1 STOCHASTIC LOTKA-VOLTERRA SYSTEMS OF COMPETING AUTO-CATALYTIC AGENTS LEAD GENERICALLY TO

合集下载

lotka-volterra方程中的相关参数的确定

lotka-volterra方程中的相关参数的确定

lotka-volterra方程中的相关参数的确定Lotka-Volterra方程是一种描述捕食者和猎物之间相互作用的动力学模型。

它由两个关联的微分方程组成,其中捕食者的数量和猎物的数量随时间的变化被描述。

在Lotka-Volterra方程中,有一些参数需要确定,以使模型能够适应特定的捕食者和猎物系统。

以下是确定这些参数的一些常见方法:
1.实验观测:通过实验观测获得的数据可以用来确定模型中
的参数。

这可能涉及到监测和记录捕食者和猎物数量随时间的变化。

2.相关研究:进行相似生态系统或相似物种之间的研究,以
获得类似系统中参数的估计。

这可能包括文献综述、野外观察或实地调查。

3.参数估计:使用统计方法,如最小二乘拟合或最大似然估
计,根据已有的数据拟合模型,并得出参数的估计值。

4.灵敏度分析:进行灵敏度分析来评估参数对模型结果的影
响程度。

这可以帮助确定对模型结果影响较大的参数,并优先考虑对这些参数进行准确估计。

需要注意的是,参数的确定是一个复杂的过程,并且涉及到模型假设的验证,数据收集和分析,在参数估计中使用统计技术,以及考虑误差和不确定性。

另外,根据具体的应用和研究目的,还会引入其他的参数
或因素,以更好地刻画特定系统的行为。

因此,参数的确定应该根据具体情况进行,并结合领域知识和相关实验和观测数据。

癌细胞扩散数学模型

癌细胞扩散数学模型

癌细胞的扩散是癌症的致死原因之一。

因此,对癌细胞扩散过程进行建模可以更好地了解癌细胞如何扩散,从而防止和治疗癌症。

以下是癌细胞扩散数学模型的介绍。

最早的癌细胞扩散模型是由Fisher 和Kolmogorov 等人在20世纪20年代提出的,该模型将癌细胞扩散视为Fisher 的抛物线方程。

该模型得出的结果表明:一个固定的种群内,癌细胞数量会以几何级数增长,远远超过该种群的承载容量。

随着研究的深入,越来越多的数学模型对癌细胞扩散进行了更为深入的研究。

其中,比较典型的模型包括连续模型和离散模型。

连续模型是将时间和空间视为连续变量,通过偏微分方程来描述癌细胞在时间和空间中的分布。

其中,Lotka-Volterra 模型是一种典型的连续模型,通过如下方程来描述癌细胞扩散,利用该模型,可以更好地了解癌症侵袭性的程度。

离散模型则利用空间离散化的方式,将时间和空间视为离散变量,从而更好地刻画了癌细胞在空间上的扩散过程。

其中,Moore 模型是一种典型的离散模型,它将空间离散为一个方格,根据周围癌细胞数量的多少来决定某个方格中是否会出现癌细胞。

此外,基于代数拓扑学的模型也是一种新兴的数学模型,它是通过在癌细胞其他模型的基础上,使用代数拓扑学的工具来描述癌细胞扩散过程和形态的变化。

使用该模型,可以更好地研究癌细胞扩散的拓扑结构,从而可以更好地设计治疗方案。

总的来说,数学模型在研究癌细胞扩散方面起着很大的作用,可以更好地了解癌细胞如何扩散,从而更好地防止和治疗癌症。

癌细胞扩散数学模型越来越多,从单纯的Fisher 模型到代数拓扑学模型,都为我们了解癌症的本质提供了更深刻的认识。

对种间竞争中的Lotka-Volterra模型的理解

对种间竞争中的Lotka-Volterra模型的理解

对种间竞争中的Lotka-Volterra 模型的理解竞争,这一自然法则,不论是在人类社会,还是在自然世界,都是普遍存在的。

竞争也是生物学家一直研究的一个课题,从达尔文在《物种起源》中提到“物竞天择,适者生存”的概括性阐述,再到lotka-volterra 模型的提出乃至后来的发展,人类对竞争的了解也越来越微观、理性。

在这篇文章中,主要是阐述本人对种间竞争中的Lotka-Volterra 模型的理解。

20世纪40年代,美国学者Lotka (1925)和意大利学者Volterra (1926)分别独立的提出了描述种间竞争的模型,奠定了种间竞争关系的理论基础,这个模型对现代生态学理论的发展有着重大影响。

一、Lotka-Volterra 模型假定:两个物种,单独生长时其增长形式符合Logistic 模型,方程为 物 种1: dN1 / d t = r 1 N1 (1- N1/K1 )物 种2: dN2 / d t = r 2 N2 (1- N2/K2 )(1-N/K)项可理解为尚未利用的“剩余空间”项,而N/K 是“已利用空间项”。

即:当两物种竞争或共同利用空间时,已利用空间项除N 1外还要加上N 2,即:式中:α是种2的一个个体对种1的阻碍系数(竞争系数) β是种1的一个个体对种2的阻碍系数。

α和β是物种2和物种1的竞争系数,其和环境容纳量K1和K2决定两个种的竞争结果或者说:α表示每个N2个体所占的空间相当于α个N1个体;β表示每个N1个体所占的空间相当于β个N2个体。

若α=1,每个N2个体对N1种群产生的竞争抑制效应,与每个N1对自身种群所产生的相等;若α>1,物种2的竞争抑制效应比物种1(对N1种群)的大;若α<1,物种2的竞争抑制效应比物种1(对N1种群)的小;β同理。

(a )图表示物种1的平衡条件① 全部空间为N1所占,即N1=K1,N2=0;② 全部空间为N2所占,即N1=0,N2=K1/α;两端点连线代表所有的平衡条件。

lotka-volterra模型的假设

lotka-volterra模型的假设

lotka-volterra模型的假设
Lotka-Volterra模型,又称为Lotka-Volterra方程或LV方程,是一组描述两个或两个以上相互竞争或相互捕食的种群动态的微分方程。

这个模型由意大利科学家Vito Volterra和Albert Lotka在20世纪初独立提出,用于分析生态学中的种群增长问题。

Lotka-Volterra模型基于以下几个基本假设:
1. 种群恒定:假设每个种群的个体数量在短时间内保持恒定,即出生率和死亡率在短期内平衡。

2. 密度无关:假设种群的增长率与种群密度无关,即种群的增长不受密度效应的影响。

3. 资源充足:假设生态系统中的资源(如食物、空间等)是充足的,不会成为限制种群增长的因素。

4. 没有迁移:假设种群之间没有个体的迁移,每个种群都是封闭的。

5. 没有疾病和天敌:假设没有疾病和天敌的影响,即种群的生存率是100%。

6. 指数增长:假设种群的增长遵循指数增长规律,即每代的增长率是恒定的。

7. 二维生态位:假设种群之间存在生态位分化,每个种群占据一个生态位,相互之间不存在竞争。

Lotka-Volterra模型简化了实际的生态过程,因此在应用时需要谨慎,并考虑到模型假设与实际情况之间的差异。

在现实世界的生态系统中,这些假设往往并不完全成立,因此Lotka-Volterra模型通常需要通过实验数据进行校正,或者与其他生态模型结合使用,以更准确地描述种群动态。

Lotka-–-Volterra-捕食者-–-猎物模型模拟电子教案

Lotka-–-Volterra-捕食者-–-猎物模型模拟电子教案

L o t k a-–-V o l t e r r a-捕食者-–-猎物模型模拟基础生态学实验Lotka – Volterra 捕食者–猎物模型模拟姓名王超杰学号 201311202926实验日期 2015年5月14日同组成员董婉莹马月娇哈斯耶提沈丹一、【实验原理】Lotka-Volterra捕食者-猎物模型是对逻辑斯蒂模型的延伸。

它假设:除不是这存在外,猎物生活于理想环境中(其出生率与死亡率与种群密度无关);捕食者的环境同样是理想的,其种群增长只收到可获得的猎物的数量限制。

本实验利用模拟软件模拟Lotka-Volterra捕食者-猎物模型,并以此研究该模型的规律特点。

捕食者—猎物模型简单化假设:①相互关系中仅有一种捕食者和一种猎物。

②如果捕食者数量下降到某一阀值以下,猎物数量种数量就上升,而捕食者数量如果增多,猎物种数量就下降,反之,如果猎物数量上升到某一阀值,捕食者数量就增多,而猎物种数量如果很少,捕食者数量就下降。

③猎物种群在没有捕食者存在的情况下按指数增长,捕食者种群在没有猎物的条件下就按指数减少。

因此有猎物方程:dN/dt=r1N-C1 PN;捕食者方程:dP/dt=-r2P+C2PN。

其中N和P分别指猎物和捕食者密度,r1 为猎物种群增长率,-r2为捕食者的死亡率,t为时间,C1为捕食者发现和进攻猎物的效率,即平均每一捕食者捕杀猎物的常数,C2为捕食者利用猎物而转变为更多捕食者的捕食常数。

Lotka-Volterra捕食者-猎物模型揭示了这种捕食关系的两个种群数量动态是此消彼长、往复振荡的变化规律。

二、【实验目的】在掌握Lotka-Volterra 捕食者-猎物模型的生态学意义与各参数意义的基础上,通过改变参数值的大小,在计算机模拟捕食者种群与猎物种群数量变化规律,从而加深对该模型的认识。

三、【实验器材】Windows 操作系统对的计算平台,具有年龄结构的种群增长模型的计算机模拟运行软件Populus。

lotka 定律

lotka 定律

Lotka 定律1. 引言Lotka 定律,又称为 Lotka-Volterra 定律,是一种描述生态系统中捕食者和猎物之间数量关系的数学模型。

它由美国数学家 Alfred J. Lotka 和意大利数学家Vito Volterra 在20世纪初提出。

这个模型是基于捕食者和猎物之间相互作用的基本原理,并被广泛应用于生态学、经济学以及其他许多领域。

2. Lotka-Volterra 模型Lotka-Volterra 模型是一个基于微分方程的动力学模型,用于描述捕食者和猎物之间的相互作用。

该模型假设捕食者和猎物的数量随时间的变化是连续的,并受到一些基本规律的约束。

2.1 模型假设Lotka-Volterra 模型基于以下几个假设:•捕食者的数量仅取决于猎物的数量,而不受其他因素的影响。

•猎物的数量仅取决于捕食者的数量,而不受其他因素的影响。

•捕食者和猎物之间的相互作用是线性的,即捕食者的增长率正比于捕食者和猎物之间的相互作用,而猎物的减少率正比于猎物和捕食者之间的相互作用。

2.2 模型方程基于以上假设,Lotka-Volterra 模型可以表示为以下两个微分方程:•猎物数量变化的方程:dN=rN−aNPdt其中,N表示猎物数量,t表示时间,r表示猎物自然增长率,a表示捕食者对猎物的捕食率,P表示捕食者数量。

