【最新】北师大版九年级数学上册第四章:图形的相似检测题1

合集下载

北师大版九年级数学上册第四章图形的相似单元测试(含解析)

北师大版九年级数学上册第四章图形的相似单元测试(含解析)

1北师大版九年级数学上册第四章图形的相似单元测试(含解析)一、选择题1.已知x∶y=5∶2,则下列各式中不正确的是( ) A.=B.- =C.=D.- =答案 D A.由合比性质,得=,故A 正确;B.由分比性质,得- =,故B 正确;C.由反比性质,得y∶x=2∶5,由合比性质,得 = ,再由反比性质,得 =,故C 正确;D.由反比性质,得y∶x=2∶5,由分比性质,得- =- ,再由反比性质,得 - =-,故D 错误.故选D.2.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A,B,C.直线DF 分别交l 1,l 2,l 3于点D,E,F,AC 与DF 相交于点H,且AH=2,HB=1,BC=5,则的值为( )A.B.2C.D.答案 D 由直线l 1∥l 2∥l 3,得 =.因为AH=2,HB=1,所以AB=3.因为BC=5,所以 =.所以 =. 3.如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA,则下列结论一定正确的是( )A.AB 2=BC ·BD B.AB 2=AC ·BD2C.AB ·AD=BD ·BCD.AB ·AD=AD ·CD答案 A 因为△ABC ∽△DBA,所以 = =,所以AB 2=BC ·BD,AB ·AD=AC ·DB.4.在比例尺为1∶10 000的地图上,一块面积为2 cm 2的区域表示的实际面积是( ) A.2 000 000 cm 2B.20 000 m 2C.4 000 000 m 2D.40 000 m 2答案 B 设实际面积是x cm2,则 =,解得x=200 000 000,∵1 m 2=10 000 cm 2,∴200 000 000 cm 2=20 000 m 2.故选B.5.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC,BE 与CD 相交于点F,则下列结论一定正确的是( )A. =B. =C. =D. =答案 A ∵DE∥BC,∴△ADE ∽△ABC, ∴ = = ,故选项A 正确,故选A.6.如图,点P 是▱ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E,则图中相似的三角形有( )A.0对B.1对C.2对D.3对 答案 D ∵四边形ABCD 是平行四边形,∴AB∥DC,AD ∥BC,∴△EAP ∽△EDC,△EAP ∽△CBP,∴△EDC ∽△CBP,故有3对相似三角形.故选D.7.如图,在△ABC 中,中线BE 、CD 相交于点O,连接DE,下列结论:① = ;② △ △= ;③ = ;④ △ △=.其中正确的个数是( )3A.1B.2C.3D.4答案 C 由中线BE 、CD 知,DE 为△ABC 的中位线,所以DE= BC,DE ∥BC,所以 =,①正确;由DE ∥BC 可得△DOE ∽△COB,则△ △= =,②错误;由DE ∥BC 易得 = , = ,所以 = ,③正确;④△ △= =,设△DOE 的高为h,则△BOC 的高为2h,△ABC 的高为6h,则△ △ = = , △ △ = ,所以 △ △ =,④正确.故选C.8.如图,点E,点F 分别在菱形ABCD 的边AB,AD 上,且AE=DF,BF 交DE 于点G,延长BF 交CD 的延长线于H,若=2,则的值为( )A.B.C.D.答案 B 设菱形ABCD 的边长为3a.因为四边形ABCD 是菱形,=2,AE=DF,所以AE=DF=a,AF=BE=2a,AB ∥CD,所以 = = =,所以HD= AB= a,HF=HB.因为AB ∥CD,所以 = ==,所以BG= HB.所以 == . 9.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=CD.下列结论:①∠BAE=30°,②△ABE ∽△AEF,③AE⊥EF,④△ADF ∽△ECF.其中正确的个数为( )A.1B.2C.3D.4答案 B ∵在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且4CF=CD,∴∠B=∠C=90°,AB∶EC=BE∶CF=2∶1.∴△ABE ∽△ECF,∴AB∶EC=AE∶EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB∶AE=BE∶EF,∠AEB+∠FEC=90°. ∴∠AEF=∠B=90°.∴△ABE ∽△AEF,AE ⊥EF.∴②③正确. 由已知条件推不出①④正确.故选B.10.如图,△ABC 中,AB=AC=18,BC=12,正方形DEFG 的顶点E,F 在△ABC 内,顶点D,G 分别在AB,AC 上,AD=AG,DG=6,则点F 到BC 的距离为( )A.1B.2C.12 -6D.6 -6答案 D 如图,过点A 作AM ⊥BC 于点M,交DG 于点N,延长GF 交BC 于点H.∵AB=AC,AD=AG,∴AD∶AB=AG∶AC, ∵∠BAC=∠DAG,∴△ADG ∽△ABC, ∴∠ADG=∠B,∴DG∥BC,∴AN⊥DG.∵四边形DEFG 是正方形,∴FG⊥DG,∴FH⊥BC, ∵AB=AC=18,BC=12,∴BM=BC=6, ∴AM= - =12 .∵△ADG ∽△ABC,∴ =,∴=,∴AN=6 ,∴MN=AM-AN=6,∴FH=MN-GF=6-6.即点F到BC的距离为6-6.故选D.二、填空题11.若△ABC与△DEF相似且面积之比为25∶16,则△ABC与△DEF的周长之比为.答案5∶4解析相似三角形的面积比等于相似比的平方,相似三角形的周长比等于相似比.因为△ABC与△DEF相似且面积比为25∶16,所以△ABC与△DEF的周长比为5∶4.12.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则点E的坐标为.答案(,)解析∵点A的坐标为(1,0),∴点B的坐标为(1,1).又∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,∴点E的坐标为(,).13.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.答案解析∵BF⊥AC,∴∠CFB+∠FCE=90°,又∠CFB+∠CBF=90°,∴∠FCE=∠CBF.5∵AB∥CD,∴∠FCE=∠BAE.∴∠EAB=∠CBF.∵∠BCF=∠ABC,∴△FCB∽△CBA.∴CF∶CB=CB∶AB=1∶2.∴FC∶AB=1∶4.∵FC∥AB,∴△FCE∽△BAE.∴==.14.如图,小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E、F,不断调整站立的位置,使在点D处恰好能看到铁塔的顶部B和底部A,设小明的手臂长l=45cm,小尺长a=15cm,点D到铁塔底部的距离AD=42m,则铁塔的高度是m.答案14解析作CH⊥AB于H,交EF于P,如图,则CH=DA=42m,由题意知,CP=45cm=0.45m,EF=15cm=0.15m.∵EF∥AB,∴△CEF∽△CBA,∴=,即=,∴AB=14m,即铁塔的高度为14m.15.如图,直线l1,l2,…,l6是一组等距离的平行线,过直线l1上的点A作两条射线,分别与直线l3,l6相交于点B,E,C,F.若BC=2,则EF的长是.答案56解析∵直线l1,l2,…,l6是一组等距离的平行线,∴=,∵BC∥EF,∴△ABC∽△AEF,∴==,又∵BC=2,∴EF=5.16.如图,E、F分别是平行四边形ABCD的边AD、BC的中点,若四边形AEFB与四边形ABCD相似,AB=4,则AD 的长度为.答案4解析设AE=x(x>0),则AD=2x,∵四边形ABCD与四边形ABFE相似,∴=,∴AB2=2x2,∴AB=x=4,∴x=2,∴AD=4.17.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.答案解析如图,∵GF∥HC,∴△AGF∽△AHC,∴==,∴GF=HC=,7∴OF=OG-GF=2-=.同理,MN=,∴ON=,∴S阴影=1-××=.18.如图,矩形DEFG的边EF在△ABC的边BC上,点D在边AB上,点G在边AC上,△ADG的面积是40,△ABC 的面积是90,AM⊥BC于M交DG于N,则AN∶AM=.答案2∶3解析∵四边形DEFG是矩形,∴DG∥BC,∴△ADG∽△ABC.∵△ADG的面积是40,△ABC的面积是90,==,∴△△∴=,∵AM⊥BC于M交DG于N,DG∥BC,∴AN⊥DG,∴==.三、解答题19.如图,在平面直角坐标系内有两点A(-2,0),B,CB所在直线的方程为y=2x+b,连接AC,求证:△AOC∽△COB.8证明∵C、B在直线y=2x+b上,∴把点B的坐标代入,求得直线方程为y=2x-1,∴C(0,-1),易证OC∶OB=OA∶OC=2∶1,又∠AOC=∠COB=90°,∴△AOC∽△COB.20.如图,△ABC的三个顶点的坐标分别为A(-2,4)、B(-3,1)、C(-1,1),以坐标原点O为位似中心,2为相似比,在第二象限内将△ABC放大,放大后得到△A'B'C'.(1)画出放大后的△A'B'C',并写出点A'、B'、C'的坐标;(点A、B、C的对应点分别为A'、B'、C')(2)求△A'B'C'的面积.答案(1)如图所示,△A'B'C'即为所求.910A'(-4,8),B'(-6,2),C'(-2,2). (2)∵S △ABC =×2×3=3,又∵△A'B'C'与△ABC 的相似比为2∶1,∴△ △=4,∴S △A'B'C'=4S △ABC =12.21.如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O. (1)求证:△COM ∽△CBA; (2)求线段OM 的长度.答案 (1)证明:由题意知A 与C 关于直线MN 对称, ∴AC⊥MN,∴∠COM=90°.在矩形ABCD 中,∠B=90°, ∴∠COM=∠B,又∵∠ACB=∠MCO,∴△COM ∽△CBA. (2)∵在Rt △CBA 中,AB=6,BC=8, ∴AC=10,∴OC=5,∵△COM ∽△CBA,∴ =, ∴OM=.22.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB边以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA边以每秒3cm的速度向A点运动,当P点到达B点时停止运动,Q点随之停止运动.设运动的时间为x s.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,说明理由.答案(1)由题意得AP=4x cm,CQ=3x cm,AQ=(30-3x)cm,0≤x≤5.当PQ∥BC时,有=,即=-,解得x=,∴当x=时,PQ∥BC.(2)能.∵AB=CB,∴∠A=∠C,分两种情况讨论.①若△APQ∽△CBQ,则=,即=-,解得x=5或x=-10(舍去),此时AP=20cm.②若△APQ∽△CQB,则=,即=-.解得x=,此时AP=cm.综上,当AP=20cm或AP=cm时,△APQ与△CQB相似.23.请你认真阅读下面的小探究系列,完成所提出的问题.(1)如图,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,另一边交BA的延长线于点G.求证:EF=EG;(2)如图,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF EG(用“=”或“≠”填空);11(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,AD=3,求的值.答案(1)证明:∵∠AEF+∠AEG=90°,∠AEF+∠CEF=90°,∴∠AEG=∠CEF,又∵EA=EC,∠GAE=∠C=90°,∴△EAG≌△ECF(ASA),∴EG=EF.(2)=.(3)过点E作EM⊥AB于点M,作EN⊥BC于点N,则∠MEN=90°,EM∥BC,EN∥AB,∴==,∴==,∵∠GEM+∠MEF=90°,∠FEN+∠MEF=90°,∴∠FEN=∠GEM,又∠FNE=∠GME=90°,12∴Rt△FNE∽Rt△GME,∴==.13。

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》检测(含答案解析)

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》检测(含答案解析)

