化工原理实验报告总传热系数实验测定数据及处理(珍贵)

合集下载

化工原理传热实验报告数据处理

化工原理传热实验报告数据处理

化工原理传热实验报告数据处理一、引言在化工工程中,传热是一个非常重要的过程。

通过实验研究传热过程,可以帮助我们更好地理解传热机制,优化传热设备的设计和运行。

本实验旨在通过传热实验数据的处理和分析,研究不同传热介质和传热条件下的传热性能。

二、实验目的1.熟悉传热实验的基本原理和操作方法;2.学习传热实验数据的处理和分析方法;3.掌握不同传热介质和传热条件下的传热性能。

三、实验仪器和材料1.传热实验装置:包括传热介质循环系统、加热系统、温度测量系统等;2.传热介质:可以选择水、油等。

四、实验步骤1.准备实验装置:确保实验装置的正常运行,检查加热系统、循环系统和温度测量系统是否正常;2.设置实验参数:根据实验要求,设置传热介质的流量、温度和压力等参数;3.开始实验:打开实验装置的电源,启动传热介质循环系统,加热传热介质到设定温度;4.记录数据:在实验过程中,记录传热介质的流量、温度和压力等数据;5.结束实验:实验结束后,关闭实验装置的电源,停止传热介质循环系统;6.处理数据:对实验记录的数据进行处理和分析。

五、数据处理和分析1.温度变化曲线分析:根据实验记录的温度数据,绘制温度变化曲线。

通过观察曲线的变化趋势,分析传热介质在不同条件下的传热性能;2.热传导计算:根据实验数据和传热方程,计算传热介质的热传导系数。

可以通过改变传热介质和传热条件,比较不同情况下的热传导系数差异;3.热对流计算:根据实验数据和传热方程,计算传热介质的热对流系数。

可以通过改变传热介质和传热条件,比较不同情况下的热对流系数差异;4.换热器效率计算:根据实验数据和换热方程,计算换热器的换热效率。

可以通过改变传热介质和传热条件,比较不同情况下的换热效率差异。

六、实验结果与讨论1.温度变化曲线:根据实验数据绘制的温度变化曲线显示,在不同传热介质和传热条件下,温度的变化趋势有所差异。

这表明传热介质的传热性能受到传热介质和传热条件的影响;2.热传导系数:通过计算传热介质的热传导系数,可以发现不同传热介质的热传导性能有所差异。

化工原理实验报告(传热)

化工原理实验报告(传热)

化工原理实验报告(传热)
实验名称:传热实验
实验目的:掌握传热原理,测定传热系数。

实验原理:传热是指热能从物体的高温区域传递到物体的低温区域的过程。

传热方式
主要有三种,分别是传导、对流和辐射。

传导是指物质内部由高温区传递热量到低温区的过程。

传导的速率与传导材料的种类、厚度、温度差等因素有关。

对流是指由于物流的运动而引起的热量传递过程。

对流的速率与流动速度、流动形式
等因素有关。

辐射是指物体之间通过电磁波传递热量的过程。

辐射的速率与物体温度、表面特性等
因素有关。

实验仪器:传热实验装置、数显恒温槽、数显搅拌器、功率调节器、电热水壶、测温仪、电阻丝、保温材料等。

实验步骤:
1、将传热实验装置放入数显恒温槽内,开启电源,将温度恒定在80℃左右。

2、将试样加热,使其温度达到与恒温槽内温度一致。

3、将试样放入传热实验装置中,开始实验。

4、在实验过程中,保持搅拌器的匀速转动,确保传热速率的稳定。

5、记录实验数据,计算传热系数。

实验结果:
本实验测定的传热系数为:λ=10.2 W/m•K
通过本次实验,我们掌握了传热原理和测定传热系数的方法,同时也了解了传导、对
流和辐射三种传热方式的特点及其影响因素。

实验结果表明,传热系数是物体传热速率的
量化表示,对于不同的物体和温度差,传热系数是不同的,因此在具体实际应用中需要根
据实际情况进行调整。

化工原理实验报告(传热)

化工原理实验报告(传热)

北京化工大学化工原理实验报告传热膜系数测定实验院(部):化学工程学院专业:化学工程与工艺班级:化工1005*名:*** 2010011136同组人员:王彬刘玥波方郡实验名称:传热膜系数测定实验实验日期: 2012.11.28传热膜系数测定实验一、摘要本实验以套管换热器为研究对象,以冷空气及热蒸汽为介质,冷空气走黄铜管内,即管程,热蒸汽走环隙,即壳程,研究热蒸汽与冷空气之间的传热过程。

通过测得的一系列温度及孔板压降数值,分别求得正常条件和加入静态混合器后的强化条件下的对流传热膜系数α及Nu ,做出lg (Nu/Pr0.4)~lgRe 的图像,分析出传热膜系数准数关联式Nu=ARemPr0.4中的A 和m 值。

关键词:对流传热 Nu Pr Re α A 二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。

三、实验原理黄铜管内走冷空气,管外走100℃的热蒸汽,壁内侧热阻1/α远远大于壁阻、垢阻及外侧热阻,因此研究传热的关键问题是测算α,当流体无相变时对流传热准数关系式的一般形式为:p n m Gr A Nu Pr Re ⋅⋅=对于强制湍流有: n m A Nu Pr Re =用图解法对多变量方程进行关联,要对不同变量Re 和Pr 分别回归。

本实验可简化上式,即取n=0.4(流体被加热)。

在两边取对数,得到直线方程为Re lg lg Pr lg4.0m A Nu+= 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。

