2018屇中考数学总复习 第六讲 三角形与相似形 精

合集下载

三角形与相似三角形(解析版)--中考数学重难点

三角形与相似三角形(解析版)--中考数学重难点

回归教材重难点02三角形与相似三角形--中考数学重难点本考点是中考五星高频考点,难度中等及中等偏上,在全国各地市的中考试卷中都有考查。

(2022年山东省东营市中考试卷第17题)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为.【考点】相似三角形的判定与性质;矩形的性质.【分析】设AD交EH于点R,由矩形EFGH的边FG在BC上证明EH∥BC,∠EFC=90°,则△AEH∽△ABC,得=,其中BC=8,AD=6,AR=6﹣EH,可以列出方程=,解方程求出EH的值即可.【解答】解:设AD交EH R,∵矩形EFGH的边FG在BC上,∴EH∥BC,∠EFC=90°,∴△AEH∽△ABC,∵AD⊥BC于点D,∴∠ARE=∠ADB=90°,∴AR⊥EH,∴=,∵EF⊥BC,RD⊥BC,EH=2EF,∴RD=EF=EH,∵BC=8,AD=6,AR=6﹣EH,∴=,解得EH=,∴EH的长为,故答案为:.【点评】此题重点考查矩形的性质、两条平行线之间的距离处处相等、相似三角形的判定与性质等知识,根据“相似三角形对应高的比等于相似比”列方程是解题的关键.三角形是中考数学中的重要考点,也是所有几何图形的学习基础。

三角形的考点容量很大,包含三角形的基础知识、特殊三角形、相似三角形三大块,考察难度的跨度很大,题型多变,部分综合题中题目的综合性也很强,需要比较高的知识储备和逻辑思维能力。

