山东省七年高考试题三角函数汇编(2005年—2012年)理科
2012年高考真题汇编——理科数学(解析版)5:三角函数
2012高考真题分类汇编:三角函数一、选择题1.【2012高考真题重庆理5】设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )3 【答案】A【解析】因为βαtan ,tan 是方程2320x x -+=的两个根,所以3tan tan =+βα,2tan tan =βα,所以3213tan tan 1tan tan )tan(-=-=-+=+βαβαβα,选A.2.【2012高考真题浙江理4】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【解析】根据题设条件得到变化后的函数为)1cos(+=x y ,结合函数图象可知选项A 符合要求。
故选A.3.【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]【答案】A【解析】函数)4sin()(πω+=x x f 的导数为)4c o s ()('πωω+=x x f ,要使函数)4sin()(πω+=x x f 在),2(ππ上单调递减,则有0)4cos()('≤+=πωωx x f 恒成立, 则πππωππk x k 223422+≤+≤+,即ππωππk x k 24524+≤≤+,所以Z k k x k ∈+≤≤+,ωπωπωπωπ2424,当0=k 时,ωπωπ454≤≤x ,又ππ<<x 2,所以有πωππωπ≥≤45,24,解得45,21≤≥ωω,即4521≤≤ω,选A. 4.【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )ABCD【答案】B【解析】2EB EA AB =+=,EC =3424EDC EDA ADC πππ∠=∠+∠=+=,由正弦定理得sin sin 5CED DC EDC CE ∠===∠,所以3sin sin sin 4CED EDC π∠=∠==5.【2012高考真题陕西理9】在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A.2B. 2C. 12D. 12-【答案】C.【解析】由余弦定理知214242)(212cos 222222222=≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C ,故选C.6.【2012高考真题山东理7】若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ=(A )35 (B )45 (C )4(D )34 【答案】D【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812s i n 12c o s 2-=--=θθ,又81s i n 212c o s 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.7.【2012高考真题辽宁理7】已知sin cos αα-=,α∈(0,π),则tan α=(A) -1 (B) - (C) (D) 1 【答案】A【解析一】sin cos )sin()144ππαααα-=-=∴-=3(0),,tan 14παπαα∈∴=∴=- ,,故选A【解析二】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=- ,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中。
山东省高考数学06-12年分类---三角函数
三角函数(一)选择题1、(07山东理5)函数sin 2cos 263y x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期和最大值分别为( )A .π,1B .πC .2π,1D .2π答案:A2、(07山东文4)要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( )A .向右平移π6个单位B .向右平移π3个单位C .向左平移π3个单位D .向左平移π6个单位答案:A3.(08山东卷5)已知cos (α-6π)+sin α7sin()6πα+则的值是(A )-532 (B )532 (C)-54 (D) 54答案:C4.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ). A.cos 2y x = B.22cosy x = C.)42si n(1π++=x y D.22sin y x =【解析】:将函数s i n 2y x =的图象向左平移4π个单位,得到函数s i n 2()4y xπ=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos 22cos y x x =+=,故选B.答案:B【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形.5.(2009山东卷文)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A. 22cos y x =B. 22sin y x = C.)42si n(1π++=x y D. cos 2y x =【解析】:将函数s i n 2y x =的图象向左平移4π个单位,得到函数s i n 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos 22cos y x x =+=,故选A.答案:A【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形.6、(2010山东文数)(10)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= (A )()f x (B)()f x - (C) ()g x (D)()g x - 答案:D7、(2011山东3)若点(a,9)在函数3x y =的图象上,则tan6a π的值为A .0B .3C .1D 答案:D8、(2011山东理数6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= A .3 B .2 C .32D .23答案:C9、(2011山东文数6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= A .23B .32C .2D .3答案:B10、(2012山东卷文(5))设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x=的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真 答案:C11、(2012山东卷文(8))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为A(A)2- (B)0 (C)-1(D)1--答案:A(二)填空题1.(08山东卷15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =答案:6π.2、(2010山东数)2、已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,b=2sin +cos =B B A 若,则(三)解答题1、(07山东理20)如图,甲船以每小时匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距 解法一:如图,连结11A B,由已知22A B =122060A A ==1221A A A B ∴=,又12218012060A A B =-=∠,122A A B ∴△是等边三角形,1A2A1212A B A A ∴==,由已知,1120A B =,1121056045B A B =-=∠,在121A B B △中,由余弦定理,22212111212122cos 45B B A B A B A B A B =+-22202202=+-⨯⨯200=.12B B ∴=6020=/小时).答:乙船每小时航行海里.解法二:如图,连结21A B ,由已知1220A B =,122060A A ==,112105B A A =∠,cos105cos(4560)=+cos 45cos 60sin 45sin 60=-4=,sin 105sin(4560)=+sin 45cos 60cos 45sin 60=+4=.在211A A B △中,由余弦定理,22221221211122cos105A B A B A A A B A A =+-1A2A乙22202204-=+-⨯⨯100(4=+.1110(1A B∴=+.由正弦定理1112111222sin sin42A BA AB B A AA B+===∠∠,12145A A B∴=∠,即121604515B A B=-=∠,cos15sin1054+==.在112B A B△中,由已知12A B=,由余弦定理,22212112221222cos15B B A B A B A B A B=++22210(1210(14+=++-⨯+⨯200=.12B B∴=乙船的速度的大小为6020=/小时.答:乙船每小时航行海里.2、(07山东文17)在A B C△中,角A B C,,的对边分别为tana b c C=,,,.(1)求cos C;(2)若52C B C A=,且9a b+=,求c.解:(1)sintancosCCC=∴=又22sin cos1C C+=解得1cos8C=±.tan0C>,C∴是锐角.1cos 8C ∴=.(2)52C B C A =, 5cos 2ab C ∴=,20ab ∴=.又9a b +=22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.3.(08山东卷17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π(Ⅰ)美洲f (8π)的值;(Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 解:(Ⅰ)f (x )=)cos()sin(3ϕωϕω+-+x x=⎥⎦⎤⎢⎣⎡+-+)cos(21)sin(232ϕωϕωx x =2sin(ϕω+x -6π)因为 f (x )为偶函数,所以 对x ∈R ,f (-x )=f (x )恒成立, 因此 sin (-ϕω+x -6π)=sin(ϕω+x -6π).即-sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π)=sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π),整理得 sin x ωcos(ϕ-6π)=0.因为 ω>0,且x ∈R ,所以 cos (ϕ-6π)=0.又因为 0<ϕ<π,故 ϕ-6π=2π.所以 f (x )=2sin(x ω+2π)=2cos x ω.由题意得 .2,222 = 所以 ωπωπ⋅=故 f (x )=2cos2x . 因为 .24c o s 2)8(==ππf(Ⅱ)将f (x )的图象向右平移个6π个单位后,得到)6(π-x f 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(ππ-f 的图象.).32(cos 2)64(2cos 2)64()(ππππππ-=⎥⎦⎤⎢⎣⎡-=-=f f x g 所以 当 2k π≤32ππ-≤2 k π+ π (k ∈Z), 即 4k π+≤32π≤x ≤4k π+38π (k ∈Z)时,g (x )单调递减.因此g (x )的单调递减区间为 ⎥⎦⎤⎢⎣⎡++384,324ππππk k (k ∈Z) 4.(2009山东卷理)(本小题满分12分)设函数f(x)=cos(2x+3π)+sin 2x.(1) 求函数f(x)的最大值和最小正周期. (2) 设A,B,C 为∆ABC 的三个内角,若cosB=31,1()24cf =-,且C 为锐角,求sinA.解: (1)f(x)=cos(2x+3π)+sin 2x.=1cos 21cos 2cossin 2sin233222xx x x ππ--+=-所以函数f(x)的最大值为12+最小正周期π.(2)()2c f =122C -=-41, 所以sin 2C =, 因为C 为锐角, 所以3C π=,又因为在∆ABC 中, cosB=31, 所以 s i n B =所以11sin sin()sin cos cos sin 2326A B C B C B C =+=+=+⨯=【命题立意】:本题主要考查三角函数中两角和差的弦函数公式、二倍角公式、三角函数的性质以及三角形中的三角关系. 5.(2009山东卷文)(本小题满分12分)设函数f(x)=2)0(sin sin cos 2cos sin 2πϕϕϕ<<-+x x x 在π=x 处取最小值.(3) 求ϕ.的值;(4) 在∆ABC 中,c b a ,,分别是角A,B,C 的对边,已知,2,1==b a 23)(=A f ,求角C..解: (1)1cos ()2sin cos sin sin 2f x x x x ϕϕ+=⋅+-sin sin cos cos sin sin x x x x ϕϕ=++- sin cos cos sin x x ϕϕ=+ sin()x ϕ=+因为函数f(x)在π=x 处取最小值,所以s in ()1πϕ+=-,由诱导公式知s i n 1ϕ=,因为0ϕπ<<,所以2πϕ=.所以()sin()cos 2f x x x π=+=(2)因为23)(=A f ,所以cos 2A =因为角A 为∆ABC 的内角,所以6A π=.又因为,2,1==b a 所以由正弦定理,得sin sin a b AB=,也就是sin 1sin 22b A B a===,因为b a >,所以4π=B 或43π=B . 当4π=B 时,76412C ππππ=--=;当43π=B 时,36412C ππππ=--=.【命题立意】:本题主要考查了三角函数中两角和差的弦函数公式、二倍角公式和三角函数的性质,并利用正弦定理解得三角形中的边角.注意本题中的两种情况都符合. 6、(2010山东文数)(17)(本小题满分12分)已知函数2()sin()cos cos f x x x x πωωω=-+(0ω>)的最小正周期为π, (Ⅰ)求ω的值;(Ⅱ)将函数()y f x =的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数()y g x =的图像,求函数()y g x =在区间0,16π⎡⎤⎢⎥⎣⎦上的最小值.7、(2010山东理数)8、(2011山东理数17)在 ABC中,内角A,B,C的对边分别为a,b,c.已知cos A -2cos C2c-a =cos B b.(I )求sin sin C A的值;(II )若cosB=14,b=2,A B C ∆的面积S 。