在直线上任取一点函数值代入方程中,则可得到系数A ,即mNuA RePr4.0=其中 λαλμμρdNu Cp du ===,Pr ,Re 实验中改变空气的流量,以改变Re 值。

根据定性温度计算对应的Pr 值。

同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 值。

化工原理 传热综合实验报告 数据处理

化工原理 传热综合实验报告 数据处理

化工原理 传热综合实验报告 数据处理七、实验数据处理1.蒸汽冷凝与冷空气之间总传热系数K 的测定,并比较冷空气以不同流速u 流过圆形直管时,总传热系数K 的变化。

实验时蒸汽压力:0.04MPa (表压力),查表得蒸汽温度T=109.4℃。

实验装置所用紫铜管的规格162mm mm φ⨯、 1.2l m =,求得紫铜管的外表面积200.010.060318576281.o S d l m m m ππ=⨯⨯=⨯⨯=。

根据24s sV V u A dπ==、0.012d m =,得到流速u ,见下表2: 表2 流速数据取冷空气进、出口温度的算术平均值作为冷空气的平均温度,查得冷空气在不同温度下的比热容p c 、黏度μ、热传导系数λ、密度ρ,如下表3所示:表3 查得的数据t 进/℃ t 出/℃ t 平均/℃()p c J kg ⋅⎡⎤⎣⎦℃ Pa s μ⋅ ()W m λ⋅⎡⎤⎣⎦℃ ()3kg m ρ-⋅ 22.1 77.3 49.7 10050.0000196 0.0283 1.093 24.3 80.9 52.6 1005 0.0000197 0.02851 1.0831 26.3 82.7 54.5 1005 0.0000198 0.02865 1.0765 27.8 83 55.4 1005 0.0000198 0.02872 1.0765 29.9 83.6 56.75 1005 0.0000199 0.02879 1.0699 31.8 83.7 57.75 1005 0.00002 0.02886 1.0666 33.7 83.8 58.75 1005 0.0000200 0.02893 1.0633 35.68459.81005 0.0000201 0.029 1.06根据公式()()=V s p s p Q m c t t c t t ρ=--出进出进、()()ln m T t T t t T t T t ---∆=--进出进出,求出Q序号 ()31sV m h -⋅ ()1u m s -⋅1 2.5 6.1402371072 5 12.280474213 7.5 18.420711324 10 24.560948435 12.5 30.701185536 15 36.841422647 17.5 42.98165975 82049.12189685和m t ∆,0S 已知,由0mQK S t =⋅∆,即可求出蒸汽冷凝与冷空气之间总传热系数K 。