•捕食者数量变化的方程:dP=baNP−mPdt其中,P表示捕食者数量,b表示捕食者对猎物的转化效率,m表示捕食者的自然死亡率。

2.3 模型解释Lotka-Volterra 模型的解释主要集中在捕食者和猎物数量之间的相互关系和相互作用。

根据模型方程可以得出以下几个结论:•当捕食者数量增加时,捕食者对猎物的捕食率增加,导致猎物数量减少。

•当猎物数量减少时,捕食者的食物减少,捕食者数量也会减少。

•当捕食者数量减少时,猎物的数量增加,捕食者的食物增加,捕食者数量也会增加。

这种相互关系导致了捕食者和猎物数量之间的周期性波动,即捕食者和猎物数量会交替增加和减少,形成一个动态平衡。

具有竞争种群的Lotka-Volterra微分代数模型的复杂性分析

具有竞争种群的Lotka-Volterra微分代数模型的复杂性分析

具有竞争种群的Lotka-Volterra微分代数模型的复杂性分析牛宏;王一丹;王贺【摘要】研究了 Lotka-Volterra食饵-捕食生物模型,考虑当捕食者数量过多时引入与捕食者形成一种简单竞争关系且不具有捕食食饵能力的物种来抑制捕食者的增长,根据守恒关系建立微分代数生物系统模型.然后,应用微分代数系统的稳定性分析方法和相关判据,讨论参数在一定范围内变化时生物模型稳定性问题.最后,结合分析结果应用 Matlab软件对模型进行数值仿真.仿真结果表明,系统在参数取某一定值时出现极限环,所建立的微分代数生物系统模型产生复杂的非线性动力学现象.%The Lotka-Volterra predator-prey biological model is mainly studied in this paper by introducing the new population which has no ability to prey the other population to form a simple competition between predator and prey when the number of predators is excessive.Based on above condition,differential algebraic biological model is established according to the conservation.Then,the stability of biological model is discussed when the parameters change in a certain range by applying the stability analysis method and the related criteria of differential algebraic system.Finally,the model is the simulated numerically by considering the results of the analysis and using the Matlab software,and the simulation results show that the system has a limit cycle when the parameters vary a certain value,which proved that the complex nonlinear phenomena exist in the differential algebraic biological model.【期刊名称】《辽宁石油化工大学学报》【年(卷),期】2018(038)002【总页数】4页(P90-93)【关键词】微分代数模型;极限环;稳定性;Lotka-Volterra食饵-捕食系统【作者】牛宏;王一丹;王贺【作者单位】辽宁石油化工大学理学院,辽宁抚顺113001;辽宁石油化工大学理学院,辽宁抚顺113001;辽宁石油化工大学化学化工与环境学部,辽宁抚顺113001【正文语种】中文【中图分类】O175.12Lotka-Volterra模型是生物学领域较为经典的模型,由美国生物学家、数学家A.Lotka于1925年首先独立提出,适用于两个互相作用种群的动力学系统。

lotka-volterra模型 半饱和常数-概述说明以及解释

lotka-volterra模型 半饱和常数-概述说明以及解释

lotka-volterra模型半饱和常数-概述说明以及解释1.引言1.1 概述随着对生态系统的深入研究,人们意识到了物种之间相互关系的重要性。

为了解释和预测物种之间的相互作用,数学模型成为了一种有效工具。

其中,Lotka-Volterra模型是一种常用且经典的数学模型,被广泛应用于生态学领域。

Lotka-Volterra模型,又称为捕食者-猎物模型,描述了捕食者和猎物之间的相互作用。

模型的基本假设是,猎物的增长受到捕食者捕食的影响,而捕食者的增长则依赖于猎物的可获得性。

本文的重点是研究Lotka-Volterra模型中的一个重要参数,即半饱和常数。

半饱和常数是用来衡量猎物或捕食者种群增长的饱和程度的指标。

它代表了当猎物或捕食者种群密度达到半饱和常数时,其增长速率达到最大值的临界点。

在这篇文章中,我们将对Lotka-Volterra模型进行介绍,并详细定义半饱和常数。

我们将探讨半饱和常数对模型的影响,以及其在解释和预测物种之间相互作用的重要性。

最后,我们还将展望未来研究方向,探讨如何进一步改进和应用Lotka-Volterra模型以解决现实生态问题。

通过对Lotka-Volterra模型和半饱和常数的研究,我们将有助于更好地理解物种之间的相互关系,并为生态学领域的可持续发展提供理论指导。

此外,对于生态系统保护和资源管理也有着重要的现实意义。

1.2 文章结构文章结构:本篇文章主要包括以下几个部分。

引言部分(第1章):首先对文章的主要内容进行概述,介绍Lotka-Volterra模型以及半饱和常数的背景和相关研究现状。

然后明确文章的目的和意义以及本文的结构安排。

正文部分(第2章):详细介绍Lotka-Volterra模型,包括其基本原理、模型方程的推导以及动态方程的解释。

然后,着重阐述半饱和常数的定义和意义,并讨论其在Lotka-Volterra模型中的应用。

结论部分(第3章):对全文的内容进行总结,回顾Lotka-Volterra 模型的应用,并分析半饱和常数对模型的影响。

Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性

Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性

Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性Lotka-Volterra竞争扩散系统是描述生态系统中种群竞争和扩散相互作用的数学模型,它由Alfred Lotka和Vito Volterra在20世纪初提出,并被广泛应用于生态学、生物学和数学领域。

在生态系统中,不同种群之间存在着资源的竞争和空间的扩散。

这种竞争扩散系统的动力学特性对生态系统的稳定性和多样性具有重要影响。

在过去的研究中,人们主要关注于Lotka-Volterra竞争扩散系统内部正平衡点的存在性和稳定性,但对于连接边界平衡点和正平衡点行波解的存在性研究相对较少。

本文将重点讨论Lotka-Volterra竞争扩散系统的连接边界平衡点和正平衡点行波解的存在性,探讨这一问题在生态系统稳定性和多样性中的重要意义。

我们将介绍Lotka-Volterra竞争扩散系统的基本模型和数学表达式,然后分析连接边界平衡点和正平衡点行波解的存在性,最后讨论这一研究对生态学和数学的意义和应用。

1. Lotka-Volterra竞争扩散系统的基本模型Lotka-Volterra竞争扩散系统是一种描述生态系统中种群竞争和扩散相互作用的数学模型,其基本形式可以表示为:\begin{cases}\frac{\partial u}{\partial t} = d_u\Delta u+ru(1-\frac{u}{K})-auv\\\frac{\partial v}{\partial t} = d_v\Delta v+sv(1-\frac{v}{L})-buv\end{cases}u和v分别表示两个种群的密度,t表示时间,d_u和d_v表示扩散系数,r和s分别表示种群的增长率,K和L分别表示种群的最大容纳量,a和b分别表示种群之间的竞争强度。

上式中的第一项表示扩散项,第二项表示种群的自我增长,第三项表示种群之间的竞争作用。

这个模型描述了种群在空间中的扩散和竞争,可以用来研究生态系统中种群的动态演变和空间分布。

Lotka-volterra捕食者-猎物模型模拟

Lotka-volterra捕食者-猎物模型模拟

实验名称:Lotka-volterra捕食者-猎物模型模拟姓名:学号:系别:实验日期:【实验原理】dN/dt=r1N-C1NP 猎物种群动态dP/dt=-r2N+C2NP 捕食者种群动态N:猎物的密度r1:猎物种群的增长率C1:捕食者发现和进攻猎物的效率,即平均每一捕食者捕食猎物的常数P:捕食者密度-r2:捕食者在没有猎物时的条件下的死亡率C2:捕食者利用猎物而转变为更多捕食者的捕食常数【实验目的】在掌握Lotka-Volterra 捕食者-猎物模型的生态学意义与各参数意义的基础上,通过改变参数值的大小,在计算机模拟捕食者种群与猎物种群数量变化规律,从而加深对该模型的认识。

【实验器材】XP操作系统的计算平台模拟运行软件【实质】模型揭示了这种捕食关系的两个种群数量动态是此消彼长、往复振荡的变化规律。

【方法步骤】参数设置(1)Please enter the following:Prey PredatorN0 = 100 P0 = 20r1 = 0.1 r2 = 0.1C1 = 0.01 C2 = 0.01 (2)Please enter the following: Prey PredatorN0 = 100 P0 = 20r1 = 0.1 r2 = 0.5C1 = 0.01 C2 = 0.01 (3)Please enter the following: Prey PredatorN0 = 100 P0 = 20r1 = 0.1 r2 =2.5C1 = 0.01 C2 = 0.01 (4)Please enter the following: Prey PredatorN0 =100 P0 = 20r1 = 0.1 r2 = 5C1 = 0.01 C2 = 0.01 【分析讨论】(模拟分析图形见附表)(1)Please enter the following: Prey PredatorN0 = 100 P0 = 20r1 = 0.1 r2 = 0.1C1 = 0.01 C2 = 0.01此模型设为标准模型,接下来的实验设计的讨论均以此模型为标准进行比较讨论。

Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性

Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性

Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性1. 引言1.1 背景介绍Lotka—Volterra竞争扩散系统是一种描述生态系统中物种之间相互作用的数学模型,它结合了Lotka—Volterra竞争模型和扩散方程,能够更全面地描述物种之间的竞争和扩散行为。

在生态学中,理解物种之间的竞争对于生态系统的稳定和演化具有重要意义。

研究Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性,对于深入理解生态系统动态过程具有重要意义。

在过去的研究中,人们已经开始对Lotka—Volterra竞争扩散系统进行了一些探究。

对于连接边界平衡点和正平衡点行波解的存在性,仍然存在一定的研究空白。

本文旨在通过数学模型分析和数值模拟的方法,探讨Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性,以期为生态系统动态过程的理解提供新的视角和研究途径。

1.2 研究目的本研究旨在通过探讨Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性,深入理解这一系统在生态学领域的重要性和影响。

具体而言,我们的研究目的包括以下几个方面:2. 探究正平衡点行波解的存在性:分析在系统中是否存在正平衡点行波解,并研究其在生态学中的实际意义和应用价值。

3. 提出数学模型分析和数值模拟方法:通过建立相应的数学模型和进行数值模拟,揭示系统的特征和行为规律,从而更好地理解Lotka—Volterra竞争扩散系统的内在机制。

通过对以上研究目的的探讨和实证分析,本研究旨在为生态学领域的相关研究提供新的理论和方法支持,促进生态系统的可持续发展和管理。

1.3 文献综述在过去的几十年中,关于Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性的研究取得了一系列重要进展。

许多学者对这一领域展开了深入的探讨,提出了许多重要的理论和结论。

几类具时滞的Lotka-Volterra互惠系统的定性分析

几类具时滞的Lotka-Volterra互惠系统的定性分析

几类具时滞的Lotka-Volterra互惠系统的定性分析生态系统的持久性、周期解的存在性及稳定性、全局吸引性等问题是数学生态学理论中的一个重要研究内容,对上述问题给出明确的判定准则是数学生态学的一个重要课题,历来受到生态学家与数学家的广泛重视。

研究非自治的Lotka-Volterra互惠系统解的定性性质,在实际应用方面有着广阔前景。

对于生态系统而言,我们既要考虑种群的成长规律(即时滞效应),又要考虑环境对生态系统的影响(即系数是时间t的函数),因此,我们一般研究具时滞的非自治的生态系统。

本文利用微分方程定性理论,M-矩阵理论,非线性常微分方程泛函方法等理论工具,研究了几类具时滞的非自治Lotka-Volterra 互惠系统,讨论了系统解的持久性、有界性、周期解的存在性、全局吸引性,得到了一些有用的结论。

全文安排如下:第1章简要介绍了研究的理论背景与现实意义;第2章讨论了一类二维变时滞系统的持久性、有界性、周期解的存在性及全局吸引性等问题,给出了一系列判别准则;第3章讨论了一类三维多时滞系统的持久性、有界性、周期解的存在性及全局吸引性;第4章研究一类具变时滞的三维互惠系统的动力学性质,证明了在一定条件下,系统周期正解的存在性;第5章讨论一类具分布时滞的n维互惠系统,给出了系统周期正解全局吸引的充分条件。

lotka-volterra模型的假设

lotka-volterra模型的假设

lotka-volterra模型的假设全文共四篇示例,供读者参考第一篇示例:Lotka-Volterra 模型是描述捕食者和被捕食者之间相互作用的一个经典数学模型。

