黑龙江省哈尔滨市2018届九年级数学上学期期中试题新人教版五四制含答案
2018黑龙江哈尔滨六十九中九年级上数学期中试卷
2018-2019学年黑龙江省哈尔滨六十九中九年级(上)期中数学试卷与答案(五四学制)一.选择题1.﹣的相反数是( A )A.B.﹣ C.﹣2 D.22.下列计算正确的是( A )A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+13.在下列图形中,既是轴对称图形,又是中心对称图形的是( C )A.B.C.D.4.反比例函数y=的图象经过点(﹣2,5),则k的值为( C )A.10 B.﹣10 C.4 D.﹣45.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是( B )A.10% B.20% C.25% D.40%6.已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是( A )A.增大 B.减小 C.先增大再减小 D.先减小再增大7.如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于( B )A.a•sinαB.a•tanαC.a•cosαD.8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( C )A.B.C.D.9.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是( C )A.B.C.D.10.如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是( B )A.B.C.D.二.填空题11.将38000用科学记数法表示为 3.8×104.12.函数y=中自变量x的取值范围是x≠﹣.13.计算:﹣= .14.把多项式xy2﹣4x分解因式的结果为x(y+2)(y﹣2).15.不等式组的整数解是 2 .16.方程=的解为x=5 .17.如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则= .18.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为4.19.在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为或15 .20.如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG= .三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.解:∵m=tan60°﹣2sin30°=﹣2×=﹣1,∴÷=×===.22.图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.(1)解:如图a(2)如图b.23.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?解:(1)由图可知,坐位体前摆的人数与仰卧起坐的人数是25+20=45人,这些人占班级参加测试总人数的百分数为(1﹣10%)=90%,所以这个班参加测试的学生有 45÷90%=50人,答:该学校九年级一班参加体育达标测试的学生有50人.(2)立定跳远的人数为50﹣25﹣20=5人,(3)用样本估计总体,全校参加仰卧起坐达标测试的人数有1200×(20÷50)=480人,答:估计参加仰卧起坐测试的有480人.24.在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC 相等的线段(线段AC除外).解:(1)证明:如图1,∵AD=CD,DE⊥AC,∴∠DCA=∠ADC,CE=AE,∵CF∥AB,∴∠ECF=∠EAD,∴∠DCA=∠ECF,即CE平分∠DCF,而CE⊥DF,∴CD=CF,∴AD∥CF,∴四边形ADCF为平行四边形,而DA=DC,∴四边形ADCF是菱形;(2)如图2,∵∠ACB=90°,∠B=30°,∴∠BA C=60°,而DA=DC,∴△ADC为等边三角形,∴AC=AD=CD,∠ACD=60°,∵四边形ADCF为菱形,∴AC=AD=DC=CF=AF,∵∠B=∠DCB=30°,∴BD=CD,∴AC=AD=DC=CF=AF=BD.25.(10分)(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.26.已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF的长.解:(1)如图1,连接OD,∴OA=OD,∵CD∥AB,∴∠BOD=∠NDO,,∴∠AOC=∠BCD,∴∠AOC=∠CDO,在△AMO和△OND中,,∴△AMO≌△OND,∴AM=ON,(2)如图2,过点C作CG⊥AB,PH⊥AB,∴CG=PH,∵AP=OP,∠APO=90°,∴∠AOP=45°,PH=OA,∴CG=OA=OC,∴∠AOC=30°,∴∠COP=∠AOP﹣∠AOC=15°.(3)如图3,作OG⊥CD于G,连接OD,∵AB=20,∴OC=10CG=OC•cos∠C=OC•cos∠AOC=10×=8 ∴CD=2CG=16∵NE=NF,∴∠E=∠EFN∵CD∥AB,∴∠EFN=∠A∴∠E=∠A,∴OE=OA∵CD∥AB,∴∠BOD=∠D=∠C=∠AOC∴∠AOE=∠COD∴△AOE≌△COD,∴AE=CD=16∵△AOM≌△ODN,∴∠NOD=∠A=∠E∴AE∥OD,∴四边形AODF是平行四边形∴AF=OD=10∴EF=AE﹣AF=16﹣10=6,27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C, =.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.解:(1)对于抛物线y=mx2﹣6mx+5m,令y=0,得mx2﹣6mx+5m=0,解得x=1或5,∴A(1,0),B(5,0),∴AB=4,∵=,∴OC=5,∴5m=5,∴m=1.(2)如图2中,设P(t,t2﹣6t+5).