2017-2018年河北省邢台市八年级上学期期末数学试卷带答案word版

合集下载

2017-2018学年河北省邢台市八年级第一学期期末数学试卷带答案

2017-2018学年河北省邢台市八年级第一学期期末数学试卷带答案

2017-2018学年河北省邢台市初二(上)期末数学试卷一、选择题(本大题共14小题,其中1-6小题每小题2分,7-14题每小题2分,共36分)1.(2分)﹣64的立方根是()A.﹣4B.4C.±4D.不存在2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB4.(2分)用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万5.(2分)用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b6.(2分)一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是()A.a+b B.C.D.7.(3分)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠ABC的度数是()A.30°B.35°C.36°D.60°8.(3分)估算的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间9.(3分)如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12B.14C.16D.1810.(3分)下列运算正确的是()A.+=B.•=C.=D.=3 11.(3分)一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5B.10C.25D.±2512.(3分)如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.30°C.20°D.10°13.(3分)下列算式中,你认为正确的是()A.B.C.D.14.(3分)如图,已知线段BC,分别以B、C为圆心,大于BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为()A.4B.4C.8D.8二、填空题(本大题共4小题,其中15-17题每小题3分,18小题4分,共13分)15.(3分)若在实数范围内有意义,则x的取值范围为.16.(3分)若,则=.17.(3分)如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是(填序号).18.(4分)给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是;根据你发现的规律,试写出第9个分式.三、解答题(共71分)19.(7分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.20.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.21.(8分)如图,在△ABC中,∠ABC>90°.(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).(2)在(1)的基础上,如果PD=PC,则PC:BC=.22.(8分)(1)先化简,再求值:1﹣,其中x=﹣2,y=.(2)解分式方程:.23.(10分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F 是AB的中点.(1)直接写出AB与EF的数量关系:;(2)若AD=3,BD=2,∠C=60°,求EF的长.24.(10分)如图1,射线OB与直线AN垂直于点O,线段OP在∠AOB内,一块三角板的直角顶点与点P重合,两条直角边分别与AN、OB的交于点C、D.(1)当∠POB=60°,∠OPC=30°,PC=2时,则PD=.(2)若∠POB=45°,①当PC与PO重合时,PC和PD之间的数量关系是;②当PC与PO不重合时,猜想PC与PD之间的数量关系,并证明你的结论.25.(10分)王伟和张岩今年秋冬以来进行了两次徒步爬山活动.(1)第一次爬紫金山,他们沿通往主峰的山路爬到某景点A,行程1800米,二人从山脚下同时出发,但是王伟爬的很快,平均速度是张岩的1.2倍,结果比张岩早30分钟到达景点,求王伟的平均爬山速度是每分钟多少米?(2)第二次爬天梯山,王伟爬到顶峰用了n小时(n>2),张岩爬到顶峰的时间是王伟的1.1倍还多1小时,王伟的平均爬山速度是张岩的2倍吗?请说明理由.26.(11分)在Rt△AOB 中,∠AOB=90°,∠A=45°,点P、D分别在射线AB、OB上,PO=PD.(1)如图1,若∠OPD=30°,S=9,求点D到AB的距离.△OPD(2)①如图2,作DE⊥AB于点E,当∠OPD≤90°时,PE与AB之间的数量关系是;②当∠OPD为钝角时,PE与AB之间是否存在上述关系?若存在,设AB=11,求出PE的值;若不存在,请说明理由.2017-2018学年河北省邢台市初二(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,其中1-6小题每小题2分,7-14题每小题2分,共36分)1.(2分)﹣64的立方根是()A.﹣4B.4C.±4D.不存在【解答】解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选:A.2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.3.(2分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB【解答】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.4.(2分)用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万【解答】解:近似数145762≈1.46×105(精确到千位).故选:B.5.(2分)用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b【解答】解:用反证法证明“a>b”时,应先假设a≤b.故选:B.6.(2分)一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是()A.a+b B.C.D.【解答】解:根据工作总量=工作效率×工作时间,得甲的工作效率是,乙的工作效率是.∴甲乙两人合作一天的工作量为:+.故选D.7.(3分)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠ABC的度数是()A.30°B.35°C.36°D.60°【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选:C.8.(3分)估算的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间【解答】解:∵25<27<36,∴5<<6,∴2<﹣3<3.故选:B.9.(3分)如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12B.14C.16D.18【解答】解:∵∠D=90°,CD=6,AD=8,∴AC==10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=16,故选:C.10.(3分)下列运算正确的是()A.+=B.•=C.=D.=3【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、原式==2,所以D选项错误.故选:B.11.(3分)一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5B.10C.25D.±25【解答】解;一个正数的平方根为2x+1和x﹣7,∴2x+1+x﹣7=0x=2,2x+1=5(2x+1)2=52=25,故选:C.12.(3分)如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.30°C.20°D.10°【解答】解:连接OA、OB,∵∠A=80°,∴∠ABC+∠ACB=100°,∵O是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴∠OAB=∠OBA,∠OCA=∠OAC,OB=OC,∴∠OBA+∠OCA=80°,∴∠OBC+∠OCB=100°﹣80°=20°,∵OB=OC,∴∠BCO=∠CBO=10°,故选:D.13.(3分)下列算式中,你认为正确的是()A.B.C.D.【解答】解:A、,错误;B、1×=,错误;C、3a﹣1=,错误;D、==,正确.故选:D.14.(3分)如图,已知线段BC,分别以B、C为圆心,大于BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为()A.4B.4C.8D.8【解答】解:如图,连接EF交BC于H.由题意EB=EC=4,EF⊥BC,∴∠B=∠C,∵∠AEC=∠B+∠C=60°,∴EH=CE=2,BH=CH=EH=2,∴BC=4,∴S=•BC•EH=×4×2=4,△EBC故选:B.二、填空题(本大题共4小题,其中15-17题每小题3分,18小题4分,共13分)15.(3分)若在实数范围内有意义,则x的取值范围为x≥2.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.16.(3分)若,则=﹣.【解答】解:∵﹣=2,∴a﹣b=﹣2ab,∴原式===﹣.故答案为:﹣.17.(3分)如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是②(填序号).【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故答案为:②18.(4分)给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是﹣;根据你发现的规律,试写出第9个分式.【解答】解:给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是﹣;根据你发现的规律,试写出第9个分式,故答案为:﹣;三、解答题(共71分)19.(7分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第③步开始出错的;(2)请你给出正确的解题过程.【解答】解:(1)③(2)原式=2﹣=6﹣2=420.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.21.(8分)如图,在△ABC中,∠ABC>90°.(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).(2)在(1)的基础上,如果PD=PC,则PC:BC=2:3.【解答】解:(1)如图所示:(2)∵PD=PC,∴∠PDC=∠C,∵DP平分∠BDC,∴∠BDP=∠PDC,∵∠BDP+∠PDC+∠C=90°,可得∠C=30°,∴∠BDP=30°,设BP=1,可得DP=2,即PC=2,所以PC:BC=2:(1+2)=2:3;故答案为:2:322.(8分)(1)先化简,再求值:1﹣,其中x=﹣2,y=.(2)解分式方程:.【解答】解:(1)原式=1﹣•=1﹣==﹣,当x=﹣2、y=时,原式=﹣=;(2)两边都乘以3(x﹣1),得:﹣3x=5+3(x﹣1),解得:x=﹣,检验:x=﹣时,3(x﹣1)=﹣4≠0,所以原分式方程的解为x=﹣.23.(10分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F 是AB的中点.(1)直接写出AB与EF的数量关系:EF=AB;(2)若AD=3,BD=2,∠C=60°,求EF的长.【解答】(1)解:结论:EF=AB理由:如图,连接BE,∵在△BCD中,DB=BC,E是CD的中点,∴BE⊥CD,∵F是AB的中点,∴在Rt△ABE中,EF是斜边AB上的中线,∴EF=AB.故答案为EF=AB.(2)解:连接BE.∵BD=BC,∠C=60°,∴△CBD是等边三角形,∴CD=BD=BC=2,∵E是BC中点,∴DE=CD=1,在Rt△BED中,∵BE===,在Rt△AEB中,AE=AD+DE=3+1=4,∴AB==,∵F是AB中点,∴EF=AB=.24.(10分)如图1,射线OB与直线AN垂直于点O,线段OP在∠AOB内,一块三角板的直角顶点与点P重合,两条直角边分别与AN、OB的交于点C、D.(1)当∠POB=60°,∠OPC=30°,PC=2时,则PD=2.(2)若∠POB=45°,①当PC与PO重合时,PC和PD之间的数量关系是PC=PD;②当PC与PO不重合时,猜想PC与PD之间的数量关系,并证明你的结论.【解答】解:(1)作PE⊥AN于E,∵∠POB=60°,OB⊥AN,∴∠AOP=30°,又∠OPC=30°,∴∠ACP=60°,∴AP=PC•sin∠ACP=,∴OP=2AP=2,∵∠POB=60°,∠OPD=60°,∴△POD是等边三角形,∴PD=PO=2,故答案为:2;(2)①当∠POB=45°时,∵三角板的直角顶点与点P重合,∴PC与PO重合时,△PCD为等腰直角三角形,∴PC=PD,故答案为:PC=PD;②PC=PD,理由如下:作PE⊥AN于E,PF⊥OB于F,∵AN⊥OB,PE⊥AN,PF⊥OB,∴四边形EOFP为矩形,∴∠EPF=90°,∴∠EPC=∠FPD,∵∠POB=45°,∴∠POA=45°,∴OP平分∠EOF,又PE⊥AN,PF⊥OB,∴PE=PF,在△EPC和△FPD中,,∴△EPC≌△FPD,∴PC=PD.25.(10分)王伟和张岩今年秋冬以来进行了两次徒步爬山活动.(1)第一次爬紫金山,他们沿通往主峰的山路爬到某景点A,行程1800米,二人从山脚下同时出发,但是王伟爬的很快,平均速度是张岩的1.2倍,结果比张岩早30分钟到达景点,求王伟的平均爬山速度是每分钟多少米?(2)第二次爬天梯山,王伟爬到顶峰用了n小时(n>2),张岩爬到顶峰的时间是王伟的1.1倍还多1小时,王伟的平均爬山速度是张岩的2倍吗?请说明理由.【解答】解:(1)设张岩的平均爬山速度为x米/分,则王伟的平均爬山速度为1.2米/分,根据题意得:+30=,解得:x=10,经检验x=10是原方程的解,所以1.2x=12,答:王伟的平均爬山速度是1.2米/分;(2)王伟的平均爬山速度不是张岩的2倍;由题意知,王伟的平均爬山速度是,张岩平均爬山速度是,÷==1.1+,∵n>2,∴<,∴1.1+<2,∴王伟的平均爬山速度不是张岩的2倍.26.(11分)在Rt△AOB 中,∠AOB=90°,∠A=45°,点P、D分别在射线AB、OB上,PO=PD.=9,求点D到AB的距离.(1)如图1,若∠OPD=30°,S△OPD(2)①如图2,作DE⊥AB于点E,当∠OPD≤90°时,PE与AB之间的数量关系是PE=AB;②当∠OPD为钝角时,PE与AB之间是否存在上述关系?若存在,设AB=11,求出PE的值;若不存在,请说明理由.【解答】解:(1)如图1中,作DF⊥OP于F,DE⊥AB于E.设DF=a.在Rt△PDF中,∵∠PFD=90°,∠DPF=30°,∴PD=2DF=OP=2a,=•OP•DF=•2a•a=9,∴S△OPD∴a=3,∵OP=PD,∴∠PDO=(180°﹣30°)=75°,∵∠PDO=∠B+∠DPB,∴75°=45°+∠DPB,∴∠DPB=∠DPO=30°,∵DF⊥OP,DE⊥AB,∴DE=DF=3.∴点D到AB的距离为3.(2)结论:PE=AB,理由如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,∴PE=AB.(3)当∠OPD为钝角时,PE=AB.作OC⊥AB于C,同法可证∴△POC≌△DPE(AAS),∴OC=PE,∴PE=AB.∵AB=11,∴PE=AB=.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。

【真卷】2017-2018年河北省邢台市沙河市八年级上学期数学期末试卷及答案

【真卷】2017-2018年河北省邢台市沙河市八年级上学期数学期末试卷及答案

2017-2018学年河北省邢台市沙河市八年级(上)期末数学试卷一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2B.2.0C.2.02D.2.032.(3分)=()A.3B.9C.24D.813.(3分)下列轴对称图形中,对称轴条数是四条的图形是()A.B.C.D.4.(3分)如图,已知在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则BD的长为()A.2B.3C.4D.55.(3分)命题“两个全等直角三角形的面积相等”的逆命题是()A.两个直角三角形全等B.两个直角三角形面积相等C.两个面积相等的全等三角形是直角三角形D.两个面积相等的直角三角形是全等三角形6.(3分)下列各式,计算结果为的是()A.+B.﹣C.﹣D.107.(3分)如图所示的作图痕迹作的是()A.线段的垂直平分线B.过一点作已知直线的垂线C.一个角的平分线D.作一个角等于已知角8.(3分)如图,数轴上点A对应的数是1,点B对应的数是2,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数为()A.1.4B.C.D.2.49.(3分)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等10.(3分)下列四个图形中,若以其中一部分作为基本图案,无论用旋转还是平移都不能得到的图形是()A.B.C.D.11.(3分)用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设()A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角12.(3分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC于点E,EF∥AB交BC于点F,已知AE=5,则△EFC的周长为()A.60B.45C.30D.1513.(3分)如图1,已知线段a,∠1,求作△ABC,使BC=a,∠ABC=∠BCA=∠1,张蕾的作法如图2所示,则下列说法中一定正确的是()A.作△ABC的依据为ASAB.弧EF是以AC长为半径画的C.弧MN是以点A位圆心,a为半径画的D.弧GH是以CP长为半径画的14.(3分)等腰三角形一腰上的高与另一腰所在直线的夹角为30°,则这个等腰三角形的顶角为()A.60°或120°B.30°或150°C.30°或120°D.60°二、填空题(本小题共4个小题,每小题3分,共12分,请将答案直接写在题目中横线上)15.(3分)计算=.16.(3分)如图,PM=PN,∠BOC=30°,则∠AOB=.17.(3分)如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是.18.(3分)定义:如图,点P、Q把线段AB分割成线段AP、PQ和BQ,若以AP、PQ、BQ为边的三角形是一个直角三角形,则称点P、Q是线段AB的勾股分割点.已知点P、Q是线段AB的勾股分割点,如果AP=4,PQ=6(PQ>BQ),那么BQ=.三、解答题(共7个小題,满分66分,解答题应写出必要的解题步骤,文字说明或证明过程19.(8分)计算:.20.(8分)如图,已知AC⊥AB,DB⊥AB,AC=BE,CE=DE,(1)证明:△ACE≌△BED;(2)试猜想线段CE与DE位置关系,并证明你的结论.21.(9分)正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.22.(9分)当x=﹣时,求代数式x2﹣x+的值.23.(10分)某项工程,原计划50人在若干天内完成,开工时由于采用新技术,工作效率提高了60%,现只派40人去工作,结果比原计划提前7天完成任务,求原计划工作多少天?24.(10分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE 相交于F.求证:AF平分∠BAC.25.(12分)嘉琪剪了三张直角三角形纸片,进行了如下的操作:(1)如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE,若AC=6,BC=8,求CD的长.(2)如图2,嘉琪拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=6,BC=8,求CD的长.(3)如图3,嘉琪将直角三角形纸片ABC折叠,使直角顶点C落在斜边中点D 的位置,EF是折痕.已知DE=3,DF=4,求AB的长.2017-2018学年河北省邢台市沙河市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为()A.2B.2.0C.2.02D.2.03【解答】解:2.026≈2.03,故选:D.2.(3分)=()A.3B.9C.24D.81【解答】解:=3,故选:A.3.(3分)下列轴对称图形中,对称轴条数是四条的图形是()A.B.C.D.【解答】解:A、有4条对称轴,故此选项正确;B、有无数条对称轴,故此选项错误;C、有2条对称轴,故此选项错误;D、有6条对称轴,故此选项错误.故选:A.4.(3分)如图,已知在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则BD的长为()A.2B.3C.4D.5【解答】解:∵AB=AC,AD⊥BC,∴BD=DC=BC=3,故选:B.5.(3分)命题“两个全等直角三角形的面积相等”的逆命题是()A.两个直角三角形全等B.两个直角三角形面积相等C.两个面积相等的全等三角形是直角三角形D.两个面积相等的直角三角形是全等三角形【解答】解:命题“两个全等的直角三角形的面积相等”的逆命题是:两个面积相等的直角三角形是全等三角形;故选:D.6.(3分)下列各式,计算结果为的是()A.+B.﹣C.﹣D.10【解答】解:A、+,无法计算,故此选项错误;B、﹣,无法计算,故此选项错误;C、﹣=2﹣=,正确;D、10=2,故此选项错误;故选:C.7.(3分)如图所示的作图痕迹作的是()A.线段的垂直平分线B.过一点作已知直线的垂线C.一个角的平分线D.作一个角等于已知角【解答】解:观察作图痕迹发现该基本作图为:过直线外一点作已知直线的垂线.故选:B.8.(3分)如图,数轴上点A对应的数是1,点B对应的数是2,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数为()A.1.4B.C.D.2.4【解答】解:在Rt△ABC中,AB=2﹣1=1,BC=1,由勾股定理得,AC==,则点D表示的数为+1.故选:C.9.(3分)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等【解答】解:∵ab=×==1,∴a与b互为倒数.故选:C.10.(3分)下列四个图形中,若以其中一部分作为基本图案,无论用旋转还是平移都不能得到的图形是()A.B.C.D.【解答】解:A、可以通过平移得到,故本选项错误;B、可以通过旋转得到,故本选项错误;C、符合题意,故本选项正确.D、可以通过平移得到,故本选项错误.故选:C.11.(3分)用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设()A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角【解答】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选:B.12.(3分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC于点E,EF∥AB交BC于点F,已知AE=5,则△EFC的周长为()A.60B.45C.30D.15【解答】解:∵△ABC是等边三角形,∴∠A=60°,∵DE⊥AC,∴∠ADE=30°,∴AD=2AE=2×5=10,∵D为AB的中点,∴AB=2AD=20,∴AC=AB=20,∴EC=AC﹣AE=15,∵EF∥AB,∴∠EFC=∠B=60°,∠FEC=∠A=60°,∴△EFC是等边三角形,∴△EFC的周长=3EC=3×15=45.故选:B.13.(3分)如图1,已知线段a,∠1,求作△ABC,使BC=a,∠ABC=∠BCA=∠1,张蕾的作法如图2所示,则下列说法中一定正确的是()A.作△ABC的依据为ASAB.弧EF是以AC长为半径画的C.弧MN是以点A位圆心,a为半径画的D.弧GH是以CP长为半径画的【解答】解:A、根据作图可得,作△ABC的依据为ASA,故A正确;B、弧EF是以B为圆心,BF长为半径画的,故B错误;C、弧MN是以点B位圆心,a为半径画的,故C错误;D、弧GH是以点Q为圆心,QP长为半径画的,故D错误.故选:A.14.(3分)等腰三角形一腰上的高与另一腰所在直线的夹角为30°,则这个等腰三角形的顶角为()A.60°或120°B.30°或150°C.30°或120°D.60°【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:A.二、填空题(本小题共4个小题,每小题3分,共12分,请将答案直接写在题目中横线上)15.(3分)计算=1.【解答】解:原式=1,故答案为:116.(3分)如图,PM=PN,∠BOC=30°,则∠AOB=60°.【解答】解:∵PM⊥OA,PN⊥OB,PM=PN,∴∠AOC=∠BOC=30°,∴∠AOB=60°,故答案为:60°.17.(3分)如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是3.【解答】解:如图,把标有数字3的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故答案为:3.18.(3分)定义:如图,点P、Q把线段AB分割成线段AP、PQ和BQ,若以AP、PQ、BQ为边的三角形是一个直角三角形,则称点P、Q是线段AB的勾股分割点.已知点P、Q是线段AB的勾股分割点,如果AP=4,PQ=6(PQ>BQ),那么BQ=.【解答】解:依题意得:AP2+BQ2=PQ2,即42+BQ2=62,解得BQ=2(舍去负值).故答案是:2.三、解答题(共7个小題,满分66分,解答题应写出必要的解题步骤,文字说明或证明过程19.(8分)计算:.【解答】解:原式=×==ab.故答案为ab.20.(8分)如图,已知AC⊥AB,DB⊥AB,AC=BE,CE=DE,(1)证明:△ACE≌△BED;(2)试猜想线段CE与DE位置关系,并证明你的结论.【解答】(1)证明:∵AC⊥AB于点A,BD⊥AB于点B,∴∠A=∠B=90°,在△RtACE和△RtBED中,,∴Rt△ACE≌Rt△BED;(2)∵Rt△ACE≌Rt△BED,∴∠AEC=∠D,∵∠D+∠BED=90°,∴∠AEC+∠BED=90°,∴∠CED=180°﹣90°=90°,∴CE⊥DE.21.(9分)正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.【解答】解:(1)∵正数x的两个平方根是3﹣a和2a+7,∴3﹣a+(2a+7)=0,解得:a=﹣10(2)∵a=﹣10,∴3﹣a=13,2a+7=﹣13.∴这个正数的两个平方根是±13,∴这个正数是169.44﹣x=44﹣169=﹣125,﹣125的立方根是﹣5.22.(9分)当x=﹣时,求代数式x2﹣x+的值.【解答】解:当x=﹣时,原式=(﹣)2﹣(﹣)+=2﹣2+3﹣2++=3.23.(10分)某项工程,原计划50人在若干天内完成,开工时由于采用新技术,工作效率提高了60%,现只派40人去工作,结果比原计划提前7天完成任务,求原计划工作多少天?【解答】解:设原计划用x天完成,则现在实际只用了(x﹣7)天,原来每人日工作效率为,现在每人日工作效率为.依题意列方程,得:×(1+60%)=.整理,得1.6×40(x﹣7)=50x.所以x=32.经检验x=32是原方程的解.答:原计划要工作32天.24.(10分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE 相交于F.求证:AF平分∠BAC.【解答】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.25.(12分)嘉琪剪了三张直角三角形纸片,进行了如下的操作:(1)如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE,若AC=6,BC=8,求CD的长.(2)如图2,嘉琪拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=6,BC=8,求CD的长.(3)如图3,嘉琪将直角三角形纸片ABC折叠,使直角顶点C落在斜边中点D 的位置,EF是折痕.已知DE=3,DF=4,求AB的长.【解答】解:(1)由折叠可知,AD=BD,设CD=x,则AD=BD=8﹣x,………………………(1分)∵∠C=90°,AC=6,∴62+x2=(8﹣x)2,∴x=,∴CD=;…………………………………………………(3分)(2)在Rt△ABC中,AC=6,BC=8,∴AB=10,…………………………………………(4分)由折叠可知,AE=AC=6,CD=ED,∠ADE=∠C=90°,∴BE=10﹣6=4,…………………(6分)设CD=x,则DE=x,BD=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴CD=3.……………………………………………………………………………………(8分)(3)如图,连接CD交EF于O,由折叠,△CEF的位置到达△DEF,△CEF是直角三角形,∴CE=DE=3,CF=DF=4,由勾股定理得:EF=5,………………………………………(10分)由折叠知,CD⊥EF,OC=OD=CD,∵S△CEF=EC×CF=EF×OC,∴OC===……(11分)∴CD=2OC=,∵CD是AB的中线,∴AB=2CD=.…………………………………(12分)附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.。