它由意大利数学家Alfred J. Lotka和美国数学家Vito Volterra分别在20世纪初提出,并成为生态学研究的基础之一。

该模型简单而直观地描述了捕食者和被捕食者之间的群体动态变化,可以帮助我们更好地理解生物群体之间的相互作用。

在Lotka-Volterra 模型中,我们首先假设只有两种生物群体:一种是捕食者,一种是被捕食者。

捕食者以被捕食者作为食物来源,而被捕食者则成为捕食者的猎物。

这两种群体之间的关系被描述为一种资源-消耗的关系,即捕食者消耗被捕食者以维持生存。

在这个模型中,我们做出了一些基本的假设,这些假设是建立模型的前提,也是对生态系统运作的简化描述。

以下是Lotka-Volterra 模型的基本假设:1. 环境对生物群体的影响是恒定的。

在模型中,我们假设环境对捕食者和被捕食者的影响是固定的,不会发生变化。

这样可以简化模型,使其更易于理解和分析。

2. 捕食者的增长率与被捕食者数量成正比。

在Lotka-Volterra 模型中,我们假设捕食者的增长率与被捕食者的数量成正比。

这意味着被捕食者的数量越多,捕食者的增长率越高,反之亦然。

3. 被捕食者的增长率与捕食者数量成负相关。

与捕食者相反,被捕食者的增长率与捕食者的数量成负相关。

这意味着捕食者的数量越多,被捕食者的增长率越低,反之亦然。

4. 每一个生物群体都在密集性独立环境中生存。

在模型中,我们假设每一个生物群体都在一个密集性独立的环境中生存,即捕食者和被捕食者的数量变化不受其他环境因素的影响。

5. 空间是均匀分布的。

我们还假设空间在生物群体之间是均匀分布的,即没有空间上的不均匀性会影响捕食者和被捕食者之间的相互作用。

这些假设是建立Lotka-Volterra 模型的基础,在研究捕食者和被捕食者之间的相互作用时,我们可以通过这些假设进行简化和分析。

lotka-volterra模型公式

lotka-volterra模型公式

在动态生态学中,Lotka-Volterra模型是一种经典的描述捕食者-猎物关系的数学模型。

它由意大利数学家阿尔弗雷多·洛特卡(Alfred Lotka)和瑞典数学家维托·沃尔特拉(Vito Volterra)分别在20世纪初提出,被广泛应用于生态学和生物学领域,用于研究捕食者和猎物之间的相互作用。