∵OC=OB=5,∠AOB=90°,∴∠OCB=∠OBC=∠EBF=45°,∵PE⊥AB于F,∴△BEF是等腰直角三角形,∴BF=EF=t﹣5,∴点E坐标(t,5﹣t),∵A(1,0),P(t,t2﹣6t+5),设直线AP的解析式为y=kx+b,则有,解得,∴D(0,5﹣t),∴D、E两点纵坐标相同,∴DE∥AB.(3)如图3中,在DE上截取一点M,使得DM=MG.设P(t,t2﹣6t+5).则PE=t2﹣5t.∵EG=2PG,∴GE=(t2﹣5t),∵MD=MG,设DM=MG=a,∴∠MDG=∠MGD,∴∠GME=2∠MDG,∵∠DPE=2∠GDE,∴∠DPE=∠GME,∴tan∠DPE=tan∠GME,∴=,在Rt△MGE中,a2=(t﹣a)2+[(t2﹣5t)]2,∴a=t3﹣t2+t,∴EM=t﹣a=﹣t3+t2﹣t,∴=,整理得到16t2﹣160t+391=0,解得t=或(舍弃),∴点P坐标(,).。
黑龙江省哈尔滨市九年级上学期期中数学试卷
黑龙江省哈尔滨市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018九上·仁寿期中) 在二次根式① ,② ,③ ,④ 中,是同类二次根式的是()A . ①和③B . ②和③C . ①和④D . ③和④2. (2分)方程x2﹣2=0的解为()A . 2B .C . 2与﹣2D . 与﹣3. (2分)如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为()A .B .C .D .4. (2分)若关于的一元二次方程x2-2x+m=0有两个不相等的实数根,则的取值范围是()。
A . m<-1B . m<1C . m>-1D . m>15. (2分) (2020八下·莘县期末) 下列计算正确的是()A .B .C .D .6. (2分)(2017·天津) 估计的值在()A . 4和5之间B . 5和6之间C . 6和7之间D . 7和8之间7. (2分)学校组织足球比赛,赛制为单循环形式(每两队之间赛一场),计划安排21场比赛,应有多少队参加比赛?设应有x队参加比赛,则根据题意x满足的关系式为()A . x(x﹣1)=21B . x(x+1)=21C . x(x﹣1)=21D . x(x+1)=218. (2分) (2018九上·罗湖期末) 下列命题中,属于假命题的是()A . 有一个锐角相等的两个直角三角形一定相似B . 对角线相等的菱形是正方形C . 抛物线y=y2-20x+17的开口向上D . 在一次抛掷图钉的试验中,若钉尖朝上的频率为3/5,则钉尖朝上的概率也为3/5二、填空题 (共6题;共8分)9. (1分) (2018八上·南山期末) 函数表达式y= 自变量x取值范围是________.10. (1分)若将方程,化为,则m=________ .11. (3分) (2020八下·海原月考) 的相反数是________,︱︱= ________;________.12. (1分)若关于x的方程(a+3)x2﹣2x+a2﹣9=0有一个根为0,则a=________.13. (1分) (2018八上·天台期中) 已知一个等腰三角形一边长为3,周长为15,则它的腰长等于________.14. (1分) (2018八下·罗平期末) 如图,在边长为1的菱形ABCD中,∠ABC=120°连接对角线AC,以AC 为边作第二个菱形ACEF,使∠ACE=120°连接AE,再以AE为边作第三个菱形AEGH,使∠AEG=120°,…,按此规律所作的第n个菱形的边长是________.三、解答题 (共10题;共95分)15. (5分) (2017八下·明光期中) 计算:.16. (20分)解方程(1) x2﹣7x+6=0(2)(5x﹣2)2=3(5x﹣2)(3) 3x2+8x﹣3=0(用配方法)(4) x2﹣2 x+2=0(用公式法)17. (5分)如图,已知四边形ABCD相似于四边形A′B′C′D′,求∠A的度数及x的值.18. (5分) (2015九上·句容竞赛) 已知a、b、c都是整数,且a—2b=4,ab+c2—1=0,求a+b+c的值。
人教版2018年秋九年级数学上册期中试卷(含答案解析)
人教版2018年秋九年级数学上册期中试卷(含答案解析)2018年秋季九年级数学上册期中检测题,共120分,时间限制120分钟。
一、选择题(共30分)1.方程(x+2)^2=4的根是()A。
x1=4,x2=-4B。
x1=0,x2=-4C。
x1=0,x2=2D。
x1=0,x2=42.下列四个图形中,不是中心对称图形的是()A.B.C.D.3.将y=x^2+4x+1化为y=a(x-h)^2+k的形式,h,k的值分别为()A。
2,-3B。
-2,-3C。
2,-5D。
-2,-54.在同一坐标系中一次函数y=ax-b和二次函数y=ax^2+bx的图像可能为()A.B.C.D.5.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()无图,无法判断)6.用配方法解方程3x^2-6x+1=0,则方程可变形为()A。
(x-3)^2=0B。
3(x-1)^2=0C。
(x-1)^2=0D。
(3x-1)^2=17.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A。
800(1+a%)^2=578B。
800(1-a%)^2=578C。
800(1-2a%)=578D。
800(1-a^2%)=5788.将抛物线y=3x^2向右平移2个单位,再向上平移3个单位,得到抛物线的解析式是()A。
y=3(x+2)^2+3B。
y=3(x+2)^2-3C。
y=3(x-2)^2+3D。
y=3(x-2)^2-39.把一个物体以初速度v(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=vt-gt^2(其中g是常数,取10米/秒^2)。
某时,XXX在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是()A。
2018年新人教版九年级上学期期中数学试题附解析
