

Monte-Carlo法是一种统计试验法,即根据每个尺寸的实际分布,在计算机中采用一定的算法生成伪随机数,然后根据设计函数算出Y的值;当Y数值产生的足够多时,再求出Y的各阶中心矩的方法。

生成相应的伪随机数的算法根据尺寸分布的不同而不同。

1.1 Monte-Carlo 方法的特点Monte-Carlo 方法主要用于解决确定性的数学问题和随机性问题,是一种独具风格的数值计算方法。

它的理论基础来源于概率论和伯努利方程,其优点及与其它方法比较的不同点可归纳如下:(1)Monte-Carlo方法的程序相对而言结构简单,只要产生符合条件的随机数,进行重复抽样,求出平均值即可。

(2)收敛的概率性和收敛速度与问题的维数无关,Monte-Carlo方法可适用于多维问题的求解,其收敛速度与一般数值方法的收敛速度相比较要慢的多。

(3) Monte-Carlo方法适用性强,优点是不容易受条件限制。

1.2 基于Monte-Carlo法的.装配间隙概率分析Monte-Carlo法具有经济、简单、实用等特点,Monte-Carlo法应用于装配概率设计的理念是:当为过盈配合时,从轴径的概率分布中和孔径的概率分布中各随机地抽取一个轴和孔的样本,将两个样本进行比较,如果轴径小于孔径,则装配无效;反之,装配可靠。

Omega RHCN-3相对湿度控制器说明书

Omega RHCN-3相对湿度控制器说明书

PSR-24L
60 Regulated power supply, 24 Vdc, 400 mA, UL, 1.8 m (6') cord with stripped leads
PSR-24L-230
60 Regulated power supply, 24 Vdc, 400 mA, stripped leads, 230 Vac input, CE
Power: 8 Vdc to 30 Vdc, 125 milliamps max
Mechanical
Probe: Stainless steel, 19 mm dia. (0.75"), 119 mm long (4.7"), 1.5 m (5'), 2-wire cable, bracket for wall mounting
S+ DQG &RQGXFWLYLW\
Conductivity Instrumentation, Dissolved Oxygen Instrumentation, Environmental Instrumentation, pH Electrodes and Instruments, Water and Soil Analysis Instrumentation
Hu-54
)UHHSKRQH _ ,QWHUQDWLRQDO _ )D[ _ 6DOHV#RPHJDFRXN
ZZZRPHJDFRXN
81,7(' 67$7(6 ZZZRPHJDFRP 7&20(*$
3UHVVXUH 6WUDLQ DQG )RUFH
Displacement Transducers, Dynamic Measurement Force Sensors, Instrumentation for Pressure and Strain Measurements, Load Cells, Pressure Gauges, Pressure Reference Section, Pressure Switches, Pressure Transducers, Proximity Transducers, Regulators, Pressure Transmitters, Strain Gauges, Torque Transducers, Valves
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e
t 2 ( x2 , y 2 )
f
f(x)
t1 ( x1 , y1 )
m ∫a f ( x)dx 1 E= = = 2n 2(b − a )c 2(b − a )c
b
a
d
b
x
Monte Carlo模拟 Carlo模拟
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions) 3.5 舍选抽样法 (acceptance-rejection sampling) 1. 简单舍选抽样法 2. 改进的舍选抽样法 3. 典型的例子
Monte Carlo模拟 Carlo模拟
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions) 3.5 舍选抽样法 (acceptance-rejection sampling) 1. 简单舍选抽样法 2. 改进的舍选抽样法 3. 典型的例子
3. 典型的例子
void test() { SetSeed(9,11); c1 = new TCanvas("c1","Histogram Drawing Options",200,10,700,900); c1->Divide(1,2); TH1F * h1 = new TH1F("h1","h1",100,-5.0,5.0); for(int i=0; i < 5000; i++) { double x = gaussian_reject(5.0); h1->Fill(x); } c1->cd(2);h1->Draw(); }
3. 典型的例子
3. 典型的例子
3. 典型的例子 例2:利用舍选法产生随机数 :利用舍选法产生随机数C=cosθ, S=sinθ,其中θ为[0, 2π]区间内 其中 区间内 均匀分布的随机数 方法1:先产生 间均匀分布的随机数: 方法 :先产生[0, 2π]间均匀分布的随机数: θ = 2π r, 间均匀分布的随机数 , r∈U[0,1], 然后直接计算 和S 然后直接计算C和 因需要计算三角函数, ∈ 因需要计算三角函数, 故此方法运算速度慢 方法2:利用舍选法可避免三角函数运算 方法2
抽取r 抽取 1,r2 ∈U[0,1]
x = a + (b-a)r1 y = cr2 y ≤ f(x) ≤ X=x >
1. 简单舍选抽样法 几何解释: 几何解释 e
t 2 ( x2 , y 2 )
c
f
f(x)
t1 ( x1 , y1 )
a
b
x
• 在二维图上,随机选取位于矩形abef内的点 在二维图上,随机选取位于矩形 内的点[x,y]; 内的点 ; • 选取位于曲线 下的那些点,则这些点将服从概率密度为f(x)的分布 选取位于曲线f(x)下的那些点,则这些点将服从概率密度为 的分布 下的那些点
1. 简单舍选抽样法 证明: 证明
x和y的概率密度函数分别为 和 的概率密度函数分别为
c
e
t 2 ( x2 , y 2 )
f
1 1 g s ( x) = , g s ( y) = b−a c
联合概率密度函数为
t1 ( x1 , y1 )
f(x) a d x
g ( x, y ) = g s ( x ) ⋅ g s ( y ) =
舍选法抽样步骤: 舍选法抽样步骤: 1. 产生[a, b]区间内均匀分布的随机 产生 区间内均匀分布的随机 数x: x = (b-a)r1+a, r1 ∈U[0, 1]; 2. 产生 产生[0,c]区间内均匀分布的随机 区间内均匀分布的随机 数y: y = cr2, r2 ∈U[0,1]; 3. 当y ≤ f(x)时,接受 为所需的随 时 接受x为所需的随 机数,否则, 机数,否则,返回到第一步重新 抽取一对(x,y). 抽取一对
2. 改进的舍选抽样法 几何解释: 几何解释 c
Cgg(x)
f(x)
x
• 在二维图上,随机选取位于曲线Cgg(x)下的点 在二维图上,随机选取位于曲线 下的点[x,y]; 下的点 ; • 选取位于曲线 下的那些点,则这些点将服从概率密度为f(x)的分布 选取位于曲线f(x)下的那些点,则这些点将服从概率密度为 的分布 下的那些点
a
3. 典型的例子 抽取x 由g(x)抽取 抽取 直接抽样法 η ∈ U [0,1] x = tan (2η arctan a + arctan(− a ) ) 抽取u 抽取
1 Q = C g g ′( x) = π 1+ x2 ξ ∈ U [0,1] u = ξQ 1.52
计算f(x), 如果 如果u<= f(x), 接受 接受x 计算
1 (b − a )c
b
按舍选抽样法抽出的随机数d的概率: 按舍选抽样法抽出的随机数 的概率: 的概率
∫∫ p ( x ≤ d | y ≤ f ( x)) = ∫∫
a
d
f ( x)
a 0 b f ( x) 0
g ( x, y )dxdy g ( x, y (d )
d
d
x
按舍选抽样法抽出的随机数d的概率: 按舍选抽样法抽出的随机数 的概率: 的概率
∫∫ p ( x ≤ d | y ≤ f ( x)) = ∫∫
a
d
f ( x)
a 0 b f ( x) 0
g ( x, y )dxdy g ( x, y )dxdy
= ∫ f ( x)dx = F (d )
a
的概率函数为f(x) 即d的概率函数为 的概率函数为
3. 典型的例子
float gaussian_reject(double a) { const float c = 1.52; while(true) { float eta = randac(); float x = tan(eta * 2.0 * atan(a)+atan(-a)); float q = c * 1/3.1415926*1.0/(1+x*x); float ksi = randac(); float u = ksi*q; float p = 1/sqrt(2*3.1415926)*exp(-x*x/2.0); if(u <= p) break; } return x; }
c
Cgg(x)
C g g ( x) ≥ f ( x), x ∈ [a, b]
式中Cg为常数, 的抽样相对比较容易。 式中 为常数,而g(x)的抽样相对比较容易。 为常数 的抽样相对比较容易 改进的舍选抽样法
x
2. 改进的舍选抽样法 抽样方法: 抽样方法: 1. 产生两个随机数 • 产生分布为 产生分布为g(x) 的随机数 ,x∈[a,b]; 的随机数x • 产生[0, Cgg(x)] 区间上均匀分布的随机数y, 产生 区间上均匀分布的随机数 y= Cgg (x) ξ, ξ∈U[0,1]. 2. 接收或舍弃取样值 x. • 如果 y > f(x),舍弃,返回到 重复上述过程 重复上述过程; ,舍弃,返回到1,重复上述过程 • 否则,接受 否则,接受;
C = cos θ = cos 2
θ
2
− sin 2
θ
2
S = sin θ = 2 sin
θ
2
cos
θ
2
为单位圆内直角三角形的两个边, 令A和B为单位圆内直角三角形的两个边,则有 和 为单位圆内直角三角形的两个边 θ θ A B cos = , sin = 2 2 2 2 A +B A2 + B 2 θ/2
2. 改进的舍选抽样法 抽样效率: 抽样效率 c
1 E∝ ∝ b C g ∫ g ( x) dx C g
a a