在Lotka-Volterra模型中,捕食者和猎物的数量随时间的变化受到对方的影响,模拟了一个动态平衡的生态系统。

本文将围绕Lotka-Volterra模型展开全面的探讨,分析其理论基础、数学表达和实际应用,以及我对这一模型的个人理解。

1. Lotka-Volterra模型的理论基础Lotka-Volterra模型的提出基于对自然界捕食者和猎物之间的相互作用规律的观察和假设。

根据这一模型,捕食者的数量增加会导致猎物数量的减少,从而使捕食者的数量减少,最终导致猎物数量增加,从而形成了捕食者-猎物之间的周期性相互作用。

这一理论基础为后续建立数学模型奠定了基础,使得科学家可以通过数学方法来定量描述捕食者-猎物之间的关系,从而更深入地研究生态系统的动态演变。

2. Lotka-Volterra模型的数学表达Lotka-Volterra模型的数学表达通常采用微分方程的形式来描述捕食者和猎物数量随时间的变化。

具体而言,假设捕食者和猎物的种群数量分别为x和y,捕食者和猎物的增长率分别受到出生率、逝去率以及相互作用影响。

于是,可以得到捕食者和猎物种群数量随时间的变化方程,从而形成了Lotka-Volterra模型的数学表达式。

通过对这一数学模型进行分析和求解,可以得到捕食者和猎物数量随时间的变化趋势,进而揭示出捕食者-猎物相互作用的规律和特点。

3. Lotka-Volterra模型的实际应用Lotka-Volterra模型不仅在理论生态学研究中发挥着重要作用,同时在实际生态系统的研究和管理中也具有广泛的应用价值。

变时滞随机Lotka-Volterra_生物模型的渐近性质

变时滞随机Lotka-Volterra_生物模型的渐近性质

第 42 卷第 3 期2023年 5 月Vol.42 No.3May 2023中南民族大学学报(自然科学版)Journal of South-Central Minzu University(Natural Science Edition)变时滞随机Lotka-Volterra生物模型的渐近性质胡军浩,王朝航*(中南民族大学数学与统计学学院,武汉430074)摘要研究了变时滞随机Lotka-Volterra (LV)生物模型,其中变时滞函数是不可微的,放宽了现有文献变时滞是可微且导数小于1的假设. 使用Ito公式和线性矩阵不等式(LMI)研究了这类生物模型全局正解的存在性和唯一性,并进一步给出了其正解渐近有界、时间均值意义下矩有界和多项式增长的充分条件. 最后给出实例验证了结论的有效性.关键词随机生物模型;Lotka-Volterra生物模型;不可微时滞函数;LMI不等式;渐近有界性中图分类号O241.8 文献标志码 A 文章编号1672-4321(2023)03-0402-06doi:10.20056/ki.ZNMDZK.20230316Asymptotic properties of the stochastic Lotka-Volterra system withvariable time delayHU Junhao,WANG Zhaohang*(College of Mathematics and Statistics, South-Central Minzu University, Wuhan 430074, China)Abstract This paper is concerned with stochastic Lotka-Volterra (LV) system with variable time delay. Comparing with most existing papers,the time delay functions in the LV system are no longer required to be differentiable,their derivatives are less than 1 is not to be mentioned. The existence and uniqueness of the global positive solutions of this system are investigated by using Ito formula and linear matrix inequality (LMI). Further,sufficient conditions are also obtained for the asymptotic boundedness,time average moment boundedness and the polynomial pathwise growth of the positive solution. Finally, an example is given to illustrate the effectiveness of the results.Keywords stochastic biological model; Lotka-Volterra system; non-differentiable time delay function; LMI inequality;asymptotic boundedness1 模型介绍本文考虑如下形式的变时滞随机Lotka-Volterra 系统:d x(t)=diag(x(t)){[a+Ax(t)+By(t)]d t+[b+Dx(t)+Ey(t)]dω(t)},(1)其中x(t),y(t)=x(t-δ(t))∈R n分别表示种群和变时滞种群,δ(t)表示变时滞函数.diag(x)= diag(x1,⋯,x n)表示n×n阶对角矩阵. a,b∈R n,矩阵A=[a ij],B=[b ij],D=[d ij],E=[e ij]∈R n×n. 记f(x,y)=a+Ax+By,g(x,y)=b+Dx+Ey.过去几十年,Lotka-Volterra (LV)生物模型受到了越来越多学者的关注[1-2]. 生物模型经常受到噪音因素的影响,用随机微分方程(SDE)来描述这类生物模型更具现实意义. NIE和MEI[3]研究了白噪声与时滞对LV生物模型的影响,证明了白噪声和时滞完全抑制了LV生物模型种群的爆破. LI和MAO[4]进一步研究了非自治的LV生物模型在随机扰动下的持久性和非持久性. 文献[5-8]研究了常收稿日期2022-11-07 * 通信作者王朝航,研究方向:随机生物数学,E-mail:****************作者简介胡军浩(1974-),男,教授,博士,研究方向:随机系统理论及应用,E-mail:******************基金项目国家自然科学基金资助项目(61876192);中南民族大学研究生学术创新基金项目(3212023sycxjj003)第 3 期胡军浩,等:变时滞随机Lotka-Volterra生物模型的渐近性质时滞随机LV生物模型正解的存在唯一性及相关性质. HU等[9]研究了变时滞随机LV生物模型的动力学行为,其中变时滞函数导数小于1. 然而,变时滞也可能不可微[10-11],如分段时滞.本文在文献[10-11]此基础上,讨论不可微变时滞随机LV生物模型全局正解的存在性和唯一性及其他渐近性质.2 基本引理设A是一个向量或矩阵,用A T表示它的转置. 若x∈R n,则|x|表示Euclidean范数. 若A是矩阵,则|A|表示其迹范数,即|A|=trace(A T A). 若A是一个实值对称矩阵,用λmin(A)和λmax(A)分别表示其最小和最大的特征值,A≤0和A<0分别表示A半负定和负定. 设a,b是实数,则a∧b=min{a,b},a∨b=max{a,b},a+=a∨0. 令R n+={x∈R n:x i≥0, 1 ≤ i≤ n},Rˉn+= {x∈ R n:x i> 0, 1≤ i≤ n}.设(Ω,F,{F t}t≥0,P)是一个完备的概率空间,其σ代数流{F t}t≥0满足一般条件(即它是单调递增和右连续的,且F0包含所有空集). 对于h>0,用C([-h, 0];R n)表示从[-h,0]映射到R n的连续函数族,其范数为 φ=sup-h≤u≤0|φ(u)|.设ω(t)是定义在概率空间上的一维布朗运动.对任意给定的对称矩阵A∈R n×n,定义:λ+max(A)=sup x∈R n+,||x=1x T Ax,由定义可直接推出,对任意的x∈R n+,有:λ+max(A)≤0⇔x T Ax≤0,x T Ax≤λ+max(A)|x|2.对时滞函数δ(t)提出如下假设:(A1)时滞函数δ(t) :R+→[h1,h]是Borel可测函数且具有以下性质:hˉ:=lim supΔ→0(sup s≥-hμ()M s,ΔΔ)≤∞,其中,h1和h都是正的常数且h1<h,M s,Δ={t∈R+:t-δ(t)∈[s,s+Δ)},μ(⋅)表示R+上的勒贝格测度.下面两个引理起着关键作用.引理1[10-11]假设(A1)成立,设T>0且f:[-h,T-h1]→R+是一个连续函数,则:∫0T f()t-δ()t d t≤hˉ∫-h T-h1f()t d t.注:令f(t)≡1,∀t≥-h,可知hˉ≥1.引理2 (Schur补)[12]对于适当阶数的矩阵S,Q,R,其中Q=Q T,R=R T,以下条件相互等价:(1)éëêêùûúúQ SS T R<0,(2)R<0,Q-SR-1S T<0.3 主要结论定理1 假设(A1)成立,若存在正数γ,η和c1,⋯,cn使得:CˉA+A T Cˉ+4ηhˉI<0,(2)H=éëêêêêêêêêêêêêêêêùûúúúúúúúúúúúúúúúCˉA+A T Cˉ2CˉB A T0D T02B T Cˉ-ηI0B T0E TA0-6γI0000B0-6γI00D000-6Cˉ-100E000-6Cˉ-1≤0,(3)其中Cˉ=diag(c1,⋯,c n),I表示n阶单位矩阵. 则对任意给定的初值ξ∈C([-h,0];Rˉn+),方程(1)存在唯一的全局正解.证明方程(1)的系数局部Lipschitz连续,故对任意给定的初值ξ∈C([-h,0];Rˉn+),方程(1)在t∈[-h,σ∞]上存在唯一的最大的局部正解x(t),其中σ∞表示爆炸时间. 为了证明x(t)是全局的,只需证明σ∞=∞ a.s.设k0是一个充分大的正数满足:1k0<min-h≤t≤0|ξ(t)|≤max-h≤t≤0|ξ(t)|<k0.对每个满足k≥k0的整数k,定义停时:τk=inf{t∈[-h,σ∞):x i∉(1k,k)对某一i=1,⋯,n}.本文总约定inf∅=∞. 显然,当k→∞时,τk是递增的. 设τ∞=lim k→∞τk,则τ∞≤σ∞ a.s.如果τ∞=∞ a.s.,即可以推出σ∞=∞ a.s.且x(t)∈R n+ a.s.对t∈[- h,∞]恒成立. 这也等价于证明,对任意的t>0有P(τk≤t)→0,k→∞. 因此,定义一个C2函数U:R n+→R+:403第 42 卷中南民族大学学报(自然科学版)U (x )=∑i =1n c i (x i -log x i ),其中u (x )=x -log x ≥0对x >0恒成立,且u (0+)=u (∞)=∞. 由Ito公式可得:E U (x (t ∧τk))=U (ξ(0))+E ∫t ∧τk L U ()x ()s ,y ()s d s ,L U 定义为:L U (x ,y )=x T C ˉf (x ,y )-c T f (x ,y )+12||C ˉg (x ,y )||2,其中c =(c 1,⋯,c n )T. 注意到:12|||C ˉg (x ,y )|||2≤32(b T C ˉb +x T D T C ˉDx +y T E T C ˉEy ),(4)且:-c T f (x ,y )≤12γ|c |2+γ2|f (x ,y )|2≤12γ|c |2+3γ2(|a |2+x T A T Ax +y T B T By ).(5)由(4)式和(5)式可知:L U (x ,y )≤c 1+14z T H 1z +a T C ˉx +12x T C ˉAx +η|y |2,其中c 1=12γ|c |2+3γ2|a |2+32b T C ˉb ,z =(x ,y )T 且H 1=éëêêùûúúC ˉA +A T C ˉ+6γA T A +6D T C ˉD 2C ˉB 2B T C ˉ-ηI +6γB T B +6E T C ˉE =éëêêùûúúA T 0D T 00B T 0E T éëêêêêêùûúúúúú6γI6γI6Cˉ6CˉéëêêêêêêêùûúúúúúúúA00B D 00E +éëêêùûúúC ˉA +A T C ˉ2C ˉB 2B T C ˉ-ηI .由引理2可知,H 1≤0⇔H ≤0,故(3)式可得:z TH 1z ≤0,因此:L U (x ,y )≤c 1+a T Cˉx +12x T C ˉAx +η|y |2.(6)由引理1可知:η∫t ∧τk ||y ()s 2d s ≤h ˉη∫-ht ∧τk ||x ()s 2d s ≤hhˉη ξ2+hˉη∫t ∧τk ||x ()s 2d s ,(7)由(6)式和(7)式可得:E U (x (t ∧τk))=U (ξ(0))+E ∫t ∧τk éëêc 2+a T C ˉx (s )+ùûúú14x T(s )()CˉA +A T C ˉ+4ηh ˉI x (s )d s ,其中c 2=hhˉη ξ2+12γ|c |2+3γ2|a |2+32b T C ˉb . 令α=λ+max (C ˉA +A T C ˉ+4ηh ˉI ),由(2)式可知α<0,因此:E U ()x ()t ∧τk=U ()ξ()0+E ∫t ∧τk éëêc 2+a T C ˉx (s )+ùûúú14x T(s )()CˉA +A T C ˉ+4ηh ˉI x (s )d s ≤U ()ξ()0+E éëêêùûúú∫t ∧τkc 2+a T C ˉx (s )+14α||x (s )2d s ≤U ()ξ()0+c 3t ,其中c 3是一个正常数. 由τk 的定义可知,x i (τk )=k 或1k对某个i =1,⋯,n 成立,因此:P ()τk ≤t éëêêùûúúu ()1k ∧u ()k ≤P ()τk ≤t U ()x ()t ∧τk ≤E U ()x ()t ∧τk≤U ()ξ()0+c 3t ,令k →∞可得:lim k →∞P (τk ≤t )=0.证毕.定理2 假设定理1的条件成立,x (t )是方程(1)具有初值ξ∈C ([-h ,0];R ˉn +)的正解,则x (t )有如下性质:lim sup t →∞E |x (t)|≤∞,lim sup t →∞1t ∫0tE ||x ()t 2≤∞.证明 定义一个C 2函数V :R n +→R +:V (x )=∑i =1n c i x i ,由Ito 公式可得:e εt E V (x (t))=V (ξ(0))+E ∫0t e εs []L V ()x ()s ,y ()s +εV ()x ()s d s ,其中ε是一个充分小的正数使得:C ˉA +A T C ˉ+4ηh ˉe εh I <0,L V 定义为:L V (x ,y )=x T C ˉf (x ,y )≤14z T H 2z +a T Cˉx +12x T C ˉAx +η|y |2,(8)其中:404第 3 期胡军浩,等:变时滞随机Lotka -Volterra 生物模型的渐近性质H 2=éëêêùûúúC ˉA +A T C ˉ2C ˉB 2B T C ˉ-ηI ,由H ≤0可以推出H 2≤0,因此:L V (x ,y )+εV (x )≤+a T Cˉx +12x T C ˉAx +η|y |2+εc T x ,(9)由引理1可知:η∫0te εs||y ()s 2d s ≤ηe εh∫0te ε()s -δ()s||x ()s -δ()s 2d s ≤hh ˉηe εhξ2+h ˉηe εh∫0te εs||x ()s 2d s ,(10)由(9)式和(10)式可知:e εt E V ()x ()t ≤V ()ξ()0+hhˉηe εhξ2+E∫0te εs éëêê()a T C ˉ+εc T x ()s +14x T ()s (C ˉA +A T C ˉ+])4hˉηe εh I x ()s d s ≤V ()ξ()0+hh ˉηe εh ξ2+c 4∫t e εs d s ,其中c 4是一个正常数. 立得:lim sup t →∞E |x (t)|≤∞,又由Ito 公式可得:E V (x (t))=V (ξ(0))+E ∫0t L V ()x ()s ,y ()s d s ,由(7)式和(8)式可得:E V (x (t))+ε1E ∫0t|x (s )|2d s ≤V (ξ(0))+hhˉη ξ2+E éëêa TC ˉx ()s +ùûúú14x T()s ()CˉA +A T C ˉ+4()h ˉη+ε1I x ()s d s ≤V (ξ(0))+hhˉη ξ2+c 5t ,其中c 5是一个正常数,ε1是一个充分小的正数使得:CˉA +A T C ˉ+4(h ˉη+ε1)I <0,因此:lim supt →∞1t ∫t E ||x ()t2≤∞.证毕.定理3 假设定理1的条件成立. 若存在非负常数q 和r 使得以下条件成立:H 3=éëêêêêêùûúúúúúCˉA +A T C ˉC ˉB c 0B T C ˉ00c c T001r0c T 1r 2q r 2≤0,(11)q >rhˉ,(12)则方程(1)具有初值ξ∈C ([-h ,0];Rˉn +)的正解x (t )有如下性质:lim supt →∞log ||x ()tlog t≤1 a.s.证明 定义一个C 2函数V :R n+→R +:W (x )=log (c T x ),由Ito公式可得:e ε2t W (x (t))=W (ξ(0))+M (t )+∫0t e ε2s[]L W ()x ()s ,y ()s +ε2V ()x ()s d s =W (ξ(0))+M (t )+e ε2séëêêJ ()s -12||Z ()s 2+ùûúε2W ()x ()s d s ,其中:0<ε2<1h log(q rhˉ),Z =x T C ˉg c T x ,J =x T Cˉf c T x ,M (t )=∫0t e ε2sZ ()s d ω(s ),对任意给定的θ>1和k ∈N ,由指数鞅不等式可知:P ìíîsup 0≤t ≤k +1éëêêM (t )-12e ε2(k +1)∫0te 2ε2s |Z (s )|2d s ùûúú≥e ε2(k +1)log k θüýþ ≤1kθ ,级数∑k =1∞1kθ≤∞,由Borel -Cantelli 引理,对几乎所有ω∈Ω,当k 充分大且k ≤t ≤k +1时有:M (t )≤12e ε2(k +1)∫0te 2ε2s |Z (s )|2d s +e ε2(k +1)log k θ≤12∫0t e ε2s|Z (s )|2d s +θe ε2e ε2t log t ,因此:e ε2t W (x (t))≤W (ξ(0))+θe ε2eε2tlog t +∫0te ε2s[]J ()s +ε2W ()x ()s d s ,(13)由引理2和(11)式可知:H 4=éëêêùûúúC ˉA +A T C ˉ+2qM C ˉB -rM B T Cˉ-rM 0≤0,其中M =cc T , 因此对任意给定的x ,y ∈R n+有:0≥(x T ,y T )H 4()xy=x T (CˉA +A T C ˉ+2qM )x +2x T (C ˉB -rM )y =2x T(CˉAx +C ˉBy )+2q (c Tx )2-2r (c Tx )(c Ty ) ,405第 42 卷中南民族大学学报(自然科学版)即:x T (CˉAx +C ˉBy )≤r (c T x )(c T y )-q (c T x )2,因此:J =x T Cˉ()a +Ax +By c T x≤max i {a i }+rc T y -qc T x ,(14)由(13)式和(14)式可知:e ε2t W (x (t))≤W (ξ(0))+θe ε2e ε2tlog t +∫0t e ε2s[]J +ε2W ()x ()s d s ≤W (ξ(0))+θe ε2e ε2tlog t +e ε2s[max i{}a i+]rc Ty ()s -qc Tx ()s +ε2log ()c Tx d s ,由引理1可知:r∫t e ε2s c Ty (s )d s ≤reε2h∫t e ε2()s -δ()s c T x (s -δ(s))d s ≤rhhˉe ε2h |c | ξ+rh ˉe ε2h ∫0t eε2s c Tx (s )d s ,因此:e ε2tW (x (t))≤W (ξ(0))+θeε2e ε2tlog t +rhh ˉe ε2h |c | ξ+∫0te ε2s[max {aˉi}+(rhˉe ε2h -q )c Tx (s )+ε2log (c Tx )]d s ≤θe ε2e ε2tlog t +c 6(1+e ε2t) ,其中c 6是一个正的常数. 令θ→1,ε2→0,则:lim supt →∞log ||x ()t log t≤1 a.s.证毕.4 实例考虑文献[13]中的二维Lotka -volterra 系统:d x 1(t )x 1(t )=[]-8x 1(t )+x 2(t )-y 1(t )+y 2(t )d t +[]λx1(t )+λx 2(t )+μy 1(t )-μy 2(t )d ω(t ),d x 2(t )x 2(t )=[]x 1(t )-7x 2(t )+y 1(t )-y 2(t )d t +[]λx2(t )-μy 2(t )d ω(t ),其中λ和μ是非负常数,且:δ(t )=[()0.1+0.1()t -2k I [)2k ,2k +1()t +]()0.2-0.1()t -2k -1I [)2k +1,2()k +1()t ,显然,δ(t )满足假设(A1),此时,h 1=0.1,h =0.2,hˉ≈1.1. 令:A =éëêêùûúú-811-7,B =éëêùûú-111-1,D =λéëêùûú1101,E =μéëêùûú1-10-1,令c =(1 , 1)T,γ=130,计算得:A +A T +4ηh ˉI =éëêêùûúú-16+4.4η22-14+4.4η,H 1=éëêêêêêêêùûúúúúúúú-3+6λ2-1+6λ2-22-1+6λ2-4+12λ22-2-22-η+25+6μ2-25-6μ22-2-25-6μ2-η+25+12μ2,H 4=éëêêêêêêêêùûúúúúúúúú2q -162q +2-1-r 1-r 2q +22q -141-r -1-r -1-r 1-r 001-r-1-r0.应用定理1和定理2可得:A +A T +4ηh ˉI <0⇔ìíî-16+4.4η<019.36η2-132η+220>0,即η<又对任意给定的z ∈R 4+,有:z T H 1z =()-3+6λ2z 21+2()-1+6λ2z 1z 2-4z 1z 3+4z 1z 4+()-4+12λ2z22+4z 2z 3-4z 2z 4+()-η+25+6μ2z 23+2()-25-6μ2z 3z 4+()-η+25+12μ2z 24≤()-3+6λ2z 21+()-1+6λ2+()z 21+z 22+2()z 21+z 24+()-4+12λ2z 22+2()z 22+z 23+()-η+25+6μ2z 23+()-η+25+12μ2z 24=[]-1+6λ2+()-1+6λ2+z 21+[]-2+12λ2+()-1+6λ2+z 22+()-η+25+6μ2z 23+()-η+25+12μ2z 24 ,显然,当0≤μ≤η≥125,0≤λ≤时, z T H 1z ≤0,因此H ≤0.即定理1和定理2成立的条件为:406第 3 期胡军浩,等:变时滞随机Lotka -Volterra 生物模型的渐近性质ìíîïïïïïïïï0≤μ≤0≤λ≤125≤η<应用定理3,对任意给定的z ∈R 4+,有:z T H 4z =()2q -16z 21+2()2q +2z 1z 2-2()1+r z 1z 3+2()1-r z 1z 4+()2q -14z22+2()1-r z 2z3-2()1+r z 2z 4≤()2q -16z 21+()2q +2()z 21+z 22+()2q -14z 22+()1-r +()z 21+z 24+()1-r +()z 22+z 23=[]4q -14+()1-r +z 21+[]4q -12+()1-r +z 22+()1-r +()z 23+z 24.显然,当r ≥1,q ≤3时H 4≤0,故H 3≤0. 又由(12)式有q >1.1r ,即定理3成立的条件为:r ≥1,1.1r <q ≤3.注:当δ(t )退化为一个常数,即δ(t )=τ(τ>0), hˉ=1~定理3成立的条件为0≤λ≤0≤μ<r ≥1,r <q ≤3. 此时,文献[9]中的定理7也成立.参 考 文 献[1] WANG Z , BAYLISS A , VOLPERT V. Asymptoticanalysis of the bistable Lotka -Volterra competition -diffusionsystem [J ]. Appl Math Comput , 2022, 432: 127371.[2] WANG H , PAN C , OU C. Propagation dynamics offorced pulsating waves of a time periodic Lotka -Volterra competition system in a shifting habitat [J ]. J Differ Equ , 2022, 340: 359-385.[3] NIE L , MEI D. Noise and time delay : Suppressed populationexplosion of the mutualism system [J ]. Europhysics Letters , 2007, 79(2): 20005.[4] LI X , MAO X. Population dynamical behavior of non -autonomous Lotka -Volterra competitive system withrandom perturbation [J ]. Discrete Contin Dyn Syst , 2009, 24(2): 523.[5] BAHAR A , MAO X. Stochastic delay populationdynamics [J ]. Int J Pure Appl Math , 2004,11: 377-400.[6] MAO X , YUAN C , ZOU J. Stochastic differential delayequations of population dynamics [J ] J Math Anal Appl , 2005, 304(1): 296-320.[7] BAHAR A , MAO X. Stochastic delay Lotka -Volterramodel [J ]. J Math Anal Appl , 2004, 292(2): 364-380.[8] MAO X , MARION G , RENSHAW E. EnvironmentalBrownian noise suppresses explosions in population dynamics [J ]. Stoch Proc Appl , 2002, 97(1): 95-110.[9] HU Y , WU F , HUANG C. Some new results on theLotka -Volterra system with variable delay [J ]. Abstr Appl Anal , 2014,2014: 537674.[10] DONG H , MAO X. Advances in stabilization of highlynonlinear hybrid delay systems [J ] Automatica , 2022, 136: 110086.[11] HU J , MAO W , MAO X. Advances in nonlinear hybridstochastic differential delay equations : existence , boundedness and stability [J ]. Automatica , 2023, 147: 110682.[12] MAO X , YUAN C. Stochastic differential equations withMarkovian switching [M ]. London : Imperial College Press , 2006.(责编 曹东,校对 姚春娜)407。