一、选择题1.如图,在Rt ABC 中,90ACB D ∠=︒,是AB 边的中点,AF CD ⊥于点E ,交BC 边于点F ,连接DF ,则图中与ACE △相似的三角形共有( )A .2个B .3个C .4个D .5个2.如图,////AB CD EF ,若3BF DF =,则AC CE 的值是( )A .2B .12C .13D .33.已知△ABC 如图,则下列4个三角形中,与△ABC 相似的是( )A .B .C .D . 4.已知ABC 26,2,则与ABC 相似的三角形的三边长可能是( )A .123B .13 22C .136D .1335.下列说法中,正确的说法有( )①对角线互相平分且相等的四边形是菱形;②一元二次方程2340x x --=的根是14x =,21x =-;③两个相似三角形的周长的比为23,则它们的面积的比为49; ④对角线互相垂直的平行四边形为正方形; ⑤对角线垂直的四边形各边中点得到的四边形是矩形. A .1个 B .2个 C .3个 D .4个6.如图,4AB =,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,12BE DB =,作EF DE ⊥并截取EF DE =,连结AF 并延长交射线BM 于点C .设BE x =,BC y =,则y 关于x 的函数解析式是( )A .124x y x =--B .21x y x =--C .31x y x =--D .84x y x =-- 7.如图,在△ABC 中,EF //BC ,EG //AB ,则下列式子一定正确的是( )A .AE EF EC CD = B .EF EG CD AB = C .CG AF BC AD = D .AF BG DF GC= 8.下列各组图形中,一定相似的是( )A .两个等腰三角形B .两个等边三角形C .两个平行四边形D .两个菱形 9.若275x y z ==,则2x y z x z +-+的值是( ) A .67 B .13 C .49 D .410.如图,在Rt ABC 中,90ACB ∠=︒,以其三边为边向外作正方形,过点C 作CR FG ⊥于点R ,再过点C 作PQ CR ⊥分别交边DE ,BH 于点P ,Q .若2QH PE =,9PQ =,则CR 的长为( )A .14B .9C .425D .36511.如图,正方形ABCD 的边长为2,BE CE =, 1.MN =线段MN 的两端在CD ,AD 上滑动,当ABE 与以D ,M ,N 为顶点的三角形相似时,DM 的长为( )A .13B .13或23C .5D .5或25 12.如图,在△ABC 中,∠C =90°,AB =10,BC =8.E 是AC 边上一动点,过点E 作EF ∥AB 交BC 于点F ,D 为线段EF 的中点,当BD 平分∠ABC 时,AE 的长度是( )A .1613B .3013C .4013D .4813二、填空题13.如图,△ABC 是测量小玻璃管内径的量具,AB 的长为18cm ,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处(D 、E 分别在AC 、BC 上,且DE ∥AB ),那么小玻璃管内径DE 是_____cm .14.如图所示是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的半径为0.8m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为_________m 2(结果保留)π.15.在平面直角坐标系中,ABC 的三个顶点坐标分别为(2,4)A -,(3,1)B -,(2,0)C -,以原点O 为位似中心,把ABC 缩小为原来的12,得到A B C ''',则点A 的对应点A '的坐标为__________. 16.如图,EB 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区EB 的长度是6米,则车宽FA 的长度为________米.17.在平面直角坐标系中,ABC 与DEF 是以坐标原点O 为位似中心的位似图形,相似比为1:2;若B 点的坐标为(2,1),则B 的对应点E 的坐标为________.18.如图,在正方形ABCD 中,对角线,AC BD 相交于点,O E 是OB 的中点,连接AE 并延长交BC 于点,F 若BEF ∆的面积为1,则正方形ABCD 的面积为________________________.19.如图,在矩形ABCD 中,ABC ∠的平分线BE 与AD 交于点E ,BED ∠的平分线EF 与DC 交于点F ,若12AB =,2DF FC =,则BC 的长是_____.20.如图,在ABC 中,8AB =,6AC =,D 是AC 上一点,4=AD ,在AB 上取一点E ,使A 、D 、E 为定点的三角形与ABC 相似,则AE 的长为_______________.三、解答题21.如图,在ABC 中,∠ACB =90°,AC=BC ,O 是AB 的中点,连结OC ,点F ,E 分别在边AB 和BC 上,过E 点作EM ⊥AB ,垂足为M ,满足∠FCO =∠EFM .(1)求证:CF=EF ;(2)求证:BC EF CE NE=.22.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且3CD DE =.将ADE 沿AE 翻折至AFE △,延长EF 交边BC 于点G ,连接AG 、CF .(1)求证:BG GC =;(2)求CFG △的面积.23.如图,在ABC 中,90ACB ∠=︒,CD 是斜边AB 上的高,E 是AC 的中点,连接ED 并延长交CB 的延长线于点F .(1)求证:2FD FB FC =⋅.(2)若G 是BC 的中点,连接DG ,5AB =,4AC =,求点G 到EF 的距离. 24.已知: ABC ∆在平面直角坐标平面内,三个顶点的坐标分别为()0,3A 、()3,4B 、()2,2C (正方形网格中每个小正方形的边长是一个单位长度).(1)画出ABC ∆向下平移4个单位长度得到的111A B C ∆,并写出点1C 的坐标; (2)以点B 为位似中心,在网格内画出222A B C ∆,使222A B C ∆与ABC ∆位似,且位似比为2:1,并写出点2C 的坐标;(3)222A B C ∆的面积是多少个平方单位?25.如图,正方形ABCD 的边长为2,E 、F 为线段AC 上两动点(不与A 、C 点重合),且45EBF ∠=︒.(1)求证:ABF BEF △△.(2)试说明无论点E、F在线段AC上怎样运动,总有2BE CE BF AF⎛⎫=⎪⎝⎭.(3)如图2,过点E、F分别作AB、BC的垂线相交于点O,垂足分别为M、N,求OM ON⋅的值.26.如图,在平面直角坐标系中,已知ΔABC三个顶点的坐标分别是A(-4,2),B(-3,1),C(-1,2).(1)请画出ΔABC关于x轴对称的ΔA1B1C1;(2)以点O为位似中心,相似比为1:2,在y轴右侧,画出ΔA1B1C1放大后的ΔA2B2C2;【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用直角三角形斜边上的高线模型,可判断有2个三角形与ACE△相似,利用直角三角形斜边上的中线等于斜边的一半,传递一组等角,得到第3个三角形.【详解】∵∠EAC=∠CAF,∠AEC=∠ACF,∴△ACE∽△AFC;∵∠EAC+∠AFC=90°,∠ECF+∠AFC=90°,∴∠EAC=∠ECF ,∵∠AEC=∠CEF ,∴△ACE ∽△CFE ;∵90ACB D ∠=︒,是AB 边的中点,∴DC=DB ,∴∠ECF=∠EAC=∠B ,∵∠AEC=∠BCA ,∴△ACE ∽△BAC ;共有3个,故选B.【点睛】本题考查了直角三角形的相似,熟练运用三角形相似的判定定理是解题的关键. 2.A解析:A【分析】由BF=3DF ,得BD=2DF ,使用平行线分线段成比例定理计算即可.【详解】∵BF=3DF ,∴BD=2DF ,∵////AB CD EF , ∴AC CE =BD DF , ∴AC CE =2DF DF=2, 故选A.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是定理的对应关系是解题的关键.3.C解析:C【分析】△ABC 是等腰三角形,底角是75°,则顶角是30°,看各个选项是否符合相似的条件.【详解】解:∵由图可知,AB =AC =6,∠B =75°,∴∠C =75°,∠A =30°,A 、三角形各角的度数分别为75°,52.5°,52.5°,不符合题意;B 、三角形各角的度数都是60°,不符合题意;C 、三角形各角的度数分别为75°,30°,75°,符合题意;D、三角形各角的度数分别为40°,70°,70°,不符合题意;∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C.【点睛】此题主要考查等腰三角形的性质,三角形内角和定理和相似三角形的判定的理解和掌握,解题的关键是熟练掌握相似三角形的判定.4.A解析:A【分析】根据相似三角形的判定定理即可得到结论.【详解】解:∵△ABC,2,∴△ABC:2=1∴△ABC相似的三角形三边长可能是1,故选:A.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.5.C解析:C【分析】根据矩形的判定定理、一元二次方程的解法、【详解】解:①对角线互相平分且相等的四边形是矩形,故①错误;②一元二次方程x2-3x-4=0(x-4)(x+1)=0x-4=0或x=1=0x1=4,x2=-1,故②正确;③两个相似三角形的周长的比为23,则它们的面积的比为22()349,故③正确;④对角线相等且互相垂直的平行四边形为正方形,故④错误;⑤对角线垂直的四边形各边中点得到的四边形是矩形,说法正确.故选:C【点睛】本题考查的是命题的真假判断,掌握矩形的判定定理、一元二次方程的解法、中点四边形的性质、矩形、菱形和正方形的判断是解题的关键.6.A解析:A【分析】作FG ⊥BC 于G ,依据已知条件求得△DBE ≌△EGF ,得出FG =BE =x ,EG =DB =2x ,然后根据平行线的性质即可求得.【详解】解:作FG ⊥BC 于G ,∵∠DEB +∠FEC =90°,∠DEB +∠BDE =90°;∴∠BDE =∠FEG ,在△DBE 与△EGF 中,B FGE BDE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EGF ,∴EG =DB ,FG =BE =x ,∴EG =DB =2BE =2x ,∴GC =y -3x ,∵FG ⊥BC ,AB ⊥BC ,∴FG ∥AB ,CG :BC =FG :AB , 即34x y x y-=, ∴124x y x =--, 故选:A .【点睛】本题考查了三角形全等的判定和性质,以及平行线分线段成比例,辅助线的做法是解题的关键.7.D解析:D【分析】根据平行线分线段成比例定理逐一判断即可.【详解】∵EG //AB ,EF //BC ,∴AE AF AC FD=, ∵AC≠EC ∴AE EF EC CD=不成立, ∴选项A 错误;∵EG //AB ,EF //BC , ∴EF AE CD AC =,EG EC AB AC=, ∵AE≠EC , ∴EF EG CD AB=不成立, ∴选项B 错误;∵EG //AB ,EF //BC , ∴CG CE CB CA =DF DA=, ∵DF≠AF ∴CG AF BC AD=不成立, ∴选项C 错误;∵EG //AB ,EF //BC , ∴AF AE DF EC =,AE BG EC GC =, ∴AF BG DF GC=, ∴选项D 正确;故选D .【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是比例中对应线段的属性保持一致是解题的关键.8.B解析:B【分析】根据相似图形的概念进行判断即可;【详解】任意两个等腰三角形的对应边的比相等,但对应角不一定相等,故不一定相似,故A 错误;任意两个等边三角形的对应角相等,都是60°,故一定相似,故B 正确;任意两个平行四边形的对应角不一定相等,对应边也不一定成比例,故不一定相似,故C 错误;任意两个菱形的对应边的比相等,但对应角不一定相等,故不一定相似,故D 错误; 故答案选B .【点睛】本题主要考查了相似图形的定义判断,准确理解是解题的关键.9.C解析:C【分析】 根据275x y z k ===,则x =2k ,y =7k ,z =5k ,代入2x y z x z+-+进行计算即可. 【详解】 解:275x y z k ===(k≠0), 则x =2k ,y =7k ,z =5k , ∴2x y z x z+-+=2754495k k k k k +-+=, 故选:C .【点睛】 本题考查了比例的性质,解题的关键是掌握比例的性质进行解题.10.C解析:C【分析】连接EC ,CH ,设AB 交CR 于点J ,先证得△ECP ∽△HCQ ,可得12PC CE EP CQ CH HQ ===,进而可求得CQ =6,AC :BC =1:2,由此可设AC =a ,则BC =2a ,利用AC ∥BQ ,CQ ∥AB ,可证得四边形ABQC 为平行四边形,由此可得AB =CQ =6,再根据勾股定理求得AC =,BC =125CJ =,进而可求得CR 的长. 【详解】解:如图,连接EC ,CH ,设AB 交CR 于点J ,∵四边形ACDE ,四边形BCIH 都是正方形,∴∠ACE =∠BCH =45°,∵∠ACB =90°,∠BCI =90°,∴∠ACE +∠ACB +∠BCH =180°,∠ACB +∠BCI =180°,∴点E 、C 、H 在同一直线上,点A 、C 、I 在同一直线上,∵DE ∥AI ∥BH ,∴∠CEP =∠CHQ ,∵∠ECP =∠QCH ,∴△ECP ∽△HCQ , ∴12PC CE EP CQ CH HQ ===, ∵PQ =9,∴PC =3,CQ =6,∵EC :CH =1:2,∴AC :BC =1:2,设AC =a ,则BC =2a ,∵PQ ⊥CR ,CR ⊥AB ,∴CQ ∥AB ,∵AC ∥BQ ,CQ ∥AB ,∴四边形ABQC 为平行四边形,∴AB =CQ =6,∵222AC BC AB +=,∴2536a =,∴a =(舍负)∴AC =,BC = ∵1122AC BC AB CJ ⋅⋅=⋅⋅,∴125565CJ ==, ∵JR =AF =AB =6,∴CR =CJ +JR =425, 故选择:C .【点睛】本题考查了正方形的性质、相似三角形的判定及性质、平行四边形的判定及性质、勾股定理的应用,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键. 11.D解析:D【分析】根据90B D ∠=∠=,所以只有两种可能,假设ABE △∽NDM 或ABE △∽MDN △,分别求出DM 的长即可.【详解】 解:正方形ABCD 边长是2,BE CE =,1BE ∴=,225AE AB BE ∴+=当ABE △∽NDM 时::DM BE MN AE ∴=,1.MN = 5DM ∴=. 当ABE △∽MDN △时,::DM BA MN AE ∴=,2=1,=AB MN25DM ∴ 5DM ∴=25. 故选D .【点睛】本题考查相似三角形的判定与性质、正方形的性质.解决本题特别要考虑到①DM 与AB 是对应边时,②当DM 与BE 是对应边时这两种情况.12.B解析:B【分析】根据角平分线、中点及平行线的性质,得出FD=ED= FB ,设FD=ED= FB=x ,再根据△CEF ∽△CAB ,得出x 的值,根据勾股定理即可求解.【详解】解:∵BD 平分∠ABC∴∠ABD=∠FBD∵EF ∥AB∠FDB=∠ABD∴∠FDB=∠FBD∴△FBD 为等腰三角形∴FB=FD∵D 为线段EF 的中点∴FD=ED∴FD=ED= FB设FD=ED= FB=x∴EF=2x∵EF ∥AB∴△CEF ∽△CAB ∴CF EF CB AB= ∴CB FB EF CB AB-= 即8-2810x x = 解得:x=4013∴CF=8-BF=8-4013=6413EF=2×4013=8013 ∵∠C =90°,AB =10,BC =8∴=在Rt △CEF 中=4813 ∴AE=AC-CE=6-4813=3013故选:B .【点睛】本题主要考查了角平分线、中点及平行线的性质,也考察了相似三角形的性质,勾股定理的应用;解题关键是熟练掌握角平分线、平行线以及相似三角形的性质以及利用方程解决实际问题.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.12【分析】利用平行证明△CDE ∽△CAB 根据相似三角形对应边成比例的性质即可求DE 长【详解】∵DE ∥AB ∴△CDE ∽△CAB ∴即解得:cm 故答案为:12【点睛】本题考查相似三角形的判定及其性质解题解析:12【分析】利用平行证明△CDE ∽△CAB ,根据相似三角形对应边成比例的性质即可求DE 长.【详解】∵DE ∥AB ,∴△CDE ∽△CAB , ∴=CD DE CA AB ,即()6020=6018DE - 解得:12DE =cm故答案为:12【点睛】本题考查相似三角形的判定及其性质,解题的关键是熟练掌握相似三角形的判定及其性质:相似三角形对应边成比例.14.44π【分析】证明△OBQ ∽△OAP 根据相似三角形的性质求出AP 根据圆的面积公式计算得到答案【详解】解:如图由题意得OB=08mOQ=OP-PQ=3-1=2(m )BQ ∥AP ∴△OBQ ∽△OAP ∴即解解析:44π【分析】证明△OBQ ∽△OAP ,根据相似三角形的性质求出AP ,根据圆的面积公式计算,得到答案.【详解】解:如图,由题意得,OB=0.8m ,OQ=OP-PQ=3-1=2(m ),BQ ∥AP ,∴△OBQ ∽△OAP , ∴BQ OQ AP OP =,即0.823AP =, 解得,AP=1.2(m ), 则地面上阴影部分的面积=π×1.22=1.44π(m 2),故答案为:1.44π.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的判定定理和性质定理是解题的关键. 15.或【分析】根据在平面直角坐标系中如果位似变换是以原点为位似中心相似比为k 那么位似图形对应点的坐标的比等于k 或-k 即可求得答案【详解】解:∵△ABC 的三个顶点坐标分别为A (-24)B (-31)C (-2解析:(1,2)-或(1,2)-【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,即可求得答案.【详解】解:∵△ABC 的三个顶点坐标分别为A (-2,4),B (-3,1),C (-2,0),以原点O 为位似中心,把△ABC 缩小为原来的12,得到△A'B'C′, ∴点A 的对应点A'的坐标为:(-2×12,4×12)或[-2×(-12),4×(-12)],即(1,-2)或(-1,2).故答案为:(1,-2)或(-1,2).【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.16.【分析】通过作高利用相似三角形的对应高的比等于相似比列方程求解即可【详解】解:如图过点P 作PM ⊥BE 垂足为M 交AF 于点N 则PM=16设FA=x 米由3FD=2FA 得FD=x=MN ∵四边形ACDF 是矩形解析:127【分析】通过作高,利用相似三角形的对应高的比等于相似比,列方程求解即可.【详解】解:如图,过点P 作PM ⊥BE ,垂足为M ,交AF 于点N ,则PM=1.6,设FA=x 米,由3FD=2FA 得,FD=23x=MN , ∵四边形ACDF 是矩形,∴AF ∥CD ,∴△PAF ∽△PBE , ∴PN FA PM EB =,即1.66PN x =, ∴415PN x =, ∵PN+MN=PM , ∴42 1.6153x x +=, 解得,x=127, 故答案为:127. 【点睛】本题考查视点、视角、盲区的意义,此类问题可以转化为相似三角形的知识进行解答. 17.或【分析】根据位似图形的有两个在原点同侧或异侧分类讨论根据坐标变化规律求解即可【详解】解:与是以坐标原点为位似中心的位似图形分两种情况当与在原点同侧时E 点坐标为:当与在原点异侧时E 点坐标为:故答案为 解析:(4,2)或(4,2)--【分析】根据位似图形的有两个,在原点同侧或异侧分类讨论,根据坐标变化规律求解即可.【详解】解:ABC 与DEF 是以坐标原点O 为位似中心的位似图形,分两种情况, 当ABC 与DEF 在原点同侧时,E 点坐标为:(4,2),当ABC 与DEF 在原点异侧时,E 点坐标为:(4,2)--,故答案为:(4,2)或(4,2)--.【点睛】本题考查了平面直角坐标系中位似图形的坐标变化规律,解题关键是注意分类讨论,熟记位似坐标变化规律.18.【分析】根据正方形的性质得OB =ODAD ∥BC 根据三角形相似的性质和判定得:根据同高三角形面积的比等于对应底边的比可得结论【详解】解:∵四边形ABCD 是正方形∴OB =ODAD ∥BC ∴△BEF ∽△DE解析:24【分析】根据正方形的性质得OB =OD ,AD ∥BC ,根据三角形相似的性质和判定得:13BE EF ED AE ==,根据同高三角形面积的比等于对应底边的比,可得结论. 【详解】解:∵四边形ABCD 是正方形,∴OB =OD ,AD ∥BC ,∴△BEF ∽△DEA , ∴BE EF ED AE=, ∵E 是OB 的中点, ∴13BE EF ED AE ==, ∴S △BEF :S △AEB =EF :AE =13, ∵△BEF 的面积为1,∴△AEB 的面积为3, ∵13BE ED =, ∴S △AEB :S △AED =13, ∴△AED 的面积为9,∴S △ABD =9+3=12, ∴正方形ABCD 的面积=12×2=24.故答案为:24.【点睛】本题考查了正方形的性质,三角形面积,三角形相似的性质和判定等知识,熟练掌握相似三角形的性质和判定是关键.19.【分析】先延长EF 和BC 交于点G 再根据条件可以判断三角形ABE 为等腰直角三角形并求得其斜边BE 的长然后根据条件判断三角形BEG 为等腰三角形最后根据△EFD ∽△GFC 得出CG 与DE 的倍数关系并根据BG解析:4【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰直角三角形,并求得其斜边BE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据△EFD ∽△GFC 得出CG 与DE 的倍数关系,并根据BG =BC +CG 进行计算即可.【详解】解:如图,延长EF 和BC ,交于点G ,∵矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,∴∠ABE =∠AEB =45°,∴ AB =AE =12,∴直角三角形ABE 中,2212122BE +==又∵∠BED 的角平分线EF 与DC 交于点F ,∴∠BEG =∠DEF ,∵AD//BC ,∴∠G =∠DEF ,∴∠BEG =∠G ,∴BG =BE =2,∵∠G =∠DEF ,∠EFD =∠GFC ,∴△EFD ∽△GFC , ∴12CG CF DE DF ==, 设CG =x ,DE =2x ,则AD =12+2x =BC ,∵BG =BC +CG ,∴ 122=12+2x+x解得:x =424,∴ )122424824BC=+=+, 故答案为:824+【点睛】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似. 20.或【分析】本题应分两种情况进行讨论①△ABC ∽△AED ;②△ABC ∽△ADE ;可根据各相似三角形得出的关于AEAEABAC 四条线段的比例关系式求出AE 的长【详解】解:本题分两种情况:①△ADE ∽△A 解析:163或3 【分析】 本题应分两种情况进行讨论,①△ABC ∽△AED ;②△ABC ∽△ADE ;可根据各相似三角形得出的关于AE、AE、AB、AC四条线段的比例关系式求出AE的长.【详解】解:本题分两种情况:①△ADE∽△ACB∴AB:AC=AE:AD,∵AB=8,AC=6,AD=4,∴AE=163;②△ADE∽△ABC∴AB:AC=AD:AE,∵AB=8,AC=6,AD=4,∴AE=3,故答案为:163或3.【点睛】本题主要考查了相似三角形的性质.由于题中没有明确相似三角形的对应角和对应边,因此本题要分情况进行讨论,以免漏解.三、解答题21.(1)证明见解析,(2)证明见解析.【分析】(1)证∠FCE=∠FEC即可;(2)证△EMF≌△FOC,再通过平行列比例式,通过线段相等进行代换即可.【详解】(1)证明:∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵O是AB的中点,∴CO⊥AB,∠BOC=90°,∴∠BCO=45°,∠FCE=∠BCO+∠FCO=45°+∠FCO,∠FEC=∠B+∠EFM=45°+∠EFM,∵∠FCO=∠EFM,∴∠FCE=∠FEC ,∴CF=EF ;(2)∵EM ⊥AB ,∴∠EMF=∠COF=90°,∵EF=CF ,∠FCO =∠EFM ,∴△EMF ≌△FOC ,∴FM=OC=OB ,∵EM ∥CO , ∴=BC BO FM CE OM OM=, ∵EM ∥NO , ∴=EF FM NE OM , ∴BC EF CE NE= 【点睛】本题考查了等腰三角形的判定,全等三角形的判定与性质,平行线分线段成比例定理,解题关键是熟练运用相关知识,整合已知条件,进行推理证明.22.(1)见解析;(2)185 【分析】(1)由条件可以求出ED 的值,设FG=x ,则BG=FG=x ,CG=6-x ,EG=x+2,由勾股定理可以求出x 的值,从而可以求出BG 和CG 的值,得出结论.(2)过点F 作FN ⊥CG 于点N ,可以得出∠FNG=∠DCG=90°,通过证明△GFN ∽△GEC ,得出GF FN GE EC=,可以求出FN 的值,最后利用三角形的面积公式可以求出其面积. 【详解】解:(1)证明:∵AB=6,CD=3DE ,∴DC=6,∴DE=2,CE=4,∴EF=DE=2,设FG=x ,则BG=FG=x ,CG=6-x ,EG=x+2,在Rt △ECG 中,由勾股定理得,42+(6-x )2=(x+2)2,解得x=3,∴BG=FG=3,CG=6-x=3,∴BG=CG .(2)过点F 作FN ⊥CG 于点N ,则∠FNG=∠DCG=90°,又∵∠EGC=∠EGC,∴△GFN∽△GEC,∴GF FN GE EC=,∴354FN =,∴FN=125,∴S△CGF=12CG•FN=112325⨯⨯=185.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,勾股定理的运用及三角形面积公式的运用.在解答中注意相似三角形的对应顶点在对应的位置.23.(1)见解析;(2)3 2【分析】(1)由直角三角形斜边上的中线得DE=EA,可得∠1=∠A,可推出∠FDC=∠FBD,证明△FBD∽△FDC,根据相似三角形的性质即可得出结论;(2)由直角三角形斜边上的中线得DG=CG,则∠3=∠4,根据相似三角形的性质即可得∠4=∠1,可证明∠5+∠1=90°,即DG⊥EF,可得DG的长度点G到EF的距离,根据直角三角形斜边上中线的性质即可求解.【详解】证明:(1)∵CD是斜边AB上的高,E是AC的中点,∴E是Rt△ACD斜边中点.∴DE=EA.∴∠A=∠2.∵∠1=∠2.∴∠1=∠A.∵∠FDC=∠CDB+∠1=90°+∠1,∠FBD=∠ACB+∠A=90°+∠A.∴∠FDC=∠FBD.∵∠F是公共角.∴△FBD∽△FDC.∴FB FD FD FC=. ∴FD 2=FB•FC ;(2)∵DG 是Rt △CDB 斜边上的中线,∴DG=GC ,∴∠3=∠4,由(1)得∠4=∠1,∴∠3=∠1,∵∠3+∠5=90°,∴∠5+∠1=90°,∴DG ⊥EF ,∵5AB =,4AC =,∴22543BC =-=,∵G 是BC 的中点,CD 是斜边AB 上的高,∴DG=12BC =32, ∴点G 到EF 的距离为32. 【点睛】本题考查了相似三角形的判定和性质以及直角三角形斜边上中线的性质,解题的根据是掌握在证明线段的积相等可以转化为证明三角形相似,求点到直线的距离转化为证明两直线垂直.24.(1)图见解析,()2,2-;(2)图见解析,()1,0;(3)10.【分析】(1)先根据平移法则确定各点的坐标、然后连线即可解答;(2)直接利用位似图形的性质得出对应点位置即可解答;(3)用矩形的面积减去三个三角形的面积即可.【详解】解:(1)如图:111A B C ∆即为所求,1C 点坐标为()2,2-;(2)如图:222A B C ∆即为所求,2C 点坐标为()1,0;(3) 222A B C ∆的面积为:4×6-111242624222⨯⨯-⨯⨯-⨯⨯=24-4-6-4=10. 答:222A B C ∆的面积是10个平方单位.【点睛】本题主要考查了平移、位视的作图以及不规则三角形面积的求法,掌握基本作图和运用拼凑法求面积是解答本题的关键.25.(1)见解析;(2)见解析;(3)2【分析】(1)根据相似三角形的判定方法:有两角相等的三角形形似,即可证明.(2)利用ABF BEF △∽△,BCE FBE △∽△完成边转换即可.(3)先证明 ABF CEB ∽,可得4AF CE AB CB ⋅=⋅=,在利用平行线分线段成比例可得AF BN AC BC =,CE BM AC AB=,在结合线段的等量关系,即可求解. 【详解】 (1)证明:在正方形ABCD 中,∵45BAC ∠=︒,又45EBF ∠=︒, ∴BAC EBF ∠=∠,∵BFE AFB ∠=∠,∴ABFBEF △△.(2)∵ABF BEF △△,∴AF BF BF EF =, ∴2BF AF EF =⋅,同理可证BCE FBE △△,∴BE CE EF BE=, ∴2BE CE EF =⋅, ∴2BE CE EF CE BF AF EF AF ⋅⎛⎫== ⎪⋅⎝⎭. (3)∵45BAC BCA ∠=∠=︒,又45EBF ∠=︒,∴BAC EBF ∠=∠,又BEC ABE BAC ABE EBF ABF ∠=∠+∠=∠+∠=∠,∴ABF CEB △△, ∴AB AF CE CB=, ∴4AF CE AB CB ⋅=⋅=,∵90ABC BMO BNO ∠=∠=∠=︒,∴四边形BNOM 是矩形,∴//ON AB ,ON MB =,//OM BC ,OM NB =, ∴AF BN AC BC =,CE BM AC AB =,2BN =2BM =,∴2BN =,2BM =,∴422222AF CE OM ON BN BM ⋅⋅=⋅=⋅===. 【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定定理,和性质定理是解题关键.26.(1)见解析;(2)见解析【分析】(1)利用关于x 轴对称点的性质:横坐标相等,纵坐标互为相反数,可以求出1A 、1B 、1C ,进而可画出图形;(2)利用位似图形的性质得出对应点的位置,即可画出图形.【详解】解:(1)如图所示:ΔA 1B 1C 1即为所求;(2)如图所示,ΔA2B2C2即为所求.【点睛】本题考查关于对称轴对称的点的性质以及位似的性质,掌握相关性质是解题的关键.。

北师大版九年级数学上册第四章 图形的相似 单元测试题(含答案)

北师大版九年级数学上册第四章 图形的相似 单元测试题(含答案)