b
f ( x)dx
Cgg(x)
f(x)
常数C 常数 g的选取 • 常数 g应尽可能地小 因为抽样效率与 g成反比 常数C 应尽可能地小,因为抽样效率与 成反比; 因为抽样效率与C • Cg=max{f(x)/g(x)}, x ∈[a,b]
A −B 2 AB ∴ C = cos θ = 2 , S = sin θ = 2 2 A +B A + B2
1. 简单舍选抽样法 Von Neumann rejection method or Hit-and-miss method 其概率密度函数f(x)有 设随机变量x的取值区间为 设随机变量 的取值区间为x∈[a,b], 其概率密度函数 的取值区间为 有 界,即
max{ f ( x) | a ≤ x ≤ b} = c
x
Monte Carlo模拟 Carlo模拟
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions) 3.5 舍选抽样法 (acceptance-rejection sampling) 1. 简单舍选抽样法 2. 改进的舍选抽样法 3. 典型的例子
a
d
的概率函数为f(x) 即d的概率函数为 的概率函数为
1. 简单舍选抽样法 抽样效率: 抽样效率
如果选出某特定分布的一个随机数ξ平均地需要 个随机数 如果选出某特定分布的一个随机数ξ平均地需要n个随机数r1 ∈U[0, 1], ,
则抽样效率定义为
1 E= n
c
对舍选抽样法:欲产生 个随 对舍选抽样法:欲产生m个随 机变量x的值需产生 的值需产生n对 机变量 的值需产生 对(x,y), , 显然, 显然,m ≤ n
Monte Carlo模拟 Carlo模拟
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions) 3.5 舍选抽样法 (acceptance-rejection sampling)
相关文档
最新文档