Lotka-volterra捕食者-猎物模型模拟

Lotka-volterra捕食者-猎物模型模拟

实验名称:Lotka-volterra捕食者-猎物模型模拟姓名:学号:系别:实验日期:【实验原理】dN/dt=r1N-C1NP 猎物种群动态dP/dt=-r2N+C2NP 捕食者种群动态N:猎物的密度r1:猎物种群的增长率C1:捕食者发现和进攻猎物的效率,即平均每一捕食者捕食猎物的常数P:捕食者密度-r2:捕食者在没有猎物时的条件下的死亡率C2:捕食者利用猎物而转变为更多捕食者的捕食常数【实验目的】在掌握Lotka-Volterra 捕食者-猎物模型的生态学意义与各参数意义的根底上,通过改变参数值的大小,在计算机模拟捕食者种群与猎物种群数量变化规律,从而加深对该模型的认识。

【实验器材】XP操作系统的计算平台模拟运行软件【实质】模型揭示了这种捕食关系的两个种群数量动态是此消彼长、往复振荡的变化规律。

【方法步骤】参数设置〔1〕 Please enter the following:Prey PredatorN0 = 100 P0 = 20r1 = 0.1 r2 = 0.1〔2〕Please enter the following: Prey PredatorN0 = 100 P0 = 20C1 = 0.01 C2 = 0.01〔3〕 Please enter the following: Prey PredatorN0 = 100 P0 = 20〔4〕 Please enter the following: Prey PredatorN0 =100 P0 = 20r1 = 0.1 r2 = 5【分析讨论】〔模拟分析图形见附表〕〔1〕 Please enter the following: Prey PredatorN0 = 100 P0 = 20r1 = 0.1 r2 = 0.1此模型设为标准模型,接下来的实验设计的讨论均以此模型为标准进展比拟讨论。

对此模型的生态学解释:刚开始的时候由于被捕食者的数量较多使得捕食者的食物充足,在较短的时间内数量增加较明显,幅度较大,但是,随着捕食者的数量增加,被捕食者被捕食的几率也上升种群数量就会急剧下降,由于食物的减少,捕食者的生存环境变得恶劣,个体的生存受到威胁,群体的开展受到制约,最终使得种群数量减少,捕食者的减少使得被捕食者的生存环境得以改善,数量增加,同时被不是这的食量增加是捕食者的生存状况得以改善,所以,随着被捕食者数量的增加,捕食者的种群也在同步增长,随着捕食者种群的扩大,被捕食者的生存又一次受到限制,就这样,捕食者与被捕食者的种群的变化互相制约、影响,交替增长与减小。

生态学和生物物理学中的数学模型

生态学和生物物理学中的数学模型

生态学和生物物理学中的数学模型数学是自然科学的一个重要分支,也是现代科学的基石之一。

在生态学和生物物理学中,数学的应用不仅可以揭示自然界的规律,还可以对各种现象进行定量研究和预测。

因此,数学模型在这两个领域中起着重要的作用。

本文将介绍在生态学和生物物理学中的数学模型,并探讨其应用和发展。

一、生态学中的数学模型生态学是研究生物和环境相互作用的学科。

在生态学中,数学模型是一种重要的分析工具,可用于揭示生态系统的动态特征和稳定性。

下面介绍几种常见的生态学数学模型。

1. Lotka-Volterra竞争模型Lotka-Volterra竞争模型是描述两种物种之间竞争的经典模型,其基本假设是两种物种在相同资源有限的环境中共存。

该模型的方程组如下:$$ \frac{dx}{dt} = a x - b x y $$$$ \frac{dy}{dt} =-c y + d x y $$其中$x$和$y$分别为两种物种的种群密度,$a$、$b$、$c$和$d$为模型的参数。

这个模型的解析解表明,在一定条件下,两种物种的共存是可能的,这被称为“稳定共存”。

但是,资料显示,大多数物种之间并不会发生稳定共存的情况,这表明模型的简化假设有限制。

2. 生态系统稳定性模型生态系统稳定性模型是一个综合了生态学和物理学的模型,用于研究生态系统的稳定性和抗扰性。

该模型描述了生态系统在环境扰动下的响应,并通过一个稳定性指标来评估生态系统的稳定性。

该模型的方程形式如下:$$ \frac{\partial \dot{x}}{\partial t} = f(x) + \epsilon g(x) $$其中$x$表示生物种群或环境因素,$f(x)$和$g(x)$分别为种群增长率和环境因素的影响函数,$\epsilon$表示扰动的强度。

该模型通过计算生态系统的Lyapunov指数来评估稳定性。

3. 生态位模型生态位模型是描述物种在生态系统中定位和竞争的模型。

一类具有随机项的三物种捕食-被捕食模型

一类具有随机项的三物种捕食-被捕食模型

一类具有随机项的三物种捕食-被捕食模型聂文静;王辉;胡志兴;廖福成【摘要】将环境中的白噪声和Beddington-DeAngelis型功能反应函数考虑到含有修改的Leslie-Cower类型种群系统中,得到一类具有修改的Leslie-Cower类型的随机三物种捕食-被捕食模型。

首先利用随机微分方程比较原理得到具有修改的Leslie-Cower类型的随机三物种捕食-被捕食模型,在任意给定的正的初值条件下,系统存在唯一的全局正解;然后,利用随机微分方程比较原理和微分中值定理得到,在一定条件下三物种是随机强平均持久,而且当白噪声超出某个范围时会使三个物种都趋于灭亡。