北师大版九年级数学上册第四章 图形的相似 单元测试题一、选择题(每小题3分,共24分)1.如图,一组互相平行的直线a ,b ,c 分别与直线l 1,l 2交于点A ,B ,C ,D ,E ,F ,直线l 1,l 2交于点O ,则下列各式不正确的是( )A.AB BC =DEEFB.AB AC =DE DFC.EF BC =DEABD.OE EF =EB FC2.如图,E 是矩形ABCD 的AB 边上任意一点,F 是AD 边上一点,∠EFC =90°,图中一定相似的三角形是( )A .①与②B .③与④C .②与③D .①与④3.在平面直角坐标系中,已知△ABC 三个顶点A(2,2),B(4,0),C(6,4)以坐标原点为中心,将△ABC 缩小,相似比为1∶2,则线段AC 的中点P 变换后对应点的坐标是( ) A.(2,32)或(-2,-32). B.(-2,32)或(-2,-32).C.(2,32)或(2,-32).D.(2,32)或(-2,32).4.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BE ,BD ,且AE ,BD 交于点F ,S △DEF ∶S △ABF =4∶25,则DE ∶EC =( )A .2∶3B .2∶5C .3∶5D .3∶25.如图,△ABE 和△CDE 是以点E 为位似中心的位似图形,已知点A(2,2),B(3,1),D(5,2),则点A 的对应点C 的坐标是( )A .(2,3)B .(2,4)C .(3,3)D .(3,4)6.如图,在等腰△ABC 中,AB =AC ,D 为CB 延长线上一点,E 为BC 延长线上一点,且AB 2=BD ·CE.若∠BAC =40°,则∠DAE =( )A.110°.B.115°.C.120°.D. 125°.7.如图,AB ∥DC ,AC 与BD 交于点E ,EF ∥DC 交BC 于点F ,CE =5,CF =4,AE =BC ,则DCAB 等于( )A.23B.14C.13D.358.如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE ∥AC ,AE ,CD 相交于点O.若S △DOE ∶S△COA=1∶25,则S △BDE 与S △CDE 的比是( ) A .1∶3B .1∶4C .1∶5D .1∶25二、填空题(每小题3分,共18分)9.若a 6=b 5=c4≠0,且a +b -2c =3,则a =_____.10.已知线段MN 的长为2 cm ,点P 是线段MN 的黄金分割点,那么较长的线段MP 的长是_____.11.如图,在▱ABCD 中,E ,F 分别是边BC ,CD 的中点,AE ,AF 分别交BD 于点G ,H ,设△AGH 的面积为S 1,▱ABCD 的面积为S 2,则S 1∶S 2的值为_____.12.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,长方形城池ABCD ,南边城墙AD 长7里,东边城墙AB 长9里,东门点E ,南门点F 分别是AB ,AD 的中点,GE ⊥AB ,FH ⊥AD ,EG =15里,HG 过点A ,则FH =_____里.13.将三角形纸片(△ABC)按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF.已知AB =AC =3,BC =4.若以点B ′,F ,C 为顶点的三角形与△ABC 相似,则BF 的长度是_____.14.如图,在矩形ABCD 中,AB =5,BC =3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是_____.三、解答题(共80分)15.如图,在形状和大小不确定的△ABC 中,BC =5,E ,F 分别是AB ,AC 的中点,P 在EF 或EF 的延长线上,BP 交CE 于D ,Q 在CE 上且BQ 平分∠CBP ,设BP =y ,PE =x.(1)当x =14EF 时,求S △DPE ∶S △DBC 的值;(2)当CQ =13CE 时,求y 与x 之间的函数关系式.16.如图,在▱ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B.(1)求证:△ADF ∽△DEC ;(2)若AB =4,AD =33,AE =3,求AF 的长.17.如图,已知矩形ABCD 的两条对角线相交于点O ,过点A 作AG ⊥BD 分别交BD ,BC 于点G ,E.(1)求证:BE 2=EG ·EA ;(2)连接CG ,若BE =CE ,求证:∠ECG =∠EAC.18.已知:如图,在△ABC 中,点D 在BC 上,连接AD ,使得∠CAD =∠B ,DC =3且S △ACD ∶S △ADB =1∶2.(1)求AC 的值;(2)若将△ADC 沿着直线AD 翻折,使点C 落在点E 处,AE 交边BC 于点F ,且AB ∥DE ,求S △EFD S △ADC的值.19.如图,在Rt △ABC 中,已知∠ACB =90°,CD ⊥AB ,M 是CD 上一点,DH ⊥BM 于点H ,DH 交AC 的延长线于点E ,交BC 于点K.(1)求证:△AED ∽△CBM ; (2)求证:AE ·CM =AC ·CD.20.如图,在△ABC 中,∠ACB =90°,CD 是中线,AC =BC ,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC ,BC 的延长线相交,交点分别为点E ,F ,DF 与AC 交于点M ,DE 与BC 交于点N.(1)如图1,若CE =CF ,求证:DE =DF ;(2)如图2,在∠EDF 绕点D 旋转的过程中,探究三条线段AB ,CE ,CF 之间的数量关系,并说明理由.21.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 是BC 上的一个动点,连接DE ,交AC 于点F.(1)如图1,当CE EB =13时,求S △CEFS △CDF的值;(2)如图2,当DE 平分∠CDB 时,求证:AF =2OA ;(3)如图3,当点E 是BC 的中点时,过点F 作FG ⊥BC 于点G ,求证:CG =12BG.参考答案 一、选择题1-5、DAAAD 6-8、ABB 二、填空题9、6.10、(5-1) 11、16.12、1.05 13、127或2. 14、3105.三、解答题15、解:(1)∵E ,F 分别是AB ,AC 的中点,PE =x =14EF ,∴EF ∥BC ,EF =12BC.∴△EDP ∽△CDB.∴EP BC =18.∴S △DPE ∶S △DBC =1∶64.(2)延长BQ 交EF 的延长线于点H. ∵EF ∥BC ,∴△QEH ∽△QCB.∴BC EH =CQQE .∵CQ =13CE ,∴CQ QE =12.又∵BC =5,∴EH =2BC =10. ∵△QEH ∽△QCB ,∴∠PHQ =∠CBQ. 又∵BQ 平分∠CBP ,∴∠CBQ =∠PBQ. ∴∠PHB =∠PBH.∴PB =PH.∴EH =PE +PH =PE +PB =x +y =2BC =10. ∴y =-x +10(0<x <10).16、解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC.∴∠B +∠C =180°,∠ADF =∠DEC. ∵∠AFD +∠AFE =180°,∠AFE =∠B , ∴∠AFD =∠C.∴△ADF ∽△DEC. (2)∵AE ⊥BC ,AD =33,AE =3, ∴在Rt △DAE 中,DE =AD 2+AE 2=(33)2+32=6. 由(1)知△ADF ∽△DEC ,得AF DC =ADDE ,∴AF =DC ·AD DE =4×336=2 3.17、证明:(1)∵四边形ABCD 是矩形, ∴∠ABC =90°. ∵AE ⊥BD ,∴∠ABC =∠BGE =90°. ∵∠AEB =∠BEG , ∴△ABE ∽△BGE. ∴AE BE =BEEG . ∴BE 2=EG ·EA.(2)由(1)得BE 2=EG ·EA. ∵BE =CE ,∴CE2=EG·EA.∴CEEG=AECE.∵∠CEG=∠AEC,∴△CEG∽△AEC.∴∠ECG=∠EAC.18、解:(1)∵S△ACD∶S△ADB=1∶2,∴BD=2CD.∵DC=3,∴BD=6.∴BC=BD+DC=9. ∵∠B=∠CAD,∠C=∠C,∴△ABC∽△DAC.∴ACCD=BCAC,即AC3=9AC,解得AC=3 3.(2)由折叠的性质,得∠E=∠C,DE=CD=3. ∵AB∥DE,∴∠B=∠EDF.∵∠CAD=∠B,∴∠EDF=∠CAD.∴△EFD∽△CDA.∴S△EFDS△ADC=(DEAC)2=(333)2=13.19、证明:(1)在Rt△ABC中,∠ACB=90°,∴∠A+∠ABC=90°. ∵CD⊥AB,∴∠CDB=90°,∴∠MCB+∠ABC=90°,∠DBM+∠DMB=90°.∴∠A=∠MCB.∵DH⊥BM,∠BCE=90°,∠CKE=∠HKB,∴∠E=∠CBM.∴△AED∽△CBM.(2)∵△AED ∽△CBM , ∴AE ∶AD =CB ∶CM , 即AE ·CM =AD ·CB. 在Rt △ABC 中,CD ⊥AB ,∴△ACD ∽△CBD.∴AC ∶CB =AD ∶CD , 即AC ·CD =AD ·CB. ∴AE ·CM =AC ·CD.20、解:(1)证明:∵∠ACB =90°,AC =BC ,AD =BD , ∴∠BCD =∠ACD =45°,∠BCE =∠ACF =90°. ∴∠DCE =∠DCF =135°.在△DCE 与△DCF 中,⎩⎪⎨⎪⎧CE =CF ,∠DCE =∠DCF ,CD =CD ,∴△DCE ≌△DCF.∴DE =DF. (2)∵∠DCF =∠DCE =135°, ∴∠CDF +∠F =180°-135°=45°. ∵∠CDF +∠CDE =45°, ∴∠F =∠CDE.∴△CDF ∽△CED. ∴CD CE =CFCD . ∴CD 2=CE ·CF.∵∠ACB =90°,AD =BD , ∴CD =12AB.∴AB 2=4CE ·CF.21、解:(1)∵CE EB =13,∴CE CB =14.∵四边形ABCD 是正方形,∴AD ∥BC ,AD =BC.∴EF FD =CE AD =CE CB =14.∴S △CEF S △CDF =14. (2)证明:∵四边形ABCD 是正方形, ∴∠ADB =∠ACD =45°,AD =2OA. ∵DE 平分∠CDB , ∴∠BDE =∠CDE.∵∠ADF =∠ADB +∠BDE ,∠AFD =∠ACD +∠CDE , ∴∠ADF =∠AFD.∴AF =AD.∴AF =2OA. (3)设BC =4x ,CG =y ,则CE =2x ,FG =y , ∵FG ∥CD ,∴△EGF ∽△ECD. ∴EG EC =FG CD ,即2x -y 2x =y 4x , 整理,得y =43x ,即CG =43x.∴EG =2x -y =23x.∴BG =2x +23x =83x.∴CG =12BG.。

新北师大版九年级上第四章图形的相似检测题含答案

新北师大版九年级上第四章图形的相似检测题含答案

第四章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列说法正确的是(C)A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似D.矩形都相似2.已知△ABC∽△DEF,相似比为3∶1,且△ABC的周长为18,则△DEF的周长为(C)A.2B.3C.6D.543.如图,已知BC∥DE,则下列说法不正确的是(C)A.两个三角形是位似图形B.点A是两个三角形的位似中心C.AE∶AD是相似比D.点B与点E,点C与点D是对应位似点4.如图,身高为1.6m的吴格霆想测量学校旗杆的高度,当她站在C处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0m,BC=8.0m,则旗杆的高度是(C) A.6.4mB.7.0mC.8.0mD.9.0m,第3题图),第4题图),第5题图),第6题图)5.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于(B)A.60mB.40mC.30mD.20m6.“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形(B)A.左上B.左下C.右上D.右下7.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是(B)A.(6,0) B.(6,3) C.(6,5) D.(4,2),第7题图),第8题图),第9题图),第10题图)8.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA 的面积比为( C )A .2∶3B .2∶5C .4∶9D.2∶ 39.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .下列结论错误的是( C )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△P AD 与△PBC 是相似三角形,则满足条件的点P 的个数是( C )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共18分)11.若x y =m n =45(y ≠n ),则x -m y -n=__45__. 12.如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x 的值是__16__.13.如图,在△ABC 中,点P 是AC 上一点,连接BP .要使△ABP ∽△ACB ,则必须有∠ABP =__∠C __或∠APB =__∠ABC __或AB AP =__AC AB__. ,第12题图),第13题图),第14题图),第15题图)14.如图,矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =__125__. 15.如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5__米.16.劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工出一个边长比是1∶2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其他顶点均在三角形的边上,则这个平行四边形的较短的边长为__2.4_cm 或2411_cm __. 三、解答题(共72分)17.(10分)如图,点D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AD =4,求线段CD 的长.解:在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A ,∴△ABD ∽△ACB ,∴AB AC=AD AB ,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=518.(10分)一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.解:两种截法:①30厘米与60厘米的两根钢筋为对应边,把50厘米的钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似;②30厘米与50厘米长的两根钢筋为对应边,把50厘米分截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两三角形相似19.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (-1,2),B (-3,4),C (-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)在网格内以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.解:20.(10分)如图,矩形ABCD 为台球桌面.AD =260cm ,AB =130cm.球目前在E 点位置,AE =60cm.如果小丁瞄准了BC 边上的点F 将球打进去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ;(2)求CF 的长.解:(1)证明:∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B =∠C =90°,∴△BEF ∽△CDF(2)解:设CF =x ,则BF =260-x ,∵AB =130,AE =60,BE =70,由(1)得:△BEF∽△CDF ,∴BE CD =BF CF ,即70130=260-x x,∴x =169cm ,即CF =169cm 21.(10分)已知,如图,△ABC 中,AD 是中线,且CD 2=BE ·BA .求证:ED ·AB =AD ·BD .证明:∵AD 是中线,∴BD =CD ,又CD 2=BE ·BA ,∴BD 2=BE ·BA ,即BE BD =BD AB,又∠B =∠B ,∴△BED ∽△BDA ,∴ED AD =BD AB ,∴ED ·AB =AD ·BD22.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为点E ,连接DE ,点F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 的长.解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC.∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C.∴△ADF ∽△DEC (2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE =AF CD .∴DE =AD ·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=623.(12分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠EDF =90°,∠E =45°)点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .(1)求∠ADE 的度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE ′F ′,DE ′交AC 于点M ,DF ′交BC 于点N ,试判断PM CN的值是否随着α的变化而变化?如果不变,请求出PM CN的值;反之,请说明理由. 解:(1)由题意知:CD 是Rt △ABC 中斜边AB 上的中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC =60°,∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30°(2)PM CN的值不会随着α的变化而变化,理由如下:∵△APD 的外角∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD=∠NCD =60°,∠PDM =∠CDN =α,∴△MPD ∽△NCD ,PM CN =PD CD,又∵由(1)知AD =CD ,∴∠ACD =∠A =30°,即∠PCD =30°.在Rt △PCD 中,∠PCD =30°,∴PD CD=13=33,∴PM CN =PD CD =33。

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》检测题(含答案解析)(1)

(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》检测题(含答案解析)(1)