七年高考试题三角函数汇编(—)理科
山东省七年高考试题三角函数汇编(2005年—2012年)专题复习三——三角函数(理科专用)——山东省历年高考理科试题规律与分析(一)2012年山东理科:7.若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2=8θ,则sin θ=(A )35 (B )45 (C ) (D )3417.已知向量m =)1,(sin x ,n =)2cos 2,cos 3(x Ax A (0>A ), 函数=)(x f m ·n 的最大值为6. (1)求A ;(2)将函数)(x f 的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的21倍,纵坐标不变,得到的函数)(x g y =的图象,求)(x g 在⎥⎦⎤⎢⎣⎡245,0π上的值域.(二)2011年山东理科:(6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32(D )23(17)(本小题满分12分)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b. (Ⅰ)求sin sin CA的值; (Ⅱ)若cosB=14,b=2, 求△ABC 的面积S.(三)2010年山东理科:(15)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,若2cos sin ,2,2=-==B B b a ,则角A 的大小为。
(17)(本小题满分12分)已知函数)0)(2sin(21cos cos sin 2sin 21)(2πϕϕπϕϕ<<+-+=x x x f ,其图象过点).21,6(π (Ⅰ)求ϕ的值;(Ⅱ)将函数)(x f y =的图象上各点的横坐标缩短到原来的21,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g 在]4,0[π上的最大值和最小值。
2024年高考数学真题分类汇编(三角函数篇,解析版)
专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
山东省各地市2012年高考数学(理科)最新试题分类大汇编:7:三角函数(2)
山东省各地市2012年高考数学(理科)最新试题分类大汇编:第3部分:三角函数(2)一、选择题【山东省莱州一中2012届高三第一次质检理】3.不解三角形,下列判断正确的是( ) A.30,25,150a b A ===︒,有一解. B.7,14,30a b A ===︒,有两解. C.6,9,45a b A ===︒,有两解.D.9,10,60a b A ===︒,无解.【答案】A【山东省莱州一中2012届高三第一次质检理】5.将函数y f =′()sin x x 的图象向左平移4π个单位,得到函数212sin y x =-的图象,则()f x 是( ) A.2cos xB.cos xC.sin xD.2sin x【答案】D【山东省莱州一中2012届高三第一次质检理】7.已知1,0,tan ,23αβαπ<<π-π<<=-2αβ+=( ) A.34π B.54π D.34π或74π【答案】C【山东省莱州一中2012届高三第一次质检理】9.在地面上某处测得山峰的仰角为θ,对着山峰在地面上前进600m 后,测得仰角为2θ,继续前进后又测得仰角为4θ,则山的高度为( )m . A.200B.300C.400D.500【答案】B【山东省莱州一中2012届高三第一次质检理】11.设函数()sin()(0,0,)22f x A x A ωϕωϕππ=+≠>-<<的图象关于直线23x =π对称,它的周期是π,则下列结论一定..正确的是( ) A.()f x 的图象过点1(0,)2B.()f x 的图象在52,123⎡⎤ππ⎢⎥⎣⎦上是减函数 C.()f x 的最大值为AD.()f x 的一个对称中心是点5(,0)12π 【答案】D【山东省济宁市重点中学2012届高三上学期期中理】11.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为x y 2=的图像,则)(x f y =的函数表达式为 ( )A .22+=x yB .22+-=x yC .22--=x yD .)2(log 2+-=x y【答案】B【山东省济宁市鱼台一中2012届高三第三次月考理】5.给定性质: ①最小正周期为π;②图象关于直线x=3π对称,则下列四个函数中,同时具有性质①、②的是( )A .y = sin(2x +6π)B ..y = sin|x | D .y = sin(2x -6π)【答案】D8.已知sin =+)6(απ31,则 D .31-9.如图为一半径是3米的水轮,水轮4圈,水轮上的点P 到水面的距离y (米)x 2)++ϕωx ,则有 ( )A .3,125==A πω B .2,315A πω==C .5,125==A πω D .2,515A πω== 【答案】B【山东济宁梁山二中2012届高三12月月考理】8. 函数1)cos (sin )(2--=x x x f 是 A.最小正周期为π2的偶函数B.最小正周期为π2的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数【答案】D【山东济宁金乡一中2012届高三12月月考理】6.若函数sin()y A x ωϕ=+(0A >,0ω>,||2πϕ<)在一个周期内的图象如图所示,,M N 分别是这段图象的最高点和最低点,且0OM ON ⋅=,(OA 、6πB 、C 、D 【答案】C【山东济宁金乡一中2012届高三12月月考理】x 的图象,可以将函数y=sin2x 的图象( )A .向右平移π个单位长度 B .向右平移3π个单位长度C π.向左平移π个单位长度sin =+)6(απ31,则cos =-)232(απ( )D.31- 在△ABC 中,已知045,2,2===A b a ,则B 等于A. 30°B. 60°C. 30°或150°D. 60°或120° 【答案】A【山东滨州2012届高三期中联考理10.已知函数()sin (0)f x x x ωωω=>的图象与x 轴的两个相邻交点的距离等于2π,若将函数()y f x =的图象向左平移6π个单位得到函数()y g x =的图象,则()y g x =是减函数的区间为 ( )A. (,0)3π-B. (,)44ππ-C. (0,)3π D. (,)43ππ【答案】D【山东滨州2012届高三期中联考理11.若()2sin()f x x m ωϕ=++,对任意实数t 都有()(),()3888f t f t f πππ+=-=-且,则实数m 的值等于( )A .-1B .5±C .-5或-1D .5或1【答案】C【莱州一中2012高三第三次质量检测理】12.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置(,)P x y .若初始位置为01)2P ,当秒针从0P (注此时0t =)正常开始走时,那么点P 的纵坐标y 与时间关系为A.ππsin()306y t =+B.ππsin()606y t =--C.ππsin()306y t =-+【答案】C【山东济宁汶上一中2012届高三12月月考理】3.若函数)0()32cos(>+=ωπωx y 的图象之间的距离为2π,则=ω.2 D .4 6.已知A ,B ,C 三点的坐标分别是(3,0)A ,3,22ππ⎛⎫⎪⎝⎭,若1AC BC ⋅=- ,则21tan 2sin sin 2ααα++的值为 ( )A .95-B .59-C .2D .3【答案】A【山东济宁汶上一中2012届高三12月月考理】8.如图,圆O 的内接“五角星”与圆O 交与),5,4,3,2,1(=i A i 点,记弧 1i i A A +在圆O 中所对的圆心角为),4,3,2,1(=i a i ,弧51A A 所对的圆心角为5a ,则425312sin 3sin )cos(3cos a a a a a -+=( )A . 23-B .21-C .0D .1【答案】D【山东济宁汶上一中2012届高三12月月考理】12.已知函数R x x A x f ∈+=),sin()(ϕω(其中)22,0,0πϕπω<<->>A ,其部分图象如右图所示,则)(x f 的解析式为 (A )()sin(2)4f x x π=+ (B )()sin(2)4f x x π=- )π()sin()4x x π=+7.函数sin 2y x =的图象经过适当变换可)B .沿x 轴向左平移4π个单位 D .沿x 轴向右平移2π个单位8.下列命题错误的是( ) A .在ABC ∆中,“A B >”是“sin sin A B >”的充要条件;B .点(,0)8π为函数()tan(2)4f x x π=+的一个对称中心;C .若||1,||2a b ==,向量a 与向量b 的夹角为120°,则b 在向量a 上的投影为1;D .“s i n s i n αβ=”的充要条件是“(21)k αβπ+=+或2k αβπ-=(k Z ∈)”. 【答案】C【山东聊城莘县实验高中2012届高三上学期期中】10.在ABC ∆中,若有2cos 22a b Cb +=,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .直角三角形或锐角三角形 【答案】B【山东聊城莘县实验高中2012届高三第三次月考理】2.若1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+ ⎪⎝⎭=( )A .78-B .14-C .14D .7【答案】A二、填空题【山东省莱州一中2012届高三第一次质检理】56π<,则cos θ= .14.ABC ∆中,A B C 、、所对的边长2AB BC ⋅=-,则b = .13. 已知角α的终边经过点P (,6)x -,. 【山东省济宁市鱼台一中2012届高三第三次月考理】16. 在,90Rt ABC C ∆∠=中,且A ∠.B ∠.C ∠所对边分别为,,a b c ,若a b c x +=,则实数x 的取值范围为__________.【答案】(【山东济宁金乡一中2012届高三12月月考理】16.给出下列命题: (1)在△ABC 中,若A <B ,则sinA <sinB ;(2)将函数)32sin(π+=x y 的图象向右平移3π个单位,得到函数y=sin2x 的图象; (3)在△ABC 中, 若AB=2,AC=3,∠ABC=3π,则△ABC 必为锐角三角形; (4)在同一坐标系中,函数sin =y x 的图象和函数2=xy 的图象有三个公共点;其中正确命题的序号是 (写出所有正确命题的序号)。
山东省各地市2012年高考数学(理科)最新试题分类大汇编7三角函数
山东省各地市2012年高考数学(理科)最新试题分类大汇编:第7部分:三角函数(3)一、选择题【山东省烟台市2012届高三期末检测理】2.已知)23cos(32sin απα-=则,等于 A. 35-B.91 C. -91D.35 【答案】C【山东省烟台市2012届高三期末检测理】4.已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且等于则角B b a A ,1,3,3===πA.2πB.6π C.65π D.6π或65π 【答案】B【山东省潍坊市重点中学2012届高三2月月考理】2.已知1sin 43πα⎛⎫-= ⎪⎝⎭,则5cos 4πα⎛⎫+ ⎪⎝⎭的值等于A .322 B .322-C .31-D .31 【答案】C【山东省日照市2012届高三12月月考理】(6)函数)20)(sin()(πϕϕω<>+=,A x A x f 其中的图象如图所示,为了得到x x g 2sin )(=的图象,则只需将)(x f 的图象(A )向右平移6π个长度单位(B )向右平移3π个长度单位(C )向左平移6π个长度单位(D )向左平移3π个长度单位【答案】A 解析:由图象可知A=1,又ππππ=⇒=-=T T 431274,从而22==Tπω,将)1,127(-π代入到)2sin()(ϕ+=x x f 中得,1)67sin(-=+ϕπ,根据2πϕ<得到3πϕ=,所以函数)(x f 的解析式为)32sin()(π+=x x f 。
将)(x f 图象右移6π个长度单位即可得到x x g 2sin )(=的图象。
【山东省潍坊市三县2012届高三12月联考理】12.若1212(,),(,)a a a b b b ==,定义一种向量积:1122(,)a b a b a b ⊗=,已知1(2,),(,0)23m n π==,且点(,)P x y 在函数sin y x =的图象上运动,点Q 在函数()y f x =的图象上运动,且点P 和点Q 满足:OQ m OP n =⊗+(其中O 为坐标原点),则函数()y f x =的最大值A 及最小正周期T 分别为( )A .2,πB .2,4πC .1,2πD .1,42π【答案】D【山东枣庄市2012届高三上学期期中理】5.给出性质:①最小正周期为2π;②图象关于直线3x π=对称,则下列四个函数中,同时具有性质①②的是( )A .sin(2)6y x π=-+ B .2sin()3y x π=+C .sin()23x y π=+ D .sin()6y x π=+【答案】D【山东省枣庄市2012届高三上学期期末理】7.函数()()(A x A x f ϕω+=sin >ω,0>0,ϕ<⎪⎭⎫2π的部分图象如图所示,则ϕω,的值分别为 A.3,2πB.6,3πC.3,3πD.6,2π【答案】D【烟台市莱州一中2012届高三模块检测理】4.已知31)tan(,41tan =-=βαα,则=βtan A.117 B.711- C.131- D.131 【答案】C【烟台市莱州一中2012届高三模块检测理】6.已知ABC ∆中, 60,3,2===B b a ,那么角A 等于A.135 B.90 C.45 D.30 【答案】C【烟台市莱州一中2012届高三模块检测理】7.已知角θ的顶点与原点生命,始边与x 轴的正半轴重合,终边在直线x y 2=上,则θθθθcos sin cos sin +-为A.31B.31- C.3 D.-3【答案】A【烟台市莱州一中2012届高三模块检测理】8.设函数)0(1)6sin()(>-+=ωπωx x f 的导函数)('x f 的最大值为3,则)(x f 的图象的一条对称轴的方程是A.2π=x B.3π=x C.6π=x D.9π=x【答案】D【烟台市莱州一中2012届高三模块检测理】9.设⎥⎦⎤⎢⎣⎡--∈-+=2,,),()()(ππR x x f x f x F 函数)(x F 的单调递增区间,将)(x F 的图像按向量)0,(π=a 平移得到一个新的函数)(x G 的图像,则下列区间必定是)(x G 的单调递减区间的是A.⎥⎦⎤⎢⎣⎡-0,2π B.⎥⎦⎤⎢⎣⎡ππ,2 C.⎥⎦⎤⎢⎣⎡23,ππ D. ⎥⎦⎤⎢⎣⎡ππ2,23 【答案】D【山东实验中学2012届高三第一次诊断性考试理】8. 要得到函数的图像,只需将函数的图像 ( ) (A).向左平移个单位 (B).向右平移个单位 (C).向左平移个单位 (D).向右平移个单位【答案】D【解析】本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减。