本考点是中考五星高频考点,难度中等或较大,个别还会以压轴题出现,在全国各地市的中考试卷中均有考查。

技法01:三角形通用知识:①三角形内角和定理:三角形三个内角的和=180°三角形外角定理:三角形的一个外角=与它不相邻两个内角的和②三角形三边关系:三角形两边之和>第三边,两边之差<第三边③角平分线性质定理:角平分线上的点到角两边的距离相等④线段垂直平分线性质定理:线段垂直平分线上的点到线段两端点的距离相等技法02:全等三角形的性质和判定:①全等三角形的性质:对应边相等,对应角相等推论:全等三角形的周长和面积相等,对应的“三线”分别相等②全等三角形的判定:SSS、SAS、ASA、AAS、HL(直角三角形)技法03:特殊三角形常用知识:①等腰三角形:等边对等角、“三线合一”,常做辅助线→底边上的高线判定方法:两边长相等、等角对等边、逆用“三线合一”(角平分线与中线重合除外)②直角三角形:直角三角形两锐角互余、斜边上的中线=斜边长的一半、勾股定理判定方法:一个角为直角、两个内角互余、勾股定理逆定理、一边上的中线等于这边长的一半技法04:相似三角形常用知识:①相似三角形的性质:对应角相等、对应边成比例推论:相似三角形的周长比=相似比;面积比=相似比的平方;对应三线之比=相似比②相似三角形的判定:两对内角对应相等、三边对应成比例、两边对应成比例且夹角相等【中考真题练】1.(2022•淮安)如图,在△ABC中,AB=AC,∠BAC的平分线交BC于点D,E为AC的中点,若AB=10,则DE的长是()A.8B.6C.5D.4【分析】利用等腰三角形的性质得出∠ADC=90°,再利用直角三角形斜边中线的性质求解即可.【解答】解:∵AB=AC=10,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵E为AC的中点,∴DE=AC=5,故选:C.2.(2022•南京)直三棱柱的表面展开图如图所示,AC=3,BC=4,AB=5,四边形AMNB是正方形,将其折叠成直三棱柱后,下列各点中,与点C距离最大的是()A.点M B.点N C.点P D.点Q【分析】根据直三棱柱的特征结合勾股定理求出各线段的距离,再比较大小即可求解.【解答】解:如图,过C点作CE⊥AB于E,∵AC=3,BC=4,AB=5,32+42=52,∴△ACB是直角三角形,∴CE=AC•BC÷÷AB=3×4÷5=2.4,∴AE===1.8,∴BE=5﹣1.8=3.2,∵四边形AMNB是正方形,立方体是直三棱柱,∴CQ=5,∴CM=CP==,CN==,∵>>5,∴与点C距离最大的是点N.故选:B.3.(2022•镇江)如图,点A、B、C、D在网格中小正方形的顶点处,AD与BC相交于点O,小正方形的边长为1,则AO的长等于()A.2B.C.D.【分析】连接AE,根据题意可得:AE∥BC,AD=DE=5,然后利用等腰三角形的性质可得∠DAE=∠DEA,再利用平行线的性质可得∠DAE=∠DOC,∠DEA=∠DCO,从而可得∠DOC=∠DCO,进而可得DO=DC=3,最后进行计算即可解答.【解答】解:如图:连接AE,由题意得:AE∥BC,AD==5,DE=5,∴AD=DE=5,∴∠DAE=∠DEA,∵AE∥BC,∴∠DAE=∠DOC,∠DEA=∠DCO,∴∠DOC=∠DCO,∴DO=DC=3,∴AO=AD﹣DO=5﹣3=2,故选:A.4.(2022•安顺)如图,在△ABC中,AC=2,∠ACB=120°,D是边AB的中点,E是边BC上一点,若DE平分△ABC的周长,则DE的长为()A.B.C.D.【分析】延长BC至F,使CF=CA,连接AF,根据等边三角形的性质求出AF,根据三角形中位线定理解答即可.【解答】解:延长BC至F,使CF=CA,连接AF,∵∠ACB=120°,∴∠ACF=60°,∴△ACF为等边三角形,∴AF=AC=2,∵DE平分△ABC的周长,∴BE=CE+AC,∴BE=CE+CF=EF,∵BD=DA,∴DE=AF=,故选:C.5.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.18【分析】证明△BEF∽△CFD,求得CF,设BF=x,用x表示DF、CD,由勾股定理列出方程即可求解.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠A=∠EBF=∠BCD=90°,∵将矩形ABCD沿直线DE折叠,∴AD=DF=BC,∠A=∠DFE=90°,∴∠BFE+∠DFC=∠BFE+∠BEF=90°,∴∠BEF=∠CFD,∴△BEF∽△CFD,∴,∵CD=3BF,∴CF=3BE=12,设BF=x,则CD=3x,DF=BC=x+12,∵∠C=90°,∴Rt△CDF中,CD2+CF2=DF2,∴(3x)2+122=(x+12)2,解得x=3(舍去0根),∴AD=DF=3+12=15,故选:C.6.(2022•镇江)如图,在△ABC和△ABD中,∠ACB=∠ADB=90°,E、F、G分别为AB、AC、BC的中点,若DE=1,则FG=1.【分析】根据直角三角形的性质得出AB的长,进而利用三角形中位线定理解答即可.【解答】解:∵∠ADB=90°,E是AB的中点,∴AB=2DE=2,∵F、G分别为AC、BC的中点,∴FG是△ACB的中位线,∴FG=AB=1,故答案为:1.7.(2022•荆门)如图,点G为△ABC的重心,D,E,F分别为BC,CA,AB的中点,具有性质:AG:GD=BG:GE=CG:GF=2:1.已知△AFG的面积为3,则△ABC的面积为18.【分析】根据高相等的两个三角形的面积之比等于底之比可得答案.【解答】解:∵CG:GF=2:1,△AFG的面积为3,∴△ACG的面积为6,∴△ACF的面积为3+6=9,∵点F为AB的中点,∴△ACF的面积=△BCF的面积,∴△ABC的面积为9+9=18,故答案为:18.8.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.【分析】连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.设BF=2k,CG=3k.则AE =DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,因为C,A′,B′共线,GA′∥FB′,推出=,推出=,可得y2﹣12ky+32k2=0,推出y=8k或y =4k(舍去),推出AE=DE=4k,再利用勾股定理求出GT,可得结论.【解答】解:连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.∵=,∴可以假设BF=2k,CG=3k.∵AE=DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,∵AD∥CB,∴∠AEF=∠EFG,∴∠GEF=∠GFE,∴EG=FG=y﹣5k,∴GA′=y﹣(y﹣5k)=5k﹣y,∵C,A′,B′共线,GA′∥FB′,∴=,∴=,∴y2﹣12ky+32k2=0,∴y=8k或y=4k(舍去),∴AE=DE=4k,∵四边形CDTG是矩形,∴CG=DT=3k,∴ET=k,∵EG=8k﹣5k=3k,∴AB=CD=GT==2k,∴==2.解法二:不妨设BF=2,CG=3,连接CE,则Rt△CA'E≌Rt△CDE,推出A'C=CD=AB=A'B',==1,推出GF=CG=3,BC=8,在Rt△CB'F,勾股得CB'=4则A'B'=2,故选:A.9.(2022•衢州)希腊数学家海伦给出了挖掘直线隧道的方法:如图,A,B是两侧山脚的入口,从B出发任作线段BC,过C作CD⊥BC,然后依次作垂线段DE,EF,FG,GH,直到接近A点,作AJ⊥GH于点J.每条线段可测量,长度如图所示.分别在BC,AJ上任选点M,N,作MQ⊥BC,NP⊥AJ,使得==k,此时点P,A,B,Q共线.挖隧道时始终能看见P,Q处的标志即可.(1)CD﹣EF﹣GJ= 1.8km.(2)k=.【分析】(1)根据图中三条线段所标数据即可解答;(2)连接AB,过点A作AZ⊥CB,交CB的延长线于点Z.易得AZ=1.8,BZ=4=2.6,证明△BMQ∽△BZA,即可解答.【解答】解:(1)CD﹣EF﹣GJ=5.5﹣1﹣2.7=1.8(km);(2)连接AB,过点A作AZ⊥CB,交CB的延长线于点Z.由矩形性质得:AZ=CD﹣EF﹣GJ=1.8,BZ=DE+FG﹣CB﹣AJ=4.9+3.1﹣3﹣2.4=2.6,∵点P,A,B,Q共线,∴∠MBQ=∠ZBA,又∵∠BMQ=∠BZA=90°,∴△BMQ∽△BZA,∴=k===.故答案为:1.8;.10.(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNXT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=48.【分析】由勾股定理和乘法公式完成计算即可.a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.11.(2022•鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为.【分析】根据SAS证△ABD≌△BCE,得出∠APB=120°,在CB上取一点F使CF=CE=2,则BF=BC﹣CF=4,证△APB∽△BFE,根据比例关系设BP=x,则AP=2x,作BH⊥AD延长线于H,利用勾股定理列方程求解即可得出BP和AP的长.【解答】解:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∴∠APE=∠ABP+∠BAD=∠ABP+∠CBE=∠ABD=60°,∴∠APB=120°,在CB上取一点F使CF=CE=2,则BF=BC﹣CF=4,∴∠C=60°,∴△CEF是等边三角形,∴∠BFE=120°,即∠APB=∠BFE,∴△APB∽△BFE,∴==2,设BP=x,则AP=2x,作BH⊥AD延长线于H,∵∠BPD=∠APE=60°,∴∠PBH=30°,∴PH=,BH=,∴AH=AP+PH=2x+=x,在Rt△ABH中,AH2+BH2=AB2,即(x)2+(x)2=62,解得x=或﹣(舍去),∴AP=,BP=,∴△ABP的周长为AB+AP+BP=6++=6+=,故答案为:.12.