【精选3份合集】2017-2018年邢台市八年级上学期数学期末质量检测试题

【精选3份合集】2017-2018年邢台市八年级上学期数学期末质量检测试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各数中,无理数是()A.πB.C.D.【答案】A【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.若x2﹣kxy+9y2是一个完全平方式,则k的值为()A.3 B.±6 C.6 D.+3【答案】B【解析】∵x2−kxy+9y2是完全平方式,∴−kxy=±2×3y⋅x,解得k=±6.故选B.3.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.125B.95C.65D.165【答案】A【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN 的长.【详解】解:连接AM ,∵AB=AC ,点M 为BC 中点,∴AM ⊥CM (三线合一),BM=CM ,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt △ABM 中,AB=5,BM=3,∴根据勾股定理得:AM= 22AB BM - = 2253-=4,又S △AMC =12MN•AC=12AM•MC , ∴MN=·AM CM AC= 125 . 故选A .【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.4.如图所示,在ABC ∆中,AB AC =,AD 是中线,DE AB ⊥,DF AC ⊥,垂足分别为E F 、,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②DE DF =;③AE BC =;④12∠=∠;⑤1CDF ∠=∠正确的有( )A .2个B .3个C .4个D .5个【答案】B【分析】根据等腰三角形三线合一的性质可以判断①、③错误, ②、④正确,根据ADF ∆与CDF ∆都是直角三角形,以及12∠=∠可以判断⑤正确.【详解】解: AB AC =,AD 是中线,∴12∠=∠,AD BC ⊥(等腰三角形的三线合一),∴D 到AB 和AC 的距离相等, DE DF =,AE AF =∴①、③错误, ②、④正确,ADF ∆与CDF ∆都是直角三角形,∴290ADF ∠+∠=︒,90ADF CDF ∠+∠=︒,∴2CDF ∠=∠.∴1CDF ∠=∠.∴⑤正确.故选: B.【点睛】本题考查了等腰三角形的性质,直角三角形的性质及角平分线的性质,熟记性质并且灵活运用是本题解题关键.5.以下列各组线段为边,能组成三角形的是( )A .2cm ,4cm ,6cmB .8cm ,6cm ,4cmC .14cm ,6cm ,7cmD .2cm ,3cm ,6cm【答案】B【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:A. 2cm ,4cm ,6cm 可得,2+4=6,故不能组成三角形;B. 8cm ,6cm ,4cm 可得,6+4>8,故能组成三角形;C. 14cm ,6cm ,7cm 可得,6+7<14,故不能组成三角形;D. 2cm ,3cm ,6cm 可得,2+3<6,故不能组成三角形;故选B .【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边. 6.对于一次函数y =﹣2x+1,下列说法正确的是( )A .图象分布在第一、二、三象限B .y 随x 的增大而增大C .图象经过点(1,﹣2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1>y 2【答案】D【分析】根据一次函数的图象和性质,逐一判断选项,即可得到答案.【详解】A 、∵k =﹣2<0,b =1>0,∴图象经过第一、二、四象限,故不正确;B 、∵k =﹣2,∴y 随x 的增大而减小,故不正确;C 、∵当x =1时,y =﹣1,∴图象不过(1,﹣2),故不正确;D 、∵y 随x 的增大而减小,∴若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1>y 2,故正确;故选:D .【点睛】本题主要考查一次函数的图象和性质,掌握一次函数解析式系数的几何意义,增减性,以及一次函数图象上点的坐标特征,是解题的关键.7.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A 51B 51C 31D 31【答案】B 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则51.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB ∴5BD AD ==在Rt △ADC 中,由勾股定理得:22DC 541AD AC =-=-=∴51故选B【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.8.计算()()42210510--⨯⨯⨯,结果用科学记数法表示正确的是( ) A .61010-⨯B .5110-⨯C .6110-⨯D .7110-⨯ 【答案】B【分析】把2与5相乘、10-4与10-2相乘,后者根据同底数幂的乘法法则得到10-4-2,然后写成a×10n (1≤a <10,n 为整数)的形式即可.【详解】()()42210510--⨯⨯⨯ =42251010--⨯⨯⨯=61010-⨯=5110-⨯ .故选:B .【点睛】考查了同底数幂的乘法,解题关键利用了:a m •a n =a m+n (其中a≠0,m 、n 为整数)进行计算. 9.计算211a a a a ---的结果是 A .1a a + B .1a a +- C .1a a - D .1a a-- 【答案】B【分析】首先通分,然后进行同分母分式的减法运算即可. 【详解】2211(1)(1)1=1(1)(1)a a a a a a a a a a a a a-+-+-==-----. 故选:B .【点睛】此题考查了分式的加减法.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.化简11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .1B .b aC .a bD .﹣a b 【答案】C【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 【详解】解:原式=1ab b -÷1ab a-=11ab a b ab -⋅-=a b ,故选C .【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.二、填空题11.已知2249x mxy y -+是完全平方式,则m 的值为_________.【答案】12±【分析】根据完全平方公式:()2222a b a ab b ±=±+,即可求出m 的值【详解】解:∵2249x mxy y -+是完全平方式,∴()()()()()22222224923232123x mxy y x mxy y x y x xy y -+-=+±±+==∴12m =±故答案为:12±【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键. 12.一种病毒的直径为0.000023m ,这个数用科学记数法表示为_____.【答案】2.3×10﹣1.【分析】根据“科学记数法的定义”进行分析解答即可.【详解】50.000023 2.310-=⨯.故答案为52.310-⨯.【点睛】在把一个绝对值小于1的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 等于原来的数中从左至右第1个非0数字前面0的个数(包括小数点前面的0)的相反数.13.我们用[m ]表示不大于m 的最大整数,如:[2]=2,[4.1]=4,[1.99]=1.(1)=_____;(2)若[16=,则x 的取值范围是_____.【答案】1 916x ≤<【分析】(1) 1.414,及题中所给信息,可得答案;(2)先解出3+的取值范围后得出x 的取值范围.【详解】解:(1) ≈1.414,由题中所给信息,可得2⎡⎤⎣⎦=1; (2)由题意得:6≤3x +<7, 可得:1≤x <4,可得:9≤x<16.【点睛】本题主要考查新定义及不等式的性质,找出规律是解题的关键14.若a 的3倍与2的差是负数,则可列出不等式______.【答案】320a -<【分析】根据题意即可列出不等式.【详解】根据题意得320a -<故答案为:320a -<.【点睛】此题主要考查列不等式,解题的关键是根据题意找到不等关系.15.直角三角形两直角边长分别为5和12,则它斜边上的高为____________【答案】6013【分析】先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【详解】∵直角三角形的两直角边长分别为5和12,∴斜边长=2251213+=∵直角三角形面积S =12×5×12=12×13×斜边的高, ∴斜边的高=512601313⨯=. 故答案为:6013. 【点睛】本题考查勾股定理及直角三角形面积,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是______.【答案】三角形具有稳定性【分析】三角形具有稳定性,其它多边形具有不稳定性,故需在门上钉上一条斜拉的木条.【详解】解:为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是:三角形具有稳定性 故答案为:三角形具有稳定性.【点睛】此题考查的是三角形具有稳定性的应用,掌握三角形具有稳定性,其它多边形具有不稳定性是解决此题的关键.17.点(2,9)P -与点Q 关于x 轴对称,则点Q 的坐标是__________.【答案】(2,9)--【分析】已知点()2,9P -,根据两点关于x 轴的对称,横坐标不变,纵坐标互为相反数,即可得出Q 的坐标.【详解】∵点(2,9P -)与点Q 关于x 轴对称,∴点Q 的坐标是:()2,9--.故答案为()2,9--【点睛】考查关于x 轴对称的点的坐标特征,横坐标不变,纵坐标互为相反数.三、解答题18.阅读理解在平面直角坐标系xoy 中,两条直线l 1:y=k 1x+b 1(k 1≠0),l 2:y=k 2x+b 2(k 2≠0),①当l 1∥l 2时,k 1=k 2,且b 1≠b 2;②当l 1⊥l 2时,k 1·k 2=-1. 类比应用(1)已知直线l :y=2x -1,若直线l 1:y=k 1x+b 1与直线l 平行,且经过点A (-2,1),试求直线l 1的表达式;拓展提升(2)如图,在平面直角坐标系xoy 中,△ABC 的顶点坐标分别为:A (0,2),B (4,0),C (-1,-1),试求出AB 边上的高CD 所在直线的表达式.【答案】(1)y=2x+5;(2)y=2x+1.【分析】(1)利用平行线性质可知k 值相等,进而将P 点坐标代入l 1即可求出直线l 1的表达式;(2)由题意设直线AB 的表达式为:y=kx+b ,求出直线AB 的表达式,再根据题意设AB 边上的高CD 所在直线的表达式为:y=mx+n ,进行分析求出CD 所在直线的表达式.【详解】解:(1)∵l 1∥l ,∴k 1=2,∵直线经过点P (-2,1),∴1=2×(-2)+b 1,b 1=5,∴直线l 1表达式为:y=2x+5.(2)设直线AB 的表达式为:y=kx+b∵直线经过点A (0,2),B (4,0),∴240b k b =⎧⎨+=⎩, 解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 的表达式为:122y x =-+; 设AB 边上的高CD 所在直线的表达式为:y=mx+n ,∵CD ⊥AB ,∴m·(12-)=-1,m=2, ∵直线CD 经过点C (-1,-1),∴-1=2×(-1)+n ,n=1,∴AB 边上的高CD 所在直线的表达式为:y=2x+1.【点睛】本题考查一次函数图像综合问题,理解题意并利用待定系数法求一次函数解析式是解题的关键. 19.计算及解方程组:(1(222 (2)31)51553x y y x -=+⎧⎪-+⎨=⎪⎩( 【答案】(1)2;(2)1331x y =⎧⎨=⎩【分析】(1)先同时计算除法、乘法及化简绝对值,再合并同类二次根式;(2)先将两个方程化简,再利用代入法解方程组.【详解】(1)2775(2525)3212--+-+-)(,=1123-++-,=23-;(2)31)51553x yy x-=+⎧⎪⎨-+=⎪⎩(①②,由①得:3x-y=8.③,由②得:5x-3y=-28.④,由③得:y=3x-8,将y=3x-8代入④,得5x-3(3x-8)=28,解得x=13,将x=13代入③,得y=31,∴原方程组的解是1331xy=⎧⎨=⎩.【点睛】此题考查计算能力,(1)考查分式的混合运算,将分式正确化简,按照计算顺序计算即可得到答案;(2)考查二元一次方程的解法,复杂的方程应先化简,再根据方程组的特点选用代入法或是加减法求出方程组的解.20.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______ ;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______ .【答案】(1)(﹣3,1)(1)见解析(3)(a﹣3,b+1)【解析】试题分析:(1)根据坐标系可得B点坐标,再根据关于y轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;。

河北省邢台市八年级上学期数学期末考试试卷

河北省邢台市八年级上学期数学期末考试试卷

河北省邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若0<m<1, 则m、m2、的大小关系是()A . m<m2<B . m2<m<C . <m<m2D . <m2<m2. (2分) (2018七下·桐梓月考) 如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A . 16B . 12C . 8D . 43. (2分) (2016八下·罗平期末) 2015年1月1日起,杭州市城区实行全新的阶梯水价,之前为了解某社区居民的用水情况,随机对该社区20户居民进行了调查,下表是这20户居民2014年8月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()居民(户)128621月用水量(吨)458121520A . 平均数是10(吨)B . 众数是8(吨)C . 中位数是10(吨)D . 样本容量是204. (2分) 64的立方根是()A . 4B . ±4C . 8D . ±85. (2分)下列函数,y随x增大而减小的是()A . y=10xB . y=x﹣1C . y=﹣3+11xD . y=﹣2x+16. (2分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A . 12,14B . 12,15C . 15,14D . 15,137. (2分)如下图,以中心广场为坐标原点,建立如图所示的平面直角坐标系,已知牡丹园的坐标是(30,30),那么游乐园的坐标是()A . (-20,20)B . (20,-20)C . (200,-200)D . (100,-100)8. (2分)(2012·辽阳) 将一直角三角板和直尺如图摆放,则∠1+∠2等于()A . 30°B . 60°C . 90°D . 180°9. (2分)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A . 24B . 20C . 10D . 510. (2分)如果单项式2xm+2ny与﹣3x4y4m﹣2n是同类项,则m、n的值为()A . m=﹣1,n=2.5B . m=1,n=1.5C . m=2,n=1D . m=﹣2,n=﹣1二、填空题 (共6题;共7分)11. (1分) (2019九下·新田期中) 如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则BE=________.12. (2分)(2019·蒙自模拟) 如图,已知AB∥CD,AB=AC,∠ACD=44°,则∠ABC=________.13. (1分)(2019·南岸模拟) 如图,我校初三某班男生期末体考跳远成绩如下折线统计图,则该班男生跳远成绩的中位数是________米.14. (1分)丹东市教育局为了改善中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板需________元.15. (1分) (2018八上·巍山期中) 点P(1,-1)关于原点对称的点的坐标是________.16. (1分) (2019八下·长兴月考) 如图1,边长为6的菱形OABC的顶点O在坐标原点,点B在y轴的正半轴上,∠BAO=120°;点D是BC边的中点(1)求点D的坐标;(2)如图2,把菱形OABC绕点O顺时针旋转45°,得到菱形OA'B'C',点D的对应点为D′,求△OA'D′的面积;(3)如图3,直线y=2 与(2)中的菱形OA'B'C'的边OC′交于点M,与OA'的延长线交于点N,求△OMN 的面积三、解答题 (共9题;共58分)17. (5分) (2017八下·大庆期末) 综合题。