山东省各地市2012年高考数学(理科)最新试题分类大汇编:7:三角函数(1).pdf
学 生 自 主 学 习 方 案七年级 班 小组: 姓名: 科 目语文课题编号7-1-030设 计陈晶:审核呼雄芳督查李延刚:课时:4训练要求1、培养想像能力,学习想像作文。
2、搜集、筛选、整理资料的能力。
3、运用已有的资料推导出自我个性化的结论。
【思路提示】 文题1 人类起源概说 提示一:写这样科学性较强的文章最主要的是占有材料,占有的材料最多,判断的才准确,才更有说服力。
不妨将人类对人类起源已有的推断都查找出来,然后再进行自己的总结和分析。
提示二:人类起源概说是说明性的,大都采用举例子的说明方法,就是用一些有代表性的实例,把抽象复杂的事物说得具体清晰而有浅显易懂,它常与下定义和分类别的方法一起使用,写作时主要是处理好资料的筛选、梳理、组合,说明的文字要平实、简明、准确。
提示三:关于人类起源的说法最为人们所接受的人类起源的推认有以下几种:一是人类由灵长类动物净化而来;二是人类是从海洋生物进化来的;三是人类由天外起源。
同时要注意合理的安排写作的顺序:可按照总—分—总的顺序进行介绍,先总说人类起源,接着分不同的角度来分析人类起源的可能性,最后总说你对此问题的认识;也可以人类认识规律或内容的深入为写作顺序;还可以按照各种观点发表的时间顺序来介绍。
文题2 神创论可以休矣 提示一:本文是一篇驳论文,驳论是就一定的事件和问题发表议论,揭露和驳斥错误的、反动的见解或主张。
本文主要是对神创论的错误说法进行反驳,写好本文,应该以科学为武器,以人类进化的事实为论据批判神创论的荒谬性。
可以选择常用的批驳技巧进行反驳。
1、事实揭穿。
用你所掌握的有关人类起源的用事实予以驳斥。
用事实直接驳斥错误论点,可谓义正辞严,一针见血。
2、打击要害。
即抓住神创论的要害所在,予以分析解剖,揭露其实质,驳倒敌论。
3、论是证非。
即独立地论证对方论点相对立的论点。
从而反证对方论点是错误的。
提示二:反驳错误的、反动的论点有三种形式: 1、直接驳斥对方的论点。
专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(新课标Ⅰ卷)(解析版)_最新修正版
专题05三角函数与解三角形历年考题细目表历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点(0,(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin c os 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2s i n ϕ∴=sin ϕ= 02πϕ<<3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<< 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+()1121x y x y ∴-++≥=-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥ ⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【解析】连接AC ,设ACB θ∠=,则120ACD θ∠=-,如图:故在Rt ABC ∆中,sin θθ==, ()11cos 120cos 2222θθθ-=-+=-=, 又在ACD ∆中由余弦定理有()2223cos 120AD θ+--==,解得265AD =-即AD =15.在锐角ABC ∆中,角A B C ,,的对边分别为a b c ,,.且c o s c o s A B a b+=b =.则ac +的取值范围为_____.【答案】(6,【解析】cos cos 3A B C a b a +=cos cos sin 3b A a BC ∴+= ∴由正弦定理可得: sin cos sin cos sin B A A B B C +=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =,因为()12CM CA CB =+, 所以22222422cos CMCA CB CA CB CA CB CA CB C =++⋅=++,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABCSab C ==⨯=18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)2⎛⎤-⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为,12⎛⎤- ⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABCSbc == 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 55AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )1021025B C B C ⎛⎫=--=--= ⎪ ⎪⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭24172425225250-⎛⎫=⨯+-⨯= ⎪⎝⎭.20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知AD =BD =(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)4(Ⅱ)1BC = 【解析】(Ⅰ)在ABD 中,由正弦定理,得sin sin AD BD ABD A =∠∠.因为60,A AD BD ︒∠===所以sin sin sin 604AD ABD A BD ︒∠=⨯∠==(Ⅱ)由(Ⅰ)可知,sin ABD ∠=, 因为90ABC ︒∠=,所以()cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠.因为2,CD BD ==所以2462BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++=1sin cos 22C C ⋅+⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。
2012年高考真题理科数学解析汇编:三角函数
2012年高考真题理科数学解析汇编:三角函数一、选择题1 .(2012年高考(天津理))在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .24252 .(2012年高考(天津理))设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3 .(2012年高考(新课标理))已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是 ( )A .15[,]24B .13[,]24C .1(0,]2D .(0,2]4 .(2012年高考(浙江理))把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是5 .(2012年高考(重庆理))设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为( )A .3-B .1-C .1D .36 .(2012年高考(上海理))在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形.B .直角三角形.C .钝角三角形.D .不能确定.7 .(2012年高考(陕西理))在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A.2B.2C .12D .12-8 .(2012年高考(山东理))若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ= ( )A .35B .45 CD .349 .(2012年高考(辽宁理))已知sin cos αα-=,α∈(0,π),则tan α=( )A .-1 B.2-C.2D .110.(2012年高考(江西理))若tan θ+1tan θ=4,则sin2θ= ( )A .15B .14C .13D .1211.(2012年高考(湖南理))函数f(x)=sinx-cos(x+6π)的值域为 ( )A .[ -2 ,2]B .C .[-1,1 ]D .[-2, 2] 12.(2012年高考(大纲理))已知α为第二象限角,sin cos 3αα+=,则cos 2α= ( )A.B.CD二、填空题13.(2012年高考(重庆理))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =______14.(2012年高考(上海春))函数()sin(2)4f x x π=+的最小正周期为_______.15.( 2012年高考(江苏))设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为____. 16.(2012年高考(湖南理))函数f(x)=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为则ω=______ ; (2)若在曲线段 ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为_______.17.(2012年高考(湖北理))设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若()()a b c a b c ab +-++=,则角C =_________.18.(2012年高考(福建理))已知ABC ∆,则其最大角的余弦值为_________.19.(2012年高考(大纲理))当函数s i n c o s (02)y x x x π=≤<取得最大值时,x =_______________.20.(2012年高考(北京理))在△ABC 中,若2a =,7b c +=,1cos 4B =-,则b =___________. 21.(2012年高考(安徽理))设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_____①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>三、解答题22.(2012年高考(天津理))已知函数2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--,x R ∈.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值.23.(2012年高考(浙江理))在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值;(Ⅱ)若a 求∆ABC 的面积.24.(2012年高考(重庆理))(本小题满分13分(Ⅰ)小问8分(Ⅱ)小问5分)设()4cos()sin cos(2)6f x x x x πωωωπ=--+,其中.0>ω(Ⅰ)求函数()y f x = 的值域 (Ⅱ)若()f x 在区间3,22ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.25.(2012年高考(四川理))函数2()6cos3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形. (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.26.(2012年高考(上海理))海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救 援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时 两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?27.(2012年高考(陕西理))函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值.28.(2012年高考(山东理))已知向量(sin ,1),cos ,cos 2)(0)3Am x n x x A ==> ,函数()f x m n =⋅的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域.29.(2012年高考(辽宁理))在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值.30.(2012年高考(江西理))在△ABC 中,角A,B,C 的对边分别为a,b,c.已知,,sin()sin()444A b C cB a πππ=+-+=.(1)求证:2B C π-=(2)若,求△ABC 的面积.31.(2012年高考(江苏))在ABC ∆中,已知3AB AC BA BC =.(1)求证:tan 3tan B A =;(2)若cos C =求A 的值.32.(2012年高考(湖北理))已知向量(c o s s x x x ωωω=-a ,(cos sin ,)x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 在区间3π[0,]5上的取值范围.33.