(2022•河池)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C (1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.【分析】(1)根据关于y轴对称的点的坐标得到A1、B1、C1的坐标,然后描点即可;(2)把A、B、C的坐标都乘以﹣2得到A2、B2、C2的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点B2的坐标为(﹣4,﹣6);13.(2022•资阳)如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC=5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,=BC•DE=×5×4=10,∴S△BCD∴△BCD的面积为10.14.(2022•青岛)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动、速度为1cm/s;同时,点Q从点A出发,沿AD方向匀速运动,速度为1cm/s.PQ交AC于点F,连接CP,EQ,设运动时间为t (s)(0<t<5).解答下列问题:(1)当EQ⊥AD时,求t的值;(2)设四边形PCDQ的面积为S(cm2),求S与t之间的函数关系式;(3)是否存在某一时刻t,使PQ∥CD?若存在,求出t的值;若不存在,请说明理由.【分析】(1)由将△ABC绕点A按逆时针方向旋转90°得到△ADE,知AD=AB=5,DE=BC=3,AE =AC=4,∠AED=∠ACB=90°,证明△AQE∽△AED,有=,可得AQ=,即得t的值为;(2)过P作PN⊥BC于N,过C作CM⊥AD于M,证明△ABC∽△CAM,有=,CM=,即得S△ACD=AD•CM=8,S四边形ABCD=S△ABC+S△ACD=14,由△PBN∽△ABC,可得PN=t,S△BCP=BC﹣△BCP﹣S△APQ=t2﹣t+14;•PN=t,从而S=S四边形ABCD(3)过C作CM⊥AD于M,证明△APQ∽△MCD,有=,即可解得t=.【解答】解:(1)如图:在Rt△ABC中,AC===4,∵将△ABC绕点A按逆时针方向旋转90°得到△ADE,∴AD=AB=5,DE=BC=3,AE=AC=4,∠AED=∠ACB=90°,∵EQ⊥AD,∴∠AQE=∠AED=90°,∵∠EAQ=∠DAE,∴△AQE∽△AED,∴=,即=,∴AQ=,∴t==;答:t的值为;(2)过P作PN⊥BC于N,过C作CM⊥AD于M,如图:∵将△ABC绕点A按逆时针方向旋转90°得到△ADE,∴∠BAD=90°,即∠BAC+∠CAM=90°,∵∠B+∠BAC=90°,∴∠B=∠CAM,∵∠ACB=90°=∠AMC,∴△ABC∽△CAM,∴=,即=,∴CM=,=AD•CM=×5×=8,∴S△ACD=S△ABC+S△ACD=×3×4+8=14,∴S四边形ABCD∵∠PBN=∠ABC,∠PNB=90°=∠ACB,∴△PBN∽△ABC,∴=,即=,∴PN=t,=BC•PN=×3×t=t,∴S△BCP﹣S△BCP﹣S△APQ∴S=S四边形ABCD=14﹣t﹣(5﹣t)•t=t2﹣t+14;答:S与t之间的函数关系式是S=t2﹣t+14;(3)存在某一时刻t,使PQ∥CD,理由如下:过C作CM⊥AD于M,如图:由(2)知CM=,∴AM===,∴DM=AD﹣AM=5﹣=,∵PQ∥CD,∴∠AQP=∠MDC,∵∠PAQ=∠CMD=90°,∴△APQ∽△MCD,∴=,即=,解得t=,答:存在时刻t=,使PQ∥CD.15.(2022•广西)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.【分析】(1)根据“直角三角形斜边中线等于斜边一半”可得OD=,OD′=,进而得出结论;(2)作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,求出CD和等边三角形AO′B上的高O′D,进而求得结果;(3)作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,进一步求得结果.【解答】解:(1)OD=OD′,理由如下:在Rt△AOB中,点D是AB∴OD=,同理可得:OD′=,∵AB=A′B′,∴OD=OD′;(2)如图1,作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,此时△AOB是等边三角形,∴BO′=AB=6,OC最大=CO′=CD+DO′=+BO′=3+3;(3)如图2,作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,∴AI==3,∠AOB=,则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,此时OA=OB,∵OC=CI+OI=AB+3=3+3,==9+9,∴S△AOB最大∴当OA=OB时,△AOB的最大面积是9+9.【中考模拟练】1.(2023•铜梁区模拟)如图,在平面直角坐标系中,△ABC与△A′B′C′是位似图形,点O为位似中心,,则△ABC与△A′B′C′的周长之比是()A.1:4B.1:3C.1:2D.1:1【分析】根据位似图形的概念得到△ABC∽△A'B'C',AB∥A'B',根据相似三角形的性质求出=,再根据相似三角形的周长之比等于相似比计算即可.【解答】解:∵,∴=.∵△ABC与△A'B'C'是位似图形,∴△ABC∽△A'B'C',AB∥A'B',∴△ABO∽△A'B'O,∴==,∴△ABC与△A′B′C′的相似比是1:2.∴△ABC与△A′B′C′的周长之比是1:2.故选:C.2.(2023•越秀区一模)如图,四边形ABCD的对角线AC与BD交于点E,且AC⊥BD,AC=AD,∠CBD=∠CAD,CB=5,,则AD的长是()A.9B.10C.D.【分析】设CE=x,AE=y,分别用x,y表示出sin∠CBD和sin∠CAD,由sin∠CBD=sin∠CAD,列出方程关于x,y的方程,再根据勾股定理DE²=CD²﹣CE²=AD²﹣AE²,列出方程关于x,y的方程,两方程联立解出x,y的值,从而得到AD的长度.【解答】解:设CE=x,AE=y,则AC=AD=x+y,∵AC⊥DB,∴sin∠CBD==,sin∠CAD===,∵∠CBD=∠CAD,∴sin∠CBD=sin∠CAD,∴=,整理得,x4+2x3y+x²y²+25x²=2000①,和Rt△AED中,在Rt△CEDDE²=CD²﹣CE²=AD²﹣AE²,∴(4)²﹣x²=(x+y)²﹣y²,∴y=②,把②代入①式并整理得,25x²=400,∴x=4,∴y===6,∴AD=x+y=4+6=10.故选:B.3.(2023•雁塔区模拟)如图,在△ABC中,∠B=45°,AD平分∠BAC交BC于点D,若BD=4,则点D 到AC的距离为()A.2B.C.D.4【分析】作DM⊥AB于M,DN⊥AC于N,由角平分线的性质得到DM=DN,由等腰直角三角形的性质求出DM的长,即可解决问题.【解答】解:作DM⊥AB于M,DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∵∠B=45°,∴△MBD是等腰直角三角形,∴MD=BD=×4=2,∴DN=2,∴点D到AC的距离为2.故选:C.4.(2023•秀洲区校级二模)如图,在△ABC中,AB=AC=9,,D在AC上,且∠APD=∠B,则CD的长是()A.2B.C.D.【分析】根据已知易得BC=6,从而可得CP=4,再利用等腰三角形的性质可得∠B=∠C,从而利用三角形内角和定理可得∠BAP+∠APB=180°﹣∠B,然后利用平角定义可得∠APB+∠DPC=180°﹣∠B,从而可得∠DPC=∠BAP,进而可得△ABP∽△PCD,最后利用相似三角形的性质进行计算即可解答.【解答】解:∵,∴BC=3BP=6,∴CP=BC﹣BP=6﹣2=4,∵AB=AC=9,∴∠B=∠C,∴∠BAP+∠APB=180°﹣∠B,∵∠APD=∠B,∴∠APB+∠DPC=180°﹣∠APD=180°﹣∠B,∴∠DPC=∠BAP,∴△ABP∽△PCD,∴,∴,∴,故选:D.5.(2023•镇江模拟)如图,点D在△ABC的AD边上,且AD:AB=2:5,过点D作DE∥BC,交AC于点E,连接BE,则△ABE与△BEC的面积之比为2:3.【分析】根据DE∥BC得出△ADE∽△ABC,进而得出,即可进行解答.【解答】解:∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∵AD:AB=2:5,∴,则,:S△BEC=2:3,∴S△ABE故答案为:2:3.6.(2023•东城区一模)在如图所示的网格中,每个小正方形的边长都是1,点A,B,C是网格线交点,则△ABC的外角∠ACD135°.【分析】根据勾股定理得出AB,BC,AC,进而利用勾股定理的逆定理和等腰直角三角形的性质解答即可.【解答】解:由勾股定理可知,AB=BC=,AC=,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠B=90°,∵AB=BC,∴∠ACB=45°,∴∠ACD=180°﹣45°=135°,故答案为:135.7.(2023•川汇区一模)如图,在△ABC中,∠ACB=90°,AC=4,∠B=30°,点P在△ABC的内部,,D是AB的中点,连接PA,PD,当△PAD为等腰三角形时,PA的长为4或.【分析】分PA=AD和PA=PD两种情况,由直角三角形的性质及勾股定理可求出答案.