一、选择题1.如图,在菱形ABCD 中,10BC =,点E 在BD 上,F 为AD 的中点,FE BD ⊥,垂足为E ,4EF =,则BD 长为( )A .8B .10C .12D .162.已知点P 是线段AB 的黄金分割点,AP PB >,则:AP PB 的值为( ) A .512- B .512+ C .0.618D .51-3.如图,ABC 的两个顶点B 、C 均在第一象限,以点()0,1A 为位似中心,在y 轴左侧作ABC 的位似图形ADE ,ABC 与ADE 的位似比为1:2若点C 的纵坐标是m ,则其对应点E 的纵坐标是( )A .32m -+ B .23m +C .()23m -+D .23m -+4.如图,A B C '''是ABC 以点О为位似中心经过位似变换得到的,若:1:2OA A A ''=,则A B C '''的周长与ABC 的周长比是( )A .1:2B .1:3C .1:4D .4:95.如图,在▱ABCD 中,点O 是对角线BD 上的一点,且12OD OB =,连接CO 并延长交AD于点E ,若△COD 的面积是2,则四边形ABOE 的面积是( )A .3B .4C .5D .66.如图,已知在平行四边形ABCD 中,E 为CD 上一点,连结AE ,BD ,且AE ,BD 交于点F ,:4:25DEFABFSS=,则:DE AB 的值是( )A .2:5B .2:3C .3:5D .3:27.如图,在△ABC 中,中线BE 、CF 相交于点G ,连接EF ,下列结论错误的是( )A .12EF BC = B .14EGF CGB S S =△△ C .AF GEAB GB= D .12GEF AEF S S =△△ 8.点B 是线段AC 的黄金分割点,且AB <BC .若AC=4,则BC 的长为( ) A .252+ B .252-C .51- D .51-9.OAB 在平面直角坐标系中的位置如图所示,已知点A 的坐标为()3,33,OAB 与OA B ''△关于点О成位似图形,且在点О的同一侧,OAB 与OA B ''△的位似比为1:2,则点A 的对应点A '的坐标是( )A .()6,63-B .()6,63-C .()3,33--D .()6,6310.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相相交于点G ,若3AE ED =,DF CF =,则BGGE的值是( )A .73B .83C .2D .7411.如图,矩形ABCD 中,6AB =,8BC =,动点P 从A 点出发,按A B C →→的方向在AB 和BC 上移动,记PA x =,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .12.如图,线段1AB =,点1P 是线段AB 的黄金分割点(且11AP BP <),点2P 是线段1AP 的黄金分割点(212AP PP <),点3P 是线段3AP 的黄金分割点()323,,AP P P <依此类推,则线段2020AP 的长度是( )A .202051-⎝⎭B .202151-⎝⎭C .202035-⎝⎭D .202135-⎝⎭二、填空题13.如图,等边三角形ACD 的边长为8,点B 在AC 边延长线上,且AC 3+1)CB ,连结BD ,点E 是线段BD 上一点,连结AE 交DC 于点F ,若∠AED =60°,则DE 的长为_____.14.如图,在菱形ABCD中,AB=1,∠ADC=120°,以AC为边作菱形ACC1D1,且∠AD1C1=120°;再以AC1为边作菱形AC1C2D2,且∠AD2C2=120°…;按此规律,菱形AC2020C2021D2021的面积为_____.15.如图,ABCD中,E是CD的延长线上一点,BE与AD交于点F, .若DEF的面积为1,则ABCD的面积为______.2CD DE16.如图所示,在ABC中,E、F分别是AC、AB的中点,已知FC长是6,则线段OC的长为______.17.如图,在平行四边形ABCD中,AC,BD相交于点O,E是OA的中点,连接BE 并延长交AD于点F.(1)FDAF=__________;(2)若AEF的面积为4,则平行四边形ABCD的面积为__________.18.如图,小明在A时测得某树的影长为1.5m,B时又测得该树的影长为6m,若两次日照的光线互相垂直,则树的高度为__________m.19.已知ABC∽DEF,且面积比为1:9,若ABC的周长为8cm,则DEF的周长是______cm.20.如图,若ABC与DEF都是正方形网格中的格点三角形(顶点在格点上),则DEF与ABC的周长比为_________.三、解答题21.如图1,ABC中,ACB90∠=︒,D为AB上的一点,以CD为直径的O交BC于E,连接AE交CD于G,交O于F,连接DF,BAC EFD∠=∠.(1)求证:AB与O相切;(2)如图2,若AF:FG3:2=,①若6AF=,求线段CG的长;②求tan CAE ∠的值.22.如图,F 为四边形ABCD 边CD 上一点,连接AF 并延长交BC 延长线于点E ,已知D DCE ∠=∠.(1)求证:ADF ECF ∽△△; (2)若ABCD 为平行四边形,6AB =,2EFAF =,求FD 的长度.23.如图,将ABC 绕点A 按逆时针方向旋转100︒得到AEF .(1)当点E 恰好落在BC 延长线上时,求FEB ∠的度数.(2)在(1)的条件下连结CF 交AE 于点D .求证:2AC AD AE =⋅.24.如图1,边长为4的正方形ABCD 与边长为a (1<a <4)的正方形CFEG 的顶点C 重合,点E 在对角线AC 上. 问题发现:(1)如图1,AE 与BF 的数量关系为 . 类比探究:(2)如图2,将正方形CFEG 绕点C 旋转α度(0<α<30),请问(1)中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由. 拓展延伸:(3)若点F 为BC 的中点,在正方形CFEG 的旋转过程中,当点A ,F ,G 在一条直线上时,求线段AG 的长度.25.如图1,在平面直角坐标系O x y 中,抛物线223y x bx c =-++与x 轴交于A 、B 两点,其中()6,0B ,与y 轴交于点()0,8C ,点P 是x 轴上方的抛物线上一动点(不与点C 重合).(1)求抛物线的表达式;(2)过点P 作PD x ⊥轴于点D ,交直线BC 于点E ,点E 关于直线PC 的对称点为E ',若点E '落在y 轴上(不与点C 重合).请判断以P ,C ,E ,E '为顶点的四边形的形状,并说明理由;(3)在(2)的条件下直接写出点P 的坐标.26.如图,已知90EOF ∠=︒,A 是EOF ∠内部的一点,过点A 作AB OF ⊥,垂足为点B ,6cm AB =,8cm OB =,动点M ,N 同时从O 点出发,点M 以1.5cm /秒的速度沿OF 方向运动,点N 以2cm /秒的速度沿OE 方向运动,MN 与OA 交于点C ,连接AM ,当点M 到达点B 时,点N 随之停止运动.设运动时间为t 秒(0)t >.(1)当2t =秒时,MON △与ABO 是否相似?请说明理由; (2)在运动过程中,试判断MN 与OA 的位置关系,并说明理由. (3)连接AN ,在运动过程中,是否存在某一时刻t ,使得2AMNABON S S =四边形?若存在,请求出此时t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】连接AC ,交BD 于点O ,由菱形性质,可得AC BD ⊥,且BD=2OB ,由勾股定理求得3DE =,由90DEF DOA ∠=∠=︒,FDE ADO ∠=∠,可证得DEF DAO ∆∆,由此DF DEDA DO =,即可求得DO=6,从而BD=2OD=12. 【详解】如图:连接AC ,交BD 于点O ,在菱形ABCD 中,则AC BD ⊥,且BD=2OB ,10BC =,点E 在BD 上,F 为AD 的中点, ∴AD=10, DF=5,∴2222543DE DF EF =-=-=,FE BD ⊥,AC BD ⊥,∴90DEF DOA ∠=∠=︒,FDE ADO ∠=∠, DEF DAO ∴∆∆, DF DE DA DO ∴=,即5310DO =, ∴DO=6,∴BD=2OD=12, 故选:C 【点睛】此题考查了勾股定理、菱形的性质,相似三角形的判定和性质等知识点,正确作出辅助线是解答此题的关键.2.B解析:B 【分析】根据黄金分割比求出AP ,PB 计算即可;【详解】∵点P 是线段AB 的黄金分割点,AP PB >,∴12AP AB -=, 令AB x =,∴AP x =,13522PB x x x --=-=,∴AP PB ==; 故答案选B . 【点睛】本题主要考查了黄金分割的知识点,准确计算是解题的关键.3.D解析:D 【分析】设点C 的纵坐标为m ,然后表示出AC 、EA 的纵坐标的距离,再根据位似比列式计算即可; 【详解】设点C 的纵坐标为m ,则A 、C 间的纵坐标的长度为()1m -, ∵△ABC 放大到原来的2倍得到△ADE , ∴E 、A 间的纵坐标的长度为()21m -,∴点E 的纵坐标为()()2112323m mm ⎡⎤---=--=-+⎣⎦;故答案选D . 【点睛】本题主要考查了位似变换,坐标与图形的性质,准确分析计算是解题的关键.4.B解析:B 【分析】根据位似变换的概念得到,A B ''∥AB ,A B C ABC '''∽△△,根据相似三角形的性质解答即可. 【详解】解:∵:1:2OA A A ''=, ∴13OA OA ':=:, ∵A B C '''是ABC 以点O 为位似中心经过位似变换得到的,∴A B ''∥AB ,A B C ABC '''∽△△, ∴13A B OA AB OA '''==, ∴A B C '''的周长与ABC 的周长比为1:3, 故选:B . 【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,掌握位似的两个图形必须是相似形、对应边平行是解题的关键.5.C解析:C 【分析】由题意可得△BOC 的面积为4,通过证明△DOE ∽△BOC ,可求S △DOE =1,即可求解. 【详解】解:∵12OD OB =,△COD 的面积是2, ∴△BOC 的面积为4,∵四边形ABCD 是平行四边形,∴AD ∥BC ,S △ABD =S △BCD =2+4=6, ∴△DOE ∽△BOC ,∴DOE BOCS S.(OD OB )2=14, ∴S △DOE =1,∴四边形ABOE 的面积=6﹣1=5, 故选:C . 【点睛】本题主要考查了相似三角形的判定与性质,准确计算是解题的关键.6.A解析:A 【分析】利用相似三角形面积之比等于相似比的平方求解即可. 【详解】∵四边形ABCD 是平行四边形, ∴DE ∥AB , ∴△DEF ∽△BAF ,∴2:(:)DEF ABF S S DE AB =△△,∵:4:25DEFABFSS=∴:DE AB =2:5, 故选A .【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,熟练掌握平行四边形的性质,三角形相似的判定方法和性质是解题的关键.7.D解析:D【分析】根据已知可得EF 是△ABC 的中位线,根据三角形的中位线定理、相似三角形的性质及利用三角形面积中等高模型分别进行证明,即可得出结论.【详解】解:∵BE 、CF 是△ABC 的中线,即F 、E 是AB 和AC 的中点,∴EF 是△ABC 的中位线, ∴12EF BC =,故A 正确; ∵EF 是△ABC 的中位线,∴EF ∥BC ,∴△FGE ∽△CGB , ∴214EGF CGB S EF S BC ⎛⎫== ⎪⎝⎭△△,故B 正确; ∵EF ∥BC∴△AFE ∽△ABC , ∴12AF EF AB BC ==, ∵△FGE ∽△CGB , ∴12GE EF GB BC ==, ∴AF GE AB GB=,故C 正确; ∵AF =FB ,∴S △AEF =S △EFB ,∵BG =2EG ,∴S △BFG =2S △EFG ,∴S △EFG =13S △EFB =13S △AEF , ∴13GEF AEF S S =,故D 错误.故选:D.【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质,熟练掌握三角形中位线定理及相似三角形的判定及性质是解答此题的关键.8.B解析:B【分析】根据黄金分割的定义可得出较长的线段BC=51-AC,将AC=4代入即可得出BC的长度.【详解】解:∵点B是线段AC的黄金分割点,且AB<BC,∴BC=51-AC,∵AC=4,∴BC=252-.故选:B.【点睛】本题考查了黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=512-AB≈0.618AB,并且线段AB的黄金分割点有两个.9.D解析:D【分析】根据位似图形的性质和△OAB和△OA B''的位似比为1:2,即可求出两三角形的相似比为1:2,即可根据点A的坐标求出点A'的坐标;【详解】如图所示:作AC⊥OB于点C,∵A(3,33,AC⊥OB,∴ OC=3, AC=33∴ 229276OA OC AC =+=+=,∵ △AOB 和△OA B ''的位似比为1:2,∴ OA '=2OA=12,即△AOB 和△OA B ''的相似比为1:2,∴ A '(6,63),故选:D .【点睛】本题主要考查了相似图形与位似图形的性质,正确理解位似图形是解题的关键. 10.B解析:B【分析】如图,延长BC 、AF ,交于点H ,由正方形的性质及DF =CF 判定△ADF ≌△HCF (AAS ),从而可得CH =AD ;由AE =3ED ,可设DE =x ,从而可用x 表示出正方形的边长;然后由AD ∥BC 判定△AEG ∽△HBG ,从而可得比例式,化简比例式即可得到答案.【详解】解:如图,延长BC 、AF ,交于点H ,∵AE =3ED ,∴设DE =x ,则AE =3x ,∵四边形ABCD 是正方形,∴AD =BC =4x ,AD ∥BC ,∴∠DAF =∠CHF ,∠D =∠FCH ,∴在△ADF 和△HCF 中,DAF CHF D FCHDF CF ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△ADF ≌△HCF (AAS ),∴CH =AD =4x ,∴BH =BC +CH =8x ,∵AD ∥BC ,∴△AEG ∽△HBG ,∴8833BH x GE AE BG x === . 故选:B .【点睛】 本题考查了正方形的性质、全等三角形的判定与性质及相似三角形的判定与性质等知识点,正确作出辅助线并熟练掌握相关性质及定理是解题的关键.11.A解析:A【分析】①点P 在AB 上时,点D 到AP 的距离为AD 的长度,②点P 在BC 上时,根据同角的余角相等求出∠APB=∠PAD ,再利用相似三角形的列出比例式整理得到y 与x 的关系式,从而得解.【详解】解:①当点P 在AB 上运动时,D 到PA 的距离8y AD ==,∴当06x ≤≤时,8y =,②当P 在BC 上运动时,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD ,又∵∠B=∠DEA=90°,∴△ABP ∽△DEA ,∴AB AP DE AD=,即:68x y =, ∴当610x <≤时,48y x =, ∴()()80648610x y x x ⎧≤≤⎪=⎨<≤⎪⎩, 即当06x ≤≤时,函数图象为平行于x 轴的线段,且8y =;当610x <≤时,函数图象为反比例函数,故选项A 符合题意,故选:A .【点睛】本题考查动点问题函数图象,解题关键是利用相似三角形的判定与性质,难点在于根据点P的位置分情况讨论.12.C解析:C【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的叫做黄金比进行解答即可. 【详解】解:根据黄金比的比值,1BP =则11AP == 232333,,22AP AP ⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭…依此类推,则线段20202020AP =⎝⎭,故选C .【点睛】本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键. 二、填空题13.【分析】作DH ⊥AC 于点H 根据等边三角形的性质和勾股定理可得BD 的长利用△ADE ∽△BAD 对应边成比例即可解决问题【详解】解:如图作DH ⊥AC 于点H ∵△ADC 是等边三角形∴AD =DC =AC =8AH =【分析】作DH ⊥AC 于点H ,根据等边三角形的性质和勾股定理可得BD 的长,利用△ADE ∽△BAD ,对应边成比例即可解决问题.【详解】解:如图,作DH ⊥AC 于点H ,∵△ADC 是等边三角形,∴AD =DC =AC =8,AH =CH =12AC =4, ∴DH 22228443DC CH -=-=∵AC 3)CB ,∴CB 31+=431), ∴BH =CB +CH =43﹣1)+4=3,∴BD 22DH BH +()()224343+6,在△ADE 和△BAD 中,∠AED =∠BAD =60°,∠ADE =∠BDA ,∴△ADE ∽△BDA ,∴DE AD =AD BD, ∴DE =2AD BD 46=863. 故答案为:863. 【点睛】本题考查了相似三角形的判定和性质,找到相似三角形是解题的关键. 14.【分析】根据题意可以求得菱形ABCD 的面积再根据题意可以知所有的菱形都相似即可得到菱形AC2020C2021D2021的面积【详解】解:作CE ⊥AB 交AB 的延长线于点E 如右图所示由已知可得∠ABC =解析:404132【分析】根据题意,可以求得菱形ABCD 的面积,再根据题意,可以知所有的菱形都相似,即可得到菱形AC 2020C 2021D 2021的面积.【详解】解:作CE ⊥AB 交AB 的延长线于点E ,如右图所示,由已知可得,∠ABC =120°,BC =1,∠CAB =30°,∴∠CBE =60°,∴∠BCE =30°,∴CE =3, ∴AC =3,∴菱形ABCD 的面积是1×3=3, ∵AC AB =3,图中的菱形都是相似的, ∴菱形AC 2020C 2021D 2021的面积为:3×[(3)2]2020=3×(3)4040=4041(3), 故答案为:4041(3)2.【点睛】本题考查了图形的相似、菱形的性质、图形的变化类,解题的关键是明确题意,发现图形的变化特点,利用数形结合的思想解答.15.12【分析】首先利用以及平行四边形对边相等分别得到DE 与CEDE 与AB 的比值;再根据平行四边形的性质得出进而推出再根据相似三角形面积比为相似比的平方得出和的面积进而得出四边形的面积即可推出的面积【详 解析:12【分析】首先利用2CD DE =,以及平行四边形对边相等,分别得到DE 与CE 、DE 与AB 的比值;再根据平行四边形的性质得出AB CD ∥,AD BC ∥,进而推出DEF CEB ∽△△,DEF ABF ∽再根据相似三角形面积比为相似比的平方得出CEB △和ABF 的面积,进而得出四边形BCDF 的面积,即可推出ABCD 的面积.【详解】解:∵四边形ABCD 为平行四边形,∴AD BC =,AB CD =,∵2CD DE =,∴3CE DE =,2AB DE =,∴13DE CE =,12DE AB =, ∵四边形ABCD 为平行四边形,∴AB CD ∥,AD BC ∥,∴DEF CEB ∽△△,DEF ABF ∽, ∴21()9DEF CEB S DE S EC ==△△,21()4DEF ABF S DE S AB ==△△, ∵DEF 的面积为1,∴=9CEB S △,S =4ABF △,∴=S 918BCDF CEB DEF S S -=-=△△,∴=+=8+4=12ABCD BCDF S S S △ABF .故答案为12.【点睛】本题主要考查平行四边形的性质相似三角形的性质和判定,关键在于利用相似三角形的面积比等于相似比的平方.16.4【分析】根据已知利用相似三角形的判定可得到△EFO ∽△BCO 根据相似比可求得CO 的长即可【详解】解:∵点EF 分别是△ABC 中ACAB 边的中点∴EF 是△ABC 的中位线∴EF=BCEF ∥BC ∴△EFO解析:4【分析】根据已知利用相似三角形的判定可得到△EFO ∽△BCO ,根据相似比可求得CO 的长即可.【详解】解:∵点E 、F 分别是△ABC 中AC 、AB 边的中点.∴EF 是△ABC 的中位线.∴EF=12BC ,EF ∥BC . ∴△EFO ∽△BCO ,且相似比为1:2.∴CO=2FO .∵FC =6.∴OC=2FO=4.故答案为4.【点睛】此题主要考查三角形的中位线的定理和相似三角形的判定方法的掌握.17.296【分析】(1)根据平行四边形的性质得到AE=CE 根据相似三角形的性质得到比例式等量代换得到AF=AD 于是得到2;(2)先得出再利用E 为AO 的中点AO=CO 得出进而得出结果【详解】解:(1)∵在解析:2, 96(1)根据平行四边形的性质得到AE=13CE ,根据相似三角形的性质得到比例式,等量代换得到AF=13AD ,于是得到FD AF=2; (2)先得出936CEB AEF SS ==,再利用E 为AO 的中点,AO=CO ,得出48ABC S =△,进而得出结果.【详解】 解:(1)∵在▱ABCD 中,AO=12AC , ∵点E 是OA 的中点, ∴AE=13CE , ∵AD ∥BC , ∴△AFE ∽△CBE , ∴13AF AE BC CE ==, ∵AD=BC , ∴AF=13AD , ∴FD AF=2; (2)由(1)得△AFE ∽△CBE ,且13AE CE =,AEF 的面积为4, ∴936CEB AEF S S == ,∵E 为AO 的中点,AO=CO , ∴1123BAE CEB S S ==,∴48ABC S =△, ∴296ABC ABCD S S==四边形 , 故答案为:2,96.【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键. 18.3【分析】根据题意画出示意图根据相似三角形的性质求解即可;【详解】根据题意做出示意图则∵∴∴∵∴∴∴∴∴即树的高度为3m 故答案是3【点睛】本题主要考查了相似三角形的应用和平行投影的知识点准确分析计算 解析:3根据题意画出示意图,根据相似三角形的性质求解即可;【详解】根据题意做出示意图,则CD EF ⊥,EC CF ⊥,DE 1.5m =,6DF m =,∵CD EF ⊥,∴90EDC CDF ∠=∠=︒,∴90E ECD ∠+∠=︒,∵90ECD DCF ∠+∠=︒,∴E DCF ∠=∠,∴△△EDC CDF , ∴ED DC DC FD =, ∴29DC ED FD ==,∴3DC m =,即树的高度为3m .故答案是3.【点睛】本题主要考查了相似三角形的应用和平行投影的知识点,准确分析计算是解题的关键. 19.24【分析】根据相似三角形的性质求出相似比即可得解;【详解】∵∽且面积比为∴相似比为∵的周长为设的周长为x ∴∴;故答案是24【点睛】本题主要考查了相似三角形的性质准确计算是解题的关键解析:24【分析】根据相似三角形的性质求出相似比,即可得解;【详解】∵ABC ∽DEF ,且面积比为1:9,∴相似比为1:3,∵ABC 的周长为8cm ,设DEF 的周长为x ,∴1∶38∶x =,∴24x =;故答案是24.【点睛】本题主要考查了相似三角形的性质,准确计算是解题的关键.20.【分析】设正方形网格的边长为1根据勾股定理求出△EFD △ABC 的边长运用三边对应成比例则两个三角形相似这一判定定理证明△EDF ∽△BAC 即可解决问题【详解】解:设正方形网格的边长为1由勾股定理得:D【分析】设正方形网格的边长为1,根据勾股定理求出△EFD 、△ABC 的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明△EDF ∽△BAC ,即可解决问题. 【详解】解:设正方形网格的边长为1, 由勾股定理得: DE 2=22+22,EF 2=22+42, ∴DE =EF =同理可求:AC ,BC ∵DF =2,AB =2,∴1EF DE DF BC AB AC ===∴△EDF ∽△BAC , ∴DEF 与ABC,. 【点睛】本题主要考查了勾股定理和相似三角形的判定及其性质,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题21.(1)见解析;(2)①GC =②12. 【分析】(1)由余角的定义得到1290∠+∠=︒,由三角形外角性质得到3+4EFD ∠=∠∠,结合已知条件可证得2=4∠∠,再由同弧所对的圆周角相对可得1=FDC ∠∠,由此证明490FDC ∠+∠=︒即可解题;(2)①连接CF ,由直径所得的圆周角是90°可证90FCD CDF ∠+∠=︒,继而证明FGC CGA ,由相似三角形对应边成比例解得FG CGCG GA=,据此解题即可; ②过点F 作FN CD ⊥,继而证明FCNDFN ,根据相似三角形的性质可得FN CNDN FN=,整理得2FN DN CN =⋅,再证明FGC CGA ,得到2252CG FG =,在Rt FNG 中,根据勾股定理解得222FN FG GN =-,继而得到DN CN ⋅=22FG GN -,由已知条件设2,3GN x ND x ==,CG m =,整理得到22231005m xm x --=,根据公式法解关于字母m 的一元二次方程,得到10,12,6CG x CN x FN DN CN x ===⋅=,最后根据等角的正切值相等解题即可.【详解】 解:(1),EFD ECD BAC EFD ∠=∠∠=∠BAC ECD ∴∠=∠ 90ACB ∠=︒90CEA CAE ∴∠+∠=︒90ECD ACD BAC ACD ∴∠+∠=∠+∠=︒ 90ADC ∴∠=︒ CD AB ∴⊥AB ∴与O 相切;(2)①:3:2,6AF FG AF ==4FG ∴=10AG ∴=连接CFCD 为直径 90CFD ∴∠=︒90FCD CDF ∴∠+∠=︒90,CEA CAE CEA CDF ∠+∠=︒∠=∠CAE FCD ∴∠=∠ FGC FGC ∠=∠ FGCCGA ∴FG GCCG AG∴=241040CG FG GA ∴=⋅=⨯=210GC ∴=;②过点F 作FN CD ⊥,AB 与O 相切,AB CD ∴⊥//FN AB ∴32AF DN FG GN ∴== 设2,3(0)GN x ND x x ==>90CNF FND ∠=∠=︒+=90FCN CFN CFN NFD ∠∠=∠+∠︒FCN NFD ∴∠=∠ FCNDFN ∴FN CNDN FN∴= 2FN DN CN ∴=⋅CAE FCD ∠=∠,FGC FGC ∠=∠FGCCGA ∴FG GCCG AG∴= :3:2AF FG =2252CG FG ∴=在Rt FNG 中,222FN FG GN =-DN CN ∴⋅=22FG GN -2223()45x CG GN CG x ∴⋅+=-即2223(2)45x CG x CG x ⋅+=- 设CG m =22223645xm x m x ∴+=-即22231005m xm x --= 22,3,105a b x c x ==-=-222224(3)4(10)255b ac xx x ∴∆=-=--⨯⨯-=13510425b x xm xa-+∴=== 23554225b x x m xa --===-(舍去) 10,12,6CG x CN x FN DN CN x ∴===⋅= 61tan 122FN x FCN CN x ∠=== CAE FCN ∠=∠ 2ta 1ta n n FCN CAE ∴∠==∠. 【点睛】本题考查切线的判定与性质、圆周角定理、相似三角形的判定与性质、勾股定理、正切等知识,是重要考点,难度一般,掌握相关知识是解题关键. 22.(1)见详解;(2)2 【分析】(1)利用相似三角形的判定定理,即可得到结论;(2)先证明AD ∥BE ,利用平行线分线段成比例,列出比例式,即可求解. 【详解】(1)证明:∵D DCE ∠=∠,∠AFD=∠EFC , ∴ADF ECF ∽△△;(2)解:∵四边形ABCD 是平行四边形, ∴AD ∥BE ,AB =CD =6, ∴AF :EF =DF :CF , 又∵EF =2AF ,∴DF :CF =1:2,即DF =13DC =2.【点睛】本题考查的是平行四边形的性质及相似三角形的判定,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边、对顶角等隐含条件,以充分发挥基本图形的作用.23.(1)80°;(2)见解析【分析】(1)根据旋转的性质和等腰三角形的性质分别得到∠AEF和∠AEB,从而得到结果;(2)证明△ADF∽△ACB,得到AD AFAC AB=,结合AB=AE,AF=AC,得到AD ACAC AE=,从而计算出结果.【详解】解:(1)由题意可得:∠BAE=∠CAF=100°,∠B=∠AEF,AB=AE,AC=AF,又∵E在BC的延长线上,∴∠AEB=∠B=40°,∴∠AEF=40°,∴∠FEB=∠FEA+∠AEB=80°;(2)如图,∵∠BAC=∠DAF,又∵AF=AC,∠CAF=100°,∴∠AFC=∠ACF=40°,即∠AFD=∠ABC=40°,又∵∠DAF+∠ADF+∠AFD=180°,∠B+∠BAC+∠ACB=180°,∴∠ACB=∠ADF,∴△ADF∽△ACB,∴AD AFAC AB=,又∵AB=AE,AF=AC,∴AD ACAC AE=,∴2AC AD AE=⋅.【点睛】本题考查了旋转的性质,相似三角形的判定和性质,解题的关键是利用旋转的性质得到相似三角形的条件.24.(1)AE=2BF ,(2)成立,理由见解析;(3)302+或302-. 【分析】(1)证出AB ∥EF ,由平行线分线段成比例定理得出2AE CEBF CF==,即可得出结论; (2)证明△ACE ∽△BCF ,得出2,AE ACBF CB==,即可的结论; (3)分两种情况,连接CE 交GF 于H ,由正方形的性质得出AB=BC=4,AC=2AB=42,GF=CE=2CF ,GH=HF=HE=HC ,得出CF=12BC=2,GF=CE=22,HF=HE=HC=2,由勾股定理求出2230AH AC HC =-=,即可得出答案.【详解】解:(1)AE=2BF ,理由如下: ∵四边形ABCD 和四边形CFEG 是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,CE=2CF ,CE ⊥GF , ∴AB ∥EF , ∴2AE CEBF CF==, ∴AE=2BF ; 故答案为:AE=2BF ;(2)上述结论还成立,理由如下: 连接CE ,如图2所示:∵∠FCE=∠BCA=45°, ∴∠BCF=∠ACE=45°-∠ACF ,在Rt △CEG 和Rt △CBA 中,2,2CB ,∴2CE CACF CB== ∴△ACE ∽△BCF ,∴2AE ACBF CB== ∴2BF ; (3)分两种情况: ①如图3所示:连接CE 交GF 于H ,∵四边形ABCD 和四边形CFEG 是正方形,∴AB=BC=4,AC=2AB=42,GF=CE=2CF ,HF=HE=HC , ∵点F 为BC 的中点, ∴CF=12BC=2,GF=CE=22,GH=HF=HE=HC=2, ∴2222(42)(2)30AH AC HC =-=-=,∴302AG AH HG =+=+; ②如图4所示:连接CE 交GF 于H ,同①得:2, ∴2222(42)(2)30AH AC HC =-=-=,∴302AG AH HG =-= 故AG 302302 【点睛】本题是四边形综合题目,考查了正方形的性质、旋转的性质、平行线分线段成比例定理、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键. 25.(1)228833y x x =-++;(2)菱形,见解析;(3)P 755,26⎛⎫ ⎪⎝⎭【分析】(1)利用待定系数法求二次函数解析式;(2)利用对称的性质得∠E′CP=∠ECP ,E′C=CE ,E′P=EP ,由PE ∥E′C 得∠EPC=∠E′CP ,则∠EPC=∠ECP ,于是可判断EP=EC ,所以EC=EP=PE′=E′C ,则根据菱形的判定方法得到四边形EPE′C 为菱形;(3)先利用待定系数法求出直线BC 的解析式为228833y x x =-++,根据二次函数和一次函数图象上点的坐标特征,设P (x ,228833x x -++),则E (x ,-43x+8),则可计算出PE=228833x x -++-(-43x+8)=-23x 2+4x ,过点E 作EF ⊥y 轴于点F ,如图,证明△CFE ∽△COB ,利用相似比可计算出CE=53x ,则可利用EC=EP 得到方程-23x 2+4x=53x ,然后解方程求出x 即可得到P 点坐标. 【详解】解:(1)把点C (0,8),B (6,0)代入在抛物线y=-23x 2+bx+c 得 2826603c b c =⎧⎪⎨-⨯++=⎪⎩, 解得838b c ⎧=⎪⎨⎪=⎩,∴抛物线的表达式为228833y x x =-++; (2)以P ,C ,E ,E '为顶点的四边形为菱形.理由如下: ∵E 点和E '点关于直线PC 对称, ∴E CP ECP '∠=∠,E C CE '=,E P E '=, 又∵PD x ⊥轴, ∴//PE E C ', ∴EPC E CP '∠=∠, ∴EPC ECP ∠=∠, ∴EP EC =,∴EC EP PE E C ''===, ∴四边形EPE C '为菱形,(3)设直线BC 的解析式为y=kx+m , 把B (6,0),C (0,8)代入得608k m m +=⎧⎨=⎩, 解得438k m ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为y=-43x+8; 设P (x ,228833x x -++),则E (x ,-43x+8), ∴PE=228833x x -++-(-43x+8)=-23x 2+4x ,过点E 作EF ⊥y 轴于点F ,如图,在Rt △OBC 中,22OB OC +, ∵EF ∥OB , ∴△CFE ∽△COB , ∴EF CE OB CB =,即610x CE=, ∴CE=53x , ∵EC=EP ,∴-23x 2+4x=53x , 整理得2x 2-7x=0,解得x 1=0(舍去),x 2=72, ∴点P 的坐标为(72,556).P 点坐标为755,26⎛⎫⎪⎝⎭.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、对称的性质和菱形的判定方法;会利用待定系数法求函数解析式;理解坐标与图形性质;会利用相似比计算线段的长和解一元二次方程.26.(1)∽MON ABO △△,见解析;(2)MN OA ⊥,见解析;(3)存在,3t =或83t =【分析】解:(1)由2t =,求得3cm OM =,4cm ON =,由6cm AB =,8cm OB =,计算比值OM AB =12ON OB =,由夹角相等90MON ABM ∠=∠=︒,可证∽MON ABO △△;(2) 由15OM t =.,2ON t =.6AB =,8OB =.可得OM ONAB OB=.可证Rt MON Rt ABO ∽△△.由性质MNO AOB ∠=∠.由90ONM NMO ∠+∠=︒,可得90AOB NMO ∠+∠=︒,经计算∠OCM=90°即可;(3)如图,连接AN ,由15OM t =.,2ON t =,求出815BM t =-.,求出232NOM S t =△,9242ABM S t =-△,824ABON S t =+梯形由12AMN ABON S S =四边形△,知余下部分面积12NOM ABM ABON S S S +=梯形△△,构造方程()239124824222t t t +-=+,解之即可. 【详解】解:(1)∵2t =,∴3cm OM =,4cm ON =,∵6cm AB =,8cm OB =, ∴3162OM AB ==,4182ON OB ==, ∴OM AB =ONOB, ∵90MON ABM ∠=∠=︒, ∴∽MON ABO △△; (2)MN OA ⊥在运动过程中,15OM t =.,2ON t =. ∵6AB =,8OB =.∴4OM ON tAB OB ==. 又∵90MON ABO ∠=∠=︒,∴Rt MON Rt ABO ∽△△.∴MNO AOB ∠=∠.∵90ONM NMO ∠+∠=︒,∴90AOB NMO ∠+∠=︒,∴∠OCM=90°,∴MN OA ⊥;(3)如图,连接AN ,∵15OM t =.,2ON t =,∴815BM t =-., ∴2113152222NOM S OM ON t t t =⋅=⨯⨯=.△, ()1981562422ABM S t t =⨯-⨯=-.△, ()12688242ABON S t t =+⨯=+梯形, ∵12AMN ABONS S =四边形△, ∴12NOM ABM ABON S S S +=梯形△△, ∴()239124824222t t t +-=+, 即231712022t t -+=, 解得3t =或83t =. ∴当3t =或83t =时,12AMN ABON S S =四边形△.【点睛】本题考查三角形相似判定与性质,抓住三角形ANM 面积的2倍=四边形ABON 面积构造t 的方程是解题关键.。