(2012年高考(广东理))(三角函数)已知函数()2cos 6f x x πω⎛⎫=+⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π. (Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.34.(2012年高考(福建理))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒ (4)2sin (18)cos48sin(18)cos48-︒+︒--︒︒ (5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.35.(2012年高考(大纲理))(注意..:.在试卷上作答无效........) ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1,2A C B a c -+==,求C .36.(2012年高考(北京理))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.37.(2012年高考(安徽理))设函数2())sin 24f x x x π=++ (I)求函数()f x 的最小正周期;(II)设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.2012年高考真题理科数学解析汇编:三角函数参考答案一、选择题 1. 【答案】A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力. 【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8sin =5sin 2B B ,所以8sin =10sin cos B B B ,易知sin 0B ≠,∴4cos =5B ,2cos =cos 2=2cos 1C B B -=725.2. 【答案】A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定.【解析】∵=0ϕ⇒()=cos(+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.3. 【解析】选A592()[,]444x πππωω=⇒+∈ 不合题意 排除()D351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂ 得:315,2424224πππππωπωω+≥+≤⇔≤≤4. 【答案】A【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x +1)+1,再向下平移1个单位长度得:y 3=cos(x +1).令x =0,得:y 3>0;x =12π-,得:y 3=0;观察即得答案.5. 【答案】A【解析】tan tan 3tan tan 3,tan tan 2tan()31tan tan 12αβαβαβαβαβ++==⇒+===-+-【考点定位】此题考查学生灵活运用韦达定理及两角和的正切公式化简求值.6. [解析] 由条件结合正弦定理,得222c b a <+,再由余弦定理,得0cos 2222<=-+abc b a C ,所以C 是钝角,选C.7. 解析:由余弦定理得,222221cos 242a b c a b C ab ab +-+==≥当且仅当a b =时取“=”,选C.8. 【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812s i n 12c o s 2-=--=θθ,又81sin 212cos 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D. 9. 【答案】A【解析一】sin cos )sin()144ππαααα-=-=-=3(0),,tan 14παπαα∈∴=∴=- ,,故选A 【解析二】2sin cos (sin cos )2,sin 21,ααααα--=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=- ,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中.10. D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等.11.【答案】B【解析】f(x)=sinx-cos(x+6π)1sin sin )26x x x x π=+=-,[]sin()1,16xπ-∈- ,()f x ∴值域为【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.12. 答案A【命题意图】本试题主要考查了三角函数中两角和差的公式以及二倍角公式的运用.首先利用平方法得到二倍角的正弦值,然后然后利用二倍角的余弦公式,将所求的转化为单角的正弦值和余弦值的问题.【解析】sin cos 3αα+=,两边平方可得121sin 2sin 233αα+=⇒=-α 是第二象限角,因此sin 0,cos 0αα><,所以cos sin αα-===22cos 2cos sin (cos sin )(cos sin )ααααααα∴=-=+-=法二:单位圆中函数线+估算,因为α是第二象限的角,又1sin cos 2αα+所以“正弦线”要比“余弦线”长一半多点,如图,故2cos α的“余弦线”应选A .二、填空题 13. 【答案】145c =【解析】由35412cos ,cos sin ,sin 513513A B A B ==⇒==,由正弦定理sin sin a b A B=得43sin 13512sin 513b A a B ⨯===,由余弦定理2222142cos 25905605a cb bc A c c c =+-⇒-+=⇒=【考点定位】利用同角三角函数间的基本关系求出sin B 的值是本题的突破点,然后利用正弦定理建立已知和未知之间的关系,同时要求学生牢记特殊角的三角函数值. 14. π15.【考点】同角三角函数,倍角三角函数,和角三角函数. 【解析】∵α为锐角,即02<<πα,∴2=66263<<πππππα++. ∵4cos 65απ⎛⎫+=⎪⎝⎭,∴3sin 65απ⎛⎫+=⎪⎝⎭.∴3424sin 22sin cos =2=3665525αααπππ⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .∴7cos 2325απ⎛⎫+= ⎪⎝⎭.∴sin(2)=sin(2)=sin 2cos cos 2sin 12343434a a a a πππππππ⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭247=2525- 16. 【答案】(1)3;(2)4π 【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为时cos36πωω=∴=; (2)由图知222T AC ππωω===,122ABC S AC πω=⋅= ,设,A B 的横坐标分别为,a b .设曲线段ABC 与x 轴所围成的区域的面积为S则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC内的概率为224ABC S P S ππ=== . 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω,(2)几何概型,求出三角形面积及曲边形面积,代入公式即得. 17.考点分析:考察余弦定理的运用.解析:由222()()a b c a b c ab a b c ab +-+-=⇒+-=-根据余弦定理可得22212cos 223a b c C C ab π+-==-⇒=18.【答案】4-【解析】设最小边为a ,,2a ,由余弦定理得,最大角的余弦值为222cos 4α==- 【考点定位】此题主要考查三角形中的三角函数,等比数列的概念、余弦定理,考查分析推理能力、运算求解能力.19.答案:56π 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点.【解析】由sin 2sin()3y x x x π=-=-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.20. 【答案】4【解析】在ABC ∆中,得用余弦定理22214()()47()cos 2444a c b c b c b c b B ac c c+-++-+-=⇒-==,化简得8740c b -+=,与题目条件7b c +=联立,可解得2,4,3a b c ===,答案为4.【考点定位】 本题考查的是解三角形,考查余弦定理的应用.利用题目所给的条件列出方程组求解.21. 【解析】正确的是①②③①222221cos 2223a b c ab ab ab c C C ab ab π+-->⇒=>=⇒< ②2222224()()12cos 2823a b c a b a b a b c C C ab ab π+-+-++>⇒=>≥⇒< ③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<三、解答题22. 【命题意图】本题考查两角和与差的正弦公式、二倍角的余弦公式,三角函数的最小周期,单调性等知识.()=sin 2coscos 2sin sin 2cos cos 2sin cos 23333f x x x x x x ππππ++-+sin 2cos 2)4x x x π=+=+所以,()f x 的最小正周期22T ππ==. (2)因为()f x 在区间[,]48ππ-上是增函数,在区间[,]84ππ上是减函数,又()14f π-=-,()()184f f ππ==,故函数()f x 在区间[,]44ππ-最小值为1-.【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.23. 【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ) ∵cos A =23>0,∴sin A,又C =sin B =sin(A +C )=sin A cos C +sin C cos Acos C +23sin C .整理得:tan C(Ⅱ)由图辅助三角形知:sin C又由正弦定理知:sin sin a cA C=,故c =对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =or b舍去). ∴∆ABC 的面积为:S. 【答案】(Ⅰ). 24. 【考点定位】本题以三角函数的化简求值为主线,三角函数的性质为考查目的的一道综合题,考查学生分析问题解决问题的能力,由正弦函数的单调性结合条件可列32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,从而解得ω的取值范围,即可得ω的最在值. 解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数.依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 25. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=+->=3cos ωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos)34([sin 320⨯+⨯=+++=ππππππx x567=[点评]本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想.26. [解](1)5.0=t 时,P 的横坐标x P =277=t,代入抛物线方程24912x y =中,得P 的纵坐标y P =3 由|AP |=2949,得救援船速度的大小为949海里/时由tan∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=tt v因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船27.解析:(1)∵函数()f x 的最大值为3,∴13,A +=即2A =∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期为T π= ∴2ω=,故函数()f x 的解析式为sin(2)16y x π=-+(2)∵()2sin()1226f απα=-+=即1sin()62πα-=∵02πα<<,∴663πππα-<-<∴66ππα-=,故3πα=28.解析:(Ⅰ)⎪⎭⎫ ⎝⎛+=+=+=⋅=62sin 2cos 22sin 232cos 2sin cos 3)(πx A x A x A x A x x A n m x f ,则6=A ;(Ⅱ)函数y=f(x)的图象像左平移12π个单位得到函数]6)12(2sin[6ππ++=x y 的图象, 再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数)34sin(6)(π+=x x g .当]245,0[π∈x 时,]1,21[)34sin(],67,3[34-∈+∈+ππππx x ,]6,3[)(-∈x g .故函数()g x 在5[0,]24π上的值域为]6,3[-. 另解:由)34sin(6)(π+=x x g 可得)34cos(24)(π+='x x g ,令0)(='x g ,则)(234Z k k x ∈+=+πππ,而]245,0[π∈x ,则24π=x ,于是367sin6)245(,62sin 6)24(,333sin 6)0(-======πππππg g g , 故6)(3≤≤-x g ,即函数()g x 在5[0,]24π上的值域为]6,3[-. 29. 【答案及解析】(1)由已知12=+,++=,=,cos =32B AC A B C B B ππ∴ (2)解法一:2=b ac ,由正弦定理得23sin sin =sin =4A CB 解法二:2=b ac ,222221+-+-=cos ==222a c b a c acB ac ac,由此得22+-=,a c ac ac 得=a c所以===3A B C π,3sin sin =4A C 【点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题.第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果.30. 