【解答】解:∵点P在△ABC的内部,∴PD=AD不符合题意,分PA=AD和PA=PD两种情况,①若PA=AD,如图,∵∠ACB=90°,AC=4,∠B=30°,∴AB=2AC=8,∵D是AB的中点,∴CD=AD=AB=4,∴PA=4;②若PA=PD,如图,∵∠B=30°,∴∠CAB=60°,由①知CA=CD,∴△ACD为等边三角形,连接CP,并延长交AB于点E,∴CE⊥AB,∵AC=4,∴AE=AC=2,∴CE==2,∵CP=,∴PE=CE﹣CP=,∴PA==.综上所述,PA的长为4或.故答案为:4或.8.(2023•崇明区二模)如图,已知在两个直角顶点重合的Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,BC=3,CE=2,将△CDE绕着点C顺时针旋转,当点D恰好落在AB边上时,联结BE,那么BE=.【分析】证明△ACD∽△BCE,推出==,∠A=∠CBE,再证明∠DBE=90°,设BE=x,则AD=x,在Rt△DBE中,DE2=BD2+BE2,构建方程求出x即可.【解答】解:Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,BC=3,CE=2,∴==,AB=2BC=6,DE=2CE=4,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴==,∠A=∠CBE,∵∠A+∠ABC=90°,∴∠CBE+∠ABC=90°,∴∠DBE=90°,设BE=x,则AD=x,在Rt△DBE中,DE2=BD2+BE2,∴(6﹣x)2+x2=42,∴x=(负根已经舍去),∴BE=.9.(2023•大石桥市模拟)如图,在Rt△ABC和Rt△ABD中,∠ACB=∠ADB=90°,AB=10,M是AB 的中点,连接MC,MD,CD,若CD=6,则△MCD的面积12.【分析】过点M作ME⊥CD,垂足为E,先利用直角三角形斜边上的中线性质可得CM=DM=5,再利用等腰三角形的三线合一性质可得DE=CD=3,然后在Rt△DEM中,利用勾股定理求出EM的长,最后利用三角形的面积公式进行计算即可解答.【解答】解:过点M作ME⊥CD,垂足为E,∵∠ACB=∠ADB=90°,AB=10,M是AB的中点,∴CM=DM=AB=5,∴DE=CD=3,在Rt△DEM中,EM===4,∴△MCD的面积=CD•EM=×6×4=12,故答案为:12.10.(2023•雁塔区校级二模)如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE =AC,求证:CD=EC.【分析】由平行线的性质可知∠A=∠B,结合条件可证明△ADC≌△BCE,故可得出CD=EC.【解答】证明:∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中,,∴△ADC≌△BCE(SAS),∴CD=EC.11.(2023•石景山区一模)在△ABC中,∠ACB=90°,CA=CB,点D为射线CA上一点,过点D作DE ∥CB且DE=CB(点E在点D的右侧),射线ED交射线BA于点F,点H是AF的中点,连接HC,HE.(1)如图1,当点D在线段CA上时,判断线段HE与HC的数量关系及位置关系;(2)当点D在线段CA的延长线上时,依题意补全图2.用等式表示线段CB,CD,CH之间的数量关系,并证明.【分析】(1)连接DH,根据,∠ACB=90°,CA=CB,DE∥CB且DE=CB,H是AF的中点,证明△ACH≌△DEH,得出HE=HC,再根据DH⊥AF,得出CH⊥EH,从而得出结论;(2)连接DH,CE,用和(1)相同的方法证明CAH≌△EDH,再根据在Rt△CHE中,CH2+EH2=CE2,得出2CH2=CE2,在Rt△CDE中,CD2+DE2=CE2,得出CD2+CB2=CE2,从而得出结论.【解答】解:(1)数量关系:HE=HC;位置关系:HE⊥HC.理由:如图,连接DH,∵∠ACB=90°,CA=CB,∴∠BAC=∠ABC=45°,∵DE∥CB且DE=CB,∴∠ADE=∠ACB=90°,CA=DE,∵点H是AF的中点,∴DH=AH=FH,∴∠ADH=∠ADF=45°,∴∠BAC=∠HDF,∴△ACH≌△DEH(SAS),∴HE=HC,∠AHC=∠DHE,又∵DH⊥AF,∴∠AHD=∠CHE=90°,∴CH⊥EH,∴HE=HC,且HE⊥HC;(2)依题意补全图形,如图:数量关系:CB2+CD2=2CH2.理由:连接DH,CE,∵CA=CB,∠ACB=90°,∴∠BAC=∠ABC=45°,∵DE∥CB,且DE=CB,∴CA=DE,∠ADF=∠ACB=90°,∵H是AF的中点,∴DH=AH,∴∠BAC=∠DAH=∠ADH=45°,∴∠CAH=∠HDE=45°,∴△CAH≌△EDH(SAS),∴CH=EH,∠CHB=∠EHD,∴∠CHD=∠AHD,∵∠DAH=∠ADH=45°,∴∠AHD=90°,∴∠CHE=90°,在Rt△CHE中,CH2+EH2=CE2,∴2CH2=CE2,在Rt△CDE中,CD2+DE2=CE2,∴CD2+CB2=CE2,∴CB2+CD2=2CH2.12.(2023•洛龙区一模)[问题情境](1)王老师给爱好学习的小明和小颖提出这样一个问题:如图①,在△ABC中,AB=AC,P为边BC 上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小明的证明思路是:如图①,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小颖的证明思路是:如图②,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.请你选择小明、小颖两种证明思路中的任意一种,写出详细的证明过程.[变式探究](2)如图③,当点P在BC延长线上时,问题情境中,其余条件不变,求证:PD﹣PE=CF.[结论运用](3)如图④,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE,PH⊥BG,垂足分别为G,H,若AD=18,CF=5,求PG+PH的值.[迁移拓展](4)图⑤是一个机器模型的截面示意图,在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D,C,且AD•CE=DE•BC,AB=cm,AD=3cm,,M、N分别为AE,BE的中点,连接DM,CN,请直接写出△DEM与△CEN的周长之和.【分析】(1)按照小明,小颖的证明思路即可解决问题.(2)借鉴小明,小颖的证明思路即可解决问题.(3)易证BE=BF,过E作EQ⊥BF,垂足,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,BF=DF,只需求即可.(4)由条AD×CE=DE×BC联想到三角形相似,从而得∠A=∠ABC,进而补全等腰三角形,△DEM,△CEN的周长之和就可转化AB+BH,而BH是△ADB的高,只需利用勾股定理建立方程,求出DH,再求BH,就可解决问题.【解答】(1)证明:连接AP,如图②,∵PD⊥AB,PE⊥AC,CF⊥AB,=S△ABP+S△ACP,∴S△ABC∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小颖的证明:过点P作PG⊥CF,如图2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四边形PDFG为矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,,∴△PGC≌△CEP(AAS),∴CG=PE,∴CF=CG+FG=PE+PD;(2)证明:连接AP,如图③,∵PD⊥AB,PE⊥AC,CF⊥AB,=S△ABP﹣S△ACP,∴S△ABC∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;证明:过点C作CG⊥DP,如图③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDP=∠FGP=90°,∴四边形CFDG是矩形,∴CF=GD,∠DGC=90°,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP(AAS),∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.(3)解:如图④,过点E作EQ⊥BC,∵四边形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折叠有,DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==4,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四边形EQCD是矩形,∴EQ=DC=4,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由问题情景中的结论可得:PG+PH=EQ,∴PG+PH=4.∴PG+PH的值为4.(4)解:延长AD,BC交于点F,作BH⊥AF,如图⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由问题情景中的结论可得:ED+EC=BH,设DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=,AD=3,BD=,∴()2﹣x2=()2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=26﹣1=25,∴BH=5,∴ED+EC=5,∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,∴DM=EM=AE,CN=EN=BE,∴△DEM与△CEN的周长之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=5+,∴△DEM与△CEN的周长之和(5+)cm.。