【精选3份合集】2017-2018年邢台市八年级上学期数学期末综合测试试题

【精选3份合集】2017-2018年邢台市八年级上学期数学期末综合测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.我们规定:[]m 表示不超过m 的最大整数,例如:[]3.13=,[]00=,[]3.14-=-,则关于x 和y 的二元一次方程组[][][]3.23.2x y x y ⎧+=⎪⎨-=⎪⎩的解为( ) A .30.2x y =⎧⎨=⎩ B .21.2x y =⎧⎨=⎩ C . 3.30.2x y =⎧⎨=⎩ D . 3.40.2x y =⎧⎨=⎩【答案】A【分析】根据[]m 的意义可得[]3.2=3,[]x 和[]y 均为整数,两方程相减可求出0.2y =,[]0y =,将[]0y =代入第二个方程可求出x.【详解】解:[][][]3.23.2x y x y ⎧+=⎪⎨-=⎪⎩①②, ∵[]m 表示不超过m 的最大整数,∴[]3.2=3,[]x 和[]y 均为整数,∴x 为整数,即[]=x x ,∴①-②得:[]0.2y y +=,∴0.2y =,[]0y =,将[]0y =代入②得:3x =, ∴30.2x y =⎧⎨=⎩, 故选:A.【点睛】本题考查了新定义以及解二元一次方程组,正确理解[]m 的意义是解题的关键.2.下列命题中,真命题是( )A .过一点且只有一条直线与已知直线平行B .两个锐角的和是钝角C .一个锐角的补角比它的余角大90°D .同旁内角相等,两直线平行【答案】C【分析】根据平行线的公理及判定、角的定义和补角和余角的定义可逐一判断.【详解】解:A 、过直线外一点有且只有一条直线与已知直线平行,是假命题;B 、两个锐角的和不一定是钝角,如20°+20°=40°,是假命题;C 、一个锐角的补角比它的余角大90°,是真命题;D 、同旁内角互补,两直线平行,是假命题;故选:C .【点睛】本题主要考查平行线的公理及性质,掌握平行线的公理及判定、角的定义和补角和余角的定义是关键. 3.如果代数式21x y -+的值为3,那么代数式的425x y -+值等于( )A .11B .9C .13D .7【答案】B【分析】先由已知可得2x-y=2,然后将425x y -+写成2(2x-y )+5,最后将2x-y=2代入计算即可.【详解】解:∵代数式2x-y+1的值为3∴2x-y=2∴425x y -+=2(2x-y )+5=2×2+5=1.故答案为B .【点睛】本题主要考查了代数式求值,根据已知求出2x-y 的值是解答本题的关键.4.把一副三角板按如图叠放在一起,则α∠的度数是( )A .165B .160C .155D .150【答案】A 【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可 【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选A .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键. 5.在平面直角坐标系中,点(5,6)关于x 轴的对称点是( )A .(6,5)B .(-5,6)C .(5,-6)D .(-5,-6)【答案】C【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可得答案.【详解】点(5,6)关于x 轴的对称点(5,-6),故选:C.【点睛】本题主要考查了关于x 轴对称点的坐标特点,熟练掌握关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数是解题关键.6.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).A .36B .1013C .60D .1213【答案】A 【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213 ∴()()22221021312x x -=-- ∴8x =∴22221086AD AB BD =-=-=∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.7.如图,在ABC 中,90,4,3C AC BC ∠=︒==,将ABC 绕点A 逆时针旋转,使点C 恰好落在线段AB 上的点E 处,点B 落在点D 处,则B D ,两点间的距离为( )A .10B .8C .3D .25【答案】A 【分析】连接BD ,利用勾股定理求出AB ,然后根据旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3,从而求出∠DEB 和BE ,最后利用勾股定理即可求出结论.【详解】解:连接BD∵90,4,3C AC BC ∠=︒==∴225AC BC +=由旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3∴∠DEB=180°-∠AED=90°,BE=AB -AE=1在Rt △DEB 中,=故选A .【点睛】此题考查的是勾股定理和旋转的性质,掌握勾股定理和旋转的性质是解决此题的关键.8.分式21x x -+的值为0,则x 的值是( ) A .1x =B .2x =C .1x =-D .2x =- 【答案】B【分析】分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题. 【详解】由式21x x -+的值为1,得 20x -=,且10x +≠.解得2x =.故选:B .【点睛】此题考查分式值为1,掌握分式值为1的两个条件是解题的关键.9.A B 、两地相距200千米,甲车和乙车的平均速度之比为5:6,两辆车同时从A 地出发到B 地,乙车比甲车早到30分钟,设甲车平均速度为5x 千米/小时,则根据题意所列方程是( )A .2002003056x x-= B .2002001562x x -= C .2002001652x x -= D .2002003056x x += 【答案】B 【分析】设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【详解】解:设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据题意得2002001562x x -=. 故选B .【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.10.下列运算中,不正确的是( )A .34x x x ⋅=B .53222x x x ÷=C .()23264x y x y =D .()239-x x = 【答案】D【分析】根据同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方进行计算,然后分别进行判断,即可得到答案.【详解】解:A 、34x x x ⋅=,正确;B 、53222x x x ÷=,正确;C 、()23264x y x y =,正确; D 、()236x x -=,故D 错误;故选:D .【点睛】本题考查了同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方,解题的关键是熟练掌握所学的运算法则进行解题.二、填空题11.《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著 .是《算经十书》中最重要的一部,成于公元一世纪左右 .全书总结了战国、秦、汉时期的数学成就 .同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,其中有一个数学问题“今有垣厚一丈,两鼠对穿 .大鼠日一尺,小鼠亦一尺 .大鼠日自倍,小鼠日自半 .问:何日相逢?”.译文:“有一堵一丈(旧制长度单位,1丈=10尺=100寸)厚的墙,两只老鼠从两边向中间打洞 .大老鼠第一天打一尺,小老鼠也是一尺 .大老鼠每天的打洞进度是前一天的一倍,小老鼠每天的进度是前一天的一半 .问它们几天可以相逢?”请你用所学数学知识方法给出答案:______________ . 【答案】4113天 【分析】算出前四天累计所打的墙厚,得出相逢时间在第四天,设第四天,大老鼠打x 尺,小老鼠打31084x --尺,得出方程31084188x x --=,解出x ,从而得出第四天内进行的天数,再加上前3天的时间,即可得出结果.【详解】解:根据题意可得:∵墙厚:1丈=10尺,第一天:大老鼠打1尺,小老鼠打1尺,累计共2尺,第二天:大老鼠打2尺,小老鼠打12尺,累计共142尺,第三天:大老鼠打4尺,小老鼠打14尺,累计共384尺, 第四天:大老鼠打8尺,小老鼠打18尺,累计共7168尺, 故在第四天相逢, 设第四天,大老鼠打x 尺,小老鼠打31084x --尺, 则31084188x x --=, 解得:x=1613, 故第四天进行了16281313÷=天, ∴24131313+=天, 答:它们4113天可以相逢. 【点睛】本题考查了一元一次方程的应用,解题时要理解情景中的意思,仔细算出每一步的量,最后不要忘记加上前三天的时间.12.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.【答案】4913【解析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线 1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,222251213AC CG AG =+=+=13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.13.如图,等边三角形ABC 中,D 为BC 的中点,BE 平分ABC ∠,且交AD 于E .如果用“三角形三条角平分线必交于一点”来证明CE 也一定平分ACB ∠,那么必须先要证明__________.【答案】AD是∠BAC的角平分线【分析】根据等边三角形的三线合一定理,即可得到答案.【详解】解:∵等边三角形ABC中,D为BC的中点,∴AD是∠BAC的角平分线,∵BE平分ABC∠,∴点E是等边三角形的三条角平分线的交点,即点E为三角形的内心,∴CE也一定平分ACB∠;故答案为:AD是∠BAC的角平分线.【点睛】本题考查了等边三角形的性质,以及三线合一定理,解题的关键是熟练掌握三线合一定理进行解题. 14.甲、乙二人同时从A地出发,骑车20千米到B地,已知甲比乙每小时多行3千米,结果甲比乙提前20分钟到达B地,求甲、乙二人的速度。

2017-2018学年河北省邢台市宁晋县八年级(上)期末数学试卷

2017-2018学年河北省邢台市宁晋县八年级(上)期末数学试卷

2017-2018学年河北省邢台市宁晋县八年级(上)期末数学试卷一、选择题(本大题共14小题,共42.0分)1.下列各图中,正确画出AC边上的高的是()A. B.C. D.2.下列计算结果为m14的是()A. B. C. D.3.在下列图形中,不是轴对称图形的是()A. B. C. D.4.点M(3,2)关于y轴对称的点的坐标为()A. B. C. D.5.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数为()A. B. C. D.6.当x=1时,下列分式值为0的是()A. B. C. D.7.如图,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为点E.若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 88.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.B.C.D.9.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A. 5B. 6C. 7D. 810.用完全平方公式计算992时,下列处理最合适的是()A. 把99写成101与2的差B. 把99写成98与1的和C. 把99写成100与1的差D. 把99写成97与2的和11.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=()A.B.C.D.12.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A. B.C. D.13.如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是()A. 20B. 25C. 30D. 3514.如图,在△ABC中,点D、E、F分别是BC、AB、AC上的点,若AB=AC,BE=CD,BD=CF,∠EDF=54°,则∠A的度数为()A.B.C.D.二、填空题(本大题共4小题,共12.0分)15.分解因式:xy-x=______.16.三角形两边为3cm,7cm,且第三边为奇数,则三角形的最大周长是______.17.若8x=4x+2,则x=______.18.“丰收1号“小麦的试验田是边长为am(a>2)的正方形去掉一个边长为2m的正方蓄水池余下的二部分,“丰收2号”的小麦试验田是边长为(a-2)m的正方形,两块试验田的小麦都收获了500kg,这两块小麦试验田中,高的单位面积产量比低的单位面积产量多______.三、计算题(本大题共2小题,共20.0分)19.计算•()2+()20.阅读以下文字并解决问题:对于形如x2+2ax+a2这样的二次三项式,我们可以直接用公式法把它分解成(x+a)2的形式,但对于二次三项式x2+6x-27,就不能直接用公式法分解了,此时,我们可以在x2+6x-27中间先加上一项9,使它与x2+6x的和构成一个完全平方式,然后再减去9,则整个多项式的值不变.即:x2+6x-27=(x2+6x+9)-9-27=(x+3)2-62=(x+3+6)(x+3-6)=(x+9)(x-3),像这样,把一个二次三项式变成含有完全平方式的形式的方法,叫做配方法.(1)利用“配方法”因式分解:x2+4xy-5y2.(2)当a为何值时,二次三项式a2+4a+5有最小值?(3)如果a2+2b2+c2-2ab-6b-4c+13=0,求a+b+c的值.四、解答题(本大题共5小题,共46.0分)21.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,求∠ACB的度数.22.如图,山娃星期天从A处赶了几只羊到草地l1放羊,然后赶羊到小河l2饮水,之后再回到B处的家,假设山娃赶羊走的都是直路,请你为它设计一条最短的路线,标明放羊与饮水的位置.23.定义若正整数a,b的和为10,则称a,b“互补”,如果两个两位数的十位数字相同,个位数字“互补”(例如24与26、52与58,简称它们“首同尾补”).小明通过计算发现:24×26=624 52×58=3016;…(1)请你计算:63×67=______;91×99=______;(2)猜想一下“首同尾补”的两位数相乘的结果有什么样的规律?请你用字母来表示它;(3)用字母表示数来证明你猜想的规律是正确的.24.甲、乙两同学从家到学校的距离之比是10:7,甲同学的家与学校的距离为3000米,甲同学乘公交车去学校、乙同学骑自行车去学校.已知公交车速度是乙骑自行车速度的2倍,甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙同学的家与学校的距离为多少米?(2)求乙骑自行车的速度.25.如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.(2)若DC=2,求证:△ABD≌△DCE.答案和解析1.【答案】D【解析】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.本题主要考查了三角形的高线的定义,熟记定义并准确识图是解题的关键.2.【答案】C【解析】解:A、m2•m7=m9,不符合题意;B、m7+m7=2m7,不符合题意;C、m•m6•m7=m14,符合题意;D、m•m8•m6=m15,不符合题意.故选:C.根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n.对各选项计算后即可选取答案.本题利用:合并同类项法则:只把系数相加减,字母和字母的次数不变;同底数幂相乘,底数不变指数相加,3.【答案】A【解析】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.【答案】A【解析】解:点M(3,2)关于y轴对称的点的坐标为(-3,2),故选:A.根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.【答案】C【解析】解:0.000 000 94m=9.4×10-7m,故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.【答案】C【解析】解:(A)当x=1时,原分式无意义,故A不选;(B)当x=1时,原式=,故B不选;(C)当x=1时,原式=0,故选C;(D)当x=1时,原式=2,故D不选;故选:C.根据分式的值为零的条件即可求出答案.本题考查分式的值为0的条件,解题的关键是熟练运用分式的运算,本题属于基础题型.7.【答案】B【解析】解:∵△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为点E.若AE=1,∴在直角三角形ADE中,∠A=60°,∠AED=90°,∠ADE=30°,∴AD=2AE=2,又∵D为AB的中点,∴AB=2AD=4,∴等边三角形ABC的边长为4,故选:B.根据题意可知∠A=60度,在直角三角形ADE中求得AD的长,即可求得AB 的长.本题主要考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.且在直角三角形中30°角所对应的边是斜边的一半是解题的关键.8.【答案】A【解析】解:需要添加的条件为BC=BD或AC=AD,理由为:若添加的条件为BC=BD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL);若添加的条件为AC=AD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL).故选:A.由已知两三角形为直角三角形,且斜边为公共边,若利用HL证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD或AC=AD.此题考查了直角三角形全等的判定,知道“HL”即为斜边及一直角边对应相等的两直角三角形全等是解题的关键.9.【答案】C【解析】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n-2)180°=900°,解得n=7,即这个多边形的边数是7.故选:C.多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n-2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n-2)180°=900°,解之即可.本题考查了多边形的内角和公式和外角和定理.10.【答案】C【解析】解:用完全平方公式计算992时,把99写成100与1的差,故选:C.利用完全平方公式判断即可.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.11.【答案】A【解析】解:∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∵CD=BC,∴∠CDB=∠CBD=2∠A=70°,∴∠C=40°,故选:A.首先根据作图过程得到MN垂直平分AB,然后利用中垂线的性质得到∠A=∠ABD,然后利用三角形外角的性质求得∠CDB的度数,从而可以求得∠C的度数.本题考查了基本作图中作已知线段的垂直平分线及线段的垂直平分线的性质,解题的关键是能利用垂直平分线的性质及外角的性质进行角之间的计算,难度不大.12.【答案】A【解析】解:图1阴影部分面积:a2-b2,图2阴影部分面积:(a+b)(a-b),由此验证了等式(a+b)(a-b)=a2-b2,故选:A.分别计算出两个图形中阴影部分的面积即可.此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.13.【答案】C【解析】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是20,OD⊥BC于D,且OD=3,∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3=×20×3=30,故选:C.根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入求出即可.本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.14.【答案】B【解析】解:∵AB=AC,∴∠B=∠C,在△BDE和△CFD中,∴△BDE≌△CFD(SAS),∴∠BED=∠CDF,∠BDE=∠CFD,∴∠BED+∠BDE=∠CDF+∠CFD,∵∠BED+∠BDE+∠B=∠CDF+∠CFD+∠EDF=180°,∴∠B=∠EDF=54°,∴∠A=180°-2×54°=72°,故选:B.由条件AB=AC可以得出∠B=∠C,就可以得出△BDE≌△CFD,就可以得出∠BED=∠CDF,∠BDE=∠CFD,由平角的定义就可以得出∠EDF=∠B,进而可求出∠A的度数.本题考查了等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形内角和定理的运用,平角的定义的运用,解答时证明三角形全等是关键.15.【答案】x(y-1)【解析】解:xy-x=x(y-1).故答案为:x(y-1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.16.【答案】19cm【解析】解:7-3<第三边<7+3⇒4<第三边<10,这个范围的最大的奇数是9,所以三角形的周长是3+7+9=19(cm).故答案为:19cm.三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.此题考查了三角形的三边关系,首先根据题意求出第三边,然后再求出周长.17.【答案】4【解析】解:∵8x=(2×4)x=2x4x,4x+2=16×4x,∴2x=16,∴x=4.故答案为:4.根据幂的乘方和积的乘方的运算法则求解.本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.18.【答案】g【解析】解:∵“丰收1号”小麦的试验田是边长为am的正方形减去一个边长为2m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a-2)m的正方形,∴“丰收1号”小麦的试验田的面积=a2-4;“丰收2号”小麦的试验田的面积=(a-2)2,∵a2-4-(a-2)2=a2-4-a2+4a-4=4(a-2)由题意可知,a>2,∴4(a-2)>0,即a2-4>(a-2)2,∴“丰收2号”小麦的试验田小麦的单位面积产量高.∵两块试验田的小麦都收获了500kg,∴-===(g).答:高的单位面积产量比低的单位面积产量多g.先用a表示出两块试验田的面积,再根据其产量相同可知面积较小的单位面积产量高即可得出结论.本题考查的是分式的加减法,熟知异分母的分式相加减的法则是解答此题的关键.19.【答案】解:原式=•+[+]=+=+==.【解析】先计算乘方、括号内分式的加法,再计算除法即可得.本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.【答案】解:(1)原式=x2+4xy+4y2-9y2=(x+2y)2-(3y)2=(x+5y)(x-y);(2)原式=a2+4a+4+1=(a+2)2+1,当a+2=0,即a=-2时,原式取得最小值为1;(3)已知等式整理得:(a-b)2+(b-3)2+(c-2)2=0,可得a=b=3,c=2,则原式=3+3+2=8.【解析】(1)原式变形后,利用完全平方公式,以及平方差公式分解即可;(2)原式配方变形后,利用非负数的性质确定出最小值即可;(3)已知等式左边配方后,利用完全平方公式变形,再利用非负数的性质求出a,b,c的值,代入原式计算即可求出值.此题考查了因式分解的应用,以及非负数的性质:偶次幂,熟练掌握完全平方公式是解本题的关键.21.【答案】解:如图,由B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,得∠BAE=45°,∠CAE=15°,∠CBD=85°.由AE∥BD得∠DBA=∠BAE=45°.由角的和查,得∠ABC=∠DBC-∠DBA=85°-45°=40°,∠BAC=∠BAE+CAE=45°+15°=60°.由三角形的内角和定理,得∠C=180°-∠BAC-∠ABC=180°-60°-40°=80°.【解析】根据方向角的表示,可得∠BAE=45°,∠CAE=15°,∠CBD=85°,根据角的和差,可得∠ABC,∠BAC,根据三角形的内角和,可得答案.本题考查了方向角,利用角的和差得出∠ABC,∠BAC是解题关键,又利用了三角形的内角和定理.22.【答案】解:作出点A关于l1的对称点E,点B适于l2的对称点F,连接EF,交于l1,l2于点C,点B,则AC,CD,BD是他走的最短路线.【解析】作出点A关于l1的对称点E,点B适于l2的对称点F,连接EF,交于l1,l2于点C,点B,则AC,CD,BD是他走的最短路线.本题利用了轴对称的性质,两点之间线段最短的性质求解.23.【答案】4221 9009【解析】解:(1)63×67=4221,91×99=9009;故答案为:4221,9009;(2)“首同尾补”:设十位数字为a,个位数字为b,互补的个位数字为c,(10a+b)(10a+c)=100a2+10a(b+c)+bc=100a(a+1)+bc;(3)已知两数的十位数字为a,个位数字分别为b,c且b,c“互补”,即b+c=10,求证:这两数的积(10a+b)(10a+c)=100a(a+1)+bc,证明:(10a+b)(10a+c)=100a2+10bc+10ac+bc=100a2+10a(b+c)+bc=100a2+10a×10+bc=100a2+100a+bc=100a(a+1)+bc.(1)根据“首同尾补”的运算规律解答即可;(2)先利用实例计算得到运算规律,再根据“首同尾补”的说理方法验证;(3)根据题意即可得到结论.本题是对数字变化规律的考查,读懂题目信息,理解“首同尾补”的数字的变化规律的探讨过程是解题的关键.24.【答案】解:(1)∵甲、乙两同学从家到学校的距离之比是10:7,甲同学的家与学校的距离为3000米,∴乙同学的家与学校的距离=3000×=2100(米).答:乙同学的家与学校的距离为2100米;(2)设乙骑自行车的速度为x米/分,则公交车的速度为2x米/分.依题意得:-=2,解得:x=300,经检验,x=300是方程的根.答:乙骑自行车的速度为300米/分.【解析】(1)根据甲、乙两同学从家到学校的距离之比是10:7,甲同学的家与学校的距离为3000米,即可求出乙同学的家与学校的距离;(2)设乙骑自行车的速度为x米/分,则公交车的速度是2x米/分,根据甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟列方程即可得到结论.此题主要考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.25.【答案】解:(1)∵∠B=∠C=50°,∠ADE=50°,∴∠BDA+∠EDC=∠CED+∠EDC=130°,∴∠BDA=∠CED,∵点D在线段BC上运动(点D不与B、C重合),∴AD≠AE,ⅰ)如图所示,当EA=ED时,∠EAD=∠ADE=50°,∴∠BDA=∠CED=50°+50°=100°;ⅱ)如图所示,当DA=DE时,∠EAD=∠AED=65°,∴∠BDA=∠CED=65°+50°=115°;(2)由(1)可得∠BDA=∠CED,又∵∠B=∠C=50°,AB=DC=2,∴在△ABD和△DCE中,,∴△ABD≌△DCE(AAS).【解析】(1)分两种情况进行讨论,根据三角形的外角性质,可得当∠BDA的度数为115°或100°时,△ADE的形状是等腰三角形;(2)利用∠DEC+∠EDC=130°,∠ADB+∠EDC=130°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.此题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的综合应用,解决问题的关键是运用分类思想进行分类讨论.。