北师大版九年级数学上册《第四章图形的相似》单元测试(含答案)

北师大版九年级数学上册《第四章图形的相似》单元测试(含答案)

第四章 图形的相似第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各组中的四条线段是成比例线段的是( )A .1 cm ,2 cm ,20 cm ,40 cmB .1 cm ,2 cm ,3 cm ,4 cmC .6 cm ,4 cm ,1 cm ,3 cmD .5 cm ,10 cm ,15 cm ,20 cm2.如图1,两条直线分别被三条平行直线l 1,l 2,l 3所截,若AB =3,BC =6,DE =2,则DF 的长为( )图1A .4B .5C .6D .73.若a b =35,则a +b b的值是( )A.58B.35C.85D.324.如图2,△ABC 中,AC =BC ,在边AB 上截取AD =AC ,连接CD ,若点D 恰好是线段AB 的一个黄金分割点,则∠A 的度数是( )图2A.22.5° B.30° C.36° D.45°5.如图3所示,将△ABO的三边分别扩大为原来的2倍得到△A1B1C1(顶点均在格点上),它们是以点P为位似中心的位似图形,则点P的坐标是( )A.(-4,-3) B.(-3,-3) C.(-4,-4) D.(-3,-4)图36.如图4,已知矩形ABCD,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F处,若四边形EFDC与矩形ABCD相似,则AD的长为( )图4A. 5B.5+1 C.4 D.2 37.在小孔成像问题中,光线穿过小孔,在屏幕上形成倒立的实像,如图5所示,若点O到AB的距离是18 cm,点O到CD的距离是6 cm,则像CD的长是AB长的( )图5A .3倍 B.12C.13D .不知AB 的长度,故无法判断8.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图6所示的测量方案,把一面很小的镜子水平放置在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =3.2米,观察者目高CD =1.6米,则树(AB )的高度为( )图6A .4.2米B .4.8米C .6.4米D .16.8米9.如图7,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 边的中点B ′重合,若AB =2,BC =3,则△FCB ′与△B ′DG 的面积之比为( )A.9∶4 B.3∶2 C.4∶3 D.16∶9图710.如图8,在△ABC中,AB=6 cm,AC=12 cm,动点D从点A出发到点B停止,动点E从点C出发到点A停止.点D的运动速度为1 cm/s,点E的运动速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是( )图8A.3 s或4.8 s B.3 sC.4.5 s D.4.5 s或4.8 s请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.如图9,D 是等边三角形ABC 中边AB 上的点,AD =2,DB =4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E ,F 分别在边AC 和BC 上,则CFCE=________.图912.如图10,△ABC 中,AB =6,DE ∥AC ,将△BDE 绕点B 顺时针旋转得到△BD ′E ′,点D 的对应点D ′落在边BC 上.已知BE ′=5,D ′C =4,则BC 的长为________.图1013.若a b =c d =e f =12,则3a -2c +e 3b -2d +f(3b -2d +f ≠0)=________.14.如图11所示,Rt △DEF 是由Rt △ABC 沿BC 方向平移得到的,若AB =8,BE =4,DH =3,则△HEC 的面积为________.图1115.如图12,在△ABC 中,AC =6,AB =4,点D ,A 在直线BC 的同侧,且∠ACD =∠B ,CD =2,E 是线段BC 延长线上的动点,当△DCE 和△ABC 相似时,线段CE 的长为________.图1216.如图13,直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B ′O ′C ′是以点A 为位似中心的位似图形,且相似比为1∶3,则点B 的对应点B ′的坐标为________.图13三、解答题(共72分)17.(6分)已知a ,b ,c 是△ABC 的三边长,且满足a +43=b +32=c +84,a +b +c =12,试求a ,b ,c 的值,并判断△ABC 的形状.18.(6分)如图14,在平面直角坐标系中,四边形OABC的顶点分别是O(0,0),A(6,0),B(3,6),C(-3,3).(1)以原点O为位似中心,在点O的异侧画出四边形OABC的位似图形四边形OA1B1C1,使它与四边形OABC的相似比是2∶3;(2)写出点A1,B1,C1的坐标;(3)求四边形OA1B1C1的面积.图1419.(8分)已知:在△ABC中,∠ABC=90°,AB=3,BC=4,Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图15①)或线段AB的延长线(如图15②)于点P.(1)当点P 在线段AB 上时,求证:△AQP ∽△ABC ;(2)当△PQB 为等腰三角形时,求AP 的长.图1520.(8分)如图16①,点D ,E 分别在AB ,AC 上,且AD AB =AEAC .(1)求证:DE ∥BC ;(2)如图②,在△ABC 中,D 为边AC 上任意一点,连接BD ,取BD 的中点E ,连接CE 并延长CE 交边AB 于点F ,求证:BF AF =CDAC;(3)在(2)的条件下,若AB =AC ,AF =CD ,求BFAF的值.图1621.(10分)如图17是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D 处竖直立一根木棒CD ,并测得此时木棒的影长DE =2.4米;然后,小希在BD 的延长线上找出一点F ,使得A ,C ,F 三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.图1722.(10分)如图18,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从点O开始沿OA边向点A以1厘米/秒的速度移动,点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果点P,Q同时出发,用t(秒)表示移动的时间(0≤t≤6).(1)设△POQ的面积为y,求y关于t的函数表达式;(2)当t为何值时,△POQ与△AOB相似?图1823.(12分)如图19,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,D是BC边上的一个动点(不与点B,C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.图1924.(12分)如图20①,点C 将线段AB 分成两部分,如果AC AB =BCAC ,那么称点C 为线段AB 的黄金分割点.某数学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似给出“黄金分割线”的定义:一条直线将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1,那么称这条直线为该图形的黄金分割线.(1)如图②,在△ABC 中,∠A =36°,AB =AC ,∠ACB 的平分线交AB 于点D ,请问直线CD 是不是△ABC 的黄金分割线?并证明你的结论;(2)如图③,在边长为1的正方形ABCD 中,E 是边BC 上一点,若直线AE 是正方形ABCD 的黄金分割线,求BE 的长.图20详解详析1.A2.C [解析] ∵两条直线分别被三条平行直线l 1,l 2,l 3所截,∴AB BC =DE EF.∵AB =3,BC =6,DE =2,∴EF =4,∴DF =DE +EF =2+4=6.故选C.3.C4.C [解析] ∵点D 是线段AB 的一个黄金分割点,∴AD 2=BD ·AB . ∵AD =AC =BC ,∴BC 2=BD ·AB , 即BC ∶BD =AB ∶BC .而∠ABC =∠CBD ,∴△BCD ∽△BAC , ∴∠A =∠BCD .设∠A =x °,则∠B =x °,∠BCD =x °, ∴∠ADC =∠BCD +∠B =2x °. 而AC =AD ,∴∠ACD =∠ADC =2x °, ∴x +2x +2x =180,解得x =36, 即∠A =36°.故选C.5.A6.B [解析] 由折叠知AF =AB =2,设AD =x ,则FD =x -2,EF =2,∵四边形EFDC 与矩形ABCD 相似,∴EF FD =AD AB ,即2x -2=x 2,解得x 1=1+5,x 2=1-5(不合题意,舍去),即AD 的长为5+1.故选B.7.C [解析] 过点O 作OM ⊥AB 于点M ,交CD 于点N ,如图,则OM =18 cm ,ON =6 cm.∵AB ∥CD ,∴△ODC ∽△OAB ,∴CD AB =ON OM =618=13,即CD 的长是AB 长的13.故选C.8.A [解析] 如图,过点E 作EF ⊥BD 于点E ,则∠1=∠2.∵∠DEF =∠BEF =90°,∴∠DEC =∠AEB .∵CD ⊥BD ,AB ⊥BD ,∴∠CDE =∠ABE =90°,∴△CDE ∽△ABE ,∴DE BE =CDAB.∵DE =3.2米,CD =1.6米,BE =8.4米,∴3.28.4=1.6AB,解得AB =4.2米. 9.D [解析] 本题运用方程思想,设CF =x , 则BF =3-x ,易得CF 2+CB ′2=FB ′2,即x 2+12=(3-x )2,解得x =43.由已知可证得Rt △FCB ′∽Rt△B ′DG ,所以S △FCB ′S △B ′DG =⎝ ⎛⎭⎪⎫CF DB ′2=169.10.A [解析] 本题运用分类讨论的思想,分△ADE ∽△ABC 和△ADE ∽△ACB 两种情况分别求解.11.54 [解析] ∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AC =BC =AB =AD +DB =6.由折叠的性质可知∠EDF =∠C =60°,EC =ED ,FC =FD ,∴∠AED =∠BDF , ∴△AED ∽△BDF ,∴DF DE =BD +DF +BF AE +AD +DE =108=54,∴CF CE =DF DE =54. 12.2+34 [解析] 由旋转可得BE =BE ′=5,BD =BD ′. ∵D ′C =4,∴BD ′=BC -4,即BD =BC -4.∵DE ∥AC ,∴BD BA =BE BC ,即BC -46=5BC,解得BC =2+34(负值已舍),即BC 的长为2+34.13.12 [解析] 由a b =c d =e f =12,得a =12b ,c =12d ,e =12f ,所以3a -2c +e 3b -2d +f =1.5b -d +0.5f3b -2d +f =12. 14.503 [解析] 设CE =x ,由△CEH ∽△CBA ,得EH AB =CE CB ,即8-38=x x +4,∴x =203,∴S△HEC=12×203×5=503.15.43或3 [解析] ∵∠ACD +∠DCE =∠B +∠A ,∠ACD =∠B ,∴∠DCE =∠A ,∴∠A 与∠DCE 是对应角,∴△DCE 和△ABC 相似有两种情况:(1)当△BAC ∽△ECD 时,AB CE =AC CD ,∴4CE =62,∴CE =43; (2)当△BAC ∽△DCE 时,AB CD =ACCE, ∴42=6CE,∴CE =3. 综上所述,CE 的长为43或3.故答案为:43或3.易错警示△DCE 和△ABC 相似有两种情况,注意不要漏解.16.(4,3)或(-8,-3) [解析] 由直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,得点A (-2,0),点B (0,1).画△BOC 的位似图形△B ′O ′C ′如图所示.∵△BOC 与△B ′O ′C ′的相似比为1∶3,∴点B ′(x ,3)或(x ,-3).∵点B ′(x ,3)或(x ,-3)在直线y=12x +1上,∴点B ′的坐标为(4,3)或(-8,-3). 故答案为(4,3)或(-8,-3).17.解:设a +43=b +32=c +84=k (k ≠0),∴a =3k -4,b =2k -3,c =4k -8. ∵a +b +c =12,将a =3k -4,b =2k -3,c =4k -8代入上式, 得3k -4+2k -3+4k -8=12, ∴9k =27,即k =3. ∴a =5,b =3,c =4.∵b 2+c 2=9+16=25,a 2=52=25, ∴b 2+c 2=a 2,∴△ABC 是直角三角形.18.解:(1)如图所示,四边形OA 1B 1C 1即为所求.(2)由图形可得A 1(-4,0),B 1(-2,-4),C 1(2,-2).(3)四边形OA 1B 1C 1的面积为12×2×4+12×(3+4)×2+12×3×2=14.19.解:(1)证明:∵∠A +∠APQ =90°,∠A +∠C =90°, ∴∠APQ =∠C . 在△AQP 和△ABC 中, ∵∠APQ =∠C ,∠A =∠A , ∴△AQP ∽△ABC .(2)在Rt △ABC 中,AB =3,BC =4,由勾股定理,得AC =5. ①当点P 在线段AB 上时. ∵△PQB 为等腰三角形,∴PB =PQ . 由(1)可知,△AQP ∽△ABC ,∴PA AC =PQBC,即3-PB 5=PB 4,解得PB =43, ∴AP =AB -PB =3-43=53;②当点P 在线段AB 的延长线上时. ∵△PQB 为等腰三角形, ∴PB =BQ ,∴∠BQP =∠P .∵∠BQP +∠AQB =90°,∠A +∠P =90°,∴∠AQB =∠A ,∴BQ =AB , ∴AB =BP ,即B 为线段AP 的中点, ∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6.20.解:(1)证明:∵∠A =∠A ,AD AB =AEAC, ∴△ADE ∽△ABC ,∴∠ADE =∠B , ∴DE ∥BC .(2)证明:如图,过点D 作DG ∥AB 交CF 于点G ,则△CDG ∽△CAF ,∴DG AF =CD AC.∵E 是BD 的中点,∴BE =ED . ∵DG ∥AB ,∴∠FBE =∠EDG .在△BEF 和△DEG 中,∠FBE =∠EDG ,∠FEB =∠GED ,BE =ED ,∴△BEF ≌△DEG (ASA),∴BF =DG ,∴BF AF =CDAC.(3)由(2)可得BF AF =CDAC.∵AB =AC ,AF =CD ,∴BF AF =AFAF +BF,∴BF 2+BF ·AF -AF 2=0,∴(BF AF)2+BF AF -1=0,解得BF AF =-1±52,而BE AF >0,∴BF AF =5-12.21.解:由题意得∠ABD =∠CDE =90°, ∠ADB =∠CED ,∴△CDE ∽△ABD ,∴CD AB =DE BD.∵由题意得∠CDF =∠ABF =90°,∠CFD =∠AFB ,∴△CDF ∽△ABF ,∴CD AB =DF BF,∴DE BD =DF BF,即2.4BD = 2.5BD +2.5,∴BD =60, ∴1.72AB =2.460,∴AB =43. 答:小雁塔的高度AB 是43米.22.解:(1)由题意,得BQ =t 厘米,OP =t 厘米. 因为OB =6厘米, 所以OQ =(6-t )厘米.所以y =12OP ·OQ =12t ·(6-t )=-12t 2+3t (0≤t ≤6). (2)当△POQ 与△AOB 相似时,①若OQ OB =OP OA ,即6-t 6=t 12,解得t =4; ②若OQ OA =OP OB ,即6-t 12=t 6,解得t =2. 所以当t =4或t =2时,△POQ 与△AOB 相似.23.解:(1)证明:∵△ABC 是等腰三角形,且∠BAC =120°,∴∠B =∠C =30°. 又∵∠ADE =30°,∴∠B =∠ADE .又∵∠ADC =∠ADE +∠EDC =∠B +∠DAB ,∴∠EDC =∠DAB ,∴△ABD ∽△DCE .(2)如图①,过点A 作AF ⊥BC 于点F ,∵AB =AC =2,∠BAC =120°,∴∠AFB =90°.∵AB =2,∠ABF =30°,∴AF =12AB =1, ∴BF =3,∴BC =2BF =23,则CD =23-x ,CE =2-y .∵△ABD ∽△DCE ,∴AB BD =CD CE ,∴2x =23-x 2-y ,化简得y =12x 2-3x +2(0<x <23).(3)当AD =DE 时,如图②,由(1)可知:此时△ABD ∽△DCE ,则AB =CD ,即2=23-x ,x =23-2,将其代入y =12x 2-3x +2,解得y =4-23, 即AE =4-23;当AE =ED 时,如图③,∠EAD =∠EDA =30°,∠AED =120°,∴∠DEC =60°,∠EDC =90°,则DE =12CE ,即y =12(2-y ),解得y =23,即AE =23;当AD =AE 时,∠AED =∠ADE =30°,∠EAD =120°,此时点D 与点B 重合,不符合题意,故此种情况不存在.综上,当△ADE 是等腰三角形时,AE 的长为4-23或23. 24.解:(1)直线CD 是△ABC 的黄金分割线.证明:∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°.∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =36°, ∴∠BDC =72°=∠B ,∠A =∠ACD ,∴BC =CD ,AD =CD ,∴BC =AD .∵∠B =∠B ,∠BCD =∠A ,∴△BCD ∽△BAC ,∴BD BC =BC AB ,∴BD AD =AD AB. 又∵S △BCD S △ADC =BD AD ,S △ADC S △ABC =AD AB, ∴S △BCD S △ADC =S △ADC S △ABC, ∴直线CD 是△ABC 的黄金分割线.(2)设BE =x ,∵正方形ABCD 的边长为1,∴S △ABE =12AB ·BE =12x ,S 正方形ABCD =12=1, ∴S 四边形ADCE =1-12x . ∵直线AE 是正方形ABCD 的黄金分割线, ∴S △ABES 四边形ADCE =S 四边形ADCE S 正方形ABCD, ∴S 四边形ADCE 2=S △ABE ·S 正方形ABCD , 即(1-12x )2=12x ·1, 整理,得x 2-6x +4=0,解得x 1=3+5,x 2=3- 5.∵E 是边BC 上一点,∴x <1,∴x=3-5,∴BE的长为3- 5.。

北师大版九年级上册数学第四章 图形的相似含答案(必刷题)

北师大版九年级上册数学第四章 图形的相似含答案(必刷题)

北师大版九年级上册数学第四章图形的相似含答案一、单选题(共15题,共计45分)1、如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为()A. B. C. D.2、如图,下列四个三角形中,与相似的是()A. B. C. D.3、如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C.D.4、小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1B.2C.3D.45、如图,点D是△ABC的边BC的中点,且∠CAD=∠B,若△ABC的周长为10,则△ACD的周长是()A.5B.5C.D.6、如图,△ABC 内接于⊙ O ,AD 是△ABC 边 BC 上的高,D 为垂足.若 BD = 1,AD = 3,BC = 7,则⊙O 的半径是()A. B. C. D.7、如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是( )A. B. C. D.8、如图所示是△ABC位似图形的几种画法,其中正确的是个数是()A.1B.2C.3D.49、如图,△ABC∽△ADE,则下列比例式正确的是()A. B. C. D.10、如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.11、已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6 cmB.4 cmC.3 cmD.2 cm12、在△ABC中,AB=12,BC=18,CA=24,另一个和它相似的△DEF最长的一边是36,则△DEF最短的一边是()A.72B.18C.12D.2013、如图,已知AB是⊙O的直径,C是AB延长线上一点,BC=OB,CE是⊙O的切线,切点为D,过点A作AE⊥CE,垂足为E,则CD:DE的值是()A. B.1 C.2 D.314、如图,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面积为S1, S2, S3三部分,则S1:S2:S3=()A.1:2:3B.1:4:9C.1:3:5D.无法确定15、已知:如图,在中,,则下列等式成立的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,直线l1∥l2∥l3∥l4∥l5∥l6∥l7,且每相邻两条直线的距离相等.若直线l8分别与l1, l2, l5, l7相交于点A,B,C,D,则AB:BC:CD为________.17、在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=________.18、已知,则的值为________.19、把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为________.20、上午某一时刻,身高1.7米的小刚在地面上的影长为3.4米,则影长26米的旗轩高度为________米21、如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD 于点F,连接BF.写出图中任意一对相似三角形:________.22、如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的长度BD=2 cm,OA=60 cm, OB=15 cm,则火焰的长度为________.23、将矩形纸片ABCD按如下步骤进行操作:( 1 )如图1,先将纸片对折,使BC和AD重合,得到折痕EF;( 2 )如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是________.24、如图,在直线l上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC =CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1, S2, S3,若S1+S3=20,则S1=________,S2=________.25、如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.三、解答题(共5题,共计25分)26、解方程.534%-2x=0.5627、李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF是1.6m,请你帮李航求出楼高AB.28、如图,两根电线杆相距Lm,分别在高10m的A处和15m的C处用钢索将两杆固定,求钢索AD与钢索BC的交点M离地面的高度MH.29、如图,在△PAB中,点C、D在AB上,PC=PD=CD,∠A =∠BPD,△APC 与△BPD相似吗?为什么?30、如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?参考答案一、单选题(共15题,共计45分)1、B2、C4、D5、B6、C7、D8、D9、D10、B11、C12、B13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、29、。

九年级数学上册第四章图形的相似单元清新版北师大版(含答案)

九年级数学上册第四章图形的相似单元清新版北师大版(含答案)