中考数学复习·图形的相似+相似三角形专题(位似、相似、相似三角形证明及应用)名校名师全解全练精品课件

中考数学复习·图形的相似+相似三角形专题(位似、相似、相似三角形证明及应用)名校名师全解全练精品课件

A.12.36 cm C.32.36 cm
5-1 【解析】∵黄金比为 ≈0.618 , ∴ 它 的 宽 约 为 2 0.618×20≈12.36 cm.
【答案】A
上一页
下一页
宇轩图书



a

首页
2 . (2010 中考变式题 )已知 = = ,且 a + b+ c≠0 ,则 2 5 7 2a+3b-2c 的值为( a+b+c 5 A. 14 )
的周长与五边形 A′B′C′D′E′的周长的比值为
上一页
下一页
宇轩图书
中考典例精析
(2011·河北)如图所示,在6×8网格图中,每 个小正方形边长均为1.点O和△ABC的顶点均为小正方形
首页
的顶点.
(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和 △ABC位似,且位似比为1∶2. (2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号) 【点拨】位似图形一定是相似图形,可以利用相似图形的性质计算或 证明. 【 解 答 】 (1) 如 图 所 示. (2)AA′ =CC′ = 2. 在
目录
第六章 图形的相似与解直角三角形 第23讲 图形的相似与位似
考点知识精讲
中考典例精析
举一反三
考点训练
宇轩图书
考点知识精讲
考点一 成比例线段与比例的定义及性质
首页
1.对于四条线段 a、b、c、d,如果 做成比例线段,简称比例线段.
那么这四条线段叫
2.表示两个比相等的式子叫做比例式,简称比例. 3.连比:连在一起的三个数的比,叫做连比. a c 4.比例的基本性质:如果 = ,那么 ad=bc ,反之也成立.其中 b d a b a 与 d 叫做比例外项,b 与 c 叫做比例内项.特殊地 = ⇔b2=ac. b c

2018中考数学总复习课件第一部分数与代数第六章课时28 图形的相似

2018中考数学总复习课件第一部分数与代数第六章课时28 图形的相似
第二部分 空间与图形
第六章 图形与变换、坐标
课时28 图形的相似
知识要点梳理
1. 比例线段:在四条线段中,如果其中两条线段的比 c∶ d , 等于另外两条线段的比即:ab=_____或a∶b=_____ 成比例线段 ,简称__________. 比例线段 那么这四条线段叫做__________ 2. 平行线分线段成比例: (1)定理:两条直线被一组平行线所截,所得的对应 成比例 线段__________. (2)推论:平行于三角形一边的直线截其他两边(或 成比例 两边的延长线),所得的对应线段__________.
中考考题精练
∴∠CAN=∠MCD. ∵MD⊥CB, ∴∠MDC=∠ACB=90°. ∴△CAN∽△DCM. ∴

解得t=
中考考题精练
解题指导:
本考点的题型不固定,难度中等.

,解得t=

∴△BMN与△ABC相似时,t的值为
中考考题精练
(2)如答图2-6-28-2,过点M作MD⊥CB于点D, 由题意,得DM=BM· sinB=3t· BD=BM· cosB=3t· = = t(cm),
t(cm),
BM=3t cm,CN=2t cm. ∴CD=8t(cm).
∵AN⊥CM,∠ACB=90°, ∴∠CAN+∠ACM=90°, ∠MCD+∠ACM=90°.
两角分别相等 的两个三角形相似. (4)判定定理3:_______________
知识要点梳理
7. 图形的位似: (1)位似图形的定义:如果两个图形不仅是 相交于一点 ,对 相似图形 ,而且对应顶点的连线__________ __________
平行 应边互相 _____,那么这样的两个图形叫做位似图形,

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。

2018中考数学知识点:相似三角形

2018中考数学知识点:相似三角形

2018中考数学知识点:相似三角形
新一轮中考复习备考周期正式开始,为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!
相似三角形
所谓的相似三角形,就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。