邢台市八年级(上)期末数学试卷含答案

邢台市八年级(上)期末数学试卷含答案

B.
1
3������
C.
1
4������
D.
2
3������
13. 如图.在������������ △ ������������������中,∠������ = 30°,DE 垂直平分斜边 AC,交 AB 于 D,E 是垂足,连接 CD,若������������ = 1, 则 AC 的长是( )
通分,得:5(������−2)−7������
������(������−2)
=
0
整理,得:2(������ + 5)
������(������−2)
=
0
分子值取 0,得:������ + 5 = 0 即:������ = −5 经检验:������ = −5是原分式方程的解. (1)小华这种解分式方程的新方法,主要依据是______;
第 3 页,共 16 页
A. 2 3 B. 2 C. 4 3 D. 4
14. 如图, △ ������������������中,������������ = ������������ = 10,������������ = 8,AD 平分
∠������������������交 BC 于点 D,点 E 为 AC 的中点,连接 DE,则
①分别以点 D,E 为圆心,大于12������������的长为半径作弧,
两弧交于 F; ②作射线 BF,交边 AC 于点 H; ③以 B 为圆心,BK 长为半径作弧,交直线 AC 于点 D 和 E; ④取一点 K,使 K 和 B 在 AC 的两侧; 所以,BH 就是所求作的高. 其中顺序正确的作图步骤是( )
△ ������������������的周长为( )

河北省邢台市八年级上学期数学期末试卷

河北省邢台市八年级上学期数学期末试卷

河北省邢台市八年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若0<m<1, 则m、m2、的大小关系是()A . m<m2<B . m2<m<C . <m<m2D . <m2<m2. (2分) (2020·藤县模拟) 下列计算正确的是()A . 7a﹣4a=3B . (2a2)3=8a6C . 3a•(﹣2a)3=24a4D . a3+2a=2a43. (2分) (2019九上·邯郸月考) 下列图形中既是轴对称图形,又是中心对称图形的是()A .B .C .D .4. (2分)(2017·眉山) 已知 m2+ n2=n﹣m﹣2,则﹣的值等于()A . 1B . 0D . ﹣5. (2分) (2020八上·合肥月考) 如图,△ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且∠D+∠E=180°,若BD=6,则CE的长为()A . 6B . 5C . 3D . 4.56. (2分)(2012·绵阳) 图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A . 2mnB . (m+n)2C . (m﹣n)2D . m2﹣n27. (2分)当分式方程中的a取下列某个值时,该方程有解,则这个a是()A . 0B . 1C . -1D . -28. (2分)三个连续的奇数,中间的一个是2n+1,则三个数的和为()A . 6n-6B . 3n+6C . 6n+39. (2分)如果x>y>0,那么−的值是()A . 零B . 正数C . 负数D . 整数10. (2分) (2019八上·正定期中) 工人师傅常用角尺平分一个任意角,作法如图所示,在的边,上分别取M,N两点,使,移动角尺,使角尺两边相同的刻度分别与M,N重合.连接点O 与角尺的顶点P,则可得到的平分线.该作法中用到的三角形全等的判定定理是()A .B .C .D .二、填空题 (共6题;共8分)11. (1分)(2019·常熟模拟) 因式分解: ________.12. (1分)()3•()2÷()4=________.13. (2分)(2012·南京) 如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=________14. (2分)(2018·东莞模拟) 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为________.15. (1分)如图,正方形ABCD的边长为5,连接BD,在线段CD上取一点E,在线段BD上取点F,使得∠BEC=∠DEF,当S△DEF= S△EFB时,在线段BC上有一点G,使FG+EG最短,则CG=________.16. (1分) (2019七上·昌图期中) 填在下面各正方形中四个数之间都有相同的规律,根据这种规律可得到m的值为________.三、解答题 (共7题;共58分)17. (10分) (2018八上·东城期末) 已知,求的值18. (5分) (2019七上·徐汇期中) 解方程:.19. (2分) (2018八上·前郭期中) 在△ABC中,AB=AC,AB边上的中线CD把三角形的周长分成6和15的两部分,求三角形腰和底的长.20. (10分) (2019八上·南浔期中) 如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C 在小正方形的顶点上.(2)三角形ABC的面积为________;(3)以AC为边作与△ABC全等的三角形,则可作出________个三角形与△ABC全等;(4)在直线l上找一点P,使PB+PC的长最短.21. (6分) (2020八下·北镇期末) 为迎接中国传统节日“端午节”的到来,某超市准备购进甲、乙两种品牌的粽子,两种品牌粽子的进价和售价如下表:粽子价格甲品牌乙品牌进价(元/盒)m售价(元/盒)2416已知用300元购进甲品牌粽子的数量与用240元购进乙品牌粽子的数量相同.(1)求m的值;(2)要使购进的甲、乙两种品牌的粽子共200盒的总利润(利润=售价-进价)不少于2170元且不超过2200元,问该超市有几种进货方案?22. (10分)(2017·微山模拟) 【阅读新加】①1.按一定顺序排列的一列数称为数列,记作:{an}(n属于正整数),数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第1项(通常也叫做首项),记作:a1;排在第二位的数称为这个数列的第2项,记作:a2;…;排在第n位的数称为这个数列的第n项,记作:an .②2.等比数列(又名几何数列),是一种特殊数列,如果一个数列从第二项起,每一项与它的前一项的比等于同一常数,这个数列就叫做等比数列.因为第二项与第一项的比和第三项与第二项的比相等.这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),注:q=1时,an为常数列.例如:数列1,﹣3,9,﹣27,81是等比数列,公比q=3.由定义可知:如果数列a1 , a2 , a3 ,…,an…是等比数列,那么a2÷a1=d,a3÷a2=d,an÷an﹣1=d.即a2=a1d,a3=a1dd=a1d2 ,….【应用新知】(1)等比数列10,10,10,10,10,10的公比是________.(2)如果等比数列{an}的首项为a1 ,公比为q(q≠0).那么这个数列的第n项an等于________.(用含a1 , q的代数式表示)(3)已知实数a1 , a2 , a3 , a4 , a5 , a6 , a7依次成等比数列,已知a1=3,a7=192,求a4 .23. (15分) (2020八上·大余期末) 小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点为的中点时,如图(2),确定线段与的大小关系,请你写出结论: ________ (填“ ”,“ ”或“ ”),并说明理由.(2)特例启发,解答题目:解:题目中,与的大小关系是: ________ (填“ ”,“ ”或“ ”).理由如下:(3)①如图(3),过点作EF∥BC ,交于点.(请你将剩余的解答过程完成)②拓展结论,设计新题:在等边三角形中,点在直线上,点在直线上,且,若△ 的边长为,,求的长(请你画出图形,并直接写出结果).参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共58分)17-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。

河北省邢台市初二数学上册期末监测试题及答案

河北省邢台市初二数学上册期末监测试题及答案

河北省邢台市初二数学上册期末监测试题班级:________________ 学号:________________ 姓名:______________一、单选题(每题3分)1. 下列各组数中,互为相反数的是( )A.−2与√4B.13与0.3C.−12与12D.2与|−2|答案:C2. 下列方程中,是一元一次方程的是( )A.x 2−2x =1B.1x =2C.x +y =3D.2x −1=0答案:D3. 下列计算正确的是( )A.3a +2b =5abB.a 6÷a 2=a 3C.a 2⋅a 4=a 6D.(a+b)2=a2+b2答案:C4.下列命题中,是真命题的是()A. 对角线互相垂直的四边形是菱形B. 对角线相等的四边形是矩形C. 四个角都相等的四边形是正方形D. 对角线互相平分的四边形是平行四边形答案:D5.已知直线y=kx+b经过点A(−2,0)和点B(1,3),则不等式kx+b<0的解集是()A.x>−2B.x<−2C.x>1D.x<1答案:B二、多选题(每题4分)1.下列函数中,哪些是一次函数但不是正比例函数?()A.y=2xB.y=1xC.y=3x+1D.y=√x答案: C解析: A选项是正比例函数,B选项是反比例函数,D选项不是整式函数,只有C 选项是一次函数但不是正比例函数。

注意:由于本题要求多选,但根据原始答案只有C符合,故本题实际为单选。

但为符合题目要求,这里假设存在多个正确答案的情况(虽然在此题中不成立)。

2.下列关于平行四边形的说法中,正确的有()A. 平行四边形的对角线互相平分B. 平行四边形的对角线相等C. 平行四边形的对边相等D. 平行四边形的对角互补答案: A, C解析: A选项是平行四边形的性质之一,C选项也是平行四边形的性质。

B选项错误,因为平行四边形的对角线不一定相等(除非它是矩形或正方形)。

D选项错误,因为平行四边形的对角是相等的,但不是互补的。

河北省邢台市八年级上学期期末考试数学试题

河北省邢台市八年级上学期期末考试数学试题

河北省邢台市八年级上学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·大渡口模拟) 下列图形,是轴对称图形的是()A .B .C .D .2. (2分)下列式子是分式的是()A .B .C .D .3. (2分)(2011·湛江) 四边形的内角和为()A . 180°B . 360°C . 540°D . 720°4. (2分) (2016八上·唐山开学考) 已知等腰三角形两边长为3和7,则周长为()A . 13B . 17C . 13或17D . 115. (2分) (2017八上·曲阜期末) 如图,△ABO关于x轴对称,若点A的坐标为(3,1),则点B的坐标为()A . (1,3)B . (﹣1,3)C . (3,﹣1)D . (﹣1,﹣3)6. (2分)(2016·海南) 下列计算中,正确的是()A . (a3)4=a12B . a3•a5=a15C . a2+a2=a4D . a6÷a2=a37. (2分)下列各题用分组分解法分解因式,分组不正确的是()A . 3a-bx+ax-3b=(3a+ax)-(3b+bx)B . a2-a+b-b2=(a2-a)-(b2-b)C . z2-x2+2xy-y2=z2-(x2-2xy+y2)D . ma-mb-na2+nb2=(ma-mb)-(na2-nb2)8. (2分)计算:22014﹣(﹣2)2015的结果是()A . 24029B . 3×22014C . ﹣22014D . ()20149. (2分) (2018八上·互助期末) 下列说法中,正确的是()A . 两腰对应相等的两个等腰三角形全等B . 两锐角对应相等的两个直角三角形全等C . 两角及其夹边对应相等的两个三角形全等D . 面积相等的两个三角形全等10. (2分)(2017·眉山) 如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A . 114°B . 122°C . 123°D . 132°二、填空题 (共7题;共7分)11. (1分)(2019·银川模拟) 在函数中,自变量x的取值范围是________.12. (1分)计算:()﹣2=________.13. (1分)(2010七下·浦东竞赛) 已知,点O在三角形内,且,则的度数是________度.14. (1分)(2017·罗平模拟) 分解因式:x3﹣xy2=________.15. (1分) (2017八上·顺庆期末) 近来雾霾天气严重影响了我们的生活秩序,为此,我县中小学还停止了正常上课来应对,雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,尤其是PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶”,已知1微米相当于1米的一百万分之一,那么2.5微米用科学记数法可表示为________米.16. (1分) (2017七下·天水期末) 如图所示,则∠α的度数是________.17. (1分)(2018·安顺模拟) 计算=________.三、解答题 (共9题;共60分)18. (10分)(2020·武汉模拟) 化简:19. (5分) (2017八下·万盛开学考) 先化简,再求值:,其中20. (10分) (2019八下·博罗期中) 如图,已知四边形ABCD是平行四边形.(1)作图,作∠A的平分线AE,交CD于点E,(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断AD与DE的大小关系,并说明理由.21. (5分)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°。

河北省邢台市八年级上学期数学期末考试试卷

河北省邢台市八年级上学期数学期末考试试卷

河北省邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2015八上·中山期末) 下列图形是轴对称图形的是()A .B .C .D .2. (3分)(2019·海门模拟) 下列运算正确的是()A . 3x2+4x2=7x4B . 2x3·3x3=6x3C . x6÷x3=x2D . (x2)4=x83. (3分) (2017八下·万盛开学考) 已知三角形的两边分别为4和10,则此三角形的第三边可能是()A . 4B . 6C . 8D . 164. (3分)(2020·平顶山模拟) 已知长度单位1纳米米,目前发现一种新型冠状病毒的直径为154纳米.用科学记数法表示154纳米是()A . 米B . 米C . 米D . 米5. (3分) (2015八下·萧山期中) 一个多边形的内角和等于外角和的一半,那么这个多边形是()A . 三角形B . 四边形C . 五边形D . 六边形6. (3分) (2020八上·阳东月考) 能把一个三角形分成面积相等的两个三角形的是().A . 高B . 中线和角平分线C . 角平分线D . 中线7. (3分) (2019七下·漳州期中) 要使式子成为一个完全平方式,则需添上()A .B .C .D .8. (3分) (2017八上·江门月考) 如果将一副三角板按如图方式叠放,那么∠1等于()A . 120°B . 105°C . 60°D . 45°9. (3分)下列算式能用平方差公式计算的是()A . (﹣m﹣n)(﹣m+n)B .C . (3x﹣y)(﹣3x+y)D . (2a+b)(2b﹣a)10. (3分) (2020七下·曲靖期末) 将一个长方形纸片按如图所示折叠,若,则的度数是()A . 60°B . 65°C . 70°D . 75°二、填空题(每小题3分,共18分) (共6题;共18分)11. (3分) (2019八下·新余期末) 式子有意义,则x的取值范围是________.12. (3分)在平面直角坐标系xOy中,点A(2,-3)关于x轴对称的点B的坐标是________13. (3分) (2020七下·江苏月考) 如图,BD∥CE,∠1=85°,∠2=37°,则∠A=________°.14. (3分)(2017·绵阳) 关于x的分式方程 = 的解是________.15. (3分) (2020八下·金山月考) 方程的根是________16. (3分) (2019八上·德阳月考) 如图,在中,,、是内两点,平分,,若,,则的长为________.三、解答题(共8小题,共52分) (共7题;共46分)17. (8分)(2017·中山模拟) 计算:()﹣2﹣6sin30°﹣(π+2017)0+ .18. (5分) (2017八下·兴化期中) 计算:(1);(2).19. (6分) (2019九上·淮阴期末) 已知:如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC,交线段AB于点F.请找出一组相等的线段(AB=AC除外)并加以证明.20. (5.0分) (2019八上·天山期中) 尺规作图:(不写作法,但要保留作图痕迹)①画出∠AOB的平分线OC.②画出与△ABC关于对称的图形.21. (6分) (2017七上·闵行期末) “新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?22. (6分)(2019·高新模拟) 图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.(探究)在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.(应用)在图②、图③中,点M、O、N均为格点.(1)利用(探究)的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON.要求:图②、图③中所画的图形不相同,保留画图痕迹.(2)cos∠MOP的值为________.23. (10.0分) (2019八上·恩施期中) 如图1所示,点E、F在线段AC上,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为点E,F;DE,BF分别在线段AC的两侧,且AE=CF,AB=CD,BD与AC相交于点G.(1)求证:EG=GF;(2)若点E在F的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.(3)若点E、F分别在线段CA的延长线与反向延长线上,其余条件不变,(1)中结论是否成立?(要求:在备用图中画出图形,直接判断,不必说明理由)参考答案一、选择题(每小题3分,共30分) (共10题;共30分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(每小题3分,共18分) (共6题;共18分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(共8小题,共52分) (共7题;共46分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。

八年级上册邢台数学期末试卷达标检测卷(Word版 含解析)

八年级上册邢台数学期末试卷达标检测卷(Word版 含解析)