化工原理实验传热实验报告

化工原理实验传热实验报告

化工原理实验传热实验报告化工原理实验传热实验报告一、引言传热是化工过程中不可或缺的环节,对于提高反应速率和产品质量具有重要意义。

为了研究传热现象,我们进行了一系列的实验。

本实验旨在通过传热实验,探究传热的基本原理和影响因素,为化工过程的优化提供理论依据。

二、实验目的1. 了解传热的基本原理和传热方式;2. 掌握传热实验的基本方法和技巧;3. 分析传热过程中的影响因素。

三、实验原理1. 传热方式传热主要有三种方式:传导、对流和辐射。

传导是通过物质内部的分子传递热量,对流是通过流体的运动传递热量,辐射是通过电磁波传递热量。

2. 传热方程传热过程可以用传热方程来描述,常见的传热方程有热传导方程、牛顿冷却定律和斯特藩-玻尔兹曼定律。

热传导方程描述了传导过程中的热量传递,牛顿冷却定律描述了对流过程中的热量传递,斯特藩-玻尔兹曼定律描述了辐射过程中的热量传递。

3. 传热系数传热系数是描述传热能力的物理量,它与传热介质的性质和传热过程中的条件有关。

传热系数越大,传热能力越强。

四、实验装置和步骤1. 实验装置本实验采用了传热实验装置,包括传热试验台、传热介质、传热表面、传热源和传热计等。

2. 实验步骤(1)将传热试验台接通电源,使传热源加热。

(2)调节传热介质的流量和温度。

(3)通过传热计测量传热过程中的温度变化。

(4)记录实验数据,并进行数据处理和分析。

五、实验结果与分析通过实验测得的数据,我们可以计算传热系数和传热速率,进而分析传热过程中的影响因素。

1. 传热系数传热系数与传热介质的性质、传热表面的形状和条件有关。

通过实验数据的处理,我们可以计算得到传热系数,并与理论值进行比较,从而评估传热实验的准确性和可靠性。

2. 传热速率传热速率是描述传热过程中热量传递的快慢程度的物理量。

通过实验数据的处理,我们可以计算得到传热速率,并分析传热过程中的传热效率和能耗。

六、实验总结通过本次传热实验,我们深入了解了传热的基本原理和传热方式,掌握了传热实验的基本方法和技巧。

化工原理传热实验报告

化工原理传热实验报告

化工原理传热实验报告实验目的,通过传热实验,掌握传热原理,了解传热过程中的热阻和传热系数的测定方法,掌握传热表面积的计算方法。

一、实验原理。

传热是指热量从一个物体传递到另一个物体的过程。

在传热过程中,热量的传递方式有对流、传导和辐射三种。

本实验主要研究对流传热。

二、实验仪器和设备。

1. 传热实验装置。

2. 温度计。

3. 计时器。

4. 水槽。

5. 水泵。

三、实验步骤。

1. 将水加热至一定温度,保持恒温。

2. 将试验管装入传热实验装置中,打开水泵,使水流通过试验管。

3. 记录试验管的进口和出口水温,以及进口和出口水的流量。

4. 根据实验数据计算出传热系数和传热表面积。

四、实验数据处理。

1. 根据实验数据计算出传热系数和传热表面积。

2. 绘制传热系数与雷诺数的关系曲线。

五、实验结果分析。

根据实验结果,我们可以得出传热系数与雷诺数呈线性关系,传热系数随雷诺数的增大而增大。

传热表面积的计算结果与实际情况相符合。

六、实验结论。

通过本次传热实验,我们深入了解了传热原理,掌握了传热系数和传热表面积的计算方法,提高了实验操作能力和数据处理能力。

七、实验总结。

传热实验是化工原理课程中的重要实践环节,通过实验操作,我们不仅学到了理论知识,更加深了对传热原理的理解。

在今后的学习和工作中,我们将继续努力,不断提高自己的实验能力和科研能力。

通过本次传热实验,我们对传热原理有了更深入的了解,掌握了传热系数和传热表面积的计算方法,提高了实验操作能力和数据处理能力。

希望通过这篇实验报告,能够对大家有所帮助,也希望大家能够在今后的学习和工作中继续努力,不断提高自己的实验能力和科研能力。

化工实验报告-传热系数的测定

化工实验报告-传热系数的测定

太原师范学院实验报告Experimentation Report of Taiyuan teachers College系部:化学系年级:大四课程:化工实验姓名:学号:日期:2012/10/15项目: 气体强制对流传热系数的测定一、实验目的:1.熟悉传热设备;2.了解传热原理和强化传热途径,分析热交换过程的影响因素;3.测定热流体空气与冷流体水在并流和逆流条件下的总传热系数K;4.测定努赛尔数Nu和雷诺数Re之间的关系,确定他们的关联式。

二、实验原理:传热过程按其方式可分为热导传热、对流传热和辐射传热三种。

在工业生产上的传热过程中,按冷流体和热流体的接触方式可分为直接接触式、间壁式和蓄热式三种。

本实验采用的单套管式换热器为间壁式传热,其热流体为热空气,冷流体为水,热空气与水在套管内进行传热,传热方程为:q=K*A*△t m式中:q为传热速率(W);K为总传热系数(W*m-2*k-1)A为热空气—水间的传热面积(套管换热器的内管平均面积A=π*d m*L,d m为内管内外径的平均值,L为套管换热器套管的长度);△t m 为热空气与冷却水间的平均温度差【△t m =(△t1 +△t2 )/ (ln△t1 -ln△t2 ),℃或K】,△t1 和△t2 分别为换热器两端的温度差。

在稳定传热过程中,热流体热空气通过换热器壁面将热量传给冷流体水,捂热量损失,两流体也未发生相变化,冷流体吸收热量与热流体放出热量相等,因此,传热速率Φ衡算式为:Φ=W g C p(T1-T2)式中:W g 为空气的质量流量(Kg*S-1)C p 为空气的比热容(K J*Kg*K-1)T1,T2分别为热流体俄进口和出口温度(℃或K)根据传热关系,传热系数是由以下几个分热阻的倒数组成,即式中:a1、a2分别为热空气和冷却水的给热系数(W*m-2*k-1)d1、d2分别为内管的内径和外径(m), δ为内管的壁厚(m);λ为内管的导热系数(W*m-2*k-1)。

化工原理实验报告_空气总传热

化工原理实验报告_空气总传热

总传热系数与对流传热系数的测定一、实验目的1.了解间壁式换热器的结构与操作原理; 2.学习测定套管换热器总传热系数的方法; 3.学习测定空气侧的对流传热系数;4.了解空气流速的变化对总传热系数的影响。

二、实验原理本实验采用套管式换热器,热流体走管间,为蒸汽冷凝,冷流体走内管,为空气。

该传热过程由水蒸气到不锈钢管外管壁的对流传热、从外管壁到内管壁的传导传热、内管壁到冷水的对流传热三个串联步骤组成。

实验流程如图1所示。

图1. 传热实验装置流程图1-空气流量调节阀 2-转子流量计 3-蒸汽调节阀 4-蒸汽压力表 5-套管换热器 6-冷凝水排放筒7-旋塞 8-空气进口温度计 9-空气出口温度计 10-不凝气排放口套管换热器5由不锈钢管(或紫铜管)内管和无缝钢外管组成。

内管的进出口端各装有热电阻温度计一支,用于测量空气的进出口温度。

内管的进、出口端及中间截面外壁表面上,各焊有三对热电偶,型号为WRNK-192。

不锈钢管规格Φ21.25⨯2.75,长1.10米 S=πd o L=0.0734m 2 紫铜管Φ16⨯2,长1.20米 S=πd o L=0.0603m 2 转子流量计(空气,0~20m 3/h ,20℃) 数字显示表SWP-C40此设备的总传热系数可由下式计算:mt S QK ∆⋅=其中 ()()出进出进t T t T t T t T t m -----=∆ln式中:Q ——传热速率,W ;S ——传热面积,m 2;S=πd o Lm t ∆——对数平均温度差,℃T ——饱和蒸汽温度,℃,根据饱和蒸汽压力查表求得;出进、t t ——分别为空气进、出口温度,℃。

通过套管换热器间壁的传热速率,即空气通过换热器被加热的速率,用下式求得:()进出t t c m Q p s -⋅⋅=, W其中,C p 应取进、出口平均温度下空气的比热容。

W=V s ⋅ρ,其中ρ为进口温度下空气的密度。

对流传热系数的计算公式为m t S Q ∆⋅⋅=α式中S ─内管的内表面积,m 2;α─空气侧的对流传热系数,W/(m 2⋅︒C); ∆t m ─空气与管壁的对数平均温度差,︒C 。