九年级数学上册新版北师大版:检测内容:第四章 图形的相似得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.下列结论不正确的是( C )A .所有的等腰直角三角形都相似B .所有的正方形都相似C .所有的矩形都相似D .所有的正八边形都相似2.若X 3 =Y 4 =Z 5 ,则4X +3Y -2Z X +Y +Z =( B ) A .-76 B .76 C .-67 D .673.如图,已知AD ∥BE ∥CF ,那么下列结论正确的是( B )A .BE CF =DE DFB .DE EF =AB BC C .BE CF =AB ACD .EF DE =AB BC第3题图 第5题图 第6题图4.已知△ABC ∽△A ′B ′C ′ ,AD 和A ′D ′是它们的对应中线,若AD =10,A ′D ′=6,则△ABC 与△A ′B ′C ′的周长比是( C )A .3∶5B .9∶25C .5∶3D .25∶95.如图,在△ABC 中,DE ∥BC ,AD AB =35 ,则S △ADE S 梯形DBCE的值是( B ) A .35 B .916 C .53 D .16256.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A ,再在河的这一边选点B 和点C ,使得AB ⊥BC ,然后再在河岸上选点E ,使得EC ⊥BC ,设BC 与AE 交于点D ,如图所示,测得BD =120 m ,DC =60 m ,EC =50 m ,那么这条河的大致宽度是( C )A .25 mB .75 mC .100 mD .120 m7.如图,在平面直角坐标系中,四边形ABCD 与四边形A ′B ′C ′D ′是位似图形.位似中心是( C )A .(8,0)B .(8,1)C .(10,0)D .(10,1)第7题图 第8题图 第9题图第10题图8.(邓州期中)如图,在△ABC 中,AB =AC =10,BC =12,正方形DEFG 的顶点E ,F 在△ABC 内,顶点D ,G 分别在AB ,AC 上,AD =AG ,DG =3,则点F 到BC 的距离为( A )A .3B .2C .53D .52 9.如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H ,若AF DF =2,则HF BG的值为( B ) A .23 B .712 C .12 D .51210.如图,在正方形ABCD 中,△BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H ,给出下列结论:①BE =2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH ·PC .其中正确的是( C )A .①②③④B .②③C .①②④D .①③④二、填空题(每小题3分,共15分)11.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,则需要添加一个条件是__∠A =∠D (答案不唯一)__.(写出一种情况即可)12.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,则△AOB 与△DOC 的周长比是__2∶3__.第12题图 第13题图 第14题图 第15题图13.如图,在平面直角坐标系中,△ABC 和△A ′B ′C ′是以坐标原点O 为位似中心的位似图形,且点B (3,1),B ′(6,2),若点A ′(5,6),则A 的坐标为__(2.5,3)__.14.如图是一山谷的横断面的示意图,宽AA ′为15 m ,用曲尺(两直尺相交成直角)从山谷两侧测量出OA =5 m ,OB =10 m ,O ′A ′=3 m ,O ′B ′=12 m(A ,O ,O ′,A ′在同一条水平线上),则该山谷的深度h 为__20_m__.15.如图,在Rt △ABC 中,BC =3,AC =4,点D ,E 分别是线段AB ,AC 上的两个动点(不与点A ,B ,C 重合).沿DE 翻折△ADE ,使得点A 的对应点F 恰好落在直线BC 上,当DF 与Rt △ABC 的一条边垂直时,线段AD 的长为__209 或_207__. 三、解答题(共75分)16.(6分)已知△ABC ∽△DEF ,△ABC 和△DEF 的周长分别为20 cm 和25 cm ,且BC =5 cm ,DF =4 cm ,求EF 和AC 的长.解:∵△ABC ∽△DEF ,∴AC DF =BC EF =C △ABC C △DEF,∴AC 4 =5EF =2025 ,∴AC =165 cm ,EF =254cm17.(8分)如图,已知点O 是坐标原点,B ,C 两点的坐标分别为(3,-1),(2,1).(1)以点O 为位似中心在y 轴的左侧将△OBC 放大到原图的2倍(即新图与原图的相似比为2),画出对应的△OB ′C ′;(2)若△OBC 内部一点M 的坐标为(a ,b ),则点M 对应点M ′的坐标是__(-2a ,-2b )__;(3)求出变化后△OB ′C ′的面积.解:(1)如图,△OB ′C ′为所作(2)点M 对应点M ′的坐标为(-2a ,-2b )(3)△OB ′C ′的面积=4S △OCB =4×(2×3-12 ×2×1-12 ×2×1-12×3×1)=1018.(8分)如图,矩形ABCD 为台球桌面,AD =260 cm ,AB =130 cm ,球目前在E 点位置,AE =60 cm ,如果小丁瞄准BC 边上的点F 将球打过去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ;(2)求CF 的长.解:(1)证明:由对称性可知∠EFG =∠DFG ,又∵GF ⊥BC ,∴∠EFB =∠DFC .又∵在矩形ABCD 中,∠B =∠C =90°,∴△BEF ∽△CDF(2)由(1)可知△BEF ∽△CDF ,∴BE CD =BF CF ,∴70130 =260-CF CF,∴CF =169 cm19.(10分)(桐柏县月考)如图,E 为▱ABCD 的边CD 延长线上的一点,连接BE 交AC 于点O ,交AD 于点F .(1)求证:△AOB ∽△COE ;(2)求证:BO 2=EO ·FO . 证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△AOB ∽△COE(2)∵△AOB ∽△COE ,∴OE OB =OC OA .∵AD ∥BC ,∴△AOF ∽△COB ,∴OB OF =OC OA,∴OB OF =OE OB,即OB 2=OF ·OE20.(10分)如图,在△ABC 中,点D ,E 分别在边BC 和AC 上,点G 是BE 上的一点,连接AD ,AG ,DG ,且∠BAD =∠BGD =∠C ,求证:(1)BD ·BC =BG ·BE ;(2)∠BGA =∠BAC .证明:(1)∵∠BGD =∠C ,∠GBD =∠CBE ,∴△BDG ∽△BEC ,∴BD BE =BG BC,∴BD ·BC =BG ·BE(2)∵∠BAD =∠C ,∠ABD =∠CBA ,∴△ABD ∽△CBA ,∴BD AB =AB BC,∴AB 2=BD ·BC .又由(1)知BD ·BC =BG ·BE ,∴AB 2=BG ·BE ,∴BG AB =AB BE.又∵∠GBA =∠ABE ,∴△GBA ∽△ABE ,∴∠BGA =∠BAC21.(10分)如图,为测量山峰AB 的高度,在相距50 m 的D 处和F 处竖立高均为2 m 的标杆DC 和FE ,且AB ,CD 和EF 在同一平面内,从标杆DC 退后2 m 到G 处可以看到山峰A 和标杆顶点C 在同一直线上,从标杆FE 退后4 m 到H 处可以看到山峰A 和标杆顶点E 在同一直线上,求山峰AB 的高度及山峰与标杆CD 的水平距离BD 的长.解:∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH ,∴AB ∥CD ∥EF ,∴△CDG ∽△ABG ,△EFH ∽△ABH ,∴CD AB =DG DG +BD ,EF AB =FH FH +DF +BD.又∵CD =DG =EF =2 m ,DF =50 m ,FH = 4 m ,∴2AB =22+BD ,2AB =450+4+BD ,∴22+BD =44+50+BD,解得BD =50 m ,∴2AB =22+50,解得AB =52 m22.(10分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的“完美分割线”.(1)如图①,在△ABC 中,∠A =48°,CD 是△ABC 的“完美分割线”,且△ACD 为等腰三角形,求∠ACB 的度数;(2)如图②,在△ABC 中,AC =2,BC =2 ,CD 是△ABC 的“完美分割线”,且△ACD 是以CD 为底边的等腰三角形,求“完美分割线”CD 的长.解:(1)由题意得△BDC ∽△BCA ,∴∠BCD =∠A =48°.①当AD =CD 时,∠ACD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°;②当AD =AC 时,∠ACD =∠ADC =180°-∠A 2 =180°-48°2=66°,∴∠ACB =∠ACD +∠BCD =114°;③当AC =CD 时,∠ADC =∠A =48°=∠BCD ,这与∠ADC =∠BCD +∠B 相矛盾,舍弃,∴∠ACB =96°或114°(2)由已知可知AC =AD =2,∵△BCD ∽△BAC ,∴BC BA =BD BC =CD AC.设BD =x ,则BA =x +2,由BC 2=BD ·BA 得(2 )2=x (x +2),解得x =3 -1或x =-3 -1(舍去),∴CD =BD BC ×AC =3-12×2=6 -223.(13分)如图,在△ABC 和△ADE 中,BA =BC ,DA =DE ,且∠ABC =∠ADE =α,点E 在△ABC 的内部,连接EC ,EB 和BD ,并且∠ACE +∠ABE =90°.(1)如图①,当α=60°时,线段BD 与CE 的数量关系为__BD =CE __,线段EA ,EB ,EC 的数量关系为__EA 2=BE 2+EC 2__;(2)如图②,当α=90°时,请写出线段EA ,EB ,EC 的数量关系,并说明理由;(3)在(2)的条件下,当点E 在线段CD 上时,若BC =25 ,请直接写出△BDE 的面积.图① 图② 备用图 答图解:(1)点拨:∵BA =BC ,DA =DE ,∠ABC =∠ADE =60°,∴△ABC ,△ADE 都是等边三角形,∴AD =AE ,AB =AC ,∠DAE =∠BAC =60°,∴∠DAB =∠EAC ,∴△DAB ≌△EAC (SAS),∴BD =EC ,∠ABD =∠ACE .又∵∠ACE +∠ABE =90°,∴∠ABD +∠ABE =90°,∴∠DBE =90°,∴DE 2=BD 2+BE 2.又∵EA =DE ,BD =EC ,∴EA 2=BE 2+EC 2(2)EA 2=EC 2+2BE 2,理由如下:∵BA =BC ,DA =DE ,∠ABC =∠ADE =90°,∴△ABC ,△ADE 都是等腰直角三角形,∴∠DAE =∠BAC =45°,AD AE =22 ,AB AC =22,∴∠DAB =∠EAC ,AD AE =AB AC ,∴△DAB ∽△EAC ,∴DB EC =AB AC =22,∠ACE =∠ABD .∵∠ACE +∠ABE =90°,∴∠ABD +∠ABE =90°,∴∠DBE =90°,∴DE 2=BD 2+BE 2.又∵EA=2 DE ,BD =22 EC ,∴12 EA 2=12EC 2+BE 2,∴EA 2=EC 2+2BE 2 (3)如答图,∵∠AED =45°,∴∠AEC =135°.又∵△ADB ∽△AEC ,∴∠ADB =∠AEC =135°.又∵∠ADE =∠DBE =90°,∴∠BDE =∠BED =45°,∴BD =BE ,∴DE =2 BD .∵EC =2 BD ,∴AD =DE =EC .设AD =DE =EC =x ,∵AB =BC =25 ,∴AC =210 .∵AD 2+DC 2=AC 2,∴x 2+4x 2=40,∴x =22 (负根已经舍弃),∴AD =DE =22 ,∴BD=BE =2,∴S △BDE =12×2×2=2。

北师大版九年级数学上册单元试题及答案第四章图形的相似(一)

北师大版九年级数学上册单元试题及答案第四章图形的相似(一)

北师大版九年级数学上册单元试题及答案第四章图形的相似(一)一、选择题1.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或NB.G或HC.M或ND.G或M2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:163.如图,在△ABC中,DE∥BC,若=,则=()A. B. C. D.4.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对5.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP •CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD 于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:27.四边形ABCD与四边形A′B′C′D′位似,O为位似中心,若OA:OA′=1:3,则S四边形ABCD:S四边形A´B´C´D´=()A.1:9B.1:3C.1:4D.1:58.小刚身高1.7m,测得他站立在阳光下的影长为0.85m,紧接着他把手臂竖直举起,测得影长为1.1m,那么小刚举起手臂超出头顶()A.0.5 mB.0.55 mC.0.6 mD.2.2 m9.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=10.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A. B. C. D.二、填空题11.若,则= .12.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k= .13.已知一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,则较小三角形与较大三角形的相似比k= .14.在△ABC中,AB=12cm,BC=18cm,AC=24cm,另一个与它相似的△A′B′C′的周长为18cm,则△A′B′C各边长分别为.15.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为.16.如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.17.如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为.18.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是.三、解答题19.已知线段a,b,c,d成比例,且a=6dm,b=3dm,d=dm,求线段c的长度.20.(6分)若=,求的值.21.已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.22.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G. (1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.24.某小区居民筹集资金1600元,计划在两底分别为10m、20m梯形空地上种植种植花木,如图:(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/m2,当△AMD地带种满花后(图中阴影部分),共花了160元,计算种满△BMC地带所需费用.(2)若其余地带有玫瑰、茉莉两种可供选择,单价分别为12元/m2、10元/m2,应选哪种花木,刚好用完所筹资金?25.如图,已知在△ABC和△EBD中,(1)若△ABC与△EBD的周长之差为60cm,求这两个三角形的周长.(2)若△ABC与△EBD的面积之和为812cm2,求这两个三角形的面积.26.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?答案解析一、选择题1.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或NB.G或HC.M或ND.G或M【考点】相似三角形的判定【专题】压轴题;网格型;数形结合【分析】根据两三角形三条边对应成比例,两三角形相似进行解答.【解答】解:设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C【点评】此题考查三边对应成比例,两三角形相似判定定理的应用2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:16【考点】相似三角形的性质【分析】由相似三角形周长的比等于相似比即可得出结果【解答】解:∵△ABC与△DEF的相似比为1:4∴△ABC与△DEF的周长比为1:4故选:C【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键3.如图,在△ABC中,DE∥BC,若=,则=()A. B. C. D.【考点】平行线分线段成比例【分析】直接利用平行线分线段成比例定理写出答案即可【解答】解:∵DE∥BC∴==故选C【点评】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基础定义或定理,难度不大4.在研究相似问题时,甲、乙同学的观点如下甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对【考点】相似三角形的判定;相似多边形的性质【专题】数形结合【分析】甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似【解答】解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′∴∠A=∠A′,∠B=∠B′∴△ABC∽△A′B′C′∴甲说法正确乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7∴,∴∴新矩形与原矩形不相似∴乙说法正确故选:A【点评】此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用5.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【考点】相似三角形的判定【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断【解答】解:当∠ACP=∠B∠A公共所以△APC∽△ACB当∠APC=∠ACB∠A公共所以△APC∽△ACB当AC2=AP•AB即AC:AB=AP:AC∠A公共所以△APC∽△ACB当AB•CP=AP•CB,即=而∠PAC=∠CAB所以不能判断△APC和△ACB相似故选D【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于()A.3:2B.3:1C.1:1D.1:2【考点】相似三角形的判定与性质【专题】几何图形问题【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可【解答】解:∵▱ABCD ,故AD ∥BC∴△DEF ∽△BCF∴=∵点E 是边AD 的中点∴AE=DE=AD∴=故选:D【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF ∽△BCF 是解题关键7.四边形ABCD 与四边形A′B′C′D′位似,O 为位似中心,若OA :OA′=1:3,则S 四边形ABCD :S 四边形A´B´C´D´=( )A.1:9B.1:3C.1:4D.1:5【考点】位似图形的性质【分析】四边形ABCD 与四边形A′B′C′D′位似,四边形ABCD ∽四边形A′B′C′D′,可知AD ∥A′D′,△OAD ∽△OA′D′,求出相似比从而求得S 四边形ABCD :S 四边形A´B´C´D´的值【解答】解:∵四边形ABCD 与四边形A′B′C′D′位似∴四边形ABCD ∽四边形A′B′C′D′∴AD ∥A′D′∴△OAD ∽△OA′D′∴OA :O′A′=AD :A′D′=1:3∴S 四边形ABCD :S 四边形A´B´C´D´=1:9故选:A【点评】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方8.小刚身高1.7m,测得他站立在阳光下的影长为0.85m,紧接着他把手臂竖直举起,测得影长为1.1m,那么小刚举起手臂超出头顶()A.0.5 mB.0.55 mC.0.6 mD.2.2 m【考点】利用影子测量物体的高度【分析】根据在同一时物体的高度和影长成正比,设出手臂竖直举起时总高度x,即可列方程解出x的值,再减去身高即可得出小刚举起的手臂超出头顶的高度【解答】解:设手臂竖直举起时总高度xm,列方程得=解得x=2.22.2﹣1.7=0.5m所以小刚举起的手臂超出头顶的高度为0.5m故选:A【点评】本题考查了相似三角形的应用,解答此题的关键是明确在同一时刻物体的高度和影长成正比9.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=【考点】相似三角形的判定与性质【分析】由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误【解答】解:∵DE∥BC∴△ADE∽△ABC∴∵=∵=故A、B选项均错误∵△ADE∽△ABC∴==,=()2=故C选项正确,D选项错误故选C【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方10.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.【考点】相似三角形的判定与性质【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值【解答】解:∵AB、CD、EF都与BD垂直∴AB∥CD∥EF∴△DEF∽△DAB,△BEF∽△BCD∴=,=∴+=+==1∵AB=1,CD=3∴+=1∴EF=故选C【点评】本题主要考查的是相似三角形的判定与性质,发现+=1是解决本题的关键二、填空题11.若,则=【考点】比例的性质【专题】常规题型【分析】根据比例的性质求出的值,然后两边加1进行计算即可得解【解答】解:∵∴﹣2==2+=∴+1=+1即=故答案为:【点评】本题考查了比例的性质,根据已知条件求出的值是解题的关键12.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3【考点】比例的性质【分析】根据等比性质,可得答案【解答】解:由等比性质,得k===3故答案为:3【点评】本题考查了比例的性质,利用了等比性质:===k⇒k==13.已知一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,则较小三角形与较大三角形的相似比k=【考点】相似三角形的性质【分析】由一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,根据相似比等于对应边的比,即可求得答案【解答】解:∵一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18∴较小三角形与较大三角形的相似比k==故答案为:【点评】此题考查了相似比的定义.此题比较简单,解题的关键是熟记定义14.在△ABC中,AB=12cm,BC=18cm,AC=24cm,另一个与它相似的△A′B′C′的周长为18cm,则△A′B′C各边长分别为4cm,6cm,8cm【考点】相似三角形的性质【分析】由△A′B′C′∽△ABC,根据相似三角形周长的比等于相似比,即可求得答案【解答】解:∵△A′B′C′∽△ABC∴△A′B′C′的周长:△ABC的周长=A′B′:AB∵在△ABC中,AB=12cm,BC=18cm,AC=24cm∴△ABC的周长为:54cm∵△A′B′C′的周长为18cm∴A′B′:AB=A′C′:AC=B′C′:BC=∴A′B′=4cm,B′C′=6cm,A′C′=8cm故答案为:4cm,6cm,8cm.【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键15.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为5【考点】利用镜子的反射原理【专题】计算题;压轴题【分析】延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解【解答】解:如图所示延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′作AD⊥x轴于D点.则AD=3,DB′=3+1=4∴AB′=AC+CB′=AC+CB=5即光线从点A到点B经过的路径长为5【点评】本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键16.如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为【考点】相似三角形的性质【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解【解答】解:∵EF是△ODB的中位线∴DB=2EF=2×2=4∵AC∥BD∴△AOC∽△BOD∴=即=解得AC=故答案为:【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键17.如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为18【考点】相似三角形的判定与性质【分析】根据相似三角形的判定,可得△ADE∽△ABC,根据相似三角形的性质,可得答案【解答】解;∵在△ABC中,DE∥BC∴△ADE∽△ABC∵=∴=()2==18∴S△ABC故答案为:18【点评】本题考查了相似三角形判定与性质,利用了相似三角形的判定与性质18.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD 交于点F,则△AFD与四边形DEFC的面积之比是9:11【考点】相似三角形的判定与性质【专题】压轴题【分析】根据题意,先设CE=x ,S △BEF =a ,再求出S △ADF 的表达式,利用四部分的面积和等于正方形的面积,得到x 与a 的关系,那么两部分的面积比就可以求出来【解答】解:设CE=x ,S △BEF =a∵CE=x ,BE :CE=2:1∴BE=2x ,AD=BC=CD=AD=3x∵BC ∥AD ∴∠EBF=∠ADF又∵∠BFE=∠DFA∴△EBF ∽△ADF∴S △BEF :S △ADF ===,那么S △ADF =a∵S △BCD ﹣S △BEF =S 四边形EFDC =S 正方形ABCD ﹣S △ABE ﹣S △ADF∴x 2﹣a=9x 2﹣×3x•2x ﹣化简可求出x 2= ∴S △AFD :S 四边形DEFC =:=:=9:11,故答案为9:11【点评】此题运用了相似三角形的判定和性质,还用到了相似三角形的面积比等于相似比的平方三、解答题19.已知线段a ,b ,c ,d 成比例,且a=6dm ,b=3dm ,d=dm ,求线段c 的长度.【考点】成比例线段【分析】根据比例线段的定义得出=,即=,解之可得c【解答】解:根据题意,=,即=解得:c=3答:线段c的长度为3dm【点评】本题主要考查比例线段,掌握比例线段的定义是关键20.若=,求的值【考点】比例的性质【分析】首先由已知条件可得x=,然后再代入即可求值【解答】解:∵=∴8x﹣6y=x﹣yx=∴==【点评】此题主要考查了比例的性质,关键是掌握内项之积等于外项之积21.已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状【考点】比例的性质【专题】探究型【分析】令=k.根据a+b+c=12,得到关于k的方程,求得k值,再进一步求得a,b,c的值,从而判定三角形的形状【解答】解:令=k∴a+4=3k,b+3=2k,c+8=4k∴a=3k﹣4,b=2k﹣3,c=4k﹣8又∵a+b+c=12∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12∴k=3∴a=5,b=3,c=4∴△ABC是直角三角形【点评】此题能够利用方程求得k的值,进一步求得三角形的三边长,根据勾股定理的逆定理判定三角形的形状22.如图,△ABC中,CD是边AB上的高,且=(1)求证:△ACD∽△CBD(2)求∠ACB的大小【考点】相似三角形的判定与性质【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°【解答】(1)证明:∵CD是边AB上的高∴∠ADC=∠CDB=90°∵=∴△ACD∽△CBD(2)解:∵△ACD∽△CBD∴∠A=∠BCD在△ACD中,∠ADC=90°∴∠A+∠ACD=90°∴∠BCD+∠ACD=90°即∠ACB=90°【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G(1)求证:△ABE∽△DEF(2)若正方形的边长为4,求BG的长【考点】相似三角形的判定;平行线分线段成比例【专题】计算题;证明题【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF(2)根据平行线分线段成比例定理,可得CG的长,即可求得BG的长【解答】(1)证明:∵ABCD为正方形∴AD=AB=DC=BC,∠A=∠D=90°∵AE=ED∴∵DF=DC∴∴∴△ABE∽△DEF(2)解:∵ABCD为正方形∴ED∥BG∴又∵DF=DC,正方形的边长为4∴ED=2,CG=6∴BG=BC+CG=10【点评】此题考查了相似三角形的判定(有两边对应成比例且夹角相等三角形相似)、正方形的性质、平行线分线段成比例定理等知识的综合应用.解题的关键是数形结合思想的应用24.某小区居民筹集资金1600元,计划在两底分别为10m 、20m 梯形空地上种植种植花木,如图(1)他们在△AMD 和△BMC 地带上种植太阳花,单价为8元/m 2,当△AMD 地带种满花后(图中阴影部分),共花了160元,计算种满△BMC 地带所需费用(2)若其余地带有玫瑰、茉莉两种可供选择,单价分别为12元/m 2、10元/m 2,应选哪种花木,刚好用完所筹资金?【考点】相似三角形的性质【专题】应用题【分析】(1)易得△AMD ∽△BMC ,根据BC=2AD 可得S △BMC =4S △AMD ,据此可得种满△BMC 的花费(2)根据每平方米8元来看,△AMD 面积为20平米方米,△BMC 面积为80平方米,因此可以得出梯形的高也就是两三角形高的和为12米,那么可得梯形面积为180平方米,还有80平方米未种,800元未用,所以要选择每平方米十元的茉莉花【解答】解:(1)∵四边形ABCD 是梯形∴AD ∥BC∴∠MAD=∠MCB ,∠MDA=∠MBC∴△AMD ∽△CMB∴S △AMD :S △BMC =(10:20 )2=1:4∵种植△AMD 地带花费160元,单价为8元/m 2∴S △AMD =20m 2∴S △CMB =80m 2∴△BMC 地带所需的费用为8×80=640(元)(2)设△AMD 的高为h 1,△BMC 的高为h 2,梯形ABCD 的高为h∵S △AMD =×10h 1=20∴h 1=4∵S △BCM =×20h 2=80∴h 2=8∴S 梯形ABCD =(AD +BC )•h=×(10+20)×(4+8)=180∴S △AMB +S △DMC =180﹣20﹣80=80(m 2)∵160+640+80×12=1760(元)160+640+80×10=1600(元)∴应种植茉莉花刚好用完所筹集的资金【点评】此题主要考查了相似三角形的性质以及应用;求得梯形的高是解决本题的难点;用到的知识点为:相似三角形的面积比等于相似比的平方25.如图,已知在△ABC 和△EBD 中,(1)若△ABC 与△EBD 的周长之差为60cm ,求这两个三角形的周长(2)若△ABC 与△EBD 的面积之和为812cm 2,求这两个三角形的面积【考点】相似三角形的判定与性质【分析】(1)根据已知条件得到△ABC ∽△DBE ,根据相似三角形的性质:相似三角形周长的比等于相似比即可得到结论(2)根据已知条件得到△ABC∽△DBE,根据相似三角形的性质:相似三角形面积的比等于相似比的平方即可得到结论【解答】解:(1)∵∴△ABC∽△DBE∴△ABC的周长:△EBD的周长=设△ABC的周长为5k,△EBD的周长为2k∴5k﹣2k=60∴k=20∴△ABC的周长=100cm,△EBD的周长=40cm(2)∵∴△ABC∽△DBE∴=()2=∵△ABC与△EBD的面积之和为812cm2∴S=812×=700△ABC【点评】本题考查了相似三角形的判定和性质,三角形的面积和周长,熟练掌握相似三角形的判定和性质是解题的关键26.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸)①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米根据以上测量过程及测量数据,请你求出河宽BD是多少米?【考点】相似三角形的性质与判定【专题】几何图形问题【分析】根据题意求出∠BAD=∠BCE,然后根据两组角对应相等,两三角形相似求出△BAD和△BCE相似,再根据相似三角形对应边成比例列式求解即可【解答】解:由题意得,∠BAD=∠BCE∵∠ABD=∠CBE=90°∴△BAD∽△BCE∴=∴=解得BD=13.6答:河宽BD是13.6米【点评】本题考查了相似三角形的应用,读懂题目信息得到两三角形相等的角并确定出相似三角形是解题的关键,也是本题的难点。