八年级上册邢台数学期末试卷达标检测卷(Word 版 含解析)一、八年级数学全等三角形解答题压轴题(难)1.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°,△为等腰直角三角形,∵ABC∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,≅(AAS),∴AQC BOA∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,△是等腰直角三角形,∵ABD∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD=90°,≅∴AOB BPD∴AO=BP,∵BP=OB-PO=m-(-n)=m+n,∵A ()23,0-,∴OA=23,∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,∴整式2253m n +-的值不变为3-.(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM,∴EN=12(EM-GM), ∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.2.如图1,等腰△ABC中,AC=BC=42, ∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.(1) 求证:△ACD≌△BCE;(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.(3) 连接OE,直接写出线段OE的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C作CH⊥BQ于H,∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45DAC∴∠=,ACD BCE≌,45PBC DAC∴∠=∠=,∴在Rt BHC中,2242422CH BC=⨯=⨯=,54PC CQ CH===,,3PH QH∴==,6.PQ∴=()3OE BQ⊥时,OE取得最小值.最小值为:42 2.OE=-3.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA和△CDA中,GCA DCACGA CDAAG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.4.如图1,在长方形ABCD中,AB=CD=5 cm, BC=12 cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【答案】(1)()122t-;(2)3t=;(3)存在,2v=或53v=【解析】【分析】(1)根据P点的运动速度可得BP的长,再利用BC的长减去BP的长即可得到PC的长;(2)先根据三角形全等的条件得出当BP=CP,列方程求解即得;(3)先分两种情况:当BP=CQ,AB=PC时,△ABP≌△PCQ;或当BA=CQ,PB=PC 时,△ABP≌△QCP,然后分别列方程计算出t的值,进而计算出v的值.【详解】解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm =∵12BC cm =∴()122PC BC BP t cm =-=-故答案为:()122t -(2)∵ABP DCP ∆≅∆∴BP CP =∴2122t t =-解得3t =.(3)存在,理由如下:①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,∴PC=AB=5∴BP=BC-PC=12-5=7∵2BP tcm =∴2t=7解得t=3.5∴CQ=BP=7,则3.5v=7解得2v =.②当BA CQ =,PB PC =时,ABP QCP ∆≅∆∵12BC cm = ∴162BP CP BC cm === ∵2BP tcm =∴26t = 解得3t =∴3CQ vcm =∵5AB CQ cm ==∴35v = 解得53v =. 综上所述,当2v =或53v =时,ABP ∆与以P ,Q ,C 为顶点的直角三角形全等. 【点睛】本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.5.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据FE=︒=60∠E+∠D,即=60∠D,故BFD FA BFA=︒∠+∠D∠,得=60AF FA=︒△是等边三角形.DFE【详解】证明:(1)∵BD⊥直线m,CE⊥直线m∴∠BDA=∠CEA=90°,∵∠BAC=90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD,又AB=AC ,∴△ADB≌△CEA∴AE=BD,AD=CE,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA,∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.二、八年级数学轴对称解答题压轴题(难)6.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC (图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.【答案】(1)见解析;(2)MB=MC.理由见解析;(3)MB=MC还成立,见解析.【解析】【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【详解】(1)如图(2),连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE.∵MD=ME,∴∠MAD=∠MAE,∴∠MAD-∠BAD=∠MAE-∠CAE,即∠BAM=∠CAM.在△ABM和△ACM中,AB=AC,∠BAM=∠CAM,AM=AM,∴△ABM≌△ACM(SAS),∴MB=MC.(2)MB=MC.理由如下:如图(3),延长CM交DB于F,延长BM到G,使得MG=BM,连接CG.∵CE∥BD,∴∠MEC=∠MDF,∠MCE=∠MFD.∵M是ED的中点,∴MD=ME.在△MCE和△MFD中,∠MCE=∠MFD,∠MEC=∠MDF,MD=ME,∴△MCE≌△MFD(AAS).∴MF=MC.∴在△MFB和△MCG中,MF=MC,∠FMB=∠CMG,BM=MG,∴△MFB≌△MCG(SAS).∴FB=GC,∠MFB=∠MCG,∴CG∥BD,即G、C、E在同一条直线上.∴∠GCB=90°.在△FBC和△GCB中,FB=GC,∠FBC=∠GCB,BC=CB,∴△FBC≌△GCB(SAS).∴FC=GB.∴MB=12GB=12FC=MC.(3)MB=MC还成立.如图(4),延长BM交CE于F,延长CM到G,使得MG=CM,连接BG.∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE.又∵M是DE的中点,∴MD=ME.在△MDB和△MEF中,∠MDB=∠MEF,∠MBD=∠MFE,MD=ME,∴△MDB≌△MEF(AAS),∴MB=MF.∵CE∥BD,∴∠FCM=∠BGM.在△FCM和△BGM中,CM=MG,∠CMF=∠GMB,MF=MB,∴△FCM≌△BGM(SAS).∴CF=BG,∠FCM=∠BGM.∴CF//BG,即D、B、G在同一条直线上.在△CFB和△BGC中,CF=BG,∠FCB=∠GBC,CB=BC,∴△CFB≌△BGC(SAS).∴BF=CG.∴MC=12CG=12BF=MB.【点睛】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.7.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值;【详解】解:(1)∵AB=AC ,∴∠ABC=∠C ,∵BD=BC=AD ,∴∠A=∠ABD ,∠C=∠BDC ,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt △BFD 中,∵∠FBD =30°,∴BF =2DF ,∵BF =2AF ,∴BF =AD ,∵∠BAE =∠FBC ,AB =BC ,∴△BFC ≌△ADB ,∴∠BFC =∠ADB =90°,∴BF ⊥CF(2)在BF 上截取BK =AF ,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由. 【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP ,证得AOP ∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC ∆≅∆得到AOE DOC ∠=∠,通过角的关系得到60AOP COE ∠=∠=°,即可证得AOP ∆是等边三角形.【详解】(1)∵ABC ∆为等边三角形∴60BAC ∠=︒∵O 为BC 中点∴1302CAO BAC ∠=∠=︒ 且,90AO BC AOC ⊥∠=︒∵OA OD =∴AOD ∆中,30D CAO ∠=∠=︒∴180120 AOD D CAO∠=︒-∠-∠=︒∴30COD AOD AOC∠=∠-∠=︒(2)过O作//OE AB,OE交AD于E ∵//OE AB∴60EOC ABC∠=∠=︒60CEO CAB∠=∠=︒∴COE∆为等边三角形∴OE OC CE==180120AEO CEO∠=︒-∠=︒180120DCO ACB∠=︒-∠=︒又∵OA OD=∴EAO CDO∠=∠在AOE∆和COD∆中AOE DOCEAO CDOOA OD∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS∆≅∆∴CD EA=∵EA AC CE=-BO BC CO=-∴EA BO=∴BO CD=,∵AB AC=,AD AC CD=+∴AD AB BO=+(3)AOP∆为等边三角形证明过程如下:连接,PC PD,延长OC交PD于F∵P D 、关于OC 对称∴,90PF DF PFO DFO =∠=∠=︒在ODF ∆与OPF ∆中,PF DF PFO DFO OF OF =⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS ∆≅∆∴OP OD =,POC DOC ∠=∠∵OA OD =∴AO=OP∴AOP ∆为等腰三角形过O 作//OE AB ,OE 交AD 于E由(2)得AOE DOC ∆≅∆∴AOE DOC ∠=∠又∵POC DOC ∠=∠∴AOE POF ∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形.【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.10.如图,在等边△ABC 中,线段AM 为BC 边上的高,D 是AM 上的点,以CD 为一边,在CD 的下方作等边△CDE ,连结BE .(1)填空:∠ACB=____;∠CAM=____;(2)求证:△AOC≌△BEC;(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.【解析】【分析】(1)根据等边三角形的性质即可进行解答;(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)补全图形,由△ADC≌△BEC得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM的度数;(4)画出相应图形,可知当点D在线段AM的延长线上且在BC下方时,如图,可以得出△ACD≌△BCE,进而得到∠CBE=∠CAD=30°,据此得出结论.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60°;∴线段AM为BC边上的高,∴∠CAM=12∠BAC=30°,故答案为60,30°;(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE.在△ADC和△BEC中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS);(3)补全图形如下:由(1)(2)得∠CAM=30°,△ADC≌△BEC,∴∠CBE=∠CAM=30°,∵∠BMF=90°,∴∠BFM=60°;(4)当动点D在射线AM上,且在BC下方时,画出图形如下:∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°,又∵∠AMC=∠BMO,∴∠AOB=∠ACB=60°.即动点D在射线AM上时,∠AOB为定值60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.若一个正整数x 能表示成22a b -(,a b 是正整数,且a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解. 例如:因为22532=-,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:22222222()M x xy x xy y y x y y =+=++-=+-(,x y 是正整数),所以M 也是“明礼崇德数”,()x y +与y 是M 的一个平方差分解.(1)判断:9_______“明礼崇德数”(填“是”或“不是”);(2)已知2246N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的一个k 值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m 既是“七喜数”,又是“明礼崇德数”,请求出m 的所有平方差分解.【答案】(1)是;(2)k=-5;(3)m=279,222794845=-,222792011=-.【解析】【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N 应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 平方差分解,得到答案;(3)确定“七喜数”m 的值,分别将其平方差分解即可.【详解】(1)∵9=52-42,∴9是“明礼崇德数”,故答案为:是;(2)当k=-5时,N 是“明礼崇德数”,∵当k=-5时,22465N x y x y =-+--,=224649x y x y -+-+-,=22(44)(69)x x y y ++-++,=22(2)(3)x y +-+,=(23)(23)x y x y ++++--=(5)(1)x y x y ++--.∵,x y 是正整数,且1x y >+,∴N 是正整数,符合题意,∴当k=-5时,N 是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=22a b -=(a+b )(a-b ),当m=178时,∵178=2⨯89,∴892a b a b +=⎧⎨-=⎩,得45.543.5a b =⎧⎨=⎩(不合题意,舍去); 当m=279时,∵279=3⨯93=9⨯31,∴①933a b a b +=⎧⎨-=⎩,得4845a b =⎧⎨=⎩,∴222794845=-, ②319a b a b +=⎧⎨-=⎩,得2011a b =⎧⎨=⎩,∴222792011=-, ∴既是“七喜数”又是“明礼崇德数”的m 是279,222794845=-,222792011=-.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.12.一个四位正整数m 各个数位上的数字互不相同且都不为0,四位数m 的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”;把四位数m 的各位上的数字依次轮换后得到新的四位数m′,设m′=abcd ,在m′的所有可能的情况中,当|b+2c ﹣a ﹣d|最小时,称此时的m′是m 的“伴随数”,并规定F (m′)=a 2+c 2﹣2bd ;例如:m =2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F (5236)=52+32﹣2×2×6=10. (1)最大的四位“半期数”为 ;“半期数”3247的“伴随数”是 .(2)已知四位数P =abcd 是“半期数”,三位数Q =2ab ,且441Q ﹣4P =88991,求F (P')的最大值.【答案】(1)4192,7324;(2)42.【解析】【分析】(1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,2473,4732,7324.根据题意|b +2c ﹣a ﹣d |最小的数是7324,所以3247的“伴随数”是:7324.(2)根据定义可知a +b =5,c +d =11.再根据441Q ﹣4P =88991,可以算出P 的值,从而求出F (P ')的最大值.【详解】解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192.∵3247的所有可能为,2473,4732,7324.∵|4+14﹣2﹣3|=13,|7+6﹣4﹣2|=7,|3+4﹣7﹣4|=4, 4最小,所以7324为3247的“伴随数”.故答案为4192;7324.(2)∵P为“半期数”∴a+b=5,c+d=11,∴b=5﹣a,d=11﹣c,∴P=1000a+100(5﹣a)+10c+11﹣c=900a+9c+511.∵Q=200+10a+c,∴441Q﹣4P=88991,∴441(200+10a+c)﹣4(900a+9c+511)=88991化简得:2a+c=7①当a=1时,c=5,此时这个四位数为1456符合题意;②当a=2时,c=3,此时这个四位数为2338不符合题意,舍去;③当a=3时,c=1,不符合题意,舍去;综上所述:这个四位数只能是1456,则P'可能为4561,5614,6145.∵|5+12﹣4﹣1|=12,|6+2﹣5﹣4|=1,|1+8﹣6﹣5|=2,1最小,所以5614为P的“伴随数”,∴F(5614)=a2+c2﹣2bd=25+1﹣2×6×4=﹣22;F(4561)=a2+c2﹣2bd=16+36﹣2×5×1=42;F(6145)=a2+c2﹣2bd=36+16﹣2×1×5=42;∴F(P')的最大值为42.【点睛】解决本道题的关键是理解好半期数的定义:一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”,然后根据当|b+2c﹣a﹣d|最小时,称此时的m'是m的“伴随数”来确定伴随数.13.由多项式的乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)尝试分解因式:x2+6x+8;(2)应用请用上述方法解方程:x2-3x-4=0.【答案】(1) (x+2)(x+4);(2) x=4或x=-1.【解析】【分析】(1)类比题干因式分解方法求解可得;(2)利用十字相乘法将左边因式分解后求解可得.【详解】(1)原式=(x+2)(x+4);(2)x 2-3x -4=(x -4)(x +1)=0,所以x -4=0或x +1=0,即x =4或x =-1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.阅读材料:要把多项式am+an+bm+bn 因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x 2-y 2+x-y(2)已知四个实数a 、b 、c 、d 同时满足a 2+ac=12k ,b 2+bc=12k .c 2+ac=24k ,d 2+ad=24k ,且a≠b ,c≠d ,k≠0①求a+b+c 的值;②请用含a 的代数式分别表示b 、c 、d【答案】(1)(x −y )(x +y +1);(2)①0a b c ++=;②3b a =-,2c a =,3d a =-【解析】【分析】(1)将x 2 - y 2分为一组,x-y 分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.(2)①已知22a ac b bc +=+=12k ,可得220a b ac bc -+-=,将等号左边参照(1)因式分解,即可求解.②由a 2+ac=12k ,c 2+ac=24k 可得2(a 2+ac)= c 2+ac ,即可得出c=2a ,同理得出3b a =-,3d a =-【详解】(1)x 2-y 2+x-y = (x 2 -y 2)+(x-y)=(x+y)(x-y)+(x-y)=(x-y)(x+y+1)故答案为:(x-y)(x+y+1)(2)①22a ac b bc +=+=12k220a b ac bc -+-=()()0a b a b c -++=∵a b∴0a b c ++=②∵a 2+ac=12k ,c 2+ac=24k2(a 2+ac)= c 2+ac∴2a 2+ac- c 2=0得(2a-c)(a+c)=0∵a 2+ac=12k ≠0即a(a+c)≠0∴c=2a ,a 2=4k∵b 2+bc=12k∴b 2+2ba=3a 2则(a −b )(3a +b )=0∵a ≠b∴3b a =-同理可得d 2+ad=24k ,c 2+ac=24kd 2+ad=c 2+ac(d −c )(a +d +c )=0∵c d ≠∴0a d c ++=∴3d a =-故答案为:0a b c ++=;3b a =-,2c a =,3d a =-【点睛】本题考查了用提取公因式法、运用公式法、分组分解法进行因式分解.15.观察:22213-=;2222432110-+-=;22222265432121-+-+-=. 探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)【答案】(1)36;(2)83n -;(3)210π【解析】【分析】(1)根据已知条件,直接结算可得;(2)根据观察可得规律:结果就是底数和;其实是运用平方差公式得到;(3)根据题意列出式子,()()()()()22222222222019181716154321ππππππππππ-+-+-++-+-,再根据上面规律简便运算.【详解】(1)2222222287654321-+-+-+-=15+21=36;(2)222222(2)(21)(22)(23)21n n n n --+---+-=[][][][]()()2(21)2(21)(22)(23)(22)(23)2121n n n n n n n n +-•--+-+-•---++•-2(21)(22)(23)21n n n n =+-+-+-++=83n -;(3)由题意可得阴影面积是:()()()()()22222222222019181716154321ππππππππππ-+-+-++-+- =2019181716154321ππππππππππ++++++++++=()1202012π⨯⨯+ =210π【点睛】 考核知识点:因式分解在运算中的应用.观察并找出规律,利用平方差公式分析问题是关键.四、八年级数学分式解答题压轴题(难)16.已知:方程﹣=﹣的解是x =,方程﹣=﹣的解是x =,试猜想:(1)方程+=+的解; (2)方程﹣=﹣的解(a 、b 、c 、d 表示不同的数).【答案】(1)x =4;(2)x =. 【解析】通过解题目中已知的两个方程的过程可以归纳出方程的解与方程中的常数之间的关系,利用这个关系可得出两个方程的解.解:解方程﹣=﹣,先左右两边分别通分可得:,化简可得:,整理可得:2x =15﹣8,解得:x =,这里的7即为(﹣3)×(﹣5)﹣(﹣2)×(﹣4),这里的2即为[﹣2+(﹣4)]﹣[﹣3+(﹣5)];解方程﹣=﹣,先左右两边分别为通分可得:,化简可得:,解得:x=,这里的11即为(﹣7)×(﹣5)﹣(﹣4)×(﹣6),这里的2即为[﹣4+(﹣6)]﹣[﹣7+(﹣5)];所以可总结出规律:方程解的分子为右边两个分中的常数项的积减去左边两个分母中的常数项的积,解的分母为左边两个分母中的常数项的差减去右边两个分母中常数项的差.(1)先把方程分为两边差的形式:方程﹣=﹣,由所总结的规律可知方程解的分子为:(﹣1)×(﹣6)﹣(﹣7)×(﹣2)=﹣8,分母为[﹣7+(﹣2)]﹣[﹣6+(﹣1)]=﹣2,所以方程的解为x==4;(2)由所总结的规律可知方程解的分子为:cd﹣ab,分母为(a+b)﹣(c+d),所以方程的解为x=.17.某市为了做好“全国文明城市”验收工作,计划对市区S米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a米道路,乙工程队每天可以改造b米道路,(其中a b).现在有两种施工改造方案:方案一:前12S米的道路由甲工程队改造,后12S米的道路由乙工程队改造;方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造.根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少【解析】【分析】(1)设乙工程队每天道路的长度为x米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.【详解】(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x=+, 解得:150x =,检验,当150x =时,()300x x +≠,∴原分式方程的解为:150x =,30180x +=,答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+=, 方案二所用时间为2t ,则221122t a t b s +=,22s t a b=+, ∴22()22()a b a b S S S ab a b ab a b +--=++, ∵a b ,00a b >>,,∴()20a b ->, ∴202a b S S ab a b+->+,即:12t t >, ∴方案二所用的时间少.【点睛】 本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.18.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方。

河北省邢台市八年级数学上学期期末试题(扫描版)

河北省邢台市八年级数学上学期期末试题(扫描版)

数学试题参考答案一、选择题(每小题3分,共42分)1-5 C C A A D 6-10 C A C D C 11-14 A A B B二、填空题(每小题3分,共12分)15.7。

90 16.a 17.3418.两边及夹角对应相等的两个三角形全等,全等三角形对应边相等.三、解答题(共66分)19.解:∵A,B两点表示的数分别为1,2∴C点所表示的数是x=1-(2-1)=2-2。

..。

.。

....。

..。

.。

5分∴BC=2-(2-2)=22-2 。

.。

.。

.。

....。

....。

.。

10分20.(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°, ∴∠BAC=180°-30°-30°=120°。