2018-2019学年九年级(上)期中试卷一.选择题(共10小题,满分30分)1.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.2.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x23.已知点M在第一象限,若点N与点M关于原点O对称,则点N在()A.第一象限B.第二象限C.第三象限D.第四象限4.方程①;②3y2﹣2y=﹣1;③2x2﹣5xy+3y2=0;④中,是一元二次方程的为()A.①B.②C.③D.④5.关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定6.关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1B.2C.3D.47.已知一元二次方程1﹣(x﹣3)(x+2)=0,有两个实数根x1和x2,(x1<x2),则下列判断正确的是()A.﹣2<x1<x2<3B.x1<﹣2<3<x2C.﹣2<x1<3<x2D.x1<﹣2<x2<38.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.9.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.10.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1B.2C.22D.30二.填空题(共6小题,满分18分,每小题3分)11.将y=x2﹣2x+3化成y=a(x﹣h)2+k的形式,则y=.12.一元二次方程x2﹣4x+2=0的两根为x1,x2,则x12﹣4x1+2x1x2的值为.13.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=°.14.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.15.如果二次函数y=x2﹣8x+m﹣1的顶点在x轴上,那么m=.16.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为.三.解答题(共8小题,满分47分)17.(8分)解方程:(1)2y2+5y=7.(公式法)(2)y2﹣4y+3=0(配方法)18.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.19.(7分)淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?20.(7分)某景区商店以2元的批发价进了一批纪念品.经调查发现,每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件.根据规定:纪念品售价不能超过批发价的2.5倍.(1)当每个纪念品定价为3.5元时,商店每天能卖出件;(2)如果商店要实现每天800元的销售利润,那该如何定价?21.(8分)四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,(1)求DE的长度;(2)BE与DF的位置关系如何?22.(9分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,求AA′的长.23.如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为570米2,问小路应为多宽?24.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)求证:对任意实数m,点P(m,m2﹣5)都不在此抛物线上.参考答案一.选择题1.D.2.B.3.C.4.B.5.A.6.D.7.B.8.D.9.C.10.D.二.填空题11.(x﹣1)2+2.12.2.14.1.15.17.16.y=(x﹣3)2+2三.解答题17.解:(1)原方程整理成一般式可得2y2+5y﹣7=0,∵a=2,b=5,c=﹣7,∴△=25﹣4×2×(﹣7)=81>0,则y=,∴y=1或y=﹣;(2)∵y2﹣4y=﹣3,∴y2﹣4y+4=﹣3+4,即(y﹣2)2=1,则y﹣2=1或y﹣2=﹣1,解得:y=3或y=1.18.解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z ﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴==1.19.解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.(2)根据题意得:12100×(1+10%)=13310(元),答:第四天该校能收到的捐款是13310元.20.解:(1)∵每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件,∴当每个纪念品定价为3.5元时,商店每天能卖出:500﹣10×=450(件);故答案为:450;(2)设实现每天800元利润的定价为x元/个,根据题意,得(x﹣2)(500﹣×10)=800.整理得:x2﹣10x+24=0.解之得:x1=4,x2=6.∵物价局规定,售价不能超过批发价的2.5倍.即2.5×2=5<6∴x2=6不合题意,舍去,得x=4.答:应定价4元/个,才可获得800元的利润.21.解:(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°,∠EBA=∠FDA;∴DE=AD﹣AE=7﹣4=3;(2)∵∠EAF=90°,∠EBA=∠FDA,∴延长BE与DF相交于点G,则∠GDE+∠DEG=90°,∴BE⊥DF,即BE与DF是垂直关系.22.解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2∴∠CAB=30°,AB=4,∵由已知可得:AB=A′B′=4,AC=A′C,∴∠A′AC=∠A′=30°,又∵∠A′B′C=∠B=60°∴∠A′AC=∠B′CA=30°,∴AB′=B′C=2,∴AA′=2+4=6.23.