三角对应相等,三边对应成比例的两个三角形叫做相似三角形。

相似三角形的判定方法有:。

中考数学复习之相似三角形的性质与判定,考点过关与基础练习题

中考数学复习之相似三角形的性质与判定,考点过关与基础练习题

AD是Rt△ABC 斜边上的高 29. 相似三角形➢ 知识过关1. 相似三角形的概念:如果两个三角形的对应角_________,对应边_______,那么这两个三角形叫做相似三角形. 2. 相似三角形的性质:对应角________,对应边________;周长之比等于_______;面积之比等于_______.3. 相似三角形的判定(1)两_______对应相等的两个三角形相似;(2)两边对应成比例,且______相等的两个三角形相似; (3)_______边对应成比例的两个三角形相似;(4)若一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和直角边对应______,那这两个直角三角形相似. 4.相似三角形的几种基本图形DE △BC △B =△AED △B △ACDA 型➢ 考点分类考点1相似三角形的判定例1如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 为AD 的中点,连接BE 交AC 于点F ,连接FD .若∠BF A =90°,给出以下三对三角形:①△BEA 与△ACD ;②△FED 与△DEB ;③△CFD 与△ABO .其中相似的有_____________(填写序号).CB BCD E ADAEDAAD B CODBACCAO D BX 型母子型∠B ∠CAC ∥BD CB D AOFE DCBA考点2相似三角形的性质例2如图1所示,AB △BD ,CD △BD ,垂足分别为B ,D .AD ,BC 交于点E ,过E 作EF △BD于点F ,则可以得到111AB CD EF+=.若将图1中的垂直改为斜交,如图2所示,AB △CD ,AD ,BC 交于点E ,过E 作EF △AB 交BD 于点F ,试问:111AB CD EF+=还成立吗?请说明理由.考点3相似三角形的判定和性质综合例3如图,在Rt △ABC 中,∠ACB =90°,点D 在AC 上 (1)已知:AC =4,BC =2,∠CBD =∠A ,求BD 的长;(2)取AB ,BD 的中点E ,F ,连接CE ,EF ,FC ,求证:△CEF ∽△BAD .➢ 真题演练1.如图,点D 、E 分别在△ABC 边AB 、AC 上,AB AD=AE CE=3,且∠AED =∠B ,那么AD AC的值为( )A .12B .13C .14D .23F EDCBA图1F EDCBA图22.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,下列结论中,错误的是( )A .AD AC=AC ABB .AD AC=CD BCC .AD AC=BD BCD .AD CD=CD BD3.如图,边长为a 的正方形ABCD 中,对角线AC ,BD 交于点O ,E 在BD 上,作EF ⊥CE 交AB 于点F ,连结CF 交BD 于H ,则下列结论:①EF =EC ;②△FCG ∽△ACF ;③BE •DH =a 2;④若BF :AF =1:3,则tan ∠ECG =14,正确的是( )A .①②④B .②③④C .①②③D .①②③④4.如图,在▱ABCD 中,E 是BA 延长线上一点,CE 分别与AD ,BD 交于点G ,F .下列结论:①EG GC=AG GD;②EF FC=BF DF;③FC GF=BF DF;④EAEB=AG AD;⑤CF 2=GF •EF ,其中正确的个数是( )A .5B .4C .3D .25.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针90°旋转后,得到△AFB ,连接EF .下列结论中正确的个数有( ) ①∠EAF =45°; ②△ABE ∽△ACD ; ③EA 平分∠CEF ; ④BE 2+DC 2=DE 2.A .1个B .2个C .3个D .4个6.如图,在矩形ABCD中,过点A作对角线BD的垂线并延长,与DC的延长线交于点E,与BC交于点F,垂足为点G,连接CG,且CD=CF,则下列结论正确的有()个①CE=AD②∠DGC=∠BFG③CF2=BF•BC④BG=GE−√2CGA.1B.2C.3D.47.如图,在△ABC中,AC=BC=5,AB=6,以BC为边向外作正方形BCDE,连接AD,则AD=.8.如图,已知正方形ABCD的对角线AC与BD相交于点O,若AC=2√2cm,点E在DC 边的延长线上,若∠CAE=15°,则AE=cm.9.如图,点E在正方形ABCD边CD上,以CE为边向正方形ABCD外部作正方形CEFG,连接AF,P、Q分别是AF、AB的中点,连接PQ.若AB=7,CE=5,则PQ=.10.如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,若PQ =12,当AQ = 时,△AQD 与△BCP 相似.11.如图,AB =16cm ,AC =12cm ,动点P ,Q 分别以每秒2cm 和1cm 的速度同时开始运动,其中点P 从点A 出发,沿AC 边一直移到点C 为止,点Q 从点B 出发沿BA 边一直移到点A 为止(点P 到达点C 后,点Q 继续运动),当t = 时,△APQ 与△ABC 相似.12.某数学兴趣小组在学习了尺规作图、等腰三角形和相似三角形的有关知识后,在等腰△ABC 中,其中AB =AC ,如图Ⅰ,进行了如下操作:第一步,以点A 为圆心,任意长为半径画弧,分别交BA 的延长线和AC 于点E ,F ,如图Ⅱ;第二步,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点D ,作射线AD ;第三步,以D 为圆心,DA 的长为半径画弧,交射线AE 于点G ; (1)填空;写出∠CAD 与∠GAD 的大小关系为 ; (2)△请判断AD 与BC 的位置关系,并说明理由. △当AB =AC =6,BC =2时,连接DG ,请直接写出AD AG= ;(3)如图△,根据以上条件,点P 为AB 的中点,点M 为射线AD 上的一个动点,连接PM ,PC ,当△CPM =△B 时,求AM 的长.13.如图:在矩形ABCD中,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向C点移动,同时动点Q以1m/s的速度从点C出发,沿CB向点B移动,设P、Q两点移动的时间为t秒(0<t<5).(1)t为多少时,以P、Q、C为顶点的三角形与△ABC相似?(2)在P、Q两点移动过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时t的值;若不能,请说明理由.课后练习1.如图,将矩形ABCD沿着GE,EC,GF翻折,使得点A,B,D恰好都落在点O处,且点G,O,C在同一条直线上,点E,O,F在另一条直线上.以下结论正确的是()A.△COF∽△CEG B.OC=3OF C.AB:AD=4:3D.GE=√6DF 2.如图,在△ABC中,P为AB上一点,下列四个条件中:①AC2=AP•AB;②AB•CP=AP •CB;③∠APC=∠ACB;④∠ACP=∠B能满足△APC与△ACB相似的条件是()A.①②③B.①②④C.①③④D.②③④3.如图,△ABC∽△DBE,延长AD,交CE于点P,若∠DEB=45°,AC=2√2,DE=√2,BE=1.5,则tan∠DPC=()A .√2B .2C .3+√22D .124.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,则下列结论:(1)sin ∠BAE =12;(2)BE 2=AB •CF ;(3)CD =3CF ;(4)△ABE ∽△AEF ,其中结论正确的个数有( )A .1个B .2个C .3个D .4个5.如图,在四边形ABCD 中,∠BAC =90°,AB =6,AC =8,E 是BC 的中点,AD ∥BC ,AE ∥DC ,EF ⊥CD 于点F .下列结论错误的是( )A .四边形AECD 的周长是20B .△ABC ∽△FEC C .∠B +∠ACD =90°D .EF 的长为2456.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则以下结论中:①S△ABM=4S △FDM ;②PN =2√6515;③tan ∠EAF =34;④△PMN ∽△DPE ,正确的是( )A .①②③B .①②④C .①③④D .②③④7.如图,正方形ABCD 中,AB =2√5,点N 为AD 边上一点,连接BN ,作AP ⊥BN 于点P ,点M 为AB 边上一点,且∠PMA =∠PCB ,连接CM .下列结论正确的个数有( ) (1)△P AM ∽△PBC (2)PM ⊥PC ;(3)∠MPB =∠MCB ; (4)若点N 为AD 中点,则S △PCN =6 (5)AN =AMA.5个B.4个C.3个D.2个8.如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=12;②S△EBH:S△DHF=3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是.(填序号即可).9.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,动点D,E分别在AB,CB边上,且BE=√2AD.连接CD,AE相交于点P,连接BP,则△CAD∽△,BP的最小值为.10.在△ABC中,AB=8,BC=16,AP=BP,点Q是BC边上一个动点,当BQ=时,△BPQ与△BAC相似.11.如图,四边形ABCD,CDEF,EFHG是三个正方形,∠2+∠3=.12.如图,在矩形ABCD中,点E,F分别在边AD,DC上,BE⊥EF,AB=6,AE=9,DE=2,则EF的长是.13.如图,小明想测量一棵大树AB的高度,他发现树的影子落在地面和墙上,测得地面上的影子BC的长为5m,墙上的影子CD的长为2m.同一时刻,一根长为1m垂直与地面标杆的影长为0.5m,则大树的高度AB为m.14.小明和小杰去公园游玩,小明给站在观景台边缘的小杰拍照时,发现他的眼睛、凉亭顶端、小杰的头顶三点恰好在一条直线上(如图所示).已知小明的眼睛离地面的距离AB 为1.6米,凉亭的高度CD为6.6米,小明到凉亭的距离BD为12米,凉亭与观景台底部的距离DF为42米,小杰身高为1.8米.那么观景台的高度为米.15如图所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.(1)求证:△DAE≌△DCF;(2)求证:△ABG∽△CFG.16.如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4.(1)如图①,在AB 上取一点D ,将纸片沿OD 翻折,使点A 落在BC 边上的点E 处,求D 、E 两点的坐标;(2)如图②,若OE 上有一动点P (不与O ,E 重合),从点O 出发,以每秒1个单位的速度沿OE 方向向点E 匀速运动,设运动时间为t 秒(0<t <5),过点P 作PM ⊥OE 交OD 于点M ,连接ME ,求当t 为何值时,以点P 、M 、E 为顶点的三角形与△ODA 相似?➢ 冲击A+在正方形ABCD 中,点G 是边AB 上的一个动点,点F 、E 在边BC 上,BF =FE =AG ,且AG ≤12AB ,GF 、DE 的延长线相交于点P .(1)如图1,当点E 与点C 重合时,求∠P 的度数;(2)如图2,当点E 与点C 不重合时,问:(1)中∠P 的度数是否发生变化,若有改变,请求出∠P 的度数,若不变,请说明理由;(3)在(2)的条件下,作DN ⊥GP 于点N ,连接CN 、BP ,取BP 的中点M ,连接MN ,在点G 的运动过程中,求证:MN NC为定值.。