化工原理实验传热实验报告

化工原理实验传热实验报告

化工原理实验传热实验报告实验目的:了解传热的基本原理,掌握传热实验的基本方法和操作技能。

实验仪器与材料: 1. 传热试验装置:包括加热器、冷却器、测温设备等。

2.测量工具:温度计、计时器、称量器等。

3. 实验样品:可以是固体、液体或气体。

实验原理:传热是物体之间由于温度差引起的热量传递现象。

传热可以通过三种方式进行:导热、对流和辐射。

1.导热:导热是通过物体内部的分子碰撞实现的热量传递方式。

热量从高温区域传递到低温区域,速度与温度差和材料导热系数有关。

2.对流:对流是通过流体的流动来实现的热量传递方式。

热量可以通过流体的对流传递到其他物体或流体中,速度与流体的流动速度、流体的性质以及流动的距离有关。

3.辐射:辐射是通过电磁波传递热量的方式。

热辐射不需要通过介质传递,可以在真空中传播。

热辐射的强度与物体的温度和表面特性有关。

实验步骤:步骤一:准备工作 1. 确定实验所需的传热试验装置和材料,并检查其是否完好。

2. 准备实验所需的测量工具和实验样品。

3. 对实验装置进行清洁和消毒,确保实验结果的准确性。

步骤二:导热实验 1. 将传热试验装置中的加热器加热到一定温度。

2. 在加热器的一侧放置一个固体样品,并用温度计测量其初始温度。

3. 记录固体样品的温度随时间的变化,并绘制温度-时间曲线。

4. 根据温度-时间曲线,计算固体样品的导热速率和导热系数。

步骤三:对流实验 1. 在传热试验装置中加入一定量的流体样品。

2. 将加热器加热到一定温度,并用温度计测量流体样品的初始温度。

3. 在冷却器的另一侧,用冷却水冷却流体样品,并用温度计测量冷却后的温度。

4. 记录流体样品的温度随时间的变化,并绘制温度-时间曲线。

5. 根据温度-时间曲线,计算流体样品的对流传热速率。

步骤四:辐射实验 1. 将传热试验装置中的加热器加热到一定温度。

2. 在加热器的一侧放置一个辐射源,并用温度计测量其初始温度。

3. 在辐射源的另一侧,放置一个辐射接收器,并用温度计测量接收器的初始温度。

化工原理实验报告总传热系数实验测定数据及处理(珍贵)

化工原理实验报告总传热系数实验测定数据及处理(珍贵)

序号T1进口T2出口t2出口t1进口T1-T2t2-t11119735.820023.321.861.2 1.52119734.240022.621.862.80.83119733.660022.321.863.40.54119733.280022.221.863.80.451495.835.280022.321.860.60.5617963680022.421.8600.672095.33780022.521.858.30.7思考题1.影响传热系数K的因素有哪些?答:传热系数的计算值K计可用下式进行计算:(5)式中, 0为换热器管外侧流体对流传热系数,W/(m2•℃); i为换热器管内侧流体对流传热系数,W/(m2•℃); 。

2.在实验中哪些因素影响实验的稳定性?答:换热器管外侧流体对流传热系数 0、换热器管内侧流体对流传热系数 i、管壁厚度 、管壁的导热系数3.根据实验结果分析如何强化传热?答:蒸汽冷凝时的对流传热强化措施目的:减少冷凝液膜的厚度水平管束:减少垂直方向上管数,采用错列;垂直板或管:开纵向沟槽,或在壁外装金属丝。

液体沸腾时的对流传热强化措施表面粗糙化:将表面腐蚀,烧结金属粒;加表面活性剂(乙醇、丙酮等)热流体冷流体流量Nm³/h 温度流量Nm³/h 温度DT1DT2Qc(W)Qn(W)Q(W)DTm总传热系数K T1-t2T2-t1qm水qm空气347.8862369.2923358.589235.9433824.9412573.714199.621.615371.0786378.947375.012834.6028627.0940674.412.4399.221.615347.8862382.5675365.226834.0851126.7878674.711.8598.821.615371.0786384.9812378.029933.7018128.0422574.811.4798.421.615463.8482465.4004464.624335.3107632.8953873.513.4798.427.51556.6179559.5338558.075836.1005838.6472973.614.2798.433.405649.3875639.6239644.505736.7717343.8180172.815.2798.439.3体对流传热系数,W/(m2•℃); 为管壁厚度,m; ——管壁的导热系数,W/(m2•℃);RS为污垢热阻,m2•℃/W i、管壁厚度 、管壁的导热系数 、污垢热阻RS。

化工原理传热实验报告数据处理

化工原理传热实验报告数据处理

化工原理传热实验报告数据处理一、实验原理及设备传热实验是研究物体之间热量传递规律的一项重要实验。

通过将两个温度不同的物体放在一起,实验者可以观察到热量从高温处流入低温处的过程,了解热量传递过程的基本规律。

传热实验设备一般包括热源、加热试样、冷却试样、温度传感器、数据采集仪等部分。

本次实验选用了著名的皮尔逊方块,制作成4块不同材质、不同面积的样品,放置在不同位置的水槽中进行热传递实验。

使用热电偶连接到数据采集仪上,记录样品在不同位置、不同时间下的温度变化情况。

二、实验操作及结果处理1.样品制作按照实验要求,制作了4块皮尔逊方块。

分别由铜、铝、塑料和木头材料制成,每块样品的底面积为$A=10cm^2$,高度为$h=2cm$。

制作完成后对样品进行了称重、测量底面积和高度等工作,得到各样品的物理参数如表1所示。

| 材质 | 底面积$A/cm^2$ | 高度$h/cm$ | 质量$m/g$ | 密度$\rho/g·cm^{-3}$ || ---- | ------------ | --------- | ------- | ------------ || 铜 | 10 | 2 | 51.23 | 8.96 || 铝 | 10 | 2 | 17.80 | 2.70 || 塑料 | 10 | 2 | 5.60 | 1.20 || 木头 | 10 | 2 | 3.52 | 0.62 |2.加载试样并测量温度将实验装置接通电源,确定水槽中的水温为恒定温度,同时通过调节电源电压来控制热源的输出功率。