解:设小路宽为x米,则小路总面积为:20x+20x+32x﹣2•x2=32×20﹣570,整理,得2x2﹣72x+70=0,x2﹣36x+35=0,∴(x﹣35)(x﹣1)=0,∴x1=35(舍),x2=1,∴小路宽应为1米.24.(1)解:∵抛物线顶点在直线x=上,∴﹣=,解得b=﹣,∵抛物线y=x2+bx+c经过点B(0,4),∴c=4,∴抛物线对应的函数关系式为y=x2﹣x+4;(2)解:四边形ABCD是菱形时,点C、D在该抛物线上.理由如下:∵A(﹣3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵四边形ABCD是菱形,∴AB=BC=AD=5,∴点C(5,4),D(2,0),当x=5时,y=×52﹣×5+4=﹣+4=4,当x=2时,y=×22﹣×2+4=﹣+4=0,∴点C、D在该抛物线上;(3)证明:若点P(m,m2﹣5)在抛物线上,则有m2﹣m+4=m2﹣5,整理,得m2﹣10m+27=0,∵△=102﹣4×27=﹣8<0,∴方程无实数根,∴对任意实数m,点P(m,m2﹣5)都不在这个二次函数的图象上.。
2018届九年级数学上学期期中试题(五四制)
2018届九年级数学上学期期中试题注意事项:1、答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目等内容填、写(涂)准确。
2、本试题分第I 卷和第II 卷两个部分,第I 卷为选择题共48分,第II 卷为非选择题共72分,共120分,考试时间为120分钟。
3、第I 卷每小题选出答案后,必须用2B 铅笔把答题卡上,对应题目的答案标号(AB-CD )涂黑,如需改动,须先用橡皮擦干净再改涂其它答案,第II 卷须用蓝黑钢笔或圆珠笔直接答在试卷上,考试时,不允许使用计算器。
4、考试结束后,由监考教师把第I 卷和第II 卷及答题卡一并收回。
第I 卷(选择题 共48分)一、选择题:(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上,每小题4分,错选、不选或选出的答案超过一个,均记0分) 1. 若二次函数26y x x c =-++的图像经过点1(1)A y -,,2(2)B y ,,3(5)C y ,,则123y y y 、、的大小关系正确的为( )A. 132y y y >>B. 231y y y >>C. 123y y y >>D. 312y y y >>2. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )A. 3=b ,7=cB. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c3.在Rt △ABC 中,∠C =90°,tanA =43,BC =8,则△ABC 的面积为 ( ) A .12 B .18 C .24 D .484. 如图所示,是反比例函数1k y x =和2ky x=(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) A 、1 B 、2 C 、4 D 、8第4题图5. 在Rt △ABC 中 ,90C ∠=︒,4sin 5A =,则tan B 的值是( ) A .34 B .35 C .43 D.36. 若点A (﹣5,y 1),B (﹣3,y 2),C (2,y 3)在反比例函数y=的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 37. 如图所示,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=在第一象限内的图象交于点B ,连接BO .若=∆OBC s 1,tan ∠BOC=,则k 2的值是( ) A. 3- B. 1 C. 2 D. 38. 如图所示,在高楼前D 点测得楼顶的仰角为30°,向高楼前进60米到C 点,又测得仰角为45°,则该高楼的高度大约为( ).A.82米 B.163米 C.52米D.70米9. 如图所示,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则tan EFC ∠的值为 ( )A.34 B.43C.35 D.45第7题图A D ECBF第9题图第8题图第10题图第8题图10. 如图所示,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠=,则AD 的长为( ) A.2 C .1 D.11.如图所示,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △O A C ﹣S △B A D 为( )A .36B .12C .6D .312. 如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1,其中正确的是( )A . ①②③B . ①③④C . ①③⑤D . ②④⑤二、填空题(本大题共5小题,每小题4分,共20分)13. . 函数y =2x 2– 4x – 1写成y = a (x –h)2+k 的形式是_________________. 14. 若函数2(3)21y m x x =--+的图像与x 轴只有一个公共点,则m 的值是__________.15. 如图,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3, 则k =____________.16、如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是 _米。
黑龙江省哈尔滨市九年级上学期数学期中考试试卷
黑龙江省哈尔滨市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·郑州期中) 下列各式中是一元二次方程的有()A . 3x2=1B . x2+y2=4C .D . xy=22. (2分) (2018九上·长兴月考) 抛物线y=(x-2)2的对称轴是()A . 直线x=-1B . 直线x=1C . 直线x=-2D . 直线x=23. (2分) (2020九下·滨湖月考) 若将抛物线y=x2平移,得到新抛