【解析】解:(1)证明:由 sin()sin()44b Cc B a ππ+-+=及正弦定理得: sin sin()sin sin()sin 44B C C B A ππ+-+=,即sin )sin )B C C C B B -=整理得:sin cos cos sin 1B C B C -=,所以sin()1B C -=,又30,4B C π<< 所以2B C π-=(2) 由(1)及34B C π+=可得5,88B C ππ==,又,4A a π==所以sin 5sin 2sin ,2sin sin 8sin 8a B a Cbc A A ππ====, 所以三角形ABC的面积1521s n 2insi n288882b Aππππ=====【点评】本题考查解三角形,三角形的面积,三角恒等变换、三角和差公式以及正弦定理的应用.高考中,三角解答题一般有两种题型:一、解三角形:主要是运用正余弦定理来求解边长,角度,周长,面积等;二、三角函数的图像与性质:主要是运用和角公式,倍角公式,辅助角公式进行三角恒等变换,求解三角函数的最小正周期,单调区间,最值(值域)等.来年需要注意第二种题型的考查.31. 【答案】解:(1)∵3AB AC BA BC =,∴cos =3cos AB AC A BA BC B,即cos =3cos AC A BC B .由正弦定理,得=sin sin AC BCB A,∴sin cos =3sin cos B A A B . 又∵0<A B <π+,∴cos 0 cos 0A >B >,.∴sin sin =3cos cos B AB A即tan 3tan B A =.(2)∵ cos 0C <C <π=,∴sin C =.∴tan 2C =. ∴()tan 2A B π⎡-+⎤=⎣⎦,即()tan 2A B +=-.∴tan tan 21tan tan A BA B+=-- .由 (1) ,得24tan 213tan AA=--,解得1tan =1 tan =3A A -,. ∵cos 0A >,∴tan =1A .∴=4A π.【考点】平面微量的数量积,三角函数的基本关系式,两角和的正切公式,解三角形.【解析】(1)先将3AB AC BA BC =表示成数量积,再根据正弦定理和同角三角函数关系式证明.(2)由cos C =可求tan C ,由三角形三角关系,得到()tan A B π⎡-+⎤⎣⎦,从而根据两角和的正切公式和(1)的结论即可求得A 的值.32.考点分析:本题考察三角恒等变化,三角函数的图像与性质.解析:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+⋅+cos22x x ωωλ=-+π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=故5π()2sin()36f x x =-由3π05x ≤≤,有π5π5π6366x -≤-≤,所以15πsin()1236x -≤-≤,得5π12sin()236x --故函数()f x 在3π[0,]5上的取值范围为[12-. 33.解析:(Ⅰ)210T ππω==,所以15ω=.(Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3s i n5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8cos 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以4c o s i n 5α=,15sin 17β=,所以()4831513c o s c o s c o s s i ns i n 51751785αβαβαβ+=-=⨯-⨯=-. 34. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式、考查运算能力、特殊与一般思想、化归与转化思想.解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒= (2)证明:22sincos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin30sin )sin (cos30cos sin30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 442αααααααα=++-22333sin cos 444αα=+= 35. 【命题意图】本试题主要考查了解三角形的运用,给出两个公式,一个是边的关系,一个角的关系,而求解的为角,因此要找到角的关系式为好. 【解析】由()A B C B A C ππ++=⇔=-+, 由正弦定理及2a c =可得sin 2sin A C =所以cos()cos cos()cos(())cos()cos()A C B A C A C A C A C π-+=-+-+=--+cos cos sin sin cos cos sin sin 2sin sin A C A C A C A C A C =+-+=故由cos()cos 1A C B -+=与sin 2sin A C =可得22sin sin 14sin 1A C C =⇒= 而C 为三角形的内角且2a c c =>,故02C π<<,所以1sin 2C =,故6C π=. 【点评】该试题从整体来看保持了往年的解题风格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理和余弦定理,求解三角形中的角的问题.试题整体上比较稳定,思路也比较容易想,先将三角函数关系式化简后,得到,A C 角关系,然后结合2a c =,得到两角的二元一次方程组,自然很容易得到角C 的值.36. 【考点定位】本题考醒三角函数知识,此类型题在平时练习时练得较多,考生应该觉得非常容易入手. 解:(sin cos )sin 2()sin x x x f x x -==(sin cos )2sin cos sin x x x xx-=2(sin cos )cos x x x -=sin 21cos 2x x --)14x π--,{|,}x x k k Z π≠∈(1) 原函数的定义域为{|,}x x k k Z π≠∈,最小正周期为π; (2)原函数的单调递增区间为[,)8k k k Z πππ-+∈,3(,]8k k k Z πππ+∈. 37. 【解析】2111())sin cos 2sin 2(1cos 2)24222f x x x x x x π=++=-+-11sin 222x =-(I)函数()f x 的最小正周期22T ππ== (2)当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩。
2012年高考数学理科试题分类汇编:三角函数
2012年高考数学理科试题分类汇编:三角函数2012年高考真题理科数学解析分类汇编5 三角函数一、选择题 1.【2012高考重庆理5】设是方程的两个根,则的值为(A)-3 (B)-1 (C)1 (D)3 【答案】A 【解析】因为是方程的两个根,所以,,所以,选A. 2.【2012高考浙江理4】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A 【解析】把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y1=cosx+1,向左平移1个单位长度得:y2=cos(x+1)+1,再向下平移1个单位长度得:y3=cos(x+1).令x=0,得:y3>0;x=,得:y3=0;观察即得答案. 3.【2012高考新课标理9】已知,函数在上单调递减.则的取值范围是()【答案】A 【解析】法1:函数的导数为,要使函数在上单调递减,则有恒成立,则,即,所以,当时,,又,所以有,解得,即,选A. 法2:选不合题意排除合题意排除另:,得:4.【2012高考四川理4】如图,正方形的边长为,延长至,使,连接、则() A、 B、 C、 D、【答案】B 【解析】,,,由正弦定理得,所以 . [点评]注意恒等式sin2α+cos2α=1的使用,需要用α的的范围决定其正余弦值的正负情况. 5.【2012高考陕西理9】在中,角所对边长分别为,若,则的最小值为()A. B. C. D. 【答案】C. 【解析】由余弦定理知,故选C. 6.【2012高考山东理7】若,,则(A)(B)(C)(D)【答案】D 【解析】法1:因为,所以,,所以,又,所以,,选D. 法2:由及可得,而当时,结合选项即可得 .答案应选D。
7.【2012高考辽宁理7】已知, (0,π),则 = (A) 1 (B) (C) (D) 1 【答案】A 【解析一】,故选A 【解析二】,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中。
涉及三角函数的高考真题(理科)山东卷
涉及三角函数的高考真题(理科)(2005)1.(本小题满分12分) 已知在△ABC 中,sinA (sinB +cosB )-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.1.解法一 由0sin )cos (sin sin =-+C B B A 得.0)sin(cos sin sin sin =+-+B A B A B A所以.0sin cos cos sin cos sin sin sin =--+B A B A B A B A即.0)cos (sin sin =-A A B因为),,0(π∈B 所以0sin ≠B ,从而.sin cos A A =由),,0(π∈A 知.4π=A 从而π43=+C B . 由.0)43(2cos sin 02cos sin =-+=+B B C B π得即.0cos sin 2sin .02sin sin =-=-B B B B B 亦即由此得.125,3,21cos ππ===C B B 所以,4π=A .125,3ππ==C B解法二:由).223sin(2cos sin 02cos sin C C B C B -=-==+π得由B <0、π<c ,所以.22223ππ-=-=C B C B 或即.22232ππ=-=+B C C B 或由0sin )cos (sin sin =-+C B B A 得 .0)sin(cos sin sin sin =+-+B A B A B A 所以.0sin cos cos sin cos sin sin sin =--+B A B A B A B A 即.0)cos (sin sin =-A A B 因为0sin ≠B ,所以.sin cos A A =由.4),,0(ππ=∈A A 知从而π43=+C B ,知B+2C=23π不合要求再由π212=-B C ,得.125,3ππ==C B 所以,4π=A .125,3ππ==C B(2006)2.已知函数f (x )=A 2sin ()x ωϕ+(A >0,ω>0,0<ϕ<2π函数,且y =f (x )的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(1)求ϕ;(2)计算f (1)+f (2)+… +f (2 008).解:(1)).22cos(22)(ϕωϕω+-=+=x AA x Asrin y.4,20,,2,,222,,222,1)22cos(,)2,1()().22cos(1)22cos(2222)(.4,2)22(21,0,2.2,222,0,2)(πϕπϕππϕππϕππϕπϕπϕπϕππωωπω=∴<<∈+=∴∈+=∴∈+=+∴-=+∴=+-=+-=∴==∴>==+∴>= 又点过的距离为其图象相邻两对称轴间又的最大值为Z k k Z k x k Z k k x f y x x x f A AA A x f y(2),4πϕ=.20085024)2008()2()1(.50242008,4)(,41012)4()3()2()1(2sin 1)22cos(1=⨯=+++∴⨯===+++=+++∴+=+-=∴f f f x f y f f f f xx y 的周期为又πππ (2007)3(本小题满分12分)如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105︒的方向1B 处,此时两船相距20海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120︒方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里? 解:如图,连结12A B ,22102A B =,122030210260A A =⨯=,北1B2B1A2A120 105122A A B ∆是等边三角形,1121056045B A B ∠=︒-︒=︒,在121A B B ∆中,由余弦定理得2221211121112222cos 45220(102)2201022002B B A B A B A B A B =+-⋅︒=+-⨯⨯⨯=, 1210 2.B B =因此乙船的速度的大小为1026030 2.20⨯= 答:乙船每小时航行302海里. 4(2008)(17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π(Ⅰ)求f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. (17)解:(Ⅰ)f (x )=)cos()sin(3ϕωϕω+-+x x =⎥⎦⎤⎢⎣⎡+-+)cos(21)sin(232ϕωϕωx x=2sin(ϕω+x -6π) 因为 f (x )为偶函数,所以 对x ∈R , f (-x )=f (x )恒成立,因此 sin (-ϕω+x -6π)=sin(ϕω+x -6π). 即-sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π)=sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π),整理得 sin x ωcos(ϕ-6π)=0.因为 ω>0,且x ∈R ,所以 cos (ϕ-6π)=0.又因为 0<ϕ<π,故 ϕ-6π=2π.所以 f (x )=2sin(x ω+2π)=2cos x ω.由题意得 .2,222 = 所以 ωπωπ⋅=故 f (x )=2cos2x . 因此 .24cos2)8(==ππf(Ⅱ)将f (x )的图象向右平移个6π个单位后,得到)6(π-x f 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到()46x f π-的图象.()()2cos 2()2cos ().464623x x x g x f f πππ⎡⎤=-=-=-⎢⎥⎣⎦所以 当 2k π≤23x π-≤2 k π+ π (k ∈Z), 即 4k π+32π≤x ≤4k π+38π(k ∈Z)时,g (x )单调递减.因此g (x )的单调递减区间为 ⎥⎦⎤⎢⎣⎡++384,324ππππk k (k ∈Z)5(2009).(本小题满分12分)设函数f(x)=cos(2x+3π)+sin 2x. (1) 求函数f (x)的最大值和最小正周期. (2) 设A,B,C 为∆ABC 的三个内角,若cosB=31,f(3C )=-41,且C 为锐角,求sinA. 解: (1)f(x)=cos(2x+3π)+sin 2x.=1cos 213cos 2cos sin 2sin sin 233222x x x x ππ--+=- 所以函数f(x)的最大值为132+,最小正周期π. (2)f(3C )=132sin 223C -=-41,所以23sin 32C =,因为C 为锐角,所以233C π=,所以2C π=,所以sinA =cosB=31. 6(2010)(17)(本小题满分12分)已知函数)0)(2sin(21cos cos sin 2sin 21)(2πϕϕπϕϕ<<+-+=x x x f ,其图象过点).21,6(π(Ⅰ)求ϕ的值;(Ⅱ)将函数)(x f y =的图象上各点的横坐标缩短到原来的21,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g 在]4,0[π上的最大值和最小值。