%The environment of white noise and Beddington-DeAngelis type functional response function was combined with the containing modified Leslie-Cower types of population system. The a modified Les-lie-Gower type three species food chain model with stochastic perturbation. It was mainly used for model-ing of three trophic food chain. Firstly, for the arbitrarily positive initial conditions, there was a unique positive global solution which was based on the stochastic comparison theorem of differential equation. Then , by using the stochastic comparison theorem of differential equation and differential mean value the-orem, the result showed that the three species with Leslie-Gower type function were random strong aver-age persistence under certain conditions. And when white noise exceeded a certain range, the three spe-cies would perish.【期刊名称】《郑州大学学报(理学版)》【年(卷),期】2016(048)003【总页数】9页(P1-9)【关键词】Leslie-Cower型功能;Beddington-DeAngelis型功能;随机比较方程;高斯白噪声【作者】聂文静;王辉;胡志兴;廖福成【作者单位】北京科技大学数理学院北京100083;北京科技大学数理学院北京100083;北京科技大学数理学院北京100083;北京科技大学数理学院北京100083【正文语种】中文【中图分类】O211.6物种及自然环境之间的动态相互作用吸引不少学者进行研究.其中捕食者功能反应是一个重要概念.文献[1-4]研究的种群确定型模型,后来研究者发现生态系统会受到随机因素的影响,于是开始考虑有白噪声干扰的种群模型[5-7].随机种群动力系统可以克服其局限性,更加精准的拟合数据并完美预测出生态系统未来趋势,并且与其他功能反应函数在现实中进行种群动力系统数据模拟时,对比发现,Beddington-DeAngelis型功能反应函数在某种程度上表现更好.考虑在一个封闭的环境中,均匀生长的三级营养食物链模型.假设x(t),y(t),z(t)分别表示在时间t时刻的最低水平的猎物、中级捕食者和最高级捕食者的规模.最低级食饵由中层和顶层捕食者分别以Beddington-DeAngelis型功能反应和来消耗, 并且顶层捕食者不仅捕食低级食饵,而且还以来消耗中级捕食者.中级捕食者以将低级食饵转化为自己的生物量,而顶级捕食者的增长则被认为是修正的Leslie-Gower类型 [8].q1,q2,q3表示三个物种的捕获系数,E是用来表示收获物种的联合收获努力量.任何生态系统不可避免受到环境随机波动的影响[9-11].为此考虑环境中的白噪声对生物增长率的影响, 即bi→bi+σi,i=1,2,3.可得到下列系统:其中:Bi(t),i=1,2为完备概率空间(Ω,Φ,ω)的Brown运动;Ω是样本空间;Φ是样本空间的σ代数;ω是随机事件;,i=1,2表示随机运动干扰的强度.2.1 存在正解定理1 对任意给定的初值条件x0>0,y0>0,z0>0,当t∈[0,τe)时,模型(1)存在唯一正的局部解.证明考虑下列系统:其中:初值f0=ln x0;g0=ln y0;w0=ln z0.方程组(2)中的三个方程满足局部Lipschitz条件,因此存在唯一的正的局部解f(t),g(t),w(t)定义在[0,τe)[12],τe 是爆炸时间,由公式得ef(t),eg(t),ew(t),是满足任意给定的初值条件系统(1)的解.定理1仅表示系统(1)存在唯一的正局部解,下面要证这个解是全局的.定理2 对任意给定的初值条件x0>0,y0>0,z0>0,存在φ1,φ11,φ2,φ22,φ3,φ33,使t≥0,φ1(t)≥x(t)≥φ11(t),φ2(t)≥y(t)≥φ22(t),φ3(t)≥z(t)≥φ33(t).证明当t∈[0,τe),x(t),y(t),z(t)为正值时,有下面等式成立,这里φ1(t)是下列方程唯一的解,由随机微分方程的比较原理可知下列不等式成立:此外,,φ11(t)是下列方程唯一的解,由随机微分方程的比较原理可知又因为,这里φ2(t)是下列方程唯一的解,由随机微分方程的比较原理可知另外,,φ22(t)是下列方程唯一的解,由随机微分方程的比较原理可知同理可得,φ33(t)是下列方程唯一的解,由随机微分方程的比较原理可知此外,(t).这里φ3(t)是下列方程唯一的解,由随机微分方程的比较原理可知综上所述,结论成立.2.2 灭亡与持久性定理3[13] 对于随机方程dZ(t)=Z(t)[(a-bZ(t))dt+σdB(t)],当a>时,对于初值Z0>0,Z(t)是方程的解,得到定理4 假设对任意给定的初值条件x0>0,y0>0,z0>0,x(t),y(t),z(t)是系统(1)的解,当时,得到系统(1)的Leslie-Cower类型函数是随机强平均持久,即.证明选择T,当t≥T时,使得和.然后,当s≥T时,由式子(3)得(u))).由式(7)得到.(u))).因为,其中:c=max{c2,c3};;;由式(13)得到,其中.因此由随机微分方程知识可知分别和B3(s)有相同的分布,并且分别与有相同的分布,并且由式(16)可知,结果另一方面, 由文献[13]有,结合式(12)得,因此,考虑Leslie-Cower型功能函数的长期行为.根据系统(2)第三个方程,从0到t积分由式(16)和Brown运动理论可知所以,当时,得到系统(1)的Leslie-Cower类型函数是随机强平均持久.即定理5 当时,物种x(t)随机强平均持久;当时,y(t)随机强平均持久;当时,z(t)随机强平均持久.证明首先,令从0到t积分并用积分中值定理得其中τ∈(0,t).(rt)-1}.当t→,时,.由此得到当时,物种x(t)随机强平均持久.然后,由不等式,得t→,当时,.由(t).同理得到:当t→和时,定理6 假设对任意给定的初值条件x0>0,y0>0,z0>0,x(t),y(t),z(t)是系统(1)的解, 当时,.证明(t).从而得到由文献[14]有所以,当时,.所以. 由此可知另一方面,(t).从而下列不等式成立.又因为所以同理得知.因此,对任意小的ε,总存在一个T1>0,当t>T1时,使x(t)+y(t)<ε成立. 从而有,其中c=max(c2,c3). 由随机方程比较原理得所以,当时,.则由文献[13]得,.综上所述,结论成立.Milstein方法[15]模拟上述具有的修改Leslie-Cower类型随机三物种捕食-被捕食模型所得到的结果.其中ζk,ξk,ζk(k=1,2,…n)是服从N(0,1)的Gauss随机变量.通过上面所述数值方法和MATLAB软件进行数值模拟.首先,选取满足的参数,如q2=1,E2=0.3,q3=1,E3=0.4,c1=1,c2=1,c3=1,a1=0.5,a2=0.33,q1=1,E1=0.3,g1 =0.6,g2=0.3.图1表示当σ1=σ2=σ3=0时,系统的解趋于确定的常数;图2表示当σ1=σ2=σ3=2时,系统受到噪声干扰三个物种趋于灭亡.然后,选取满足的参数,如b1=0.95,b2=0.85,b3=0.65,M1=100,M2=20,a1=0.5,a2=0.33,q1=1,E1=0.03,g 1=0.6,g2=0.3.图3表示当σ1=σ2=σ3=0时,系统(11)的解趋于确定的常数;图4表示当σ1=σ3=0.1,σ2=0.25时,系统(11)受到噪声干扰,三个物种随机强平均持久.通过对具有的修改Leslie-Cower类型随机三物种捕食-被捕食模型进行分析得到了,在没有白噪声干扰时,种群个数随着时间的推移会趋于一个常数;当环境出现白噪声且超过某个范围,物种的个数不再稳定还趋于灭亡.然而,如果能把环境的白噪声和捕获能力控制在某个范围内,物种不但不会灭亡而且还会持久存在. 为了使物种持久的存在,应该减少环境中的随机因素,合理捕获物种.【相关文献】[1] UPADHYAY R K, NAJI R K. Dynamics of a three species food chain model with Crowley-Martin type functional response[J]. Chaos, solitons & fractals,2009,42 (3) : 1337-1346.[2] SHI X Y,ZOU X Y,SONG X Y.Analysis of a stage-structured predator-prey model with Crowley-Martin function[J].Applied mathematics and computation,2011,36(1): 459-472.[3] MENG X Y,HUO H F,XIANG H, et al. Stability in a predator-prey model with Crowley-Martin function and stage structure for prey[J]. Applied mathematics and computation,2014,232(3): 810-819.[4] LI H X. Asymptotic behavior and multiplicity for a diffusive Leslie-Gower predator-prey system with Crowley-Martin functional response[J]. Applied mathematics and computation,2014,68(7): 693-705.[5] LIU M, WANG K. Stochastic Lotka-Volterra systems with Lévy noise[J]. Jourmal of mathematical analysis and application,2014,410(2):750-763.[6] LIU M, BAI C Z. Global asymptotic stability of a stochastic delayed predator-prey model with Beddington-DeAngelis functional response[J]. Applied mathematics and computation,2014,226(1):581-588.[7] KUNAL C, KUNAL D, YU H G. Modeling and analysis of a modified leslie-Gower type three species food chain model with an impulsive control strategy[J].Nonlinear analysis: hybrid systems,2015,(15):171-184.[8] AZIZ-ALAOUI M A. Study of Leslie-Gower-type tritrophic population model[J]. Chaos solitons fractals 2002,14(8):1275-1293.[9] HALDARS, CHAKRABORTYK, DAS K. Bifurcation and control of an eco-epidemiolnical system with environmental fluctuations: a stochastic approach[J].Nonlineardynamics,2015,80(3):1187-1207.[10] QIU H,LIU M,WANG K, et al. Dynamics of a stochastic predator prey system with Beddington-DeAngelis functional response[J]. Mathematics and computation,2012,219(4): 2303-2312.[11] LIU X Q, ZHONG S M, TIAN B D. Asymptotic properties of a stochastic predator prey model with Crowley-Martin functional response[J]. Applied mathematics and computation,2013,43(1/2):479-490.[12] OKSENDAL B. Stochastic Differential Equations and Applications[M].Horwood Publishing:Avadem,c Press,1997.[13] JI C Y,JIANG D Q, SHI N Z. Analysis of a predator-prey model with Modified Leslie-Gower and Holling-type II schemes with stochastic perturbation[J]. Mathematical analysis and applications,2009,359(2):482-498.[14] MAO X R, SOTIRIES S, ERIC R. Asymptotic behavior of stochastic Lotka-Volterra, model [J]. Mathematical analysis and applications.2003,287(1):141-156.[15] HIGHAM D. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM review. 2001, 43(3): 525-546.。

Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性

Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性

Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性Lotka—Volterra竞争扩散系统是描述两个物种在空间中竞争和扩散的数学模型。

该模型结合了Lotka—Volterra竞争方程和Fisher扩散方程,对物种在空间中的分布和相互作用进行了全面的描述。

在这个系统中,连接边界平衡点和正平衡点的行波解一直是研究的热点之一。

本文将讨论关于Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解存在性的相关理论和结果。

一、介绍Lotka—Volterra竞争扩散系统是描述两个物种在空间中的竞争和扩散情况的数学模型。

该系统由以下偏微分方程组组成:\[\begin{cases}\frac{\partial u}{\partial t} = d_1 \Delta u + r_1u(1-\frac{u}{k_1}) -\alpha_{12}u v \\\frac{\partial v}{\partial t} = d_2 \Delta v + r_2v(1-\frac{v}{k_2}) -\alpha_{21}v u\end{cases}\]u和v分别表示两个物种的密度,t表示时间,d_1和d_2分别表示两个物种的扩散率,r_1和r_2分别表示两个物种的增长率,k_1和k_2分别表示两个物种的 carrying capacity,\alpha_{12}和\alpha_{21}表示两个物种间的竞争系数。

我们将在此讨论该系统连接边界平衡点和正平衡点行波解的存在性问题。

首先我们将介绍关于边界平衡点和正平衡点的基本概念,然后讨论连接这两类平衡点的行波解的存在性。

二、边界平衡点和正平衡点边界平衡点是指在Lotka—Volterra竞争扩散系统中,当空间为有界区域时,系统的平衡点处于区域边界上的情况。

正平衡点则是指系统的平衡点在有界区域内部的情况。

对于Lotka—Volterra竞争扩散系统,平衡点的存在性和稳定性是一个重要的研究问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