.。

.。

.。

.。

.。

.。

.。

2分∵∠DAB=45°,∴∠DAC=∠BAC-∠DAB=120°-45°=75°。

.。

.。

.。

.。

.。

.。

5分(2)证明:∵∠DAB=45°∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC .。

.。

..。

(3)∴DC=AC,∴DC=AB. ....。

.。

..。

.。

..。

..5分21.(1)③ .。

.......。

..。

.。

4分(2)623243⨯-÷=24263⨯-3=2188-= 6222-= 42 ..。

..。

.。

.。

...。

.。

6分22.解:(1)如图(1),设CE=x ,则BE=8-x ;由题意得:AE=BE=8-x .。

.。

.。

....2分由勾股定理得:x 2+62=(8-x)2 .。

..。

.。

.。

..。

....5分解得:x=74 即CE 的长为:74 。

.。

.。

.。

..。

...。

.......。

.。

.6分(2)如图(2),∵点B′落在AC 的中点∴CB′=12AC=3;设CE=x 则EB ′=EB=8-x .。

邢台市南和县八年级上期末复习数学试卷含解析 -精选

邢台市南和县八年级上期末复习数学试卷含解析 -精选

2017-2018学年邢台市八年级(上)期末复习测试试卷一、选择题(共10题;共30分)1.下列语句中,不是命题的是( )A. 若两角之和为90°,则这两个角互余。

B. 同角的余角相等。

C. 画线段的中垂线。

D. 相等的角是对顶角。

2.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A. 原点上B. x轴上C. y轴上D. 坐标轴上3.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A. B. C. D.4.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A. 边边边B. 边角边C. 角边角D. 角角边5.若点P的坐标是(1,﹣2),则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA7.下列各式成立是( )A. B. C. D.8.下面选项对于等边三角形不成立的是()A. 三边相等B. 三角相等C. 是等腰三角形D. 有一条对称轴9.在式子、、(a<﹣3)、(y>0)、(x<0)中,是二次根式的有()A. 2个B. 3个C. 4个D. 5个10.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A. 18B. 16C. 14D. 12二、填空题(共8题;共24分)11.用反证法证明命题:“三角形的三个内角中,至少有一个内角大于或等于60°.先假设所求证的结论不成立,即________.12.化简:=________,=________13.关于x的方程=无解,则m的值是________.14.命题“同旁内角互补,两直线平行”中,题设是 ________,结论是 ________此命题是 ________(填“真命题”或“假命题”)15.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI________全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI________全等.(填“一定”或“不一定”或“一定不”)16.直角三角形的两边长为5和7,则第三边长为________17.在△ABC中,∠A=60°,要使是等边三角形,则需要添加一条件是________18.点D为等边△ABC的边BC的中点,则AB:BD=________.三、解答题(共6题;共36分)19.判断下列命题是真命题还是假命题,若是假命题,请举出一个反例说明.(1)有一个角是60°的等腰三角形是等边三角形.(2)有两个角是锐角的三角形是锐角三角形.20.证明:在△ABC中,∠A,∠B,∠C中至少有一个角大于或等于60°.21.如图,已知点A,B,C,D在同一条直线上,EA⊥AB,FD⊥AD,AB=CD,若用“HL”证明Rt△AEC≌△Rt△DFB,需添加什么条件?并写出你的证明过程.22.如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.23.如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC 于点F.求证:BF=2CF.24.在四边形ABCD中,AB=3,BC=4,AD=5 ,CD=5,∠A BC=90°,求对角线BD的长.四、综合题(共10分)25.如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连接AE.(1)求证:BF=DF;(2)求证:AE∥BD;(3)若AB=6,AD=8,求BF的长.2017-2018学年河北省邢台市南和县八年级(上)期末复习测试试卷参考答案与试题解析一、选择题1.【答案】C【考点】命题与定理【解析】【分析】命题就是判断一件事情的语句.【解答】根据命题的定义,可知A、B、D都是命题,而C属于作图语言,不是命题.故选C.2.【答案】D【考点】点的坐标【解析】【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.【解答】若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选D.【点评】本题主要考查了点在坐标轴上时点的符号特点,注意考虑问题要全面,坐标轴上的点的特点要记清3.【答案】A【考点】剪纸问题【解析】【解答】解:由题意可知:减去的部分为四个等腰直角三角形的斜边构成的正方形,又原图是正方形,所以剩下的图形为大正方形除去一个小正方形.故选A.【分析】找出题中的折叠规律,利用正方形纸片按照此方法沿虚线减下,展开即可得到剩下的图形.4.【答案】A【考点】全等三角形的判定,作图—基本作图【解析】【解答】作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,O′C′=OCO′D′=ODC′D′=CD∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB ,显然运用的判定方法是边边边选:A .【分析】通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.5.【答案】D【考点】点的坐标【解析】【解答】解:点P(1,﹣2)在第四象限.故选D.【分析】根据各象限内点的坐标特征解答即可.6.【答案】D【考点】全等三角形的应用【解析】【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.7.【答案】D【考点】二次根式的性质与化简,最简二次根式【解析】【分析】A中,由题意知,,故A错误;B中,,故错误;C中,,故C错误;D中,,故选D.【点评】本题属于对代数式的基本运算和规律的把握和运用,需要考生对代数式的基本运用方法熟练掌握。

河北省邢台市八年级上学期数学期末考试试卷

河北省邢台市八年级上学期数学期末考试试卷

河北省邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·沂源模拟) 下列计算正确的是()A . 2 +3 =5B . ()(1﹣)=1C . (xy)﹣1( xy)2= xyD . ﹣(﹣a)4÷a2=a22. (2分)下列因式分解正确的是()A . a2﹣b2=(a﹣b)2B . x2+4y2=(x+2y)2C . 2﹣8a2=2(1+2a)(1﹣2a)D . x2﹣4y2=(x+4y)(x﹣4y)3. (2分)若分式中的x、y的值都变为原来的3倍,则此分式的值()A . 不变B . 是原来的3倍C . 是原来的D . 是原来的一半4. (2分) (2017七下·苏州期中) 已知一粒米的质量是0.000021千克,这个数字用科学记数法表示()A . 千克B . 千克C . 千克D . 千克5. (2分)下列等式成立的是()A .B .C .D .6. (2分)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A . SASB . ASAC . AASD . SSS7. (2分) (2019八上·嘉荫期末) 下列说法正确的是()A . 圆有无数条对称轴,对称轴是直径所在的直线B . 正方形有两条对称轴C . 两个图形全等,那么这两个图形必成轴对称D . 等腰三角形的对称轴是高所在的直线8. (2分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A .B .C .D .9. (2分) (2017八上·余杭期中) 下列四组条件中,能够判定和全等的是().A . ,,B . ,,C . ,,D . ,,10. (2分)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A .B .C .D .二、填空题 (共7题;共8分)11. (1分)计算:(﹣3)0+3﹣1= ________ .12. (2分)分式方程的解法:(1)方程两边都乘________,去分母,化为________方程;(2)解这个________方程;(3) ________.13. (1分) (2019八上·朝阳期中) 如图,在ΔABC中,∠ABC=120°,点D、E分别在AC和AB上,且AE =ED=DB=BC,则∠A的度数为________°.14. (1分) (2019七上·大庆期末) 等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为________cm.15. (1分)(2018·新疆) 某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是________元.16. (1分)如图:直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为________.17. (1分) (2017八下·庆云期末) 如图设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,此时正方形AEGH的边长为________,如此下去,则第n个正方形的边长为________.三、解答题 (共5题;共50分)18. (10分)(2018·江苏模拟) 计算:(1);(2).19. (10分) (2017八上·鄂托克旗期末) 解方程:.20. (10分) (2017八下·简阳期中) 化简• ﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.21. (10分) (2019八上·武汉月考) △ABC是等边三角形,点E、F分别为射线AC、射线CB上两点,CE=BF,直线EB、AF交于点D.(1)当E、F在边AC、BC上时如图,求证:△ABF≌△BCE.(2)当E在AC延长线上时,如图,AC=10,S△ABC=25 ,EG⊥BC于G,EH⊥AB于H,HE=8 ,求EG(3) E、F分别在AC、CB延长线上时,如图,BE上有一点P,CP=BD,∠CPB是锐角,求证:BP=AD.22. (10分)(2014·温州) 一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共8分)11-1、12-1、12-2、12-3、13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共50分)18-1、18-2、19-1、20-1、21-1、21-2、21-3、22-1、22-2、。

河北省邢台市八年级上学期期末数学试卷

河北省邢台市八年级上学期期末数学试卷

河北省邢台市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分)(2017·资中模拟) 下列实数中,有理数是()A .B .C .D . 0.1010012. (2分)已知P(x,y)是第四象限内的一点,且x2=4,|y|=3,则P点的坐标为()A . (2,3)B . (-2,3)C . (-2,-3)D . (2,-3)3. (2分)(2017·宁夏) 下列各式计算正确的是()A . 4a﹣a=3B . a6÷a2=a3C . (﹣a3)2=a6D . a3•a2=a64. (2分) (2017八下·罗山期中) 如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是()A . 13cmB . 2 cmC . cmD . 2 cm5. (2分)(2018·夷陵模拟) 一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A . 17B . 16C . 15D . 16或15或176. (2分)在平面直角坐标系xoy中,直线y=-x+2经过()A . 第一、二、三象限;B . 第一、二、四象限;C . 第一、三、四象限;D . 第二、三、四象限.7. (2分)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ 时,连PQ交AC边于D,则DE的长为()A .B .C .D . 不能确定8. (2分)下列说法正确的是()A . 经验、观察或实验完全可以判断一个数学结论的正确与否B . 推理是科学家的事,与我们没有多大的关系C . 对于自然数n,n2+n+37一定是质数D . 有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个9. (2分) (2020八上·淅川期末) 如图,将长方形纸片沿对角线折叠,使点落在处,交AD于E,若,则在不添加任何辅助线的情况下,则图中的角(虚线也视为角的边)的个数是()A . 5个B . 4个C . 3个D . 2二、填空题 (共9题;共10分)10. (1分)若的平方根是,则m=________ .11. (2分) (2019八下·义乌期末) 如图1是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A,B,C,D符点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD中,AB=6,CD=15,那么BC=________ ,AD=________才能实现上述的折叠变化.12. (1分) (2015八上·宝安期末) 如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是________13. (1分) (2016八下·微山期末) 已知一组数据为2、0、﹣1、3、﹣4,则这组数据的方差为________.14. (1分) (2017八下·杭州开学考) 已知点P1(a,﹣3)和点P2(3,b)关于y轴对称,则a+b的值为________.15. (1分)运动会上,生活班委拿20元钱到超市买来果汁x瓶,酸奶y瓶给运动员,已知果汁每瓶2元,酸奶每瓶3元,钱刚好用完则购买方案共有________种.16. (1分) (2017七下·江阴期中) 如图,在四边形ABCD中,点F,E分别在边AB,BC上,将△BFE沿FE 翻折,得△GFE,若GF∥AD,GE∥DC,则∠B的度数为________.17. (1分)已知(a+2)2+|2b﹣1|=0,则a102•b101=________.18. (1分)如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1 ,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2 ,以原点O为圆心,OB2长为半径画弧交x轴于点A3 ,…,按此做法进行下去,点An的坐标为________三、解答题 (共8题;共75分)19. (5分)计算:(+)×20. (5分)已知|x+y﹣17|+(5x+3y﹣75)2=0,求2x+3y的值.21. (10分) (2017七下·朝阳期中) 已知在平面直角坐标系中,已知A(3,4),B(3,﹣1),C(﹣3,﹣2),D(﹣2,3).(1)在图上画出四边形ABCD,并求四边形ABCD的面积;(2)若P为四边形ABCD形内一点,已知P坐标为(﹣1,1),将四边形ABCD通过平移后,P的坐标变为(2,﹣2),根据平移的规则,请直接写出四边形ABCD平移后的四个顶点的坐标.22. (10分) (2017七上·丹江口期末) 解答题(1)如图,已知,∠AEF=∠ACD,∠1=∠2,求证:DE∥BC.(要求:不写根据)(2)∠1=∠C,∠B=∠D,求证:∠3=∠2.(要求:不写根据;不许用三角形的内角和定理)23. (5分) (2017七下·钦北期末) 某超市开业十周年举行了店庆活动,对A、B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间,购买3件A商品和8件B商品仅需72元,求店庆期间超市的折扣是多少?24. (15分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如图的两幅统计图:(1)该调查小组共抽取了多少名学生;(2)样本学生中阳光体育运动时间为1.5小时的人数,并补全频数分布直方图;(3)请通过计算估计该市中小学生一天中阳光体育运动的平均时间.25. (10分) (2016八下·固始期末) 在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB 上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.26. (15分) (2016七下·威海期末) 如图,动点A,B从原点O同时出发,点A以每秒a个单位长度向x轴的负半轴向左运动,点B以每秒b个单位长度沿y轴的正半轴向上运动.(1)若a,b满足关系|a+b﹣3|+(a﹣ b)2=0,请求出a,b的值;(2)如图①,求当运动时间为2秒时,直线AB的函数表达式;(3)如图②,∠BAO与∠ABO的外角平分线相交于点C,随着点A,点B的运动,∠C的度数是否会发生变化?若度数变化,请说明理由;若度数不变,请求出∠C的度数.参考答案一、选择题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共9题;共10分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。

邢台市八年级上学期数学期末考试试卷

邢台市八年级上学期数学期末考试试卷

邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)在直角坐标系中,点A与点C关于直线y=2成轴对称,已知点A的坐标是(5,5),则点C的坐标是()A . (5,﹣5)B . (5,﹣1)C . (﹣2,5)D . (﹣5,1)3. (2分) (2018七下·紫金月考) 下列代数运算正确的是()A . x•x6=x6B . (x2)3=x6C . (x+2)2=x2+4D . (2x)3=2x34. (2分) (2017八下·淅川期末) 若关于x的方程﹣ =0无解,则m的值是()A . 3B . 2C . 1D . ﹣15. (2分) (2017八上·重庆期中) 若3x=3,3y=5,则3x+y等于()A . 5B . 3C . 15D . 86. (2分)下列从左边到右边的变形,是因式分解的是()A . (y+1)(y﹣3)=﹣(3﹣y)(y+1)B . m3﹣n3=(m﹣n)(m2+mn+n2)C . (3﹣x)(3+x)=9﹣x2D . 4yz﹣2y2z+z=2y(2z﹣yz)+z7. (2分) (2016九上·吉安期中) 已知ab=mn,改写成比例式错误的是()A . a:n=b:mB . m:a=b:nC . b:m=n:aD . a:m=n:b8. (2分) (2018八上·北京期末) 已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A . AB=ACB . BD=CDC . ∠B=∠CD . ∠BDA=∠CDA9. (2分)(2017·蒸湘模拟) 下列各式中计算正确的是()A . (x+y)2=x2+y2B . (3x)2=6x2C . a2+a2=a4D . (x2)3=x610. (2分)若分式的值为零,则x等于()A . 2B . -2C . ±2D . 011. (2分)如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A . 全部正确B . 仅①和②正确C . 仅①正确D . 仅①和③正确12. (2分) (2018八上·甘肃期中) 若等腰三角形的顶角为,则它的底角度数为()A .B .C .D .二、填空题 (共8题;共8分)13. (1分) (2016八上·抚宁期中) 点P(3,1)关于x轴的对称点P′的坐标是________.14. (1分)(2018·惠阳模拟) 正六边形的每一个外角是________度15. (1分) (2015八上·丰都期末) 等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.16. (1分) (2017八上·中江期中) 如图所示,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,则∠C=________.17. (1分) (2018·广东) 分解因式:x2﹣2x+1=________.18. (1分)计算:﹣82015×(﹣0.125)2016=________。