2012年高考真题理科数学解析汇编:三角函数.pdf
一、学习目标: 1、懂得交往对个人发展和社会进步的重要性。
2、培养观察、感受、体验、参与社会生活的能力。
二、快乐学习: 三、生活体验: 1920年,印度传教士辛格发现狼群中有两个8岁和2岁的女孩,辛格把他们送进了孤儿院,并给他们取了名,大的叫卡玛拉,小的叫阿玛拉。
这两个小女孩刚回到人类社会时,许多特征和狼一样,牙齿特别尖利,嗅觉特别灵敏,耳朵还能抖动,四肢爬行,吞食生肉,像狗一般的张大嘴巴喘气。
白天喜欢蜷伏在黑暗的地方睡觉,夜深人静后,不时发出阵阵长嗥。
卡玛拉15岁时的智力水平只相当于正常的三岁半的儿童,直到死去(17),也只学会几十个单词。
《狼孩子》的故事告诉我们的道理是什么? 四、自主检测: 1、孟子说:“天时不如地利,地利不如人和”包含的道理是( ) A、个人的发展和社会的进步都离不开社会交往和人与人之间的和谐相处B、个人发展不需要交往C、社会的进步不依赖交往 D、个人不依赖社会也可以很好发展 2、马某患有受迫害妄想症,他把3个孩子长期关在家中。
1898年,当人们发现这一情况时,大女儿已经19岁,二女儿15岁,小儿子11岁,但他们的智力年龄分别只有5岁、3岁和1岁,这个案例告诫我们( )A、社会的进步依赖交往B、交往是人类自身和社会发展的需要 C、如果从小就不与他人交往,就不可能有心理和精神的健康发展 D、个人与社会共同发展 3、我们的个人发展需要交往,离不开交往,我们应该重视交往,乐于交往,学会交往。
因为正常的交往活动有利于( ) ①我们扩大知识面,增长见识,积累经验激发思维,锻炼能力 ②维护国家尊严和民族自尊心和自信心 ③我们审美和道德等素质的提高 ④我们情感、意志和人格的健康发展A、①②③B、②③④C、①②④D、①③④ 4、严文井在四次报考大学都落榜的打击下,没有灰心气馁,没有自轻自贱,而是秉烛夜读,刻苦写作,终于成为我国当代著名的儿童文学作家,这说明( )A、自尊自信催人自强不息B、合理控制情绪很重要C、严文井的学习目的明确D、刻苦能成才 五、学海拾贝: 1、疏理巩固: 2、学后感悟: 第二课时 发展的需要 初中学习网,资料共分享!我们负责传递知识!。
高考数学试题分项版解析专题05 三角函数(教师版) 理
2012年高考试题分项版解析数学(理科)专题05 三角函数(教师版)一、选择题:1.(2012年高考浙江卷理科4)把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是2. (2012年高考山东卷理科7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2=8θ,则sin θ=(A )35(B )45(C (D )34 【答案】D【解析】由42ππθ⎡⎤∈⎢⎥⎣⎦,可得],2[2ππθ∈,812sin 12cos 2-=--=θθ,4322cos 1sin =-=θθ,答案应选D.另解:由42ππθ⎡⎤∈⎢⎥⎣⎦,及sin 2θ可得434716776916761687312sin 1cos sin +=++=+=+=+=+θθθ, 而当42ππθ⎡⎤∈⎢⎥⎣⎦,时θθcos sin >,结合选项即可得47cos ,43sin ==θθ.答案应选D.3.(2012年高考辽宁卷理科7)已知sin cos αα-=,α∈(0,π),则tan α=(A) -1 (B) 2-(C) 2(D) 14.(2012年高考天津卷理科2)设R ϕ∈,则“=0ϕ”是“()=cos(+)f x xϕ()x R ∈为偶函数”的(A )充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件5.(2012年高考天津卷理科6)在△ABC 中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cosC=(A )725(B)725- (C)725± (D)24256.(2012年高考上海卷理科16)在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<, 由余弦定理的推理得222cos 02a b c C ab+-=<,所以C 为钝角,所以该三角形为钝角三角形.故选择A.【考点定位】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.7.(2012年高考新课标全国卷理科9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年高考真题汇编理科数学(解析版)5:三角函数
2012高考真题分类汇编:三角函数一、选择题1.【2012高考真题重庆理5】设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为 (A )-3 (B )-1 (C )1 (D )3 【答案】A【解析】因为βαtan ,tan 是方程2320x x -+=的两个根,所以3tan tan =+βα,2tan tan =βα,所以3213tan tan 1tan tan )tan(-=-=-+=+βαβαβα,选A.2.【2012高考真题浙江理4】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【解析】根据题设条件得到变化后的函数为)1cos(+=x y ,结合函数图象可知选项A 符合要求。
故选A. 3.【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]【答案】A【解析】函数)4sin()(πω+=x x f 的导数为)4cos()('πωω+=x x f ,要使函数)4sin()(πω+=x x f 在),2(ππ上单调递减,则有0)4cos()('≤+=πωωx x f 恒成立,则πππωππk x k 223422+≤+≤+,即ππωππk x k 24524+≤≤+,所以Z k k x k ∈+≤≤+,ωπωπωπωπ2424,当0=k 时,ωπωπ454≤≤x ,又ππ<<x 2,所以有πωππωπ≥≤45,24,解得45,21≤≥ωω,即4521≤≤ω,选A. 4.【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )ABCD【答案】B【解析】2EB EA AB =+=,EC =3424EDC EDA ADC πππ∠=∠+∠=+=,由正弦定理得sin sin CED DC EDC CE ∠===∠,所以3sin sin sin 55410CED EDC π∠=∠==5.【2012高考真题陕西理9】在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则co s C 的最小值为( )A.B. 2C. 12D. 12-【答案】C.【解析】由余弦定理知214242)(212cos 222222222=≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C ,故选C.6.【2012高考真题山东理7】若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ=(A )35 (B )45 (C(D )34 【答案】D【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812sin 12cos 2-=--=θθ,又81sin 212cos 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.7.【2012高考真题辽宁理7】已知sin cos αα-=,α∈(0,π),则tan α=(A) -1 (B) 2- (C) 2(D) 1 【答案】A【解析一】sin cos )sin()144ππαααα-=-=∴-=3(0),,tan 14παπαα∈∴=∴=- ,,故选A【解析二】2sin cos (sin cos )2,sin 21,ααααα--=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=- ,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中。
山东省各地市高考数学 最新试题分类大汇编 7 三角函数(1) 理
山东省各地市2012年高考数学(理科)最新试题分类大汇编:第7部分:三角函数(1)一、选择题【山东聊城莘县实验高中2012届高三上学期期中】3.计算︒︒-︒︒76cos 44cos 14cos 44sin 的结果等于( ) A.21B. 33C.22D.23 【答案】A【山东济宁邹城二中2012届高三上学期期中】1.设232ππ<≤-x ,且x 2sin 1+=sin x +cos x ,则( )A .0≤x ≤πB .―4π≤x ≤43πC .4π≤x ≤45πD . ―2π≤x ≤―4π或43π≤x <23π【答案】B【山东济宁邹城二中2012届高三上学期期中】8. 函数)32sin(3)(π-=x x f 的图象为C .有以下结论,其中正确的个数为( ) ①图象C 关于直线π1211=x 对称; ②函数125,12()(ππ-在区间x f )内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C . A .0 B .1 C .2 D .3 【答案】C【山东济宁邹城二中2012届高三上学期期中】11. 为了测量一古塔的高度,某人在塔的正西方向的A 地测得塔尖的仰角为45,沿着A 向北偏东30前进100米到达B 地(假设A 和B 在海拔相同的地面上),在B 地测得塔尖的仰角为 30,则塔高为( ) A .100米 B . 50米C .120米D .150米【答案】B【山东济南市2012界高三下学期二月月考理】将函数cos()3y x π=-的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移6π个单位,所得函数图象的一条对称轴是 A .9x π= B. 8x π= C .x π= D. 2x π=【答案】D【山东省济南一中2012届高三10月理】2. sin 600的值是A .12B . 12-D. 【答案】D【山东省济南一中2012届高三10月理】8. 已知点(tan ,cos )P αα在第三象限, 则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【山东省济南一中2012届高三10月理】11. 将函数sin 2y x =的图象向上平移1个单位,再向右平移4π个单位,所得的图象对应的函数解析式是 A .22cos y x = B .22sin y x = C .1sin 24y x π⎛⎫=+- ⎪⎝⎭D .1sin 24y x π⎛⎫=++⎪⎝⎭【答案】B【山东省济宁市2012届高三上学期期末检测理】3.已知(),,⎪⎭⎫ ⎝⎛-∈=-02,32sin παπα且则αtan 等于A.552B.552-C.25D.25-【答案】B【山东省济宁市2012届高三上学期期末检测理】10.将函数⎪⎭⎫⎝⎛+=46sin πx y 的图像上各点的横坐标伸长到原来的3倍,纵坐标不变,再把所得函数的图象向右平行移动8π个单位长度,得到的函数图象的一个对称中心是 A.⎪⎭⎫⎝⎛0,2π B.⎪⎭⎫⎝⎛0,4πC.⎪⎭⎫⎝⎛0,9π D.⎪⎭⎫⎝⎛0,16π 【答案】A【山东省济南一中2012届高三上学期期末理】3. 已知4sin ,sin cos 0,5θθθ=<则θ2sin 的值为 A .2524-B .2512-C .54- D .2524 【答案】A【山东省济南一中2012届高三上学期期末理】8. 已知函数()()s i n f x A x ωϕ=+(0x R A ∈>,,02πωϕ><,)的图象(部分)如图所示,则()x f 的解析式是A .()()2sin 6f x x x ππ⎛⎫=+∈ ⎪⎝⎭R B .()()2sin 26f x x x ππ⎛⎫=+∈ ⎪⎝⎭RC .()()2sin 3f x x x ππ⎛⎫=+∈ ⎪⎝⎭RD .()()2sin 23f x x x ππ⎛⎫=+∈ ⎪⎝⎭R【答案】A【山东省济宁市汶上一中2012届高三11月月考理】4.已知(1,P 为角α的终边上一点,且33sin sin cos sin()22ππαβαπββα⎛⎫-++=<<<⎪⎝⎭,则角β等于( ) A 、12πB 、6πC 、4πD 、3π【答案】D【山东省济宁市金乡二中2012届高三11月月考理】8.若4cos 5α=-,α是第三象限的角,则1tan21tan2αα+=-( )(A )12-(B )12(C )2 (D )2- 【答案】A【山东省济宁市金乡二中2012届高三11月月考理】9.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位D .向左平移π6个单位【答案】A【山东省潍坊市2012届高三上学期期末考试理】12.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置p(x ,y).若初始位置为P 0(23,21),当秒针从P 0 (注此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为A .)630sin(ππ+=t yB .)660sin(ππ--=t y C .)630sin(ππ+-=t y D .)330sin(ππ--=t y【答案】C【山东省苍山县2012届高三上学期期末检测理】4.