中考总复习:相似三角形

中考总复习:相似三角形

学生: 科目: 数 学 教师: 刘美玲知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段dc b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d=::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC -== 简记为:512-长短==全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项课 题中考总复习 : 相似三角形教学内容(3)反比性质(把比的前项、后项交换): a c b d b d a c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m e c a =++++++++ .注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三.....边.对应成比例. ②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.FE D CB A EAB C D注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

2018年中考数学总复习课件:相似三角形(共27张PPT)

2018年中考数学总复习课件:相似三角形(共27张PPT)

★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3
★知识要点导航 ★热点分类解析
★知识点1 ★考点1

2018届中考数学复习第20课时相似三角形课件

2018届中考数学复习第20课时相似三角形课件

1.相似三角形的判定思路 判 定 三 角 形 相 似 的 思 路
有平行截线──用平行线的性质,找等角 另一对等角 有一对等角,找 或该角的两边对应成比例 夹角相等 有两边对应成比例,找 或第三边也对应成比例 或有一组直角 一对锐角相等 直角三角形,找 或斜角、直角边对应成比例 顶角相等 等腰三角形,找 或一对底角相等 或底和腰对应成比例
(2)解:由(1)知△ADE∽△ABC,
3 AD AE ∴ = = , 5 AB AC 又∵△AEF∽△ACG, AF AE 3 ∴ = = . AG AC 5
(1)平行于三角形一边的直线与其他两边相交,所构成 的三角形与原三角形相似; 对应成比例 的两个三角形相似; (2)三边⑨____________ 判 夹角 相等的两个三角形相似; (3)两边成比例且⑩________ 定 两个角 分别相等的两个三角形相似; (4)⑪________ (5)两个直角三角形满足一个锐角相等,或两组直角边 对应成比例,那么这两个直角三角形相似
3. 黄金分割:一般地,点C把线段AB分成两条线段AC和
3. 黄金分割:一般地,点C把线段AB分成两条线段AC和
AC BC,如果 =BC ,那么称线段AB被点C黄金分割,点 AB AC C 叫做线段 AB 的黄金分割点, AC 与 AB 的比叫做黄金比,
即 AC= 5 1 或AC≈0.618AB. A重难点精讲优练 类型
相似三角形的相关证明与计算
练习1 如图,在△ABC中,DE∥BC, AE∶EC=3∶5,则DE∶BC=
3:8 ,△ADE的周长与△ABC的周 ________
3:8 ,△ADE的面积与 长之比为________ △ABC的面积之比为________ 9:64 . 练习1题图

2018-2019年中考数学云南版精讲教学案类型②相似三角形的判定与性质

2018-2019年中考数学云南版精讲教学案类型②相似三角形的判定与性质

类型②相似三角形的判定与性质,备考攻略)1.有关相似三角形的计算问题(如边、角、周长、面积等).2.用相似三角形解决实际问题.3.证明两个三角形相似或有关相似三角形的证明.1.对应关系判断错误.2.忽视分类讨论而出错.3.错记相似三角形的面积比而出错.1.求证两三角形相似,方法有:(1)对应的两个角相等(经常用到);(2)三组对应边成比例;(3)两组对应边成比例,并且相应的夹角相等;(4)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(5)对应角相等,对应边成比例的两个三角形叫做相似三角形(定义).2.相似三角形的对应角相等,对应边成比例,相似比=边长比=周长比=对应高的比=对应中线的比=对应角平分线的比;面积比=相似比的平方.3.做题时灵活运用相关知识.1.有关相似三角形的计算问题:熟悉并掌握相似三角形的性质,在求解过程中能够找出边或角的对应关系,适当的运用方程、转化、分类等数学思想.2.用相似三角形解决实际问题:首先将实际问题转化为相似三角形的模型,再判断说明两个三角形相似及利用相似三角形的性质求解.3.证明两个三角形相似或有关相似三角形的证明:熟悉并掌握相似三角形的判定方法,注意总结归纳相似三角形的一些基本模型.,典题精讲)【例1】(2017自贡中考)在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为________.【解析】由MN∥BC,易证△AMN∽△ABC,根据相似三角形的性质即可得到结论.【答案】11.(2016乐山中考)如图,在△A BC中,D,E分别是边AB,AC上的点,且DE∥BC,若△ADE与△ABC的周长之比为2∶3,AD=4,则DB=__2__.2.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为1,则平行四边形ABCD的面积为__12__.(第2题图)(第3题图)3.(南宁中考)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S 2,则S1∶S2等于( D)A .1∶ 2B .1∶2C .2∶3D .4∶9【例2】(齐齐哈尔中考)如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 与BE 相交于点F.(1)求证:△ACD∽△BFD;(2)若∠ABD=45°,AC =3时,求BF 的长.【解析】(1)由∠C+∠DBF=90°,∠C +∠DAC=90°,推出∠DBF=∠DAC,由此即可证明;(2)先证明AD =BD ,由△ACD∽△BFD,得ACBF=1,即可解决问题. 【答案】解:(1)∵AD⊥BC,BE ⊥AC , ∴∠BDF =∠ADC=∠BEC=90°,∴∠C +∠DBF=90°,∠C +∠DAC=90°, ∴∠DBF =∠DAC, ∴△ACD ∽△BFD ;(2)∵∠ABD=45°,∠ADB =90°, ∴AD =BD , ∴ADBD=1. ∵△ACD ∽△BFD ,AC =3, ∴AC BF =ADBD=1, ∴BF =3.4.(2017毕节中考)如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sin D=45,求AF的长.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC.∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC;(2)∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°.在Rt△ADE中,sin D=AEAD=AE5=45,∴AE=4.在Rt△ABE中,根据勾股定理得:BE=AE2+AB2=42+82=4 5. ∵BC=AD=5,由(1)得:△ABF∽△BEC,∴AFBC=ABBE,∴AF 5=845, 解得:AF =2 5.1.(湘西中考)如图,在△ABC 中,DE ∥BC ,DB =2AD ,△ADE 的面积为1,则四边形DBCE 的面积为( D )A .3B .5C .6D .82.(随州中考)如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE∥AC,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶25,则S △BDE 与S △CDE 的比是( B )A .1∶3B .1∶4C .1∶5D .1∶25(第2题图)(第3题图)3.(毕节中考)在△ABC 中,D 为AB 边上一点,且∠BCD=∠A.已知BC =22,AB =3,则BD =__83__.4.(岳阳中考)如图,正方形ABCD 中,M 为BC 上一点,点F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB =12,BM =5,求DE 的长. 解:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B =90°, AD ∥BC , ∴∠AMB =∠EAF. 又∵EF⊥AM, ∴∠AFE =90°, ∴∠B =∠AFE, ∴△ABM ∽△EFA ;(2)∵∠B=90°,AB =12,BM =5, ∴AM =122+52=13,AD =12. ∵F 是AM 的中点, ∴AF =12AM =6.5.∵△ABM ∽△EFA , ∴BM AF =AM AE, 即56.5=13AE,∴AE =16.9, ∴DE =AE -AD =4.9.5.(2017安徽中考节选)已知正方形ABCD ,点M 边AB 的中点.如图,点G 为线段CM 上的一点,且∠AGB=90°,延长AG ,BG 分别与边BC ,CD 交于点E ,F.求证:(1)BE =CF; (2)BE 2=BC·CE.解:(1)∵四边形ABCD 是正方形, ∴AB =BC ,∠ABC =∠BCF=90°. ∴∠ABG +∠CBF=90°. ∵∠AGB =90°, ∴∠ABG +∠BAG=90°, ∴∠BAG =∠CBF.在△ABE 和△BCF 中⎩⎨⎧∠BAE=∠CBF,AB =BC ,∠ABE =∠BCF,∴△ABE ≌△BCF, ∴BE =CF ;(2)∵∠AGB=90°,点M 为AB 的中点, ∴MG =MA =MB, ∴∠GAM =∠AGM.又∵∠CGE=∠AGM ,∠GAM =∠CBG, ∴∠CGE =∠CBG,又∠ECG=∠GCB, ∴△CGE∽△CBG,∴CECG=CGCB,即CG2=BC·CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG, 由(1)知BE=CF,∴BE=CG,∴BE2=BC·CE.。