★试卷3套精选★邢台市2018届八年级上学期数学期末复习能力测试试题

★试卷3套精选★邢台市2018届八年级上学期数学期末复习能力测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x本素描本,列方程正确的是()A.120240420x x-=+B.240120420x x-=+C.120240420x x-=-D.240120420x x-=-【答案】A【分析】根据题意可知第二次买了(x+20)本素描本,然后根据“第二次购买比第一次购买每本优惠4元”列出分式方程即可.【详解】解:由题意可知:120240420x x-=+故选A.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.2.已知直线y=-2x+3和直线y=kx - 5平行,则k的值为()A.2 B.-2 C.3 D.无法确定【答案】B【分析】根据两直线平行,k相等即可得出答案.【详解】∵直线y=-2x+3和直线y=kx - 5平行2k∴=-故选:B.【点睛】本题主要考查两直线平行,掌握两直线平行时,k相等是解题的关键.3.正方形的面积为6,则正方形的边长为()A B C.2 D.4【答案】B【分析】根据正方形面积的求法即可求解.【详解】解:∵正方形的面积为6,.故选:B.【点睛】本题考查了算术平方根,正方形的面积,解此题的关键是求出6的算术平方根.4.在下列各数中,无理数有()33224,3,,8,9,07π A .1个 B .2个 C .3个 D .4个【答案】B【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】∵4=2,38=2,∴这一组数中的无理数有:3π,39共2个.故选:B .【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 5.如图,已知30MON ︒∠=,点1A ,2A ,3A ,...在射线ON 上,点1B ,2B ,3B ,...在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,...均为等边三角形,若12OA =,则201920192020A B A ∆的边长是( )A .4038B .4036C .20182D .20192【答案】D 【分析】根据图形的变化发现规律即可得结论.【详解】解:观察图形的变化可知:∵△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4……均为等边三角形,∵OA 1=2,∴△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4……边长分别为:21、22、23…∴△A 2019B 2019A 2020的边长为1.故选D .【点睛】本题考查了规律型-图形的变化类,解决本题的关键是通过观察图形的变化寻找规律.6.将长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,若∠ABC=35°,则∠DBE 的度数为A.55°B.50°C.45°D.60°【答案】A【分析】根据折叠的性质可知∠ABC=∠A’BC,∠DBE=∠DBE’,然后根据平角等于180°代入计算即可得出答案.【详解】解:由折叠的性质可知∠ABC=∠A’BC=35°,∠DBE=∠DBE’,∴∠EBE’=180°-∠ABC-∠A’BC=180°-35°-35°=110°,∴∠DBE=∠DBE’=12∠EBE’=12×110°=55°.故选A.【点睛】本题考查了折叠的性质和角的计算,熟知折叠后重合的角相等是解决此题的关键.7.如图,将30°的三角尺以直角顶点A为旋转中心顺时针旋转,使点C落在边BC的C'处,则其旋转角的大小为()A.30°B.60°C.90°D.150°【答案】B【分析】旋转的性质可得AC=AC',且∠C=60,可证△ACC'是等边三角形,即可求解.【详解】∵将30°的三角尺以直角顶点A为旋转中心顺时针旋转,∴AC=AC',且∠C=60°∴△ACC'是等边三角形,∴∠CAC'=60°,故选B.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,熟练运用旋转的性质是本题的关键.8.当k取不同的值时,y关于x的函数y=kx+2(k≠0)的图象为总是经过点(0,2)的直线,我们把所有这样的直线合起来,称为经过点(0,2)的“直线束”.那么,下面经过点(﹣1,2)的直线束的函数式是()A .y=kx ﹣2(k≠0)B .y=kx+k+2(k≠0)C .y=kx ﹣k+2(k≠0)D .y=kx+k ﹣2(k≠0)【答案】B 【解析】把已知点(﹣1,2)代入选项所给解析式进行判断即可.【详解】在y=kx ﹣2中,当x=﹣1时,y=﹣k ﹣2≠2,故A 选项不合题意,在y=kx+k+2中,当x=﹣1时,y=﹣k+k+2=2,故B 选项符合题意,在y=kx ﹣k+2中,当x=﹣1时,y=﹣k ﹣k ﹣2=﹣2k ﹣2≠2,故C 选项不合题意,在y=kx+k ﹣2中,当x=﹣1时,y=﹣k+k ﹣2=﹣2≠2,故D 选项不合题意,故选B .【点睛】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键. 9.已知点P (a ,3+a )在第二象限,则a 的取值范围是( )A .a <0B .a >﹣3C .﹣3<a <0D .a <﹣3【答案】C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【详解】解:∵点P (a ,3+a )在第二象限, ∴030a a <⎧⎨+>⎩, 解得﹣3<a <1.故选:C .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 10.如图,Rt ABC ∆中,90A ∠=︒,30B ∠=︒,CD CA =,D 在BC 上,45ADE ∠=︒,E 在AB 上,则BED ∠的度数是( )A .60︒B .75︒C .80︒D .85︒【答案】B 【分析】先根据直角三角形两锐角互余求出60C ∠=°,从而可知ADC ∆是等边三角形,再由等边三角形的性质可求出60CAD ∠=︒,从而可得30DAE ∠=︒,最后根据三角形的外角性质即可得.【详解】90,30BAC B ∠=︒∠=︒9006B C ︒-∠∴=∠=︒CD CA =ADC ∴∆是等边三角形,60CAD ∠=︒30BAC DAE CAD =∠∴-=∠∠︒45ADE ∠=︒375450AD BED DAE E ∠=∴∠=︒∠+︒+=︒故选:B .【点睛】本题是一道较为简单的综合题,考查了直角三角形的性质、等边三角形的性质、三角形的外角性质等知识点,熟记并灵活运用各性质是解题关键.二、填空题11.如图,点B 、F 、C 、E 在一条直线上,已知BF=CE ,AC ∥DF ,请你添加一个适当的条件______,使得△ABC ≌△DEF .【答案】∠A=∠D(答案不唯一)【解析】试题解析:添加∠A=∠D .理由如下:∵FB=CE ,∴BC=EF .又∵AC ∥DF ,∴∠ACB=∠DFE .∴在△ABC 与△DEF 中,,∴△ABC ≌△DEF (AAS ).考点:全等三角形的判定.12.Rt ABC 中,90C ∠=︒,12AC cm =,16BC cm =,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于点E ,交斜边于点F ,则CDE △的周长为__________.【答案】20cm 或22cm【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A 和∠B 两种情况求解即可.【详解】当∠B 翻折时,B 点与D 点重合,DE 与EC 的和就是BC 的长,即DE+EC=16cm ,CD=12AC=6cm ,故△CDE 的周长为16+6=22cm ; 当∠A 翻折时,A 点与D 点重合.同理可得DE+EC=AC=12cm ,CD=12BC=8cm , 故△CDE 的周长为12+8=20cm .故答案为20cm 或22cm .【点睛】本题考查图形的翻折变换.解题时应注意折叠是一种对称变换,它属于轴对称.13.关于x 的一次函数(2)21y k x k =+-+,其中k 为常数且2k ≠-.①当0k =时,此函数为正比例函数.②无论k 取何值,此函数图象必经过(2,5).③若函数图象经过()2,m a ,()23,2m a +-(m ,a 为常数),则83k =-. ④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有________.【答案】②③④【分析】根据一次函数知识依次判断各项即可.【详解】①当k=0时,则21y x =+,为一次函数,故①错误;②整理得:=(2)21-++y x k x ,∴x=2时,y=5,∴此函数图象必经过(2,5),故②正确;③把()2,m a ,()23,2m a +-代入(2)21y k x k =+-+中,得:()22(2)212(2)321①②⎧=+-+⎪⎨-=++-+⎪⎩a k m k a k m k ,②-①得:23(2)-=+k , 解得:83k =-,故③正确;④当k+2<0时,即k <-2,则-2k+1>5,∴此函数图象都不可能同时经过第二、三、四象限,故④正确;故答案为:②③④.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数的性质定理是解决本题的关键.14.当1x =时,分式x b x a -+无意义,则a =_________. 【答案】-1【分析】根据分式无意义的条件是分母为零即可解答.【详解】解:∵当1x =时,分式x b x a-+无意义, ∴当1x =时,分母为零,即10a +=,解得a=-1,故答案为:-1.【点睛】本题考查了分式无意义的条件,解题的关键是熟知分式无意义的条件是分母为零.15.一次函数2y x m =-+的图象经过点()2,3P -,且与x 轴、y 轴分别交于点A 、B ,则AOB 的面积等于___________. 【答案】14【解析】∵一次函数y=−2x+m 的图象经过点P(−2,3),∴3=4+m ,解得m=−1,∴y=−2x−1,∵当x=0时,y=−1,∴与y 轴交点B(0,−1),∵当y=0时,x=−12,∴与x 轴交点A(−12,0), ∴△AOB 的面积:12×1×12=14. 故答案为14. 点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x 轴交点,与y 轴交点的坐标,再利用三角形的面积公式计算出面积即可.16.点P (2,1)--关于x 轴的对称点坐标为________.【答案】(2,1)-【分析】根据点的坐标关于坐标轴对称的方法“关于谁对称,谁就不变,另一个互为相反数”可直接求解.【详解】解:由点P (2,1)--关于x 轴的对称点坐标为(2,1)-;故答案为(2,1)-.【点睛】本题主要考查点的坐标关于坐标轴对称,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键. 17.点A (2,1)到x 轴的距离是____________.【答案】1【分析】根据点到x 轴的距离等于纵坐标的绝对值解答.【详解】解:点A (2,1)到x 轴的距离是1,故答案为:1.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.三、解答题18.解不等式组20312123x x x +≥⎧⎪-+⎨<⎪⎩,并把解集在数轴上表示出来. 【答案】﹣2≤x <1,见解析【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可. 【详解】20 3121 23x x x +≥⎧⎪⎨-+<⎪⎩①② 解不等式①得:x≥﹣2,解不等式②得:x <1,∴不等式组的解集是﹣2≤x <1,在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组)和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.19.(1)如图①,在△ABC 中,∠C =90°,请用尺规作图作一条直线,把△ABC 分割成两个等腰三角形,并说明理由(保留作图痕迹,不写作法);(2)已知内角度数的两个三角形如图②、图③所示,能否分别画一条直线把他们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.【答案】(1)见解析;(2)图②能,顶角分别是132°和84°,图③不能【分析】(1)本题中,只要找到斜边中点,然后连接直角顶点和斜边中点,那么分成的两个三角形就是等腰三角形.那么只要作AC 的垂直平分线就可以了.AC 的垂直平分线与AB 的交点就是AB 的中点; (2)本题要先根据三角形的内角和求出另一角的度数,然后看看是否能分成等腰三角形,图2可以将∠B 分成24°和48°.图3不能分成等腰三角形.【详解】(1)作线段AC 的垂直平分线MN ,交AB 于点M ,交AC 于点N ;过点C 、M 作直线.直线CM 即为所求.理由:∵MN 为AC 的垂直平分线,∴MA MC =,∴24MCA A ∠=∠=︒.∵90ACB ∠=︒,24A ∠=︒,∴902466B ∠=︒-︒=︒,902466BCM ∠=︒-︒=︒,∴B BCM ∠=∠,∴MB MC =.(2)图②能画一条直线把它分割成两个等腰三角形,分割成的两个等腰三角形的顶角分别是132︒和84︒.图③不能分割成两个等腰三角形..【点睛】本题主要考查了直角三角形的性质和三角形的内角和,等腰三角形的判定等知识点.注意本题作图中的理论依据是直角三角形斜边上的中线等于斜边的一半.20.(1)计算:2234()x y xy --;(2)计算:22223•()a b a b ---;(3)分解因式:22x y xy y ++;(4)解分式方程:1122x x x -=+-. 【答案】(1)3624+x y x y ;(1)88b a;(3)()21+y x ;(4)23x = 【分析】(1)根据积的乘方进行计算即可(1)根据积的乘方和负整指数幂的运算法则计算即可(3)首先提取公因式y ,再利用完全平方公式即可.(4)方程两边乘最简公分母(x+1)(x-1),把分式方程转化为整式方程求解即可.【详解】解:(1)2233624()4x y xy x y x y =--+ (1)2222832266888•()?b a b a b a b a b a b a ------=== (3)()2222(21)1++=++=+x y xy y y x x y x(4)去分母得:x (x-1)-(x+1)(x-1)=x+1.去括号得:x 1-1x-x 1+4=x+1.移项合并同类项得:-3x=-1.系数化为1得:23x =, 检验,当x=23时,(x+1)(x-1)≠2. 所以,原方程的解为23x =. 【点睛】本题考查了用提公因式法和公式法进行因式分解、负整指数幂、积的乘方、解分式方程等知识,熟练掌握相关知识是解题的关键21.在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合),以AD 为直角边在AD右侧作等腰直角三角形ADE,且∠DAE=90°,连接CE.(1)如图①,当点D在线段BC上时:①BC与CE的位置关系为;②BC、CD、CE之间的数量关系为.(2)如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若不成立,请你写出正确结论,并给予证明.(3)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为.【答案】(1)①BC⊥CE;②BC=CD+CE;(2)结论①成立,②不成立,结论:CD=BC+CE;(3)CE=BC+CD.【解析】(1)①利用条件求出△ABD≌△ACE,随之即可得出位置关系.②根据BD=CE,可得BC=BD+CD=CE+CD.(2)根据第二问的条件得出△ABD≌△ACE,随之即可证明结论是否成立.(3)分析新的位置关系得出△ABD≌△ACE,即可得出CE=BC+CD.【详解】(1)如图1.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE=45°,①∵∠ACE=45°=∠ACB,∴∠BCE=45°+45°=90°,即BD⊥CE;②∵BD=CE,∴BC=BD+CD=CE+CD.故答案为:BC⊥CE,BC=CD+CE;(2)结论①成立,②不成立,结论:CD=BC+CE理由:如图2中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠EAC.在△ABD 和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABD=135°,∴CD=BC+BD =BC+CE∵∠ACB=45°∴∠DCE=90°,∴CE⊥BC;(3)如图3中,∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE,∴在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE =∠ABC.∵AB =AC ,∴∠ABC =∠ACB =45°,∴BD =BC+CD ,即CE =BC+CD .故答案为:CE =BC+CD .【点睛】本题考查了复杂图形中证明三角形全等的条件,掌握证明条件是解题关键.22.如图所示,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (4,0),B (-1,4),C (-3,1).(1)作出△A′B′C′,使△A′B′C′和△ABC 关于x 轴对称;(2)写出点A′, B′,C′的坐标;(3)求△ABC 的面积.【答案】(1)见解析;(2)(4,0),(﹣1,﹣4),(﹣3,﹣1);(3)11.1.【解析】试题分析:(1)直接利用关于x 轴对称点的性质,进而得出答案;(2)直接利用(1)中所画图形得出各点坐标即可;(3)利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.试题解析:(1)如图所示:△A′B′C′,即为所求;(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1);(3)△ABC 的面积为:7×4﹣12×2×3﹣12×4×1﹣12×1×7=11.1. 23.如图,在平面直角坐标系中,ABC ∆的三个顶点都在格点上,点A 的坐标为()2,4,请解答下列问题:(1)画出ABC ∆关于x 轴对称的111A B C ∆,并写出点1A 的坐标.(2)画出111A B C ∆关于y 轴对称的222A B C ∆,并写出点2A 的坐标.【答案】(1)见解析,()12,4A -;(2)见解析,()22,4A -- 【分析】(1)作出各点关于x 轴的对称点,再顺次连接即可;(2)作出各点关于y 轴的对称点,再顺次连接即可.【详解】(1)如图,111A B C ∆即为所求,()12,4A -.(2)如图,222A B C ∆即为所求,点()22,4A --.【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.24.2019年11月26日,鲁南高铁日曲段正式开通,日照市民的出行更加便捷.从日照市到B 市,高铁的行驶路线全程是600千米,普通列车的行驶路线全程是高铁的1.2倍.若高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间节省4小时,求高铁的平均速度.【答案】高铁的平均速度是300千米/时.【分析】根据高铁的行驶路程是600千米和普通列车的行驶路程是高铁的行驶路程的1.2倍,两数相乘即可得出普通列车的行驶路程;设普通列车平均速度是x 千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短4小时,列出分式方程,然后求解即可【详解】解:根据题意得:600×1.2=720(千米).所以,普通列车的行驶路程是720千米;设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:720600-=,4x x2.5解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时).答:高铁的平均速度是300千米/时.【点睛】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.25.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP 和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.【答案】(1)70°;(2)不变.数量关系为:∠APC=2∠AFC.(3)70°.【分析】(1)先根据平行线的性质,得出∠ACD=120°,再根据CE、CF分别平分∠ACP和∠DCP,即可得出∠ECF的度数;(2)根据平行线的性质得出∠APC=∠PCD,∠AFC=∠FCD,再根据CF平分∠PCD,即可得到∠PCD=2∠FCD 进而得出∠APC=2∠AFC;(3)根据∠AEC=∠ECD,∠AEC=∠ACF,得出∠ECD=∠ACF,进而得到∠ACE=∠FCD,根据∠ECF=70°,∠ACD=140°,可求得∠APC的度数.【详解】(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°-40°=140°∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF∠ACD=70°∴∠ECF=12(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC(3)∵AB∥CD,∴∠AEC=∠ECD当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF∴∠PCD=1∠ACD=70°2∴∠APC=∠PCD=70°【点睛】本题主要考查了平行线的性质,角平分线的性质的运用,解决问题的关键是掌握:两直线平行,内错角相等.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于G,交BE于H.下列结论:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正确结论的序号是()A.①②③④B.①②③C.②④D.①③【答案】B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】解:∵BE是中线,∴AE=CE,∴S△ABE=S△BCE(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF ,即∠FAG=2∠ACF ,故③正确;根据已知条件不能推出∠HBC=∠HCB ,即不能推出BH=CH ,故④错误;故选B .【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.2.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B′处,则∠ADB′等于( )A .25°B .30°C .35°D .40°【答案】D 【解析】∵在Rt △ACB 中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB 反折而成,∴∠CB′D=∠B=65°.∵∠CB′D 是△AB′D 的外角,∴∠ADB′=∠CB′D ﹣∠A=65°﹣25°=40°.故选D .3.已知()1,2x -,()2,3x -,()3,1x 是直线5y x b =-+(b 为常数)上的三个点,则1x ,2x ,3x 的大小关系是( )A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >>【答案】B【分析】根据k=-5知y 随x 的增大而减小,从而判断大小.【详解】∵一次函数5y x b =-+中,k=-5,∴y 随x 的增大而减小,∵-3<-2<1,∴213x x x >>,故选B.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数k 与函数增减的关系是解决本题的关键.4.如果点(12)P m m -,在第四象限,那么m 的取值范围是( ).A .102m <<B .102m -<<C .0m <D .12m > 【答案】D【分析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p (m ,1-2m )在第四象限,∴m >0,1-2m <0,解得:m >12,故选D . 【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.5.若等腰三角形的周长为26cm ,底边为11cm ,则腰长为( )A .11cmB .11cm 或7.5cmC .7.5cmD .以上都不对 【答案】C【分析】根据等腰三角形的性质和三角形的周长公式即可得到结论.【详解】解:∵11cm 是底边, ∴腰长=12(26﹣11)=7.5cm , 故选:C .【点睛】本题考查了等腰三角形的性质,解题的关键是熟练掌握等腰三角形的性质.6.己知x,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x+y 的值为( ) A .5B .7C .9D .3【答案】A【分析】直接把两式相加即可得出结论. 【详解】612328x y x y +=⎧⎨-=⎩①②, ①+②得,4x+4y=20,解得x+y=1.故选A .【点睛】本题考查的是解二元一次方程组,熟知利用加减法解二元一次方程组是解答此题的关键.7.把分式()22x y x y x y+≠-分子、分母中的x ,y 同时扩大为原来的2倍,那么该分式的值( ) A .扩大为原来的2倍 B .缩小为原来的2倍C .不变D .扩大为原来的4倍【答案】A 【分析】当分式()22x y x y x y +≠-中x 和y 同时扩大2倍,得到22(2)(2)22x y x y+-,根据分式的基本性质得到222222(2)(2)442222()x y x y x y x y x y x y+++==⨯---,则得到分式的值扩大为原来的2倍. 【详解】分式()22x y x y x y+≠-中x 和y 同时扩大2倍, 则原分式变形为222222(2)(2)442222()x y x y x y x y x y x y+++==⨯---, 故分式的值扩大为原来的2倍.