在ABC ∆中,若60,A BC AC =︒==B 的大小为( ) A .30° B .45°C .135°D .45°或135°【答案】B【山东省苍山县2012届高三上学期期末检测理】8.将函数sin 2y x =的图象向上平移1个单位长度,再向右平移4π个单位长度,所得图象对应的函数解析式是( ) A .22cos y x =B .22sin y x =C .1sin(2)4y x π=+-D .1sin(2)4y x π=++【答案】B【山东省济南外国语学校2012届高三9月质量检测】2. 若0cos 02sin <>αα且,则α是 ( )A.第二象限角B.第三象限角C.第一或第三象限角D.第二或第三象限角 【答案】B【山东省济南外国语学校2012届高三9月质量检测】3.已知54sin ),2,2(-=-∈αππα,则αtan 等于 ( )A.43-B.34-C.53-D.34【答案】B二、填空题【山东省东营市2012届高三上学期期末(理)】14.小明爸爸开车以80km/h 的速度沿着正北方向的公路行驶,小明坐在车里向外观察,在点A 处望见电视塔P 在北偏东300方向上,15分钟后到点B 处望见电视塔在北偏东750方向上,则汽车在点B 时与电视塔P 的距离是 km . 【答案】210【山东省滨州市沾化一中2012届高三上学期期末理】16.给出如下四个结论:①存在)2,0(πα∈使31cos sin =+a a ②存在区间(,a b )使x y cos =为减函数而x sin <0 ③x y tan =在其定义域内为增函数 ④)2sin(2cos x x y -+=π既有最大、最小值,又是偶函数⑤|62|sin π+=x y 最小正周期为π其中正确结论的序号是 【答案】④【山东省济南外国语学校2012届高三9月质量检测】13.已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cos C = . 【答案】14-【山东省济南外国语学校2012届高三9月质量检测】14. 已知βα,⎪⎭⎫⎝⎛∈ππ,43,sin(βα+)=-,53sin ,13124=⎪⎭⎫ ⎝⎛-πβ则cos ⎪⎭⎫ ⎝⎛+4πα= _______ . 【答案】6556-三、解答题【山东省滨州市沾化一中2012届高三上学期期末理】17.(本题满分10分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos25A =,3AB AC ⋅=. (1) 求ABC ∆的面积;(2)若6b c +=,求a 的值.【答案】【山东省滨州市沾化一中2012届高三上学期期末理】19.(本题满分12分)设函数b a x f ⋅=)(,其中向量a =(2cos x ,1),b =(cos x ,3sin2x ),x ∈R. (1)若f (x )=1-3且x ∈[-3π,3π],求x ;(2)若函数y =2sin2x 的图象按向量=(m ,n )(|m |<2π)平移后得到函数y=f (x )的图象,求实数m 、n 的值. 【答案】19.(本小题满分12分)解:(1)依题设,f (x )=2cos 2x+3sin2x=1+2sin (2x+6π). ……………2分由1+2sin (2x+6π)=1-3,得sin (2x+6π)=-23………4分 ∵-3π≤x≤3π,∴-2π≤2x+6π≤65π,∴2x+6π=-3π,即x=-4π. .……………6分(2)函数y=2sin2x 的图象按向量c=(m ,n )平移后得到函数y=2sin2(x-m )+n 的图象, 即函数y=f (x )的图象. .……………8分 由(1)得 f (x )=2sin2(x+12π)+1.∵|m|<2π,∴m=-12π,n=1. .……12分【山东济宁邹城二中2012届高三上学期期中】17.(本小题满分12分)已知函数2()2cos cos()sin cos 6f x x x x x x π=--+。
山东省各地市高考数学 最新试题分类大汇编 7 三角函数(5) 理
山东省各地市2012年高考数学(理科)最新试题分类大汇编:第7部分:三角函数(5)一、选择题【山东省潍坊市2012届高三上学期期中四县一校联考理】5.已知ABC ∆中,c b a 、、分别是角C B A 、、的对边, 60,3,2===B b a ,那么A ∠等于A.135 B.45 C. 135或 45 D.60 【答案】B【山东省潍坊市2012届高三上学期期中四县一校联考理】10.已知函数)0,0)(sin()(>>+=ωϕωA x A x f 的部分图象如图所示,则)(x f y =的图象可由函数x x g sin )(=的图象(纵坐标不变)变换如下A.先把各点的横坐标缩短到原来的21倍,再向右平移12π个单位 B.先把各点的横坐标伸长到原来的2倍,再向右平移12π个单位C.先把各点的横坐标缩短到原来的21倍,再向左平移6π个单位D.先把各点的横坐标伸长到原来的2倍,再向左平移6π个单位 【答案】A【山东省临沭一中2012届高三12月理】3. 在ABC ∆中, 3π=∠B ,三边长a ,b ,c 成等差数列,且6=ac ,则b 的值是( )A .2B .3C .6D . 【答案】C【山东省临沭一中2012届高三12月理】5. 若cos(3)3cos()02x x ππ--+=,则tan()4x π+等于( ) A .12-B .2-C .12D .2 【答案】D【山东省临沭一中2012届高三12月理】10. 已知函数)0,0)(sin()(>>+=ωϕωA x A x f 的部分图象如图所示,则)(x f y =的图象可由函数x x g sin )(=的图象(纵坐标不变)变换如下( )A.先把各点的横坐标缩短到原来的21倍,再向右平移12π个单位 B.先把各点的横坐标伸长到原来的2倍,再向右平移12π个单位C.先把各点的横坐标缩短到原来的21倍,再向左平移6π个单位 D.先把各点的横坐标伸长到原来的2倍,再向左平移6π个单位 【答案】A【山东省淄博市第一中学2012届高三第一学期期中理】12、已知函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则 ( )A ω=1,φ=π6B ω=1,φ=-π6C ω=2,φ=π6D ω=2,φ=-π6【答案】D【山东省山师大附中2012届高三第二次模拟理】3.已知23)2cos(=-ϕπ,且2||πϕ<,则=ϕtan ( )A .33-B .33C .3-D .3【答案】D【山东省山师大附中2012届高三第二次模拟理】8.在ABC ∆内,内角C B A ,,的对边分别是c b a ,,,若bc b a 322=-,B C sin 32sin =,则A=( )A .︒30B .︒60C .︒120D .︒150【答案】A【山东省山师大附中2012届高三第二次模拟理】9.已知a 是实数,则函数ax a x f sin 1)(+=的图象不可能是( )【答案】D【山东省实验中学2012届高三第二次诊断理】要得到x x y 2cos 2sin +=的图象,只需将x y 2sin 2=的图象( )A.向左移4π个单位B.向左平移8π个单位 C.右平移4π个单位 D.向左平移8π个单位【答案】B【山东省实验中学2012届高三第二次诊断理】若对,),0,(0R x a ∈∃-∞∈∀使a x a ≤0cos 成立,则0cos x 6π⎛⎫-= ⎪⎝⎭( )A.21 B.23 C.21- D.23- 【答案】B【山东省实验中学2012届高三上学期第一次诊断性考试理】8. 要得到函数的图像,只需将函数的图像 ( ) (A).向左平移个单位 (B).向右平移个单位 (C).向左平移个单位 (D).向右平移个单位【答案】D 二、填空题【山东省潍坊市2012届高三上学期期中四县一校联考理】14.已知)0,2(,53cos π-∈=x x ,则=x 2tan . 【答案】247【山东省淄博市第一中学2012届高三第一学期期中理】16、给出下列命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x + π2是奇函数;②存在实数α,使得sin α+cos α=32;③若α、β是第一象限角且α<β,则tan α<tan β;④x =π8是函数y =sin ⎝⎛⎭⎪⎫2x + 5π4的一条对称轴方程; ⑤函数y =sin ⎝ ⎛⎭⎪⎫2x + π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形. 其中正确的序号为_______________________________ 【答案】①④【山东省山师大附中2012届高三第二次模拟理】14.如果21)4tan(,43)tan(=-=+παβα,那么)4tan(πβ+= . 【答案】112【山东省山师大附中2012届高三第二次模拟理】15.在A B C ∆中,︒===60,7,1B b a ,则=c .【答案】3【山东省实验中学2012届高三第二次诊断理】已知函数)2||,0,0,)(sin()(πϕωφω<>>∈+=A R x x A x f 的部分图象如图所示,则)(x f 的解析式是【答案】))(6sin(2)(R x x x f ∈+=ππ【山东省实验中学2012届高三第二次诊断理】在ABC ∆中,︒===60,2,6B BC AC ,则=∠A ,AB= .【答案】45,13+三、解答题【山东省潍坊市2012届高三上学期期中四县一校联考理】18.(本小题满分12分)在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,且bcB A 2tan tan 1=+. (Ⅰ)求角A ;(Ⅱ)已知6,27==bc a 求c b +的值. 【答案】解:(Ⅰ)由1+tan 2sin cos 2sin tan cos sin sin A c A B CB b A B B==及正弦定理,得1+,……3分 cos sin sin cos 2sin cos sin sin A B A B CA B B+=即, sin()2sin ,cos sin sin A B C A B B+∴= ………………………………………………5分 1sin()sin 0,cos .2ABC A B C A ∆+=≠∴=在中,…………………………6分0,.3A A ππ<<∴= …………………………………………7分(Ⅱ)由余弦定理2222cos a b c bc A =+-,………………………………8分 又71,6,cos 22a bc A ===, 则22494b c bc =+-=22()3()18b c bc b c +-=+-,……………………10分 解得11.2b c += ……………………………………………………12分【山东省潍坊市2012届高三上学期期中四县一校联考理】20.(本小题满分12分)已知函数)0(3cos 32cos sin 2)(2>-+=ωωωω、a x x x a x f 的最大值为2.21,x x 是集合}0)(|{=∈=x f R x M 中的任意两个元素,||21x x -的最小值为2π. (Ⅰ)求ω、a 的值 (Ⅱ)若32)(=a f ,求)465sin(απ-的值. 【答案】20.(本小题满分12分)解:(I )()sin 2cos2)f x a x x ωω=-2分sin 2a x x ωω=+)x ωϕ=+ ………………………………………………4分2=,则1a =,…………………………………………5分由题知()f x 的周期为π,则22ππω=,知1ω=.…………………………7分 (II )由3132sin ,3232sin 232)(=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=παπαα即知f .……………………8分 ⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛-∴324cos 32423sin 465sin παπαπαπ………………… 10分97312132sin 2122-=⎪⎭⎫⎝⎛⨯+-=⎪⎭⎫ ⎝⎛++-=πα. ……………………12分【山东省临沭一中2012届高三12月理】17. (本小题12分)ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,若sin sin sin a c Bb c A C-=-+. (1)求角A ;(2)若22()cos ()sin ()f x x A x A =+--,求()f x 的单调递增区间.【答案】【山东省淄博市第一中学2012届高三第一学期期中理】17、(满分12分)已知向量0),sin cos 32,(cos ),sin ,(cos >-==ωωωωωωx x x x x ,函数||)(x f +∙=,且函数)(x f 图象的相邻两条对称轴之间的距离为2π(1)求ω的值 (2)作出函数)(x f 在],0[π上的图象(3)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,,23,2,2)(===∆ABC S c A f 求a 的值【答案】17、解:(1)f(x)= m →·n →+|m →|=cos 2wx+23sinwxcoswx-sin 2wx+1 =cos2wx+3sin2wx+1=2sin(2wx+π6)+1由题意知T=π,又T=2π2w =π, ∴w=1(2)图省略(3)f(x)=2sin(2x+π6)+1,∴f(A)=2sin(2A+π6)+1=2, ∴sin(2A+π6)=12,∵0<A<π, ∴π6<2A+π6<2π+π6,∴2A+π6=5π6,∴A=π3,∴S △ABC =12bcsinA=32,∴b=1,∴a 2=b 2+c 2-2bccosA=1+4-2×2×1×12=3∴a= 3.【山东省山师大附中2012届高三第二次模拟理】17.(本小题满分12分)已知函数R x x x x x f ∈-+=,21cos cos sin 3)(2(1)求函数)(x f 的最小正周期和单调增区间;(2)作出函数在一个周期内的图象。
山东省各地市高考数学 最新试题分类大汇编 7 三角函数(5) 理