将4个样品放置在4个不同的位置,使用热电偶在每个样品处测量温度。

记录下每个样品在不同时间下的温度变化情况,如表2所示。

| 时间$t/min$ | 位置1(铜)/℃ | 位置2(铝)/℃ | 位置3(塑料)/℃ | 位置4(木头)/℃ || ---------- | ------------ | ------------ | ------------ | ------------ || 0 | 80.3 | 80.3 | 80.3 | 80.3 || 2 | 78.4 | 77.9 | 76.8 | 74.8 || 4 | 76.5 | 75.6 | 72.8 | 68.5 || 6 | 74.6 | 73.3 | 68.8 | 62.5 || 8 | 72.4 | 70.8 | 64.8 | 57.5 || 10 | 70.3 | 68.2 | 60.8 | 52.6 || 12 | 68.2 | 65.5 | 56.8 | 47.9 || 14 | 66.1 | 62.9 | 52.8 | 43.2 || 16 | 64.0 | 60.3 | 48.8 | 38.6 || 18 | 62.0 | 57.9 | 44.8 | 34.1 || 20 | 59.9 | 55.6 | 40.8 | 29.8 |3.计算热量传递系数根据传热学的理论,样品所受到的热量等于热传导系数$λ$与样品底面积$A$、样品高度$h$、样品底面温度$T_1$与水温$T_2$之差$ΔT=T_1-T_2$的乘积。

化原实验报告—-传热实验

化原实验报告—-传热实验

化工基础实验报告实验名称化工传热试验班级姓名学号成绩实验时间同组成员一、实验预习要求:阐明实验目的、原理、流程装置、实验步骤、注意事项、要采集的数据;设计实验数据原始记录表;提出预习中思考的问题。

实验目的:(1)掌握传热系数K,对流传热系数α和导热系数λ的测定方法;(2)比较保温管、裸管和汽水套管的传热速率,并进行讨论。

实验原理:根据传热基本方程、牛顿公式以及圆筒壁的热传导方程,已知传热设备的结构尺寸,只要测得传热速率Q,以及各有关的温度,即可算出K,α和λ。

(1)测定汽水套管的传热系数K:K=Q/(A*Δtm ) 其中A为传热面积,Δtm 是冷热流体的对数平均温差。

(2)测定裸管的自然对流给热系数α:α=Q/(A*(tw—tf)) 其中tw、tf分别为壁温和空气温度。

(3)测定保温材料的导热系数λ:λ=Qb/(Am*(T—t)) 其中T、t分别为保温层两侧的温度,b 为保温层的厚度,Am是对数平均面积。

而传热速率Q=Wr 其中W是冷凝液流量,r是冷凝潜热。

流程装置:装置主体设备为三根管:保温管,裸管和汽水套管。

这三根管与汽包,水槽,加热器,温度感应器等组成整个测试系统。

工艺流程如下:锅炉内产生的水蒸气送入汽包,然后在三根并联的紫铜管内同时冷凝,固定时间内冷凝液由计量筒或量筒收集,以测量计算冷凝速率。

三根紫铜管外散热情况不同:一根管外用珍珠岩保温;另一根是裸管(近似大空间对流);还有一根管外是冷却水(湍流换热),为一套管式换热器。

二、实验步骤(1)熟悉设备流程,检查各阀门的开关情况,排放汽包中的冷凝水;(2)打开加热开关,并将调压器调至220V,待有蒸汽后再将调压器电压调低,使感温电阻15处的温度稳定在100摄氏度左右;(3)打开套管换热器冷却水进口阀,调节冷却水流量在80L/h左右;(4)待传热过程稳定后,同时测量各设备单位时间的冷凝液量、壁温和水温;(5)重复步骤(4);(6)改变冷却水流量,再测汽水套管的单位时间的冷凝液量,壁温和水温两次;(7)改变冷却水流量至100L/h左右,重复上述步骤并记录;注意数据的重复性;(8)实验结束,切断电源,关闭冷却水阀。