故选A .【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于的整式,分式的值不变.解题的关键是抓住分子,分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.8.如图,在△ABC 中,AB =AC ,AD 、CE 分别是△ABC 的中线和角平分线,当∠ACE =35°时,∠BAD 的度数是( )A .55°B .40°C .35°D .20°【答案】D 【分析】根据角平分线的定义和等腰三角形的性质即可得到结论.【详解】∵CE 是∠ACB 的平分线,∠ACE =35°,∴∠ACB =2∠ACE =70°,∵AB =AC ,∴∠B =∠ACB =70°,∵AD ⊥BC ,∴∠ADB =90°,∴∠BAD =90°﹣∠B =20°,故选D .【点睛】本题考查了等腰三角形的两个底角相等的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.9.若关于x的分式方程11mx--=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【答案】D【解析】试题分析:去分母可得:m-1=2(x-1),解得:x=,根据解为非负数可得:且x≠1,即0且x≠1,解得:m≥-1且m≠1.考点:解分式方程10.如图,∠MCN=42°,点P在∠MCN内部,PA⊥CM,PB⊥CN,垂足分别为A、B,PA=PB,则∠MCP 的度数为( ).A.21°B.24°C.42°D.48°【答案】A【分析】根据角平分线的判定可知CP平分∠MCN,然后根据角平分线的定义即可求出结论.【详解】解:∵PA⊥CM,PB⊥CN,PA=PB,∴CP平分∠MCN∵∠MCN=42°,∴∠MCP=12∠MCN=21°故选A.【点睛】此题考查的是角平分线的判定,掌握角平分线的判定定理是解决此题的关键.二、填空题11.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是_____.【答案】(673,0)【分析】由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0,据此可解. 【详解】解:由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0, ∵2019÷3=673,∴P 2019 (673,0)则点P 2019的坐标是 (673,0).故答案为 (673,0).【点睛】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上. 12.一次函数3y x =的图像沿y 轴向上平移3个单位长度,则平移后的图像所对应的函数表达为_____.【答案】33y x =+【分析】根据”上加下减”的平移规律解答即可.【详解】解: 一次函数3y x =的图像沿y 轴向上平移3个单位长度,则平移后的图像所对应的函数表达为: 33y x =+.故答案: 33y x =+【点睛】本题考查了一次函数图像与几何变换,求直线平移后的解析式要注意平移时候k 值不变,解析式变化的规律是:上加下减, 左加右减.13.把长方形AB CD '沿对角线AC 折叠,得到如图所示的图形.若∠BAO =34°,则∠BAC 的大小为_______.【答案】62°【分析】先利用AAS 证明△AOB ≌△COD ,得出∠BAO=∠DCO=34°,∠B′CO=68°,结合折叠的性质得出∠B′CA=∠BCA=34°,则∠BAC=∠B′AC=56°.【详解】由题意,得△B′CA ≌△BCA ,∴AB′=AB ,∠B′CA=∠BCA ,∠B′AC=∠BAC .∵长方形AB′CD 中,AB′=CD ,∴AB=CD .在△AOB 与△COD 中,90B D AOB COD AB CD ∠∠︒⎧⎪∠∠⎨⎪⎩==== , ∴△AOB ≌△COD (AAS ),∴∠BAO=∠DCO=34°,∴∠B′CO=90°-∠DCO=56°,∴∠B′CA=∠BCA=28°,∴∠B′AC=90°-∠B′CA=62°,∴∠BAC=∠B′AC=62°.【点睛】考查了折叠的性质、矩形的性质和全等三角形的判定与性质,解题关键是证明△AOB ≌△COD ,得出∠BAO=∠DCO=34°是解题的关键.14.如果332y x x=-+--,那么y x =_______________________.【答案】19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x=3,∴y=﹣2,∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.15.如图,在等边ABC ∆中,D 是BC 的中点,E 是AB 的中点,H 是AD 上任意一点.如果10AB AC BC ===,53AD =,那么HE HB +的最小值是 .【答案】53【分析】从题型可知为”将军饮马”的题型,连接CE,CE 即为所求最小值.【详解】∵△ABC 是等边三角形,∴B 点关于AD 的对称点就是C 点,连接CE 交AD 于点H,此时HE+HB 的值最小.∴CH=BH,∴HE+HB=CE,根据等边三角形的性质,可知三条高的长度都相等,∴CE=AD=53.故答案为: 53.【点睛】本题考查三角形中动点最值问题,关键在于寻找对称点即可求出最值.16.如图,在ABC ∆中,90ACB ∠=︒,4AC = ,2BC = ,点D 在AB 上,将ACD ∆ 沿CD 折叠,点A 落在点1A 处,1A C 与AB 相交于点E ,若1//AD BC ,则1A D 的长是__________.【答案】2【分析】利用平行线的性质及折叠的性质得到1190A A DB ∠+∠=,即AB ⊥CE ,再根据勾股定理求出2232AB BC AC +=,再利用面积法求出CE.【详解】∵1//AD BC ,∴1A DB B ∠=∠,由折叠得: 1A A ∠=∠,∵90ACB ∠=︒,∴90A B ∠+∠=,∴1190A A DB ∠+∠=,∴AB ⊥CE ,∵90ACB ∠=︒,4AC = ,2BC = ,∴2232AB BC AC =+=, ∵1122AB CE AC BC ⋅⋅=⋅⋅, ∴11324222CE ⨯=⨯⨯, ∴CE=43, ∴148433A E =-=, ∵1cosA cosA =,∴18332A D=,∴122A D =, 故答案为:22.【点睛】此题考查平行线的性质,折叠的性质,勾股定理,利用面积法求三角形的高线,题中求出AB ⊥CE 是解题的关键.17.如图,在ABE △中,AE 的垂直平分线MN 交BE 于点C ,30E ∠=︒,且AB CE =,则BAE ∠的度数为__________【答案】90°【分析】根据题意利用线段的垂直平分线的性质,推出CE=CA ,进而分析证明△CAB 是等边三角形即可求解.【详解】解:∵MN 垂直平分线段AE ,∴CE=CA ,∴∠E=∠CAE=30°,∴∠ACB=∠E+∠CAE=60°,∵AB=CE=AC ,∴△ACB 是等边三角形,∴∠CAB=60°,∴∠BAE=∠CAB+∠CAE=90°,故答案为:90°.【点睛】本题考查等腰三角形的性质以及线段的垂直平分线的性质等知识,解题的关键是熟练掌握相关基本知识.三、解答题18.已知12x x+=,求221x x +,441x x +的值. 【答案】2,2【分析】将已知的等式左右两边分别平方,再展开求得. 【详解】解:∵12x x +=, ∴221()2x x +=, ∴22124x x ++=, ∴2212x x +=. ∴22221()2x x+=, ∴4412+4x x+=, ∴4412x x+=. 【点睛】本题考查了完全平方公式,关键是把所求代数式整理为与所给等式相关的形式或与得到结果相关的形式. 19.如图,已知在坐标平面内,点A 的坐标是()1,1-,点B 在点A 的正北方向5个单位处,把点A 向上平移2个单位再向左平移3个单位得到点C .()1在下图中画出平面直角坐标系和ABC ∆,写出点B 、点C 的坐标;()2在图中作出ABC ∆关于y 轴的轴对称图形'''A B C ∆;()3求出ABC ∆的面积【答案】(1)图见解析,点B的坐标为(-1,6),点C的坐标为(-4,3);(2)见解析;(3)152.【分析】(1)根据描述可画出B,C表示的点,顺次连接可得到△ABC,再根据点A的坐标可找到原点坐标,并可以画出坐标系,然后写出B,C的坐标即可;(2)根据关于y轴对称的点的坐标横坐标互为相反数,纵坐标相等找出A,B,C的对应点,然后再顺次连接即可得出结果;(3)过点C作CD⊥AB于点D,则根据三角形的面积公式可得出△ABC的面积.【详解】解:(1)平面直角坐标系和ABC如图所示,点B的坐标为(-1,6),点C的坐标为(-4,3);(2)△A′B′C′如图所示;(3)过点C作CD⊥AB于点D,根据题意可知,AB∥y轴,∴AB=5,CD=3,∴△ABC的面积=12×AB×CD=12×5×3=152.【点睛】本题考查了利用平移变换作图以及轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.【答案】证明见解析.【解析】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.21.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件数如下:每人加工零件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件的平均数、中位数和众数;(2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?【答案】(1)平均数是:260件,中位数是:240件,众数是:240件;(2)240件.【分析】(1)利用加权平均数公式即可求得平均数,中位数是小到大的顺序排列时,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;(2)根据(1)求得的中位数,平均数以及众数进行比较,根据实际情况进行判断.【详解】解:(1)这15人该月加工零件总数=540145013002240621031202⨯+⨯+⨯+⨯+⨯+⨯=3900(件),这15人该月加工零件的平均数:390026015x==(件),中位数是:240件,众数是:240件;(2)240件合适.因为当定额为240件时,有10人达标,4人超额完成,有利于提高大多数工人的积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年河北省邢台市八年级(上)期末数学试卷一、选择题(本大题共14小题,其中1-6小题每小题2分,7-14题每小题2分,共36分)1.(2分)﹣64的立方根是()A.﹣4B.4C.±4D.不存在2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB4.(2分)用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万5.(2分)用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b6.(2分)一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是()A.a+b B.C.D.7.(3分)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠ABC的度数是()A.30°B.35°C.36°D.60°8.(3分)估算的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间9.(3分)如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12B.14C.16D.1810.(3分)下列运算正确的是()A.+=B.•=C.=D.=3 11.(3分)一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5B.10C.25D.±2512.(3分)如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.30°C.20°D.10°13.(3分)下列算式中,你认为正确的是()A.B.C.D.14.(3分)如图,已知线段BC,分别以B、C为圆心,大于BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为()A.4B.4C.8D.8二、填空题(本大题共4小题,其中15-17题每小题3分,18小题4分,共13分)15.(3分)若在实数范围内有意义,则x的取值范围为.16.(3分)若,则=.17.(3分)如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是(填序号).18.(4分)给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是;根据你发现的规律,试写出第9个分式.三、解答题(共71分)19.(7分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.20.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.21.(8分)如图,在△ABC中,∠ABC>90°.(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).(2)在(1)的基础上,如果PD=PC,则PC:BC=.22.(8分)(1)先化简,再求值:1﹣,其中x=﹣2,y=.(2)解分式方程:.23.(10分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F 是AB的中点.(1)直接写出AB与EF的数量关系:;(2)若AD=3,BD=2,∠C=60°,求EF的长.24.(10分)如图1,射线OB与直线AN垂直于点O,线段OP在∠AOB内,一块三角板的直角顶点与点P重合,两条直角边分别与AN、OB的交于点C、D.(1)当∠POB=60°,∠OPC=30°,PC=2时,则PD=.(2)若∠POB=45°,①当PC与PO重合时,PC和PD之间的数量关系是;②当PC与PO不重合时,猜想PC与PD之间的数量关系,并证明你的结论.25.(10分)王伟和张岩今年秋冬以来进行了两次徒步爬山活动.(1)第一次爬紫金山,他们沿通往主峰的山路爬到某景点A,行程1800米,二人从山脚下同时出发,但是王伟爬的很快,平均速度是张岩的1.2倍,结果比张岩早30分钟到达景点,求王伟的平均爬山速度是每分钟多少米?(2)第二次爬天梯山,王伟爬到顶峰用了n小时(n>2),张岩爬到顶峰的时间是王伟的1.1倍还多1小时,王伟的平均爬山速度是张岩的2倍吗?请说明理由.26.(11分)在Rt△AOB 中,∠AOB=90°,∠A=45°,点P、D分别在射线AB、OB上,PO=PD.=9,求点D到AB的距离.(1)如图1,若∠OPD=30°,S△OPD(2)①如图2,作DE⊥AB于点E,当∠OPD≤90°时,PE与AB之间的数量关系是;②当∠OPD为钝角时,PE与AB之间是否存在上述关系?若存在,设AB=11,求出PE的值;若不存在,请说明理由.2017-2018学年河北省邢台市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,其中1-6小题每小题2分,7-14题每小题2分,共36分)1.(2分)﹣64的立方根是()A.﹣4B.4C.±4D.不存在【解答】解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选:A.2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.3.(2分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB【解答】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.4.(2分)用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万【解答】解:近似数145762≈1.46×105(精确到千位).故选:B.5.(2分)用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b【解答】解:用反证法证明“a>b”时,应先假设a≤b.故选:B.6.(2分)一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是()A.a+b B.C.D.【解答】解:根据工作总量=工作效率×工作时间,得甲的工作效率是,乙的工作效率是.∴甲乙两人合作一天的工作量为:+.故选D.7.(3分)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠ABC的度数是()A.30°B.35°C.36°D.60°【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选:C.8.(3分)估算的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间【解答】解:∵25<27<36,∴5<<6,∴2<﹣3<3.故选:B.9.(3分)如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12B.14C.16D.18【解答】解:∵∠D=90°,CD=6,AD=8,∴AC==10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=16,故选:C.10.(3分)下列运算正确的是()A.+=B.•=C.=D.=3【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、原式==2,所以D选项错误.故选:B.11.(3分)一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5B.10C.25D.±25【解答】解;一个正数的平方根为2x+1和x﹣7,∴2x+1+x﹣7=0x=2,2x+1=5(2x+1)2=52=25,故选:C.12.(3分)如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.30°C.20°D.10°【解答】解:连接OA、OB,∵∠A=80°,∴∠ABC+∠ACB=100°,∵O是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴∠OAB=∠OBA,∠OCA=∠OAC,OB=OC,∴∠OBA+∠OCA=80°,∴∠OBC+∠OCB=100°﹣80°=20°,∵OB=OC,∴∠BCO=∠CBO=10°,故选:D.13.(3分)下列算式中,你认为正确的是()A.B.C.D.【解答】解:A、,错误;B、1×=,错误;C、3a﹣1=,错误;D、==,正确.故选:D.14.(3分)如图,已知线段BC,分别以B、C为圆心,大于BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为()A.4B.4C.8D.8【解答】解:如图,连接EF交BC于H.由题意EB=EC=4,EF⊥BC,∴∠B=∠C,∵∠AEC=∠B+∠C=60°,∴EH=CE=2,BH=CH=EH=2,∴BC=4,=•BC•EH=×4×2=4,∴S△EBC故选:B.二、填空题(本大题共4小题,其中15-17题每小题3分,18小题4分,共13分)15.(3分)若在实数范围内有意义,则x的取值范围为x≥2.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.16.(3分)若,则=﹣.【解答】解:∵﹣=2,∴a﹣b=﹣2ab,∴原式===﹣.故答案为:﹣.17.(3分)如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是②(填序号).【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故答案为:②18.(4分)给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是﹣;根据你发现的规律,试写出第9个分式.【解答】解:给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是﹣;根据你发现的规律,试写出第9个分式,故答案为:﹣;三、解答题(共71分)19.(7分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第③步开始出错的;(2)请你给出正确的解题过程.【解答】解:(1)③(2)原式=2﹣=6﹣2=420.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.21.(8分)如图,在△ABC中,∠ABC>90°.(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).(2)在(1)的基础上,如果PD=PC,则PC:BC=2:3.【解答】解:(1)如图所示:(2)∵PD=PC,∴∠PDC=∠C,∵DP平分∠BDC,∴∠BDP=∠PDC,∵∠BDP+∠PDC+∠C=90°,可得∠C=30°,∴∠BDP=30°,设BP=1,可得DP=2,即PC=2,所以PC:BC=2:(1+2)=2:3;故答案为:2:322.(8分)(1)先化简,再求值:1﹣,其中x=﹣2,y=.(2)解分式方程:.【解答】解:(1)原式=1﹣•=1﹣==﹣,当x=﹣2、y=时,原式=﹣=;(2)两边都乘以3(x﹣1),得:﹣3x=5+3(x﹣1),解得:x=﹣,检验:x=﹣时,3(x﹣1)=﹣4≠0,所以原分式方程的解为x=﹣.23.(10分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F 是AB的中点.(1)直接写出AB与EF的数量关系:EF=AB;(2)若AD=3,BD=2,∠C=60°,求EF的长.【解答】(1)解:结论:EF=AB理由:如图,连接BE,∵在△BCD中,DB=BC,E是CD的中点,∴BE⊥CD,∵F是AB的中点,∴在Rt△ABE中,EF是斜边AB上的中线,∴EF=AB.故答案为EF=AB.(2)解:连接BE.∵BD=BC,∠C=60°,∴△CBD是等边三角形,∴CD=BD=BC=2,∵E是BC中点,∴DE=CD=1,在Rt△BED中,∵BE===,在Rt△AEB中,AE=AD+DE=3+1=4,∴AB==,∵F是AB中点,∴EF=AB=.24.(10分)如图1,射线OB与直线AN垂直于点O,线段OP在∠AOB内,一块三角板的直角顶点与点P重合,两条直角边分别与AN、OB的交于点C、D.(1)当∠POB=60°,∠OPC=30°,PC=2时,则PD=2.(2)若∠POB=45°,①当PC与PO重合时,PC和PD之间的数量关系是PC=PD;②当PC与PO不重合时,猜想PC与PD之间的数量关系,并证明你的结论.【解答】解:(1)作PE⊥AN于E,∵∠POB=60°,OB⊥AN,∴∠AOP=30°,又∠OPC=30°,∴∠ACP=60°,∴AP=PC•sin∠ACP=,∴OP=2AP=2,∵∠POB=60°,∠OPD=60°,∴△POD是等边三角形,∴PD=PO=2,故答案为:2;(2)①当∠POB=45°时,∵三角板的直角顶点与点P重合,∴PC与PO重合时,△PCD为等腰直角三角形,∴PC=PD,故答案为:PC=PD;②PC=PD,理由如下:作PE⊥AN于E,PF⊥OB于F,∵AN⊥OB,PE⊥AN,PF⊥OB,∴四边形EOFP为矩形,∴∠EPF=90°,∴∠EPC=∠FPD,∵∠POB=45°,∴∠POA=45°,∴OP平分∠EOF,又PE⊥AN,PF⊥OB,∴PE=PF,在△EPC和△FPD中,,∴△EPC≌△FPD,∴PC=PD.25.(10分)王伟和张岩今年秋冬以来进行了两次徒步爬山活动.(1)第一次爬紫金山,他们沿通往主峰的山路爬到某景点A,行程1800米,二人从山脚下同时出发,但是王伟爬的很快,平均速度是张岩的1.2倍,结果比张岩早30分钟到达景点,求王伟的平均爬山速度是每分钟多少米?(2)第二次爬天梯山,王伟爬到顶峰用了n小时(n>2),张岩爬到顶峰的时间是王伟的1.1倍还多1小时,王伟的平均爬山速度是张岩的2倍吗?请说明理由.【解答】解:(1)设张岩的平均爬山速度为x米/分,则王伟的平均爬山速度为1.2米/分,根据题意得:+30=,解得:x=10,经检验x=10是原方程的解,所以1.2x=12,答:王伟的平均爬山速度是1.2米/分;(2)王伟的平均爬山速度不是张岩的2倍;由题意知,王伟的平均爬山速度是,张岩平均爬山速度是,÷==1.1+,∵n>2,∴<,∴1.1+<2,∴王伟的平均爬山速度不是张岩的2倍.26.(11分)在Rt△AOB 中,∠AOB=90°,∠A=45°,点P、D分别在射线AB、OB上,PO=PD.=9,求点D到AB的距离.(1)如图1,若∠OPD=30°,S△OPD(2)①如图2,作DE⊥AB于点E,当∠OPD≤90°时,PE与AB之间的数量关系是PE=AB;②当∠OPD为钝角时,PE与AB之间是否存在上述关系?若存在,设AB=11,求出PE的值;若不存在,请说明理由.【解答】解:(1)如图1中,作DF⊥OP于F,DE⊥AB于E.设DF=a.在Rt△PDF中,∵∠PFD=90°,∠DPF=30°,∴PD=2DF=OP=2a,=•OP•DF=•2a•a=9,∴S△OPD∴a=3,∵OP=PD,∴∠PDO=(180°﹣30°)=75°,∵∠PDO=∠B+∠DPB,∴75°=45°+∠DPB,∴∠DPB=∠DPO=30°,∵DF⊥OP,DE⊥AB,∴DE=DF=3.∴点D到AB的距离为3.(2)结论:PE=AB,理由如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,∴PE=AB.(3)当∠OPD为钝角时,PE=AB.作OC⊥AB于C,同法可证∴△POC≌△DPE(AAS),∴OC=PE,∴PE=AB.∵AB=11,∴PE=AB=.附赠数学基本知识点1知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。

相关文档
最新文档