山东省各地市2012年高考数学(理科)最新试题分类大汇编:第7部分:三角函数(5)一、选择题【山东省潍坊市2012届高三上学期期中四县一校联考理】5.已知ABC ∆中,c b a 、、分别是角C B A 、、的对边, 60,3,2===B b a ,那么A ∠等于A.135 B.45 C. 135或 45 D.60 【答案】B【山东省潍坊市2012届高三上学期期中四县一校联考理】10.已知函数)0,0)(sin()(>>+=ωϕωA x A x f 的部分图象如图所示,则)(x f y =的图象可由函数x x g sin )(=的图象(纵坐标不变)变换如下A.先把各点的横坐标缩短到原来的21倍,再向右平移12π个单位 B.先把各点的横坐标伸长到原来的2倍,再向右平移12π个单位C.先把各点的横坐标缩短到原来的21倍,再向左平移6π个单位D.先把各点的横坐标伸长到原来的2倍,再向左平移6π个单位 【答案】A【山东省临沭一中2012届高三12月理】3. 在ABC ∆中, 3π=∠B ,三边长a ,b ,c 成等差数列,且6=ac ,则b 的值是( )A .2B .3C .6D . 【答案】C【山东省临沭一中2012届高三12月理】5. 若cos(3)3cos()02x x ππ--+=,则tan()4x π+等于( ) A .12-B .2-C .12D .2 【答案】D【山东省临沭一中2012届高三12月理】10. 已知函数)0,0)(sin()(>>+=ωϕωA x A x f 的部分图象如图所示,则)(x f y =的图象可由函数x x g sin )(=的图象(纵坐标不变)变换如下( )A.先把各点的横坐标缩短到原来的21倍,再向右平移12π个单位 B.先把各点的横坐标伸长到原来的2倍,再向右平移12π个单位C.先把各点的横坐标缩短到原来的21倍,再向左平移6π个单位 D.先把各点的横坐标伸长到原来的2倍,再向左平移6π个单位 【答案】A【山东省淄博市第一中学2012届高三第一学期期中理】12、已知函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则 ( )A ω=1,φ=π6B ω=1,φ=-π6C ω=2,φ=π6D ω=2,φ=-π6【答案】D【山东省山师大附中2012届高三第二次模拟理】3.已知23)2cos(=-ϕπ,且2||πϕ<,则=ϕtan ( )A .33-B .33C .3-D .3【答案】D【山东省山师大附中2012届高三第二次模拟理】8.在ABC ∆内,内角C B A ,,的对边分别是c b a ,,,若bc b a 322=-,B C sin 32sin =,则A=( )A .︒30B .︒60C .︒120D .︒150【答案】A【山东省山师大附中2012届高三第二次模拟理】9.已知a 是实数,则函数ax a x f sin 1)(+=的图象不可能是( )【答案】D【山东省实验中学2012届高三第二次诊断理】要得到x x y 2cos 2sin +=的图象,只需将x y 2sin 2=的图象( )A.向左移4π个单位B.向左平移8π个单位 C.右平移4π个单位 D.向左平移8π个单位【答案】B【山东省实验中学2012届高三第二次诊断理】若对,),0,(0R x a ∈∃-∞∈∀使a x a ≤0cos 成立,则0cos x 6π⎛⎫-= ⎪⎝⎭( )A.21 B.23 C.21- D.23- 【答案】B【山东省实验中学2012届高三上学期第一次诊断性考试理】8. 要得到函数的图像,只需将函数的图像 ( ) (A).向左平移个单位 (B).向右平移个单位 (C).向左平移个单位 (D).向右平移个单位【答案】D 二、填空题【山东省潍坊市2012届高三上学期期中四县一校联考理】14.已知)0,2(,53cos π-∈=x x ,则=x 2tan . 【答案】247【山东省淄博市第一中学2012届高三第一学期期中理】16、给出下列命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x + π2是奇函数;②存在实数α,使得sin α+cos α=32;③若α、β是第一象限角且α<β,则tan α<tan β;④x =π8是函数y =sin ⎝⎛⎭⎪⎫2x + 5π4的一条对称轴方程; ⑤函数y =sin ⎝ ⎛⎭⎪⎫2x + π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形. 其中正确的序号为_______________________________ 【答案】①④【山东省山师大附中2012届高三第二次模拟理】14.如果21)4tan(,43)tan(=-=+παβα,那么)4tan(πβ+= . 【答案】112【山东省山师大附中2012届高三第二次模拟理】15.在A B C ∆中,︒===60,7,1B b a ,则=c .【答案】3【山东省实验中学2012届高三第二次诊断理】已知函数)2||,0,0,)(sin()(πϕωφω<>>∈+=A R x x A x f 的部分图象如图所示,则)(x f 的解析式是【答案】))(6sin(2)(R x x x f ∈+=ππ【山东省实验中学2012届高三第二次诊断理】在ABC ∆中,︒===60,2,6B BC AC ,则=∠A ,AB= .【答案】45,13+三、解答题【山东省潍坊市2012届高三上学期期中四县一校联考理】18.(本小题满分12分)在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,且bcB A 2tan tan 1=+. (Ⅰ)求角A ;(Ⅱ)已知6,27==bc a 求c b +的值. 【答案】解:(Ⅰ)由1+tan 2sin cos 2sin tan cos sin sin A c A B CB b A B B==及正弦定理,得1+,……3分 cos sin sin cos 2sin cos sin sin A B A B CA B B+=即, sin()2sin ,cos sin sin A B C A B B+∴= ………………………………………………5分 1sin()sin 0,cos .2ABC A B C A ∆+=≠∴=在中,…………………………6分0,.3A A ππ<<∴= …………………………………………7分(Ⅱ)由余弦定理2222cos a b c bc A =+-,………………………………8分 又71,6,cos 22a bc A ===, 则22494b c bc =+-=22()3()18b c bc b c +-=+-,……………………10分 解得11.2b c += ……………………………………………………12分【山东省潍坊市2012届高三上学期期中四县一校联考理】20.(本小题满分12分)已知函数)0(3cos 32cos sin 2)(2>-+=ωωωω、a x x x a x f 的最大值为2.21,x x 是集合}0)(|{=∈=x f R x M 中的任意两个元素,||21x x -的最小值为2π. (Ⅰ)求ω、a 的值 (Ⅱ)若32)(=a f ,求)465sin(απ-的值. 【答案】20.(本小题满分12分)解:(I )()sin 2cos2)f x a x x ωω=-2分sin 2a x x ωω=+)x ωϕ=+ ………………………………………………4分2=,则1a =,…………………………………………5分由题知()f x 的周期为π,则22ππω=,知1ω=.…………………………7分 (II )由3132sin ,3232sin 232)(=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=παπαα即知f .……………………8分 ⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛-∴324cos 32423sin 465sin παπαπαπ………………… 10分97312132sin 2122-=⎪⎭⎫⎝⎛⨯+-=⎪⎭⎫ ⎝⎛++-=πα. ……………………12分【山东省临沭一中2012届高三12月理】17. (本小题12分)ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,若sin sin sin a c Bb c A C-=-+. (1)求角A ;(2)若22()cos ()sin ()f x x A x A =+--,求()f x 的单调递增区间.【答案】【山东省淄博市第一中学2012届高三第一学期期中理】17、(满分12分)已知向量0),sin cos 32,(cos ),sin ,(cos >-==ωωωωωωx x x x x ,函数||)(x f +∙=,且函数)(x f 图象的相邻两条对称轴之间的距离为2π(1)求ω的值 (2)作出函数)(x f 在],0[π上的图象(3)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,,23,2,2)(===∆ABC S c A f 求a 的值【答案】17、解:(1)f(x)= m →·n →+|m →|=cos 2wx+23sinwxcoswx-sin 2wx+1 =cos2wx+3sin2wx+1=2sin(2wx+π6)+1由题意知T=π,又T=2π2w =π, ∴w=1(2)图省略(3)f(x)=2sin(2x+π6)+1,∴f(A)=2sin(2A+π6)+1=2, ∴sin(2A+π6)=12,∵0<A<π, ∴π6<2A+π6<2π+π6,∴2A+π6=5π6,∴A=π3,∴S △ABC =12bcsinA=32,∴b=1,∴a 2=b 2+c 2-2bccosA=1+4-2×2×1×12=3∴a= 3.【山东省山师大附中2012届高三第二次模拟理】17.(本小题满分12分)已知函数R x x x x x f ∈-+=,21cos cos sin 3)(2(1)求函数)(x f 的最小正周期和单调增区间;(2)作出函数在一个周期内的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省七年高考试题数学理科三角函数汇编(2005年—2012年)
(一)2012年山东理科:
7.若42ππ
θ⎡⎤∈⎢⎥⎣⎦
,,sin 2θ,则sin θ=( )(A )35 (B )45 (C (D )3
4
17.已知向量m =)1,(sin x ,n =)2cos 2,
cos 3(x A
x A (0>A ), 函数=)(x f m ·n 的最大值为6. (1)求A ;(2)将函数)(x f 的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的2
1
倍,纵
坐标不变,得到的函数)(x g y =的图象,求)(x g 在⎥
⎦
⎤
⎢⎣⎡245,0π上的值域. (二)2011年山东理科:
(6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤
⎢⎥⎣⎦
上单调递减,则ω=( ) (A )3 (B )2 (C )
32 (D )2
3
(17)(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cos C 2c-a
=cos B b
.
(Ⅰ)求
sin sin C A 的值;(Ⅱ)若cosB=1
4
,b=2, 求△ABC 的面积S. (三)2010年山东理科:
(15)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,若2cos sin ,2,2=-==
B B b a ,则角A
的大小为 。
(17)(本小题满分12分)已知函数)0)(2
sin(21cos cos sin 2sin 21)(2πϕϕπ
ϕϕ<<+-+=
x x x f ,其图象过点).2
1
,6(π(Ⅰ)求ϕ的值;(Ⅱ)将函数)(x f y =的图象上各点的横坐标缩短到原来的21,纵坐标不变,
得到函数)(x g y =的图象,求函数)(x g 在]4
,0[π
上的最大值和最小值。
(四)2009年山东理科:
(3) 将函数y=sin 2x 的图像向左平移
4π
个单位,再向上平移1个单位,所得图像的函数解析式是( ) (A )y=cos 2x (B )y=22cos x (C )y=1+sin 24x π⎛⎫+ ⎪
⎝
⎭
(D )y=2
2sin x
(17)(本小题满分12分)设函数()2cos(2)sin 3
f x x x π
=+
+。
(Ⅰ)求函数()f x 的最大值和最小正周期;(Ⅱ)设A ,B ,C 为ABC ∆的三个内角,若11
cos ,()324
c B f ==-,且C 为锐角,求sin A 。
(五)2008年山东理科: (5)已知cos (α-6π)+sin α=的值是则)67sin(,354π
α-( )(A )-532(B )5
32 (C)-54 (D) 54
(15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = .
(17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π(Ⅰ)求f (8
π
)的值;(Ⅱ)将函数y =f (x )的图象向右平移
6
π
个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. (六)2007年山东理科: 5 函数sin(2)cos(2)63
y x x π
π
=+
++的最小正周期和最大值分别为( )
(A ),1π (B ) π (C )2,1π (D ) 2π(20)(本小题满分12分) 如图,甲船以每小时302海里的速度向正北方向航行,乙船按固
定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两
船相距20海里.当甲船航行20分钟到达A 1处时,乙船航行到甲船的北偏西120°方向的B 1处,此时两船相距102海里,问乙船每小时航行多少海里? (七)2006年山东理科:
(4)在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,已知,3
π
=A 1,3==b a ,c=( )
(A )1 (B )2 (C )3-1 (D )3
已知函数0)((sin )(2
>+=A x A x f ϕω,0>ω,)2
0π
ϕ<
<,且)(x f y =的最大值为2,其图象相邻
两对称轴间的距离为2,并过点(1,2).(Ⅰ)求ϕ;(Ⅱ)计算)2008
()2()1(f f f +++ . (八)2005年山东理科:(3)已知函数sin()cos(),12
12
y x x π
π
=-
-
则下列判断正确的是( )
(A )此函数的最小正周期为2π,其图象的一个对称中心是(,0)12
π
(B) 此函数的最小正周期为π,其图象的一个对称中心是(
,0)12
π
(C) 此函数的最小正周期为2π,其图象的一个对称中心是(,0)6
π
(D) 此函数的最小正周期为π,其图象的一个对称中心是(
,0)6
π
(17)(本小题满分12分)已知向量(c o s ,s i n )m θ
θ= 和sin ,cos ),(,2)n θθθππ=∈
,且
5
m n += ,求cos()28θπ+的值。