2018中考数学总复习 基础知识梳理 第5单元 三角形 5.5 相似三角形

2018中考数学总复习 基础知识梳理 第5单元 三角形 5.5 相似三角形
2
则线段AB的黄金分割点大约在距一个端点的0.618处.
K12课件
5
5.5.2 比例的性质
(1)比例的基本性质:a:b=c:d,bc=ad.特别地:a:b=b:c等
价于b2=ac.
(2)合比性质:如果a/b=c/d,那么
ab b

cd
d.
(3)等比性质:如果a/b=c/d=…=e/f,并且b+d+…+f≠0,那么=
K12课件
3
知识体系图
相似多边形
概念 性质
相似三角形
相似三角形
判定 性质
位似图形
概念 性质 位似变换
K12课件
4
5.5.1 比例线段
(1)比例线段:对于四条线段a、b、c、d,如果其中两条线段的
比与另外两条线段的比相等,如a/b=c/d(即ad=bc)那么这四条线 段叫做成比例线段. (2)黄金分割:如果把线段AB分成两条线段AC和BC(AC>BC), 并且AC是AB和BC的比例中项(即AB:AC=AC:BC),那么C点叫 做线段AB的黄金分割点,AC:AB=BC:AC= 5 1 ≈0.618.若AB=1,
K12课件
13
【例3】如图是一位同学设计的用手电筒来测量某古城墙高度的示
意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后
刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2
米,BP=3米,PD=12米,那么该古城墙的高度CD是
米.
K12课件
14
【解析】由题意可得:∠APE=∠CPE, ∴∠APB=∠CPD, ∵AB⊥BD,CD⊥BD, ∴∠ABP=∠CDP=90°, ∴△ABP∽△CDP,

2018年下学期九年级数学辅导讲义06,07——相似三角形

2018年下学期九年级数学辅导讲义06,07——相似三角形

2018年下学期九年级数学辅导讲义第06,07讲 相似三角形【知识网络】【要点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形.要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形; (2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两 个图形全等;2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形. 要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质. (2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段. 要点诠释:(1)若a :b =c :d ,则ad=bc ;(d 也叫第四比例项) (2)若a :b=b :c ,则 =ac (b 称为a 、c 的比例中项).要点二、相似三角形 1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似. 判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.2b判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 判定方法(五):如果两个直角三角形斜边与一条直角边对应成比例,那么这两个直角三角形相似. 要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.2. 相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等; (2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段. (3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。

2018春中考数学总复习《相似三角形》教学课件

2018春中考数学总复习《相似三角形》教学课件

提分必练
1. a,b,c,d是四条线段,下列各组中,四条线段成 比例的是( B ) A. a=2 cm,b=5 cm,c=5 cm,d=10 cm B. a=5 cm,b=3 cm,c=10 cm,d=6 cm C. a=30 cm,b=2 cm,c=0.8 cm,d=2 cm D. a=5 cm,b=0.02 cm,c=7 cm,d=0.3 cm
a b ,那么 b c
1. 比例线段:在四条线段中,如果其中两条线段的 比①_________ 另外两条线段的比,即 等于 线段.
2=ac 形式 2. 比例中项:如a∶b=b∶c或ab=bc或②b ____
这四条线段a、b、c、d叫做成比例线段,简称比例
3. 比例的性质(b、d≠0)(2015六盘水14)
2. 位似的性质 (1)一般地,在平面直角坐标系中,如果以原点为位似中心, 画出一个与原图形位似的图形,使它与原图形的相似比 为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐 标为(kx,ky)或(-kx,-ky). (2)位似图形上任意一对对应点到位似中心的距离之比等 于位似比.
3. 位似作图的步骤 (1)确定位似中心; (2)确定原图形中的顶点关于位似中心的对应点; (3)画出新图形.
a c (1)性质1: ad b d
= bc. ③_____ cd (2)性质2:a c a b =④_______. d b d b (3)性质3:a c
b d ac b+d m n m a n b
(b+d+…+n≠0,m、n≠0) .
4. 黄金分割:一般地,点C把线段AB分成AC和CB AC CB 两段,其中AC是较小的一段,如果CB AB ,那么 称线段AB被点C黄金分割,点C叫做线段AB的黄金 分割点,CB和AB的比叫做黄金分割数(CB 1 5 AB 2 或CB≈0.618AB). 黄金三角形:底边与腰长之比为 5 1 的等腰三角 2 形(顶角为36°的等腰三角形). 黄金矩形:宽与长之比为 5 1 的矩形.

2018-2019中考数学试题分类汇编考点36相似三角形Word版含解析(K12教育文档)

2018-2019中考数学试题分类汇编考点36相似三角形Word版含解析(K12教育文档)

2018-2019中考数学试题分类汇编考点36相似三角形Word版含解析(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019中考数学试题分类汇编考点36相似三角形Word版含解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019中考数学试题分类汇编考点36相似三角形Word版含解析(word版可编辑修改)的全部内容。

2018中考数学试题分类汇编:考点36 相似三角形一.选择题(共28小题)1.(2018•重庆)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.2.(2018•玉林)两三角形的相似比是2:3,则其面积之比是( )A.:B.2:3 C.4:9 D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.3.(2018•重庆)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档