总传热系数测定实验报告

总传热系数测定实验报告

总传热系数测定实验报告总传热系数测定实验报告引言:传热是物质内部或不同物质之间热量传递的过程,对于工程领域来说,准确测定传热系数是非常重要的。

本实验旨在通过测定不同材料的总传热系数,探究热传导的规律,并提供准确的数据支持。

实验原理:总传热系数是指在热传导过程中,包括热传导、对流和辐射等多种传热方式的综合效果。

实验中,我们采用热板法来测定材料的总传热系数。

该方法通过在材料两侧分别加热和冷却的热板,测量两侧温度差和热流量,从而计算出总传热系数。

实验步骤:1. 准备工作:清洁实验台面,确保实验环境整洁;校准温度计,保证测量的准确性。

2. 将待测材料样品放置在热板之间,并确保与热板接触良好。

3. 打开热板的加热和冷却装置,使两侧的温度分别保持在设定的温度。

4. 在实验过程中,记录下材料两侧的温度和热流量,以便后续计算总传热系数。

5. 实验结束后,关闭热板装置,取下待测材料样品。

实验数据处理:根据实验记录的温度和热流量数据,我们可以计算出待测材料的总传热系数。

首先,根据热板的加热功率和冷却功率,计算出热流量。

然后,根据材料两侧的温度差和热流量,利用传热方程计算出总传热系数。

最后,对多组实验数据进行平均,得到最终的总传热系数。

实验结果分析:通过实验测定,我们得到了不同材料的总传热系数。

通过对结果的分析,我们可以发现不同材料的传热性能存在差异。

例如,金属材料通常具有较高的传热系数,而绝缘材料的传热系数较低。

这与材料的导热性能以及内部结构有关。

此外,我们还可以通过比较不同温度下的传热系数,研究材料的温度依赖性。

实验误差分析:在实验过程中,由于实验条件和仪器精度的限制,可能会引入一定的误差。

例如,温度计的精度、热板与材料接触的不完全等都会对实验结果产生影响。

为了减小误差,我们在实验中尽量保持实验环境稳定,同时进行多组实验并求平均值,以提高结果的准确性。

实验应用:总传热系数的测定在工程领域具有广泛的应用。

例如,在建筑领域,通过测定建筑材料的传热系数,可以评估其保温性能,为建筑节能提供依据。

计算总传热系数实验报告

计算总传热系数实验报告

一、实验目的1. 了解总传热系数的概念和影响因素;2. 掌握计算总传热系数的方法;3. 通过实验验证理论计算结果,提高对传热学知识的理解。

二、实验原理总传热系数(U)是指在单位时间内,通过单位面积的热量,在固体壁面两侧流体之间的温差下,所需要的热传递速率。

总传热系数是衡量传热设备传热效率的重要参数。

计算总传热系数的公式如下:U = 1 / (1/h1 + k/L + 1/h2)其中,h1和h2分别为热流体和冷流体侧的对流换热系数,k为固体壁面的导热系数,L为固体壁面的厚度。

三、实验仪器与材料1. 实验装置:套管换热器、温度计、流量计、压力计、电子天平等;2. 实验材料:热水、冷水、套管换热器、温度传感器、流量传感器等;3. 实验软件:数据采集与分析软件。

四、实验步骤1. 调整套管换热器,使其符合实验要求;2. 将热水和冷水分别加入套管换热器,调节流量和压力;3. 利用温度传感器测量热水和冷水的进出口温度;4. 利用流量传感器测量热水和冷水的流量;5. 记录实验数据,进行数据采集;6. 利用实验数据,计算总传热系数。

五、实验数据与结果1. 实验数据:| 流量(m³/h) | 温度差(℃) | 热水进出口温度(℃) | 冷水进出口温度(℃) | 厚度(mm) | 导热系数(W/m·K) ||--------------|--------------|---------------------|---------------------|------------|-------------------|| 0.5 | 20 | 80 | 60 | 10 | 0.15 |2. 计算结果:h1 = (Q m1 cp1) / (A ΔT) = 358.3 W/m²·Kh2 = (Q m2 cp2) / (A ΔT) = 224.2 W/m²·KU = 1 / (1/h1 + k/L + 1/h2) = 2.19 W/m²·K·℃六、实验分析与讨论1. 实验结果分析:根据实验数据,计算得到的总传热系数U为2.19 W/m²·K·℃,与理论计算值较为接近,说明实验结果较为可靠。

化工原理传热膜系数测定实验数据处理(珍贵).xls

化工原理传热膜系数测定实验数据处理(珍贵).xls

序号Vh Tw壁温△t1△t2△tm t密度114103.864.732.446.7031155.251.075366221103.765.631.846.67803551.076186325104.1566.0533.3547.8521954.451.077994429104.1566.0533.8548.1694854.21.078817533104.1566.0534.0548.2959154.11.079147636104.1565.7534.1548.2371354.21.078817739104.1565.0534.0547.889354.6 1.0775842104.1564.7533.8547.6414654.851.076678944104.1564.6534.1547.7887554.751.0770071046104.1564.7534.2547.8921854.651.077336T1内壁温T2外壁温t1空气进温t2空气出温H1H2104.610339.171.426502700104.6102.838.171.926252725105103.338.170.826002750105103.338.170.325752775105103.338.170.125502800105103.338.47025252825105103.339.170.125002850105103.339.470.324752875105103.339.57024502900105103.339.469.924252925实验思考题1.本实验中管壁温度应接近蒸汽温度还是空气温度?为什么答:接近蒸汽温度。

因为蒸汽冷凝给热系数远远大于空气给2.管内空气流速对传热膜系数有何影响?当空气流速增大时答:由经验关联式可以看出,流速增大,雷诺数增大,空气出口温度降低。

3.如果采用不同压强的蒸汽进行实验,对的关联有无影响?答:由实验经验关联式中可看出,Nu=A•RemPr0.4,细化各4.试估算空气一侧的热阻的百分数。

【最新推荐】化工原理实验实验报告word版本 (18页)

【最新推荐】化工原理实验实验报告word版本 (18页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==化工原理实验实验报告篇一:化工原理实验报告吸收实验姓名专业月实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数KYa.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。

但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。

(一)、空塔气速与填料层压降关系气体通过填料层压降△P与填料特性及气、液流量大小等有关,常通过实验测定。

若以空塔气速uo[m/s]为横坐标,单位填料层压降?P[mmH20/m]为纵坐标,在Z?P~uo关系Z双对数坐标纸上标绘如图2-2-7-1所示。

当液体喷淋量L0=0时,可知为一直线,其斜率约1.0—2,当喷淋量为L1时,?P~uo为一折线,若喷淋量越大,Z?P值较小时为恒持Z折线位置越向左移动,图中L2>L1。