STOCHASTIC LOTKA-VOLTERRA SYSTEMS OFCOMPETING AUTO-CATALYTIC AGENTSLEAD GENERICALLY TOTRUNCATED PARETO POWER WEALTH DISTRIBUTION, TRUNCATED LEVY DISTRIBUTION OF MARKET RETURNS, CLUSTERED VOLATILITY, BOOMS AND CRACHES∗SORIN SOLOMONRacah Institute of PhysicsGivat Ram, Hebrew University of JerusalemE-mail: sorin@vms.huji.ac.il; http://shum.huji.ac.il/~sorinABSTRACTWe give a microscopic representation of the stock-market in which the microscopic agents are the individual traders and their capital.Their basic dynamics consists in the auto-catalysis of the individual capital and in the global competition/cooperation between the agents mediated by the total wealth invested in the stock (which we identify with the stock-index). We show that such systems lead generically to (truncated) Pareto power-law distribution of the individual wealth. This, in turn, leads to intermittent market (short time) returns parametrized by a (truncated) Levy distribution. We relate the truncation in the Levy distribution to the (truncation in the Pareto Power Law i.e. to the) fact that at each moment no trader can own more than the current total wealth invested in the stock. In the cases where the system is dominated by the largest traders, the dynamics looks similar to noisy low-dimensional chaos. By introducing traders memory and/or feedback between individual and collective wealth fluctuations (the later identified with the stock returns), one obtains clustered volatility as well as market booms and crashes. The basic feedback loop consists in:• computing the market price of the stock as the sum of the individual wealths invested in the stock by the traders and • determining the time variation of the individual trader wealth as his/her previous wealth multiplied by the stock return (i.e. the variation of the stock price).The financial markets display some puzzling universal features which while identified long ago are still begging for explanation. Recently, following the availability of computer for data acquisition, processing and simulation these features came under more precise, quantitative study [1]. We first describe phenomenologically these effects and then the unified conceptual framework which accounts for all of them.1Phenomenological Puzzles∗ To appear in Computational Finance 97, Eds. A-P. N. Refenes, A.N. Burgess, J.E. Moody, (Kluwer Academic Publishers 1998).1.1 Pareto Power Distribution of Individual WealthAlready 100 years ago, it was observed by Vilifredo Pareto [2] that the number of people P(w) possessing the wealth w can be parametrized by a power law:P (w) ~ w -1- α(1) The actual value for α in Eq. (1), was of course only approximately known to Pareto (due to the limited data at his disposal) but, modulo improvement in the accuracy of the statistics it to has been constantly α=1.4 throughout the last 100 years in most of the free economies. This wealth distribution Eq. (1) is quite nontrivial in as far as it implies the existence of many individuals with wealth more than 3 orders of magnitude larger than the average. To compare, if such a distribution would hold for personal weight, height or life span it would imply the existence of individual humans 1 Km tall, weighting 70 tons and living 70 000 years.1.2 Intermittent market fluctuations with (truncated) Levy-stable distribution of returnsIt was observed by Benoit Mandelbrot [4] in the 60s that the market returns defined in terms of the time relative variation of the stock index w (t):r (t,T) = (w(t)- w(t-T))/w(t-T) (2) are not behaving as a Gaussian (random walk with given size steps) but rather as a so called Levy-stable distribution [3]. In practical terms this means that the probability Q(r) for large returns r to occur is not proportional to Q ( r ) ~ e -kr**2 as for usual uncorrelated random Gaussian noise but rather to Q ( r ) ~ r-1- β. The Levy-stable distribution implies that the actual market fluctuations are very significantly larger than the ones estimated by assuming the usual Gaussian noise. This in turn implies larger risks for the stock market traders and affects the prices of futures, options, insurances and other contracts. The difference between the Gaussian and the Levy-stable distribution is dramatically experienced by traders occasionally, when the gains accumulated over a previous long period of time are lost overnight. The latest market returns measurements [12] show truncation departures from the Levy-stable distribution which we discuss at length in Section 3.1.3 Deterministic Chaotic Dynamics of the Global Lotka-Volterra MapsWith the arrival of the Chaos theories, it was noticed that the prices in the markets behave in a way as if they would be governed by the deterministic motion of a point moving under nonlinear kinematical rules in a space with a small number of dimensions/parameters [5].One of the earliest chaotic systems was invented in the late 20s by Lotka and Volterra [6] in order to explain the annual fluctuations in the volume of fish populations in the Adriatic Sea. If one denotes by w(t) the number of fish in the year t, these discrete logistic equations would predict the fish population w(t+1)at the year t+1 to be:w (t+1) = (1-d+ b) w(t) - c w2 (t) (3) The terms in the bracket in Eq. (3) represent respectively :• The fish population in the year t.• Minus the proportion (d) of fish which die of natural death (or emigrate from the ecology) from one year ( t ) to another ( t+ 1 )• Plus the proportion (b) of fish born (or immigrated) from year t to year t+1.The quadratic term -c w2 (t) in Eq. (3) originates in the fact that the probability that 2 fish would meet and compete for the same territory /food /mate is proportional to the product w(t) ×w(t). Obviously, only one will obtain the resource and the other one will die, emigrate (be driven out) or be prevented from procreating.For certain values of the constants b, d, c, the population w(t) approaches a stationary value: w(t) = (b-d)/c but for an entire range of parameters, the system Eq. (3) leads to chaotic annual changes in w(t). To understand it, consider for instance the case in which in the year t the population w(t) is very small such that the quadratic term -c w(t) 2 is much smaller than the linear term (1-d+ b) w(t). If (1-d + b) is large enough, then the number of fish in the following year w(t+1) ~ (1-d + b) w(t) might become quite large. In fact w(t+1) may become so large as to make the quadratic term next year - b w2 (t+1) comparable to (1-d+ b) w(t+1). The two terms would then cancel and the population w (t+2) in the following year would decrease. This may lead to a large w(t+3) and so on up and down. It is clear then, that in certain ranges of the parameters, the population will have a quite chaotic (but deterministic) fluctuating dynamics.However, when people tried to exploit this kind of deterministic systems to predict the markets, it turned out that in fact the fluctuations have in addition to the deterministic chaotic motion very significant random noisy components as well as a continuos time drift in the parameters of the putative deterministic dynamics.1.4 Q uasi-periodic Market Crashes and BoomsIn addition to the phenomena above, the market seems to have strong positive feed-back mechanisms which in certain conditions reinforce occasional trends and lead to volatility clustering, booms and crashes which we will address later.2Theoretical ExplanationsIt came [7]as a surprise, 70 years after the introduction [6] of systems of the type Eq. (3), 100 years after the discovery [2] of the Pareto law Eq. (1) and about 30 years after noticing [4] the intermittent market fluctuations (1.2) that, in fact the generalized discrete logistic (Lotka-Volterra) systems (Eq. (3) and Eq. (5) below), do lead [7] generically to the effects 1.1.-1.3.Moreover we have constructed realistic market models [8,20] which represent explicitly the individual investors and their market interactions and showed [9] that these realistic models reduce effectively to generalized Lotka -Volterra dynamics Eq.(5) and that these models lead generically to the intrinsic emergence of occasional crashes and booms (effect 1.4). Let us explain how all this happens.2.1 G eneric Scaling Emergence in Stochastic Systems with Auto-catalytic ElementsConsider the population w(t) of the Lotka-Volterra system Eq. (3) as a sum of Nsub-populations (families, tribes, sub-species) indexed by an index i :w (t) = w 1 (t) + w 2 (t) + ... + w N (t) (4)Obviously, the evolution equations for the w i (t+1)s have to be such as to reproduce upon summation the discrete logistic Lotka-Volterra system Eq. (3) for w (t+1). We are therefore lead to postulate that the parts w i (t) fulfill the following dynamics.At each time interval t one of the i s is chosen randomly to be updated according to the rule:w i (t+1) =λ (t) w i (t) + a (t) w (t) - c(t) w (t) w i (t) (5)The variability originating in the individual local conditions is reflected in the dependence of the coefficients λ (t), a and c on time. In particular, λ(t) are random numbers of order 1 extracted each time from a strictly positive distribution Π(λ) while a and c are much smaller than 1/N . This dynamics describes a system in which the generations are overlapping and individuals are continuously being born (and die) (first term in Eq. (5)), diffusing between the sub-populations (second term) and compete for resources (third term).2.1.1 Emergence of Truncated Power Laws Distribution in Stock Invested WealthThe dynamics Eq. (5) describes equally well the evolution of the wealth w i (t) of the individuals i in a financial market. More precisely Eq. (5) represents w i (t+1) the value of the stock owed by the investor i at time t+1 in terms his/her stock wealth w i (t)at time t :• The first (and most important) term in Eq. (5) expresses the auto-catalytic property of the capital: its contribution to the capital w i (t+1) at time t+1 is equal to the capital w i (t) at time t multiplied by the random factor λ (t) which reflects the relative gain/loss which the individual incurred during the last trade period.(This property is consistent with the actual phenomenological data which indicate that the distribution of individual incomes is proportional to the distribution of individual wealth).• The second term + a (t) w (t) expresses the auto-catalytic property of wealth at the social level and it represents the wealth the individuals receive as members of the society in subsidies, services and social benefits. This term is proportional to the general social wealth (/index ) w (t).• The last term - c (t ) w (t) w i (t) in Eq. (5) originates in the competition between each individual i and the rest of the society. It has the effect of limiting the growth of w (t) to values sustainable for the current conditions and resources. The effects of inflation or proportional taxation are well taken into account by this term.With these assumptions, it turns out that Eq. (5) leads to a power law distribution of the instantaneous w i (t) values i.e. the probability P(w .) for one of the w i (t) s to take the value w . is:P (w .) ~ w . -1- α with typically 1 < α < 2 . (6)Generically, the origin of the distribution P(w.) in Eq. (6) can be traced to its scaling properties. More precisely, the probability distribution of the form Eq. (6) is the only one whose shape (parameter α) does not change at all upon a rescaling transformationw i (t) → 2 w i (t) (7)In fact, by a rescaling Eq. (7), the Eq (6) transforms into itself with the same α:P α (w) → P α(2 w) ~ (2 w) -1- α ~ w -1- α ~ P α(w)in contrast to e.g. the Gaussian Q k ( r ) whose shape (parameter k ) changes (k → 4k ): Q k (r ) → Q k (2 r) ~ e -k(2r)**2 ~ e -4k r**2 ~ Q 4k ( r ) ≠ Q k ( r ) .It is therefore expected that such distributions Eq. (6) will be the result of dynamics which is invariant itself under the rescaling Eq. (7). This turns out to be the case of the generalized Lotka-Volterra dynamics generated by Eq. (5). Indeed, if one applies the scaling transformation Eq. (7) on one of the w i (t)s in Eq. (5) one obtains:2 w i (t+1) = 2 λ(t) w i (t) + 2 a (t) w i (t) - 2 c(t) u i (t) w i (t)+ a(t) u i (t) - 4 c (t) w i 2(t) (8)where we noted u i (t) = w (t) - w i (t) .One sees that w i (t+1) updated according to Eq. (8) has the same dynamics as before the rescaling transformation (i.e. updating according to the Eq. (5)) except for the last 2terms in Eq. (8) which are not scaling invariant. Therefore, one expects the scaling power law Eq. (6) to hold for values of the w i (t)s for which these last 2 terms are negligible in comparison with the other terms in Eq. (8) (recall a, c << 1/N ):w /N < w i (t) < w (9)This is quite a considerable range of w i (t)s if the system has a large number of elements i =1,...,N (of course for the single variable Lotka Volterra Eq. (3) the scaling range Eq.(9) does not exist as N =1 and there is no differentiation between w i (t) and w (t )) .The explicit simulation of Eq. (5) confirms this prediction [7,11,19]: the individual wealth distribution of the w i (t)s fulfills a power law Eq. (6) truncated to the range Eq.(9). The dynamical mechanism is best visualized in terms of the logarithm [9] of the investors relative wealth (normalized to the index w ): v i (t ) = ln (w i (t)/w (t)). If one starts with all the traders having the same wealth (delta function distribution at v i (0)= -ln N ),after a relatively short time, the distribution will diffuse into a spreading log-normal distribution. Upon drifting into the lower cut-off induced by the term ln a (cf. Eq. (5)),the shape of the v i s distribution ℘(v ) will change into a decreasing exponential. Infact if the diffusion coefficient is σ and the drift coefficient is -µ, then ℘(v ) fulfills the master equation :℘( v )/ ∂ t = σ ∂2 ℘( v )/ ∂ v 2 -µ ∂ ℘( v )/ ∂ vwhich admits the exponential solution ℘(v ) d v ~ e - v µ /σ d v. This exponential distributionfor the v i (t)s corresponds to a power law Eq. (6) with exponent α = µ/σ in the original w i variables [19]:℘( ln w ) d ln w ~ e - (ln w ) µ /σ 1/w d w = w -1-µ /σd w2.1.2 The exponent α does not depend on the trends in w (t)In spite of the fact that the terms non homogenous in w i (t) in the Eq. (8) are negligible in the scaling range Eq. (9), they do play a crucial role in fixing the boundary conditions for the scaling dynamics. This in turns determine the effective parameters σand -µ and therefore the value of the scaling exponent α. More precisely, upon substituting the instantaneous ideal value <w (t )> of w (t) (the currently expected value of w (t) neglecting fluctuations and relaxation time Eq.