北师版九年级数学上册 第4章 图形的相似 综合测试卷(含答案)

北师版九年级数学上册  第4章  图形的相似    综合测试卷(含答案)

北师版九年级数学上册 第四章 图形的相似综合测试卷第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30) 1.下面不是相似图形的是( )A B C D2.如图,五边形ABCDE 与五边形A′B′C′D′E′是位似图形,点O 为位似中心,若OD =12OD′,则A′B′∶AB 为( )A .2∶3B .3∶2C .1∶2D .2∶13.如图,在△ABC 中,DE ∥BC ,AD AB =35,则S △ADE S 梯形DBCE 的值是( ) A.35 B.916 C.53 D.16254.如图,在△ABC 中,DE ∥BC ,AD DB =12,则下列结论中正确的是( ) A.AE AC =12B.DE BC =12C.△ADE 的周长△ABC 的周长=13D.△ADE 的面积△ABC 的面积=135.点C 为线段AB 的黄金分割点,且AC>BC.下列说法中正确的有( ) ①AC =5-12AB ;②AC =3-52AB ;③AB ∶AC =AC ∶BC ;④AC≈0.618AB. A .1个 B .2个 C .3个 D .4个6.在平面直角坐标系中,点P(m ,n)是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2m ,2n)B .(2m ,2n)或(-2m ,-2n)C .(12m ,12n)D .(12m ,12n)或(-12m ,-12n)7.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,则CF 等于( ) A .1 B .2 C .3 D .48.如图,在△ABC 中,D ,E 两点分别在边BC ,AD 上,且AD 为∠BAC 的平分线.若∠ABE =∠C ,AE ∶ED =2∶1,则△BDE 与△ABC 的面积比为( ) A .1∶6 B .1∶9 C .2∶13 D .2∶159.如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H ,若AF DF =2,则HFBG 的值为( ) A.23 B.712 C.12 D.51210.(2018·达州)如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE =CF =14AC.连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则S △ADGS △BGH 的值为( ) A.12 B.23 C.34 D .1第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在△ABC 中,AB =12 cm ,BC =18 cm ,AC =24 cm ,另一个与它相似的△A′B′C′的周长为18 cm ,则△A′B′C′各边长分别为________cm ,________cm ,________cm. 12. 如图,已知AB ∥CD ,若AB CD =14,则OAOC=________.13.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BE ,BD ,且AE ,BD 交于点F ,已知S △DEF ∶S △ABF =4∶25,则DE ∶EC =________.14.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB =1.5,则DE =________.15.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,那么AB =________.16.如图,阳光通过窗口AB 照到室内,在地面上留下一个亮区ED ,已知亮区一边到窗下的墙脚距离CE =2.7 m ,窗高AB =0.8 m ,窗口底边离地面的高度BC =1 m ,则亮区宽度ED =________.17.如图,梯形ABCD 中,AB ∥CD ,BE ∥AD ,且BE 交CD 于点E ,∠AEB =∠C.如果AB =3,CD =8,那么AD 的长是________.18.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,在Rt △MPN 中,∠MPN =90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE =2PF 时,AP =________.三.解答题(共7小题, 46分)19.(6分) 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD AC =DF CG .(1)求证:△ADF ∽△ACG ;(2)若AD AC =12,求AFFG的值.20. (6分) 如图,点D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.21. (6分) 如图,在△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.22.(6分) ) 如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.23.(6分) 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.24.(8分) 如图,为测量山峰AB的高度,在相距50 m的D处和F处分别竖立高均为2 m的标杆DC 和FE,且AB,CD和EF在同一平面内,从标杆DC退后2 m到G处可以看到山峰A和标杆顶点C 在同一直线上,从标杆FE退后4 m到H处可以看到山峰A和标杆顶点E在同一直线上,求山峰AB 的高度及山峰与标杆CD之间的水平距离BD的长.25.(8分) 如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且∠ACD =∠B =∠BAE. (1)求证:AD BC =DEAC;(2)当点E 为CD 的中点时,求证:AE 2CE 2=ABCD.参考答案1-5 ADBCC 6-10 BBDBC 11. 4,6 ,8 12. 1413. 2∶3 14. 4.5 15. 4 16. 1.2m 17. 15 18. 319. 解:(1)证明:∵∠AED =∠B ,∠DAE =∠DAE ,∴∠ADF =∠C. 又∵AD AC =DFCG ,∴△ADF ∽△ACG(2)∵△ADF ∽△ACG ,∴AD AC =AFAG .又∵AD AC =12,∴AF AG =12,∴AF FG=120. 解:在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A , ∴△ABD ∽△ACB ,∴AB AC =AD AB ,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=521. 证明:∵AD 是中线,∴BD =CD , 又CD 2=BE·BA ,∴BD 2=BE·BA , 即BE BD =BDAB, 又∠B =∠B ,∴△BED ∽△BDA , ∴ED AD =BDAB,∴ED·AB =AD·BD 22. 解:(1)∵AB =AC ,BD =CD ,∴AD ⊥BC ,∠B =∠C , ∵DE ⊥AB ,∴∠DEB =∠ADC ,∴△BDE ∽△CAD (2)∵AB =AC ,BD =CD ,∴AD ⊥BC , 在Rt △ADB 中,AD =AB 2-BD 2=12, ∵12AD·BD =12AB·DE ,∴DE =601323. 解:(1)如图所示,线段A 1B 1即为所求(2)如图所示,线段A 2B 1即为所求(3)由图可得,四边形AA 1B 1A 2为正方形,∴四边形AA 1B 1A 2的面积是(22+42)2=(20)2=20 24. 解:∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH ,∴AB ∥CD ∥EF , ∴△CDG ∽△ABG ,△EFH ∽△ABH , ∴CD AB =DG DG +BD ,EF AB =FH FH +DF +BD. 又∵CD =DG =EF =2 m ,DF =50 m ,FH = 4 m , ∴2AB =22+BD ,2AB =450+4+BD , ∴22+BD =44+50+BD, 解得BD =50 m , ∴2AB =22+50, 解得AB =52 m25. 证明:(1)∵∠ACD =∠B =∠BAE ,∠BAC =∠BAE +∠CAE ,∠AED =∠ACD +∠CAE , ∴∠AED =△BAC.又∵∠DAE =∠B , ∴△AED ∽△BAC ,∴AD BC =DEAC(2)∵∠ADE =∠CDA ,∠DAE =∠ACD ,∴△DAE ∽△DCA ,∴AE AC =DEAD .又∵DE =EC ,∴AE CE =AC AD ,∴AE 2CE 2=AC 2AD 2.又∵∠DAC =∠BAC ,∠ACD =∠B , ∴△ACD ∽△ABC ,∴AC 2=AD·AB , ∴AE 2CE 2=AD·AB AD 2=ABAD。

北师大版九年级数学上册 第四章 图形的相似 单元检测试题含答案

北师大版九年级数学上册 第四章 图形的相似 单元检测试题含答案

北师大版九年级数学上册 第四章 图形的相似 单元检测试题学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.在同一时刻,身高 米的小强在阳光下的影长为 米,一棵大树的影长为 米,则树的高度为( )A. 米B. 米C. 米D. 米2.已知 ,且相似比为 , ,则A. B. C. D.3.如图, 与 是位似图形,其中 ,那么 的长 与 的长 之间函数关系的图象大致是( )A.B. C.D.4.在 中, 、 分别是 、 上的点,下列命题中不正确的是( )A.若 ,则B.若 ,则C.若 ,则D.若 ,则5.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点 对应大鱼上的点( )A. B. C.D.6.下面四个命题,其中假命题是( )A.全等三角形是相似三角形B.所有的正方形都相似C.所有的等边三角形都相似D.所有的直角三角形都相似7.如图所示,、分别是、边上的点,在下列条件中:① ;②;③能独立判断与相似的有()A ①B ①③C ①②D ①②③8.一根米长的标杆直立在水平地面上,它在阳光下的影长为米;此时一棵水杉树的影长为米,这棵水杉树高为()A.米B.米C.米D.米9.如图,,分别为,的中点,则四边形A. B. C. D.10.如图,边长为的正方形中有一个小正方形,其中、、分别在、、上,若,则小正方形的边长为()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.已知,若与的相似比为,则与的面积比为________.12.如图,小明站在处看甲、乙两楼楼顶的点和,、、三点在同一直线上,甲乙两楼的底部、与也在同一直线上,测得相距米,相距米,乙楼高为米,则甲楼高(小明身高忽略不计)为________米.13.如图,若________(请补充一个条件),则.14.如图,和是以点为位似中心的位似三角形,若为的中点,,则的长为________.15.如图,,,的周长为,则的周长是________.16.如图,方格纸中的每一个小方格都是边长为的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的是格点三角形,在建立平面直角坐标系后,点的坐标为,在方格纸中把以点为位似中心放大,使放大前后对应边的比为,则点的对应点的坐标为________.17.如图,用两根等长的钢条和交叉于点构成一个卡钳,可以用来测量工作内槽的宽度、设,且量得,则内槽的宽等于________.18.线段,,则的值为________.19.在中,点、分别在边和上,,,,要使,那么必须等于________.20.如图,中,交于点,,,,,则的长等于________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,在中,与交于点,点,,,分别是,,,的中点,这样形成一个,你能证明吗?22.如图所示,在矩形中,对角线,相交于点.过点作于点,连接交于点,过点作于点,则与是位似图形吗?若是,请说出位似中心,并求出相似比;若不是,请说明理由.23.如图,中,、分别平分、.是的外角的平分线,交延长线于,连接.变化时,设.若用表示和;若,且与相似,求相应长.24.如图,是等边三角形,是延长线上一点,是延长线上一点,且满足.求证:.25.一块直角三角形木板的一条直角边长为,面积为,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案,甲设计方案如图,乙设计方案如图.你认为哪位同学设计的方案较好?试说明理由.(加工损耗忽略不计,计算结果中可保留分数)26.如图,矩形中,,,动点以每秒个单位的速度从点出发沿着向移动,同时动点以每秒个单位的速度从点出发沿向移动.几秒时,的面积为?几秒时,由、、三点组成的三角形与相似?答案1.C2.A3.C4.D5.B6.D7.B8.A9.A10.C11.12.13.14.15.16.17.18.19.20.21.证明:∵点,,,分别是,,,的中点,∴ ,,∴,,∴ ,,∴ .22.解:与是位似图形,∵ ,,∴ ,又、的连线相交于点,∴ 与是位似图形,位似中心是点,∵四边形是矩形,∴ ,,又,∴ ,∴ 是的中位线,∴,∵ ,∴,则,∴ 与的相似比是.23.解:,解:∵ 是的平分线,是的外角平分线,∴,分情况讨论:①当时,,,所以,②当时,,,所以,.③当时,,,所以,.24.证明:∵ 是等边三角形,,∴ ,∵ ,∴ ,∵ ,∴ ,∴ ,∴ ,∵ ,∴ .25.解:由,,可得,由图,若设甲设计的正方形桌面边长为,由,得,∴,即,∴ ,,由图,过点作斜边上的高,交于,交于.由,,得,由可得,,设乙设计的桌面的边长为,∵ ,∴ ,∴,即,解得,∵,∵ ,∴甲同学设计的方案较好.26.秒或秒后,的面积为;要使两个三角形相似,由∴只要或者∵ ,∴只要或者设时间为则,∴或者,∴当或者时,由、、三点组成的三角形与相似;。

北师大版数学九年级上册第4章 图形的相似 培优检测题(含祥细答案)

北师大版数学九年级上册第4章  图形的相似   培优检测题(含祥细答案)

《图形的相似》培优检测题一.选择题1.若△ABC∽△DEF,相似比为4:3,则对应面积的比为()A.4:3 B.3:4 C.16:9 D.9:162.若,则的值是()A.B.C.D.3.如图,在△ABC中,D,E分别为AB、AC边上的中点,则△ADE与△ABC的面积之比是()A.1:4 B.1:3 C.1:2 D.2:14.如图,△ABC中,点D在AB边上,点E在AC边上,且∠1=∠2=∠3,则与△ADE相似的三角形的个数为()A.4个B.3个C.2个D.1个5.如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AO:AD的值为()A.2:3 B.2:5 C.4:9 D.4:136.如图,在平行四边形ABCD中,点E是CD边上一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F.若S△DEF =2,则S△ABE=()A .15.5B .16.5C .17.5D .18.57.如图,在▱ABCD 中,点E 在边AD 上,CE 交BD 于点F ,若EF =FC ,则=( )A .B .2C .D .38.D 、E 是△ABC 的边AB 、AC 的中点,△ABC 、△ADE 的面积分别为S 、S 1,则下列结论中,错误的是( )A .DE ∥BCB .DE =BC C .S 1=D .S 1=9.如图,在△ABC 中,点E 是线段AC 上一点,AE :CE =1:2,过点C 作CD ∥AB 交BE 的延长线于点D ,若△ABE 的面积等于4,则△BCD 的面积等于( )A .8B .16C .24D .3210.如图,△ABC 是面积为27cm 2的等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积为( )A .9cm 2B .8cm 2C .6cm 2D .12 cm 2二.填空题11.如图,在△ABC 中,DE ∥BC ,=2,△ADE 的面积为8,则四边形DBCE 的面积为 .12.如图,平行四边形ABCD 中,若S △BEF :S △BCF =1:2,则S △BEF :S △DCF = .13.如图,在平行四边形ABCD 中,点E 在边BC 上,射线AE 交DC 的延长线于点F ,已知BE =3CE ,△ABE 的周长为9,则△ADF 的周长为 .14.如图所示,正方形ABCD 中,AB =8,BE =DF =1,M 是射线AD 上的动点,点A 关于直线EM 的对称点为A ′,当△A ′FC 为以FC 为直角边的直角三角形时,对应的MA 的长为 .15.如图是小孔成像原理的示意图,点O 与物体AB 的距离为45厘米,与像CD 的距离是30厘米,AB ∥CD .若物体AB 的高度为27厘米,那么像CD 的高度是 厘米.16.如图,CE是平行四边形ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,S四边形AFOE :S△COD=.17.如图,线段AB=4,点C为线段AB上任意一点(与端点不重合),分别以AC、BC为边在AB的同侧作正方形ACDE和正方形CBGF,分别连接BF、EG交于点M,连接CM,设AC=x,S四边形ACME=y,则y与x的函数表达式为y=.18.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=9,若点P是边AB上的一个动点,以每秒3个单位的速度按照从A→B→A运动,同时点Q从B→C以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动.在运动过程中,设运动时间为t,若△BPQ为直角三角形,则t的值为.三.解答题19.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE 、BC 的延长线相交丁点F ,且=.(1)求证:△ADE ~△ACB ;(2)当AB =12,AC =9,AE =8时,求BD 的长.20.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣1,4),C (﹣3,3).(1)画出△ABC 绕点B 逆时针旋转90°得到的△A 1BC 1.(2)以原点O 为位似中心,位似比为2:1,在y 轴的左侧,画出将△ABC 放大后的△A 2B 2C 2,并写出A 2点的坐标 .21.在平行四边形ABCD中,BC的垂直平分线交AC于F,连线AE、BF.(1)如图1,若BF⊥AC,AE=3,AD=6,求AF的长;(2)如图2,若AE,BF交于点G,且∠ACD=∠BGE,求证:AF+2FG=FC.22.随着人们对生活环境的要求逐渐提高,环境保护问题受到越来越多人的关注,环保宣传也随处可见.如图,小云想要测量窗外的环保宣传牌AB的高度,她发现早上阳光恰好从窗户的最高点C处射进房间的地板射进房间的地板F处,中午阳光恰好从窗户的最低点处射进房间的地板E处,小云测得窗户距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=3m.请根据以上测量数据,求环保宣传牌AB的高度.23.如图,在△ABC中,点PQ分别在AB,AC上,且PQ∥BC,PM⊥BC于点M,QN⊥BC于点N.AD⊥BC于点D,交PQ于点E,且AD=BC.(1)求AE:PQ的值;(2)请探究BM,CN.QN之间的等量关系,并说明理由;(3)连接MQ,若△ABC的面积等于8,求MQ的最小值.24.如图,在正方形ABCD中,点E是BC边上的一动点,点F是CD上一点,且CE=DF,AF、DE相交于点G.(1)求证:△ADF≌△DCE;(2)求∠AGD的度数;(3)若BG=BC,求的值.参考答案一.选择题1.解:∵△ABC∽△DEF,相似比为4:3,∴它们的面积的比为16:9.故选:C.2.解:∵,∴设a=11x,b=5x,故==.故选:B.3.解:由题意可知:DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,故选:A.4.解:∵∠1=∠2,∠A=∠A,∴△ADE∽△ABC,∵∠1=∠3,∠A=∠A,∴△ADE∽△ACD,∴图中与△ADE相似的三角形有2个.故选:C.5.解:∵△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,∴=,AC∥DF,∴==,∴=.故选:B.6.解:∵四边形ABCD是平行四边形,∴DE∥AB,∴△DFE∽△BFA,∵DE:EC=2:3,∴DE:AB=2:5,DF:FB=2:5,∵S△DEF=2,∴S△ABF =,S△BEF=5,∴S△ABE=+5=,故选: C.7.解:在▱ABCD中,∵AD∥BC,AD=BC,∴△DEF∽△BCF,∴==,∴=,∴=2,故选:B.8.解:∵D、E是△ABC的边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∵DE∥BC,∠A=∠A,∴△ADE∽△ABC,∴=()2=,即S1=S,∴D错误,故选:D.9.解:如图所示:∵CD∥AB,∴∠BAE=∠DEC,又∵∠AEB=∠CED,∴△AEB∽△CED,∴,又∵,S△AEB=4,∴S△CED=16,故选:B.10.解:∵△ABC是面积为27cm2的等边三角形,∴S△ABC=27cm2,∵矩形平行于BC,∴EH∥FG∥BC,∴△AEH∽△AFG∽△ABC,∵AB被截成三等分,∴AF=2AE,AB=3AE,∴S△AEH :S△AFG:S△ABC=1:4:9,∴S△AEH :S四边形EFGH:S四边形FBCG=1:3:5,∴图中阴影部分的面积S四边形EFGH=×27cm2=9cm2,故选:A.二.填空题11.解:∵DE ∥BC ,=2,∴△ADE ∽△ABC ,=,∴=()2=,∵△ADE 的面积为8,∴S △ABC =18.S 四边形DBCE =S △ABC ﹣S △ADE =18﹣8=10,故答案为:10.12.解:∵S △BEF :S △BCF =1:2,∴=,在平行四边形ABCD 中,∵AB ∥CD ,∴△BEF ∽△DCF ,∴S △BEF :S △DCF =()2=,故答案为:.13.解:如图,∵四边形ABCD 为平行四边形,∴AB ∥CD ,CD =AB ;∴△ABE ∽△FCE ,∴===3,∴CF =AB ,CE =BE ,EF =AE ,∴AF =AE +EF =AE +AE ,AD =BC =BE +BE ,DF =DC +CF =AB +AB . ∵△ABE 的周长为9,∴AB +AE +BE =9,∴AF +AD +DF =AE +AE +BE +BE +AB +AB =(AB +AE +BE )=×9=12. 故答案是:12.14.解:如图,若∠FCA'=90°,即点A'在BC上,过点M作MN⊥BC于点N,∵四边形ABCD是正方形,∴AB=CD=8,∠D=∠C=90°,且MN⊥BC∴四边形MNCD是矩形∴MN=CD=8∵AB=8,BE=DF=1,∴AE=CF=7∵点A关于直线EM的对称点为A′,∴AE=A'E=7,AM=A'M,∠A=∠EA'M=90°∴A'B==4∵∠BA'E+∠MA'N=90°,∠BA'E+∠A'EB=90°,∴∠BEA'=∠MA'N,且∠B=∠MNA'=90°∴△A'BE∽△MNA',∴∴∴A'M==MA如图,若∠A'FC=90°,过点A'作HG⊥AD,过点E作EN⊥HG,∵四边形ABCD是正方形,∴AB=CD=8,∠D=∠C=90°,且HG⊥AD∴四边形HGCD是矩形∴HG=CD=8,同理可得NG=BE=1,DF=A'H=1,AE=HN∵AB=8,BE=DF=1,∴AE=CF=7∵点A关于直线EM的对称点为A′,∴AE=A'E=7=HN,AM=A'M,∠A=∠EA'M=90°∴A'N=HN﹣A'H=6∴EN==∵∵∠NA'E+∠MA'H=90°,∠NA'E+∠A'EN=90°,∴∠NEA'=∠MA'H,且∠ENA'=∠MHA'=90°∴△A'NE∽△MHA',∴∴∴A'M==MA故答案为:或15.解:∵AB∥CD∴△ABO∽△CDO∴=又∵AB=27∴CD=18.故答案为:18.16.解:∵CE 是AB 的垂直平分线,∴EA =EB ,CA =CB ,AO =AB =CD ,∵OA ∥CD ,∴△EAO ∽△EDC ,△AFO ∽△CFD ,∴==,==,∴EA =AD ,=,=,在Rt △ECD 中,EA =AD ,∴CA =AE ,∴CA =AE =EB =BC ,∴四边形ACBE 为菱形,∴S △AOC =S △AOE ,∴S 四边形AFOE :S △COD =2:3,故答案为:2:3.17.解:连接CE ,BE ,如图,∵四边形ACDE 和四边形BCFG 为正方形,∴∠ACE =∠CBF =45°,∴CE ∥BF ,∴S △CEB =S △CEM ,∴y =S △ACE +S △CEM =S △ACE +S △CEB =S △ABE =×AE ×AB =•x •4=2x (0<x <4). 故答案为y =2x (0<x <4).18.解:∵∠C =90°,∠A =30°,BC =9,∴∠B =60°,AB =2BC =18,①当∠BQP=90°时,如图1所示:则AC∥PQ,∴∠BPQ=30°,BP=2BQ,∵BP=18﹣3t,BQ=t,∴18﹣3t=2t,解得:t=;②当∠QPB=90°时,如图2所示:∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,若0<t<6时,则t=2(18﹣3t),解得:t=,若6<t≤9时,则t=2(3t﹣18),解得:t=;故答案为:或或.三.解答题19.(1)证明:∵=,且∠EFC=∠BFD ∴△FEC∽△FBD,∴∠FEC =∠B ,又∵∠AED =∠FEC ,∴∠AED =∠B ,又∵∠EAD =∠BAC ,∴△ADE ∽△ACB ;(2)解:∵△ADE ∽△ACB∴=,即=,∴AD =6,∴DB =AB ﹣AD =12﹣6=6.20.解:(1)如图所示,△A 1BC 1即为所求;(2)如图,△A 2B 2C 2,即为所求,A 2(﹣4,2);故答案是:(﹣4,2).21.解:(1)如图,过点E 作EG ⊥AC 于点G ,∵四边形ABCD是平行四边形∴BC=AD=6,∵BC的垂直平分线交AC于F,∴BF=CF,且∠BFC=90°,BC=6∴BF=CF=6,EF=BE=EC=3,∵EF=CE,EG⊥AC∴GE=FC=3在Rt△AEG中,AG==6,∴AF=AG﹣FG=6﹣3=3(2)∵四边形ABCD是平行四边形∴AD∥BC∴∠DAC=∠BCA,∵BF=CF∴∠FBC=∠ACB∴∠DAC=∠FBC,且∠ACD=∠BGE∴△DAC∽△BGE∴∵BC的垂直平分线交AC于F,∴BE=EC=BC=AD,BF=FC∴AC=2BG∵AF+2FG=AF+2(BF﹣BG)=AF+2BF﹣2BG=AF+2FC﹣AC=FC 22.解:∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴=,=,解得:x=10.经检验:x=10是原方程的解.答:AB的高度是10m.23.解:(1)∵PQ∥BC,AD⊥BC,∴AE⊥PQ,∵PQ∥BC,∴△APQ∽△ABC,∴=,∴AE:PQ=AD:BC,∵AD=BC,∴AE:PQ=AD:BC=1;(2)QN=BM+CN,理由是:∵PM⊥BC,QN⊥BC,∴∠PMN=∠MNQ=∠MPQ=90°,∴四边形PMNQ是矩形,∴PQ=MN,PM=ED,∵AE=PQ,AD=BC,∴AE+ED=BM+MN+CN,∴MN+QN=BM+MN+CN,∴QN=BM+CN;(3)∵△ABC的面积等于8,∴BC•AD=8,∵AD=BC,∴BC2=8,∴BC=4,AD=4,设MN=x,则BM+CN=4﹣x,PM=QN=4﹣x,∵MQ===,∴当x=2时,MQ有最小值是2.24.(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADF=∠DCE=90°,∵CE=DF,∴△ADF≌△DCE(SAS).(2)解:∵△ADF≌△DCE,∴∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠AFD+∠CDE=90°,∴∠DGF=90°,∴∠AGD=90°.(3)解:∵BA=BG=BC,∴∠BAG=∠BGA,∠BGC=∠BCG,∵∠ABC=90°,2∠AGB+2∠GBC=270°,∴∠AGB+∠CGB=135°,∴∠CGF=45°,∴∠CGB=∠FGC=45°,∵∠ECF+∠EGF=90°,∴E,C,F,G四点共圆,∴∠CEF=∠CGF,∠CF E=∠CGE,∴∠CFE=∠CEF,∴CE=CF,∵DF=EC,∴FC=DF,∴DF=CD=AD,∵tan∠DAG===.。