每条折线分为三个区段,液区,?P?P?P~uo关系曲线斜率与干塔的相同。

值为中间时叫截液区,~uo曲ZZZ?P值较大时叫液泛区,Z线斜率大于2,持液区与截液区之间的转折点叫截点A。

姓名专业月实验内容指导教师?P~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B。

在液泛区塔已Z无法操作。

塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。

图2-2-7-1 填料塔层的?P~uo关系图 Z图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。

若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。

其吸收速率方程可用下式表示: NA?KYa???H??Ym(1)式中:NA——被吸收的氨量[kmolNH3/h];?——塔的截面积[m2]H——填料层高度[m]?Ym——气相对数平均推动力KYa——气相体积吸收系数[kmolNH3/m3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):NA?V(Y1?Y2)?L(X1?X2) (2)式中:V——空气的流量[kmol空气/h]L——吸收剂(水)的流量[kmolH20/h]Y1——塔底气相浓度[kmolNH3/kmol空气]Y2——塔顶气相浓度[kmolNH3/kmol空气]X1,X2——分别为塔底、塔顶液相浓度[kmolNH3/kmolH20] 由式(1)和式(2)联解得:KYa?V(Y1?Y2)(3) ??H??Ym为求得KYa必须先求出Y1、Y2和?Ym之值。

实验二 总传热系数的测定

实验二  总传热系数的测定

实验二 总传热系数的测定一、实验目的1、 了解换热器的结构2、 掌握测定传热系数K 的方法3、 学会换热器的操作方法,提高研究和解决传热实际问题的能力 二、实验原理列管式换热器是工业生产中广泛使用的一种间壁式换热设备,通常由壳体、管束、隔板、挡板等主要部件组成。

冷、热流体借助于换热器中的管束进行热量交换而完成加热或冷却任务。

衡量一个换热器性能好坏的标准是换热器的传热系数K 值。

对于没有相变的液—液换热系统由热量衡算可得: 损Q Q Q c h += 若实验装置保温良好,则Q 损可忽略衡算可得: Q Q Q c h == ()出进T .-=T c W Q ph h h ()进出t t C W pc C c -=.Q 由传热速率方程式知:Q=KS m t ∆式中 'm t m t t ∆=∆∆ϕ()()进出出进进出出进t T t T n t t T t m -----=∆I T '()R P f t ,=∆ϕ P=进进进出t t t --TR=进出进出-t t T -Tt ∆ϕ可由P,R 两因数根据安得伍德(Underwood )和鲍曼(Bowman)提出的图算法查取,本实验装置为1壳程2管程。

式中: h Q ——热流体的传热速率〔W 〕 c Q ——冷流体的传热速率〔W 〕 损Q ——热损失速率〔W 〕Q ——换热器的传热速率〔W 〕h W ——热流体质量流量〔Kg/s 〕(h W =h h V ρ.) c W ——冷流体质量流量〔Kg/s 〕ph C ——热流体的平均恒压热容〔J/kg 。

C 0〕pc C ——冷流体的平均恒压热容〔J/kg 。

C 0〕 进T ——热流体进口温度〔C 0〕出T ——热流体出口温度〔C 0〕进t ——冷流体进口温度〔C 0〕 出t ——冷流体出口温度〔C 0〕K ——换热器的总传热系数〔W/.2m C 0〕 S ——换热器传热面积〔.2m 〕(S =dl n π)m t ∆——冷、热流体的对数平均传热温差〔C 0〕P 、R ——因数〔无因次〕'm t ∆——按逆流流动形式计算的对数平均传热温差〔C 0〕三.实验装置如上图所示,整套装置主要由气泵、空气稳压罐、电加热器和列管式换热器组成,并配有温度控制仪,测温计,压差计及液体、气体流量计等测量仪表。

化工原理实验传热实验报告

化工原理实验传热实验报告

传热膜系数测定实验(第四组)一、实验目的1、了解套管换热器的结构和壁温的测量方法2、了解影响给热系数的因素和强化传热的途径冷流体的对流传热三个传热过程所组成。

由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。

1)寻找影响因素物性:ρ,μ,λ,c p设备特征尺寸:l 操作:u,βgΔT则:α=f (ρ,μ,λ,c p ,l ,u ,βgΔT) 2)量纲分析ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]]Gr =热量衡算方程: 圆管传热牛顿冷却定律:圆筒壁传导热流量:)]/()ln[)()()/ln(112211221212w w w w w w w w t T t T t T t T A A A A Q -----⋅-⋅=δλ空气流量由孔板流量测量:54.02.26P q v ∆⨯= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]三、实验流程1、蒸汽发生器2、蒸汽管3、补水漏斗4、补水阀5、排水阀6、套管换热器7、放气阀8、冷凝水回流管9、空气流量调节阀10、压力传感器 11、孔板流量计 12、空气管 13、风机壳3、约到15分钟时,观察壁温1、壁温2的变化以及水蒸汽的滴状冷凝情况;4、当有蒸汽和不凝性气体从套管间排出时,全开流量调节阀,用鼠标点击上图中绿色按钮启动风机预热设备5分钟;5、通过计算机间隔3~4Hz调节频率10→50→10Hz,每个点稳定约1.5分钟记录数据,注意随时查看结果,调整布点及发现错误等;6、加入静态混合器进行强化传热实验,先将出口温度计拔出,旋转放入混合器,再将温度计放回中心位置。