(5)- corresponding roughly to the current fundamental financial stock value):<w (t) > = (< λ (t) > -1 + N <a (t) >)/ <c(t)> (10) into the Eq. (5), one obtains:wi (t+1) =(λ (t) - < λ (t) > +1 - N <a (t) >) wi(t) + a (t) w(t) (11)The exponent α in Eq. (6) is then fixed1 by the condition that the distribution P (w) d w is unchanged by the updating Eq. (11). I.e. the flow of traders leaving a certain wealth level w to become poorer or richer equals the total flow of traders arriving at the wealth w from poorer or richer wealth stations w/(λ-<λ>+1-N a) upon undergoing the transformation Eq. (11):w -1- α dw = ∫Π(λ) [w/(λ - < λ > + 1 - N a )] -1- α d w/(λ - < λ > + 1 - N a ) dλ(12) where Π(λ) is the distribution ofλused in Eq. (5).This leads to the transcendental equation for α [11,15]:∫Π(λ)(λ(t) - < λ (t) > +1 - N <a (t) >)α dλ = 1 (13) which, given N, a and the distribution Π(λ) of λ does not depend on c or on an overallshift in λ :Π(λ)→Π(λ-λ0 ) .This equation can be either solved numerically for α, orapproximately by expanding the bracket around 1 in powers of λ (t) - < λ (t) > - N <a (t) >. This leads for N a << (<λ2 > - < λ >2) = σ2 << 1 to the approximate solution:α≈ 1+ 2 Na /[σ2 + ( N a) 2 ] (14) One sees from Eq. (10) that upon changes in the external conditions (resources, predators, etc.), represented by variations in <c(t)>, the total population can change by orders of magnitude without affecting the Eq. (13)-(14) which determine the exponent α . Therefore the distribution of the individual wealth fulfills the power law Eq. (6) even in non-stationary conditions when <w(t)> varies continuously in time. In fact, even for c=0 , when an instantaneous ideal value does not exists and the total wealth (/market index) w(t) increases indefinitely, one observes in each particular moment t a veryprecise power law distribution among the current wi (t) values, with a stable α exponent.This is confirmed both by simulations and by the observation of experimental data. If w s are town populations or sub-species, a power law distribution which survives large ecological fluctuations in Eq. (10) is predicted.Note also that the limit c= 0 , a → 0 is not uniform: Eq. (14) gives then α = 1 while it is known that in the total absence of the lower bound term a, the multiplicative dynamics leads to an ever-flattening log-normal distribution which approaches α = 0. This is of practical importance as indeed most of the systems in nature which display power laws have exponents α between 1 and 2 . I.e. even an exceedingly small value of a has very significant consequences. To sharpen this intuition let us consider the model in which the term a (t) w(t) is substituted by a reflecting wall [11] which disallows anywi (t) to assume values lower than ε(t)≡ωw(t)/N:wi(t) > ε (t) ≡ωw(t) /N (15)where 0 < ω0 < 1.This corresponds to a social policy where no individual is allowed to slump below thefraction ω0 of the average wealth w (t) /N (in the typical western economies ω~1neglecting in the region Eq. (9) the term a(t)w(t).1/3). More specifically, during the simulation of the linearized ( a= 0, c= 0)Eq. (5) each time that wi(t+1) comes out less thenε(t) Eq. (15), its value is actually updated to ε(t). As proved below, in this model, the exponent α turns out totally independent onΠ(λ) and for a wide range is determined only by ω0 through the (approximate) formula[11]:α=1/(1-ω). (16)Note again that the limit of vanishing lower bound ω0→ 0 leads to α=1while for finiteN in the absence of a lower bound (ω= 0) the distribution approaches an infinitely flat log-normal distribution corresponding to α=0. However, the value α=1is relevant for firms sizes, towns populations and words frequencies where a very small but finitelower bound is provided by the natural discretization of wi (number of firm employees,town residents, word occurrences cannot be lower than 1).The Eq. (16) can be obtained starting form the expressions for the total probability and the total wealth. First, using the fact that the total probability equals 1, one fixes (assuming N/ω>>1) the constant of proportionality in Eq. (6):1= C∫εx -1- α d x⇒ 1 ≈Cε-α / α⇒ C≈α [ωw/N]α(17) Then, using this expression for C in the formula of the total wealth w one gets:w= NC ∫εx - α d x⇒w≈ NCε 1-α / (α-1) = αω0w/ (α-1) (18)which means (dividing by w):1 ≈αω/ (α-1) (19)which by solving with respect to α leads to (16). For very low values of ω0 << 1/N theupper bound w in the integral in (18) becomes relevant and the value of α does depend on N:α≈ - ln N / (lnω- ln N) (20)which in particular has the correct limit α= 0 for ω0 = 0 . For intermediate values, onecan solve numerically the couple of equations (17) and (18) with the correct upper bounds (w cf. the truncation Eq. (9)) in the integrals and the result agrees with the actual simulations of the linearized random system Eq. (5) submitted to the lower bound constraint (15). This concludes the deduction of the truncated Pareto power law 1.1 in generic markets (and in general systems consisting of auto-catalyzing parts, ecologies, etc.).2.2 Pareto Wealth Distribution implies Levy-Flights ReturnsLet us now understand the emergence of the property 1.2: the fluctuations of the w(t) around its ideal (financially fundamental) instantaneous value <w(t) > Eq. 10 are not Gaussian. The Gaussian distribution is intuitively visualized by imagining a person (drunkard) taking at each time t a step (of approximate unit size) to the left or to the right with equal probability . The Gaussian probability distribution Q ( r ) is then approximately defined by the probability for the person (drunkard) to end-up after T steps, at the distance r (T) from the starting point . For instance, the probability for the largest fluctuations (say r (T)= T ) to occur is easy to compute: it is the probability that all the T steps will be in the same direction. This equals the product of the probabilities for each of the T steps separately to be in that direction i.e. ()T.At the first sight, this Gaussian random walk description fits well the time evolutionof the sum w Eq. (4) under the dynamics Eq. (5): at each time step one of the wi (t)s isupdated to a new value wi (t+1) and the sum w(t) changes by the random quantity wi(t+1)- wi (t). Consequently, the dynamics of w(t) consists of a sequence of random steps ofmagnitude wi (t+1) - wi(t). The crucial caveat is that according to the Eq. (5), for therange Eq. (9) in which the last 2 terms in Eq. (7) are negligible, the steps wi (t+1)-wi(t)are proportional to the wi (t)s themselves. Consequently,w(t) evolves by random stepswhose magnitude is not approximately equal to any given unit length. Rather, therandom steps wi (t +1) - wi(t) have various magnitudes with probabilities distributed by a(truncated Eq. (9)) power law probability distribution Eq. (6).Random walks with steps whose sizes are not of a given scale [3] but are distributed by a (truncated) power law probability distribution Eq. (6) P (w.) ~ w. -1- αare called (truncated) Levy flights [3]. The associated probability distribution Qα ( r ) that after T such steps the distance from an initial value w(t) will be r = (w(t+T)- w(t))/w(t) is called a (truncated) Levy-stable2 distribution of index α.The Levy-stable distribution3 has very different properties from a Gaussian distribution. For instance the probability that after T steps, the walker will be at a distance r= T from the starting point is this time dominated by the probability that one of the steps is of size T. This will happen (according to Eq. (6)) with probability of order T -1- α. To see the dramatic difference between the time fluctuations r = (w(t+T)-w(t))/w(t) predicted by the Levy flights vs. the ones predicted by the Gaussian, consider the typical numerical example α = 1.5 and T=25. The probability that after a sequence of 25 steps, a Levy flyer will be at a distance 25 from the starting point is 25 -2.5 i.e. about 1000 times larger than the corresponding Gaussian walk probability estimated above:1/225.Therefore, our model Eq. (5), predicts the emergence with significant probability of very large intermittent truncated-Levy distributed market fluctuations.In fact we reach a more general conclusion: ANY quantity which is a sum ofrandom increments proportional to the wealths wi (t) will have fluctuationsdescribed by a Levy distribution of index β equal to the exponent α of the wealthpower distribution Eq. (6) of the wi s.In particular, since the individual investments are stochastically proportional to the investor s wealth (which is consistent with the empirical fact that the income distribution is proportional to the wealth distribution) one predicts [11] that the stock market fluctuations will be described (effect 1.2) by a truncated-Levy distribution of index equal to the measured exponent α =1.4 of the Pareto wealth distribution Eq. (6) (effect 1.1 ). This highly nontrivial relation between the wealth distribution and the market fluctuations is confirmed by the comparison of the latest available experimental data [12] .In principle alternative mechanisms exploiting the Lotka-Volterra mechanism could take place: the investors could be roughly of the same wealth but act in herds[13-16] of magnitude wi which evolve according the generalized Lotka-Volterra Eq.(5). This would lead to power law distribution in the size of these herds and consequently to a Levy distribution in the market fluctuations. However unless all the investors in a herd make their bid at the same time, the herding will show in time correlations of the stock evolution. Presently, there is no evidence for such correlations2 The name stable has to do with another property of these distributions which is not directly relevant to this report.3 The cut-off in the Levy-stable distribution for large values of r is discussed in Section 3 below.nor for the presence of scaling herds. Still, one should keep an open mind [16,22] about the significance of the wi(t)s involved in the Eq. (5).2.3 Levy-Stable fluctuations may look like noisy, drifting, deterministic ChaosIn usual stochastic systems in which the elementary degrees of freedom wi (t) are ofthe same order of magnitude, the fluctuations around the mean value are the result of a large number of random contributions of the same size: Gaussian noise.In the case in which the elementary degrees of freedom are distributed according to Eq. (6) the largest degrees of freedom are macroscopic and, in certain cases (especially for low α), the dynamics is dominated by the few largest elements.This might look locally as a chaotic process of low dimensionality (small numberof parameters and of degrees of freedom). However, the relevant wi (t)s may change intime and the smaller wi (t)s do imply additional fluctuations not related with thedominating degrees of freedom. Therefore, while in certain limits one may obtain deterministic low dimensional chaos, this is only an extreme idealization.2.4 LLS model: Market Crashes; Strategies Evolution; How Generic is Scaling ?The model Eq. (5) was initially proposed as a mezoscopic description of a wide series of simulation experiments on the (Levy-Levy-Solomon [8,20-22]) LLS microscopic representation model. The LLS model considers [8] individual investors with various procedures of deciding the amount of stock to sell/buy at each time and studies the resulting market dynamics. The variants of the basic model displayed always the central features of Eq. (5). In particular, for a very wide range of wealth Eq. (9) the gain/loss of each investor was stochastically proportional to its current wealth. So was its influence on the market changes. Therefore the ingredients necessary to obtain the effects 1.1.-1.3 through the mechanisms described above were always in place in the realistic LLS market models.Moreover, a very simple mechanism for booms and crashes (effect 1.4) was naturally present in many of the LLS runs [8]: each investor had the tendency to assume that the future behavior of the market is going to be similar to the past one. This meant that prices had the tendency to rise beyond the value justified by the expected dividends (the investors expected gain from the sheer increase in the stock price). This lead to a quite unstable situation as the discrepancy between the dividends and the market price level became more and more severe. At a certain stage, an usual, relatively mild downwards fluctuation would take place. As this downwards fluctuation was internalized as part of the traders past experience, it lead to a lowering of the future expectations, followed by a further decrease in prices. This iterated and triggered eventually an avalanche effect. The down trend would stop only as the market price became so low that the expectation of the dividends alone justified buying the stock. Therefore, even the simplest versions of the LLS model are capable to generate in addition to the universal features 1.1-1.3 also the cycles of crashes and booms characteristic for the real markets.The simple LLS model was also capable to create interesting dynamics in the strategies of the investors. Indeed, as it happened often [20], the investors having a particular investing policy would be occasionally advantaged by the current dynamics of the market. This would cause them to earn more from the market fluctuations. As they became richer, they influenced increasingly the market changing thereby its dynamics. In the new dynamical state, another group would become advantaged and start to become richer thereby changing in its turn the character of the market. The new。

相关文档
最新文档