北师大版九年级数学上册第四章图形的相似单元检测试题

北师大版九年级数学上册第四章图形的相似单元检测试题

单元检测试题:《图形的相似》一.选择题1.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28°B.32°C.42°D.52°2.如图,△ABC∽△ADE,则下列比例式正确的是()A.B.C.D.3.已知=,那么的值为()A.B.C.D.4.如图,已知点A(1,0),点B(b,0)(b>1),点P是第一象限内的动点,且点P 的纵坐标为,若△POA和△PAB相似,则符合条件的P点个数是()A.0 B.1 C.2 D.35.在△ABC中,边BC=6,高AD=4,正方形EFGH的顶点E、F在边BC上,顶点H、G分别在边AB和AC上,那么这个正方形的边长等于()A.3 B.2.5 C.2.4 D.26.如图,△ABC中,A(2,4)以原点为位似中心,将△ABC缩小后得到△DEF,若D(1,2),△DEF的面积为4,则△ABC的面积为()A.2 B.4 C.8 D.167.如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A.B.C.D.8.如图,△ABC中,AB=AC=12,BC=8.正方形DEFG的顶点E,F在△ABC内,顶点D,G 分别在AB,AC上,AD=AG,DG=4.则点F到BC的距离为()A.1 B.2 C.4﹣4 D.8﹣49.如图,某学生利用标杆测量一棵大树的高度,如果标杆EC的高为2 m,并测得BC=3 m,CA=1 m,那么树DB的高度是()A .6mB .8mC .32mD .0.125m10.下列各组图形中一定相似的图形是( ) A .有一个角相等的两个等腰三角形 B .两邻边之比相等的两个平行四边形 C .有一个角为60°的两个菱形 D .两个矩形11.如图,已知∠ACD =∠B ,若AC =6,AD =4,BC =10,则CD 长为( )A .B .7C .8D .912.如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE ∥AC ,若S △BDE :S △CDE =1:4,则S △BDE :S △ACD =( )A .1:16B .1:18C .1:20D .1:24二.填空题 13.若,则= .14.如图,点B 在AD 上,AB =1,AD =4,且△ABC ∽△ACD ,则AC = .15.如图,在▱ABCD 中,AC 是一条对角线,EF ∥BC ,且EF 与AB 相交于点E ,与AC 相交于点F ,3AE =2EB ,连接DF .若S △AEF =1,则S △ADF 的值为 .16.如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,若AB=2,CD=3,则EF=.17.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长都是1).△A1B1C1是以B为位似中心的△ABC的位似图形,且△A1B1C1与△ABC位似比为2,则点C1的坐标是,△A1B1C1的面积是.18.如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;③当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.25.其中正确的结论是.(把你认为正确结论序号都填上)三.解答题19.如图,E是平行四边形ABCD的边BA延长线上一点,连接EC,交AD于F.(1)写出图中的三对相似三角形(注意:不添加辅助线);(2)请在你所找出的相似三角形中选一对,说明相似的理由.20.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.21.在平面直角坐标系xOy中,已知△ABC和△DEF的顶点坐标分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).按下列要求画图:以O为位似中心,将△ABC向y轴左侧按比例尺2:1放大得△ABC的位似图形△A1B1C1,并解决下列问题:(1)顶点A1的坐标为,B1的坐标为,C1的坐标为;(2)请你利用旋转、平移两种变换,使△A1B1C1通过变换后得到△A2B2C2,且△A2B2C2恰与△DEF拼接成一个平行四边形(非正方形),写出符合要求的变换过程.22.如图,在矩形ABCD中,点M是CD的中点,MN⊥BM交AD于N,连BN;(1)求证:BM平分∠NBC;(2)若=,求的值.23.已知:矩形OABC的顶点O在平面直角坐标系的原点,边OA、OC分别在x、y轴的正半轴上,且OA=3cm,OC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求点N的坐标;(2)试求出多边形OAMN的面积S与t的函数关系式;(3)t为何值时,以△OAN的一边所在直线为对称轴翻折△OAN,翻折前后的两个三角形所组成的四边形为菱形?24.某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.结论:在探讨过程中,有三位同学得出如下结果:甲同学:在钝角、直角、不等边锐角三角形中分别存在个、个、个大小不同的内接正方形.乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.任务:(1)填充甲同学结论中的数据;(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明.参考答案一.选择题1.解:∵∠A=110°,∠C=28°,∴∠B=42°,∵△ABC∽△DEF,∴∠B=∠E.∴∠E=42°.故选:C.2.解:∵△ABC∽△ADE,∴.故选:D.3.解:∵=,∴设a=2k,则b=3k,则原式==.故选:B.4.解:∵点P的纵坐标为,∴点P在直线y=上.①当△PAO≌△PAB时,AB=b﹣1=OA=1,b=2,则P(1,);②∵当△PAO∽△BAP时,PA:AB=OA:PA,∴PA2=AB•OA,∴=b﹣1,∴(b﹣8)2=48,解得b=8±4,∴P(1,2+)或(1,2﹣).综上所述,符合条件的点P有3个.故选:D.5.解:设AD交GH于M.∵四边形EFMN是正方形,∴HG∥BC,∴△AGH∽△ABC,又∵AD⊥BC,∴AD⊥BC,EH=HG=MD,∴=,设EH=x,则AM=4﹣x,∴=,解得:x=2.4,∴EH=2.4.答:这个正方形的边长为2.4.故选:C.6.解:∵A(2,4)以原点为位似中心,将△ABC缩小后得到△DEF,D(1,2),∴位似比为:2:1,∵△DEF的面积为4,∴△ABC的面积为:4×4=16.故选:D.7.解:由题意得,A中三角形对应角相等,对应边成比例,两三角形相似;C,D中正方形,菱形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而B中矩形四个角相等,但对应边不一定成比例,所以B中矩形不是相似多边形故选:B.8.解:如图,作AN⊥BC于N,交DG于M,交EF于H.∵AB=AC=12,AN⊥BC,∴BN=CN=4,∴AN===8,∵AD=AG,AB=AC,∴∠ADG=∠AGD,∠B=∠C,∵∠A+2∠ADG=180°,∠A+2∠B=180°,∴∠ADG=∠B,∴DG∥BC,∴△ADG∽△ABC,∴=,∴=,∴AM=4,∵四边形MHFG是矩形,∴MH=GF=DG=4,∴HN=MN﹣MH=4﹣4,∴点F到BC的距离为4﹣4,故选:C.9.解:由题意可得,CE∥BD,在△ABD中,,即,解得BD=8m.故选:B.10.解:A、一个角可以是顶角也可以是底角,不能确定,所以不一定形似,故A不正确;B、两邻边之比相等,如果夹角不相等,两平行四边形也不相似,所以不一定相似,故B不正确;C、菱形的四条边相等,如果一个角都为60°,则四个角等对应相等,且各边对应成比例为1,所以一定相似,故C则正确;D、两个矩形四个角相等,但是各边不一定对应成比例,所以不一定相似,故D不正确.故选:C.11.解:∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,∴,∵AC=6,AD=4,BC=10,∴,∴CD=.故选:A.12.解:∵S△BDE :S△CDE=1:4,∴设△BDE的面积为a,则△CDE的面积为4a,∵△BDE和△CDE的点D到BC的距离相等,∴=,∴=,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE :S△ABC=1:25,∴S△ACD=25a﹣a﹣4a=20a,∴S△BDE :S△ACD=a:20a=1:20.故选:C.二.填空题(共6小题)13.解:∵,∴==.故答案为.14.解:∵△ABC∽△ACD,∴=,∵AB=1,AD=4,∴AC2=4,则AC=2.故答案为:2.15.解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵S△AEF=1,∴S△ABC=,∵四边形ABCD是平行四边形,∴S△ADC =S△ABC=,∵EF∥BC,∴===,∴==,∴S△ADF =S△ADC=×=,故答案为:.16.解:∵AB∥CD∥EF,∴△DFE∽△DBA,△BFE∽△BDC,△AEB∽△DEC,∵△BFE∽△BDC,△AEB∽△DEC,AB=2,CD=3,∴,∴,∴解得:EF=.故答案为:1.217.解:如图所示:△A1B1C1即为所求,点C1的坐标是(1,0),△A1B1C1的面积是:4×6﹣×2×6﹣×2×4﹣×2×4=10.故答案为:(1,0),10.18.解:如图,在线段DE上取点F,使AF=AE,连接AF,则∠AFE=∠AEF ∵AB=AC∴∠B=∠C∵∠ADE=∠B=a,∴∠C=∠ADE=a,∵∠AFE=∠DAF+∠ADE,∠AEF=∠C+∠CDE∴∠DAF=∠CDE∵∠ADE+∠CDE=∠B+∠BAD∴∠CDE=∠BAD∴∠DAF=∠BAD∴△ABD∽△ADF∴=,即AD2=AB•AF∴AD2=AB•AE,故①正确;由①可得:AE==,当AD⊥BC时,由勾股定理可得:AD===3 ∴3≤AD<5∴≤AE<5,即1.8≤AE<5故②正确;如图2,作AH⊥BC于H,∵AB=AC=5∴BH=CH=BC=4∴AH===3∵AD=AD′=,∴DH=D′H===1∴BD=3或BD′=5,CD=5或CD′=3,∵∠B=∠C∴△ABD≌△DCE(SAS),△ABD′与△D′CE不是全等形故③不正确;如图3,AD⊥BC,DE⊥AC∴∠ADE+∠DAE=∠C+∠DAE=90°∴∠ADE=∠C=∠B∴BD=4如图4,DE⊥BC于D,AH⊥BC于H,∵∠ADE=∠C∴∠ADH=∠CAH∴△ADH∽△CAH∴=,即=,∴DH=,∴BD=BH+DH=4+==6.25,故④正确;综上所述,答案为:①②④.三.解答题(共6小题)19.解:(1)△EAF∽△EBC,△CDF∽△EBC,△CDF∽△EAF.(2)选△EAF∽△EBC,理由如下:在ABCD中AD∥BC,∴∠EAF=∠B.又∵∠E=∠E,∴△EAF∽△EBC.20.解:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.21.解:(1)如图所示,△A1B1C1即为所求作的三角形,A 1(﹣2,0)B1(﹣6,0)C1(﹣4,﹣2);(2)如图,把△A1B1C1绕点O顺时针旋转90°,再向右平移6个单位,向下平移1个单位,使B2C2与DE重合,或者:把△A1B1C1绕点O顺时针旋转90°,再向右平移6个单位,向上平移3个单位,使A 2C2与EF重合,都可以拼成一个平行四边形.22.(1)证明:延长BM交AD的延长线于H,在△BMC和△HMD中,,∴△BMC≌△HMD,∴BM=MH,又MN⊥BM,∴NB=NH,∴∠NBM=∠NHM,∵AH∥BC,∴∠MBC=∠NHM,∴∠MBC=∠NBM,即BM平分∠NBC;(2)解:设DN=a,则DC=AB=4a,∴DM=MC=2a,由勾股定理得,MN==a,由(1)得,∠BNM=∠MND,∠BMN=∠MDN,∴△BMN∽△MDN,∴==,∴BM=2a,由勾股定理得,BN==5a,则AN==3a,∴==.23.解:(1)∵t=1∴CN=1,AM=1过N作NE⊥y轴,作NF⊥x轴∴△CEN∽△COA,∴,即,∴EN=.(1分)由勾股定理得:,,∴.(2分)(2)由(1)得,∴∴N点坐标为.∵多边形OAMN由△ONA和△AMN组成∴=(3分)=(4分)∴多边形OAMN的面积S=.(0≤t≤4)(5分)(3)①直线ON为对称轴时,翻折△OAN得到△OA′N,此时组成的四边形为OANA′,当AN=A′N=A′O=OA,四边形OANA’是菱形.即AN=OA,∴5﹣t=3∴t=2.(6分)②直线OA为对称轴时,翻折△OAN得到△OAN′,此时组成的四边形为ONAN′,连接NN′,交OA于点G.当NN′与OA互相垂直平分时,四边形ONAN′是菱形.即OA⊥NN′,OG=AG=,∴NG∥CO,∴点N是AC的中点,∴CN=,∴(7分)③直线AN为对称轴时,翻折△OAN得到△O′AN,此时组成的四边形为ONO′A,连接OO’,交AN于点H.当OO′与AN互相垂直平分时,四边形ONO’A是菱形.即OH⊥AC,AH=NH=,由面积法可求得OH=,在Rt△OAH中,由勾股定理得,AH=.∴,∴.(8分)综上所述,t的值为.24.解:(1)1,2,3.(2)乙同学的结果不正确.例如:在Rt△ABC中,∠B=90°,AB=BC=1,则.如图①,四边形DEFB是只有一个顶点在斜边上的内接正方形.设它的边长为a,则依题意可得:,∴,如图②,四边形DEFH两个顶点都在斜边上的内接正方形.设它的边长为b,则依题意可得:,∴.∴a>b.(3)丙同学的结论正确.设△ABC的三条边分别为a,b,c,不妨设a>b>c,三条边上的对应高分别为h a,h b,h,内接正方形的边长分别为x a,x b,x c.c依题意可得:=,∴x a=.同理x b=.∵x a﹣x b=﹣=﹣=2S(﹣)=(b+h b﹣a﹣h a).=(b+﹣a﹣).=•(b﹣a)(1﹣).=•(b﹣a)(1﹣).又∵b<a,h a<b,∴(b﹣a)(1﹣)<0,∴x a<x b,即x a2<x b2.∴在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新北师大版九年级数学上册第四章:图形的相似检测题
一、选择题(题型注释)
1.已知
513a b =,则a b a b
-+的值是( ) A .23- B .32- C .94- D .49- 2.把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是
A .3.09cm
B .3.82cm
C .6.18cm
D .7.00cm
3.如图,1l ∥2l ∥3l ,则下列等式错误的是( )
A .BC EF AC DF =
B .AB DE A
C DF = C .AB BC DE EF =
D .AB AD AC CF
=
4.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )
A .0.5m
B .0.55m
C .0.6m
D .2.2m
5.在研究相似问题时,甲、乙同学的观点如下:
甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.
对于两人的观点,下列说法正确的是( )
A .两人都对
B .两人都不对
C .甲对,乙不对
D .甲不对,乙对
6.如图,在矩形ABCD 中,E 、F 分别是DC 、BC 边上的点,且∠AEF=90°则下列结论正确的是( )。

A 、△ABF ∽△AEF
B 、△ABF ∽△CEF
C 、△CEF ∽△DAE
D 、△DA
E ∽△BAF
7.如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( ).
A .41
B .32
C . 31
D . 2
1
F
E D C B A
8.如图,在钝角三角形ABC 中,AB=6cm ,AC=12cm ,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1cm/秒,点E 运动的速度为2cm/秒.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是( )
A .3秒或4.8秒
B .3秒
C .4.5秒
D .4.5秒或4.8秒
9.某校数学兴趣小组为测量学校旗杆AC 的高度,在点F 处竖立一根长为1.5米的标杆DF ,如图所示,量出DF 的影子EF 的长度为1米,再量出旗杆AC 的影子BC 的长度为6米,那么旗杆AC 的高度为( )
A .6米
B .7米
C .8.5米
D .9米
10.如图,在△ABC 中,EF ∥BC ,2
1 EB AE ,S 四边形BCFE =8,则S △ABC 等于( ) A .9 B .10 C .1
2 D .13
11.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA , OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )
A .1:2
B .1:4
C .1:5
D .1:6
12.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的,那么点B′的坐标是( )
A .(﹣2,3)
B .(2,﹣3)
C .(3,﹣2)或(﹣2,3)
D .(﹣2,3)或(2,﹣3)
13.如图,DE BC ∥,若AD=7,DB=5,EC=4,则AE=________。

14.两个相似三角形的面积比为4:9,那么它们对应中线的比为 .
15.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD 的长为 .
16.如图所示,DE 是△ABC 的中位线,BD 与CE 相交于点O ,则OB
OD 的值是 .
17.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA=10cm ,OA′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .
18.如图,点D、E分别在△ABC边BC、AC上,连接线段AD、BE交于点F,若AE:EC=1:3,BD:DC=2:3,则EF:FB= .
19.如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.
(1)、如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?
(2)、点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.
20.如图,在△ABC中,∠C=90°,∠B=30°.
(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);
(2)求S△ACD:S△ABC的值.
21. (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.
(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)、应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.
22.如图,D是△ABC外一点,E是BC边上一点,∠1=∠2,∠3=∠4.
(1)写出图中两对相似三角形(不得添加字母和线);
(2)请分别说明两对三角形相似的理由.
23.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;
(2)当tan∠ABD=1,AC=3时,求BF的长.
24.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.
(1)△A1B1C1与△ABC的位似比是;
(2)画出△A1B1C1关于y轴对称的△A2B2C2;
(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是.
25.如图,在△ABC中,AB=AC=1,BC=
21
5
,在AC边上截取AD=BC,连接BD.
AD与AC·CD 的大小关系;(1)通过计算,判断2
(2)求∠ABD 的度数.
答案第1页,总1页 参考答案
1.D
2.C
3.D
4.A
5.A
6.C
7.D
8.A .
9.D
10.A
11.B
12.D
13.
285
14.2:3
15.23
. 16.2
17.1:2
18.
19.(1)、2s 或4s ;(2)、不存在
20.(1)作图见解析(2)1:3
21.(1)、证明过程见解析;(2)、证明过程见解析;(3)、t=1秒或5秒.
22.(1)、△ABD ∽△AEC ;△ABE ∽△ADC ;(2)、证明过程见解析
23.(1)详见解析;(2)3.
24.(1)2
1;(2)答案见解析;(3)(-2a ,2b). 25.(1)2AD AC CD =⋅;(2)36°.。

相关文档
最新文档