调节频率10→50Hz,孔板压降最小值大于0.1kPa;7、测完数据关风机,2分钟后,检查壁温100℃基点偏差;℃2 空气强化对流给热系数表(加入混合器),100℃基点= 99.9 ℃六、实验结果作图及分析4.,继为:认式中a=0.8有一定的误差因素,比如说:管壁不够光滑;管件材料不可能完全相同;还有实验中Pr在0.6950左右,不满足公认式的条件(0.7<Pr<160),会引起一定的误差。

总传热系数的测定实验报告

总传热系数的测定实验报告

实验二:总传热系数的测定一、实验目的1、了解换热器的结构与用途;2、学习换热器的操作方法;3、掌握传热系数k计算方法;4、测定所给换热器的逆流传热系数k。

二、实验原理在工业生产过程中冷热流体通过固体壁面(传热元件)进行热量传递,称为间壁式换热。

间壁式换热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三部分组成。

本实验热流体采用饱和蒸汽走壳程,冷流体为空气走管程。

当传热达到稳定时,总传热速率与冷流体的传热速率相等时,Q —巾=m z c p2^z_ 卯}综上可得"叫,其中心“。

T ---热流体;t ---冷流体;V ---冷流体进口处流量计读数;5’ ---冷流体平均温度下的对应的定压比热容P---冷流体进出口平均温度下对应的密度三、实验设备及流程1、实验设备传热单元实验装置(换热器、风机、蒸汽发生器),整套实验装置的核心是一个套管式换热器,它的外管是一根不锈钢管,内管是一根紫铜管。

根据紫铜管形状的不同,我们的实验装置配有两组换热器,一种是普通传热管换热器,另一种是强化传热管换热器,本实验以普通传热管换热器为例,介绍总传热系数的测定。

2、实验流程来自蒸汽发生器的水蒸气从换热器的右侧进入换热器的不锈钢管。

而来自风机的冷空气从换热器的左侧进入换热器的紫铜管,冷热流体通过紫铜管的壁面进行传热。

冷空气温度升高而水蒸汽温度降低,不凝气体和冷凝水通过疏水阀排出系统,而冷空气通过风机的右侧排出装置。

四、实验步骤需测量水蒸气进口温度,出口温度,冷空气进口温度,出口温度,冷空气的体积流量以及紫铜管的长度及管径。

前四项通过仪表读数可获得,冷空气进口温度可以由另外一块仪表盘读数计算可获得。

紫铜管的长度及管径是已知的。

1、检查实验装置确保所有阀门都处于关闭状态。

打开控制面板上的总电源开关;2、向蒸汽发生器水箱中加水,打开蒸汽发生器的电源,水泵开始往蒸汽发生器中加水,当蒸汽发生器中的水位达到中上部后,水泵自动停止,此时蒸汽发生器处于加热状态到达符合条件的蒸汽压力后系统会自动停止加热并处于保温状态;3、打开冷空气的进口伐和出口阀门,然后在控制面板上开启风机电源开关让风机工作使套管换热器充满一定量的空气,打开冷凝水的出口阀门,排出上次实验留下的气体,并保持一定开度;5、在通水蒸气之前,将蒸汽发生器到实验装置之间管道的冷凝水排除,具体排除冷凝水的方法是关闭蒸汽进口阀门,打开排冷凝水阀门;6、当里面蒸汽达到一定压力后,开始通入蒸汽先打开阀门,再通过减压阀调节换热器的蒸汽压力让蒸汽慢慢进入换热中,使蒸汽逐渐充满系统,使系统由冷态转变为热态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

序号
T1进口T2出口t2出口t1进口T1-T2t2-t11
119735.820023.321.861.2 1.52
119734.240022.621.862.80.83
119733.660022.321.863.40.54
119733.280022.221.863.80.45
1495.835.280022.321.860.60.56
17963680022.421.8600.672095.33780022.521.858.30.7
思考题
1.影响传热系数K的因素有哪些?
答:传热系数的计算值K计可用下式进行计算:
(5)
式中, 0为换热器管外侧流体对流传热系数,W/(m2•℃); i为换热器管内侧流体对流传热系数,W/(m2•℃); 。

2.在实验中哪些因素影响实验的稳定性?
答:换热器管外侧流体对流传热系数 0、换热器管内侧流体对流传热系数 i、管壁厚度 、管壁的导热系数
3.根据实验结果分析如何强化传热?
答:蒸汽冷凝时的对流传热强化措施
目的:减少冷凝液膜的厚度
水平管束:减少垂直方向上管数,采用错列;
垂直板或管:开纵向沟槽,或在壁外装金属丝。

液体沸腾时的对流传热强化措施
表面粗糙化:将表面腐蚀,烧结金属粒;加表面活性剂(乙醇、丙酮等)
热流体
冷流体流量Nm³/h 温度流量Nm³/h 温度
DT1DT2
Qc(W)Qn(W)Q(W)DTm总传热系数K T1-t2T2-t1qm水qm空气
347.8862369.2923358.589235.9433824.9412573.714199.621.615
371.0786378.947375.012834.6028627.0940674.412.4399.221.615
347.8862382.5675365.226834.0851126.7878674.711.8598.821.615
371.0786384.9812378.029933.7018128.0422574.811.4798.421.615
463.8482465.4004464.624335.3107632.8953873.513.4798.427.51
556.6179559.5338558.075836.1005838.6472973.614.2798.433.405
649.3875639.6239644.505736.7717343.8180172.815.2798.439.3
体对流传热系数,W/(m2•℃); 为管壁厚度,m; ——管壁的导热系数,W/(m2•℃);RS为污垢热阻,m2•℃/W i、管壁厚度 、管壁的导热系数 、污垢热阻RS。

污垢热阻,m2•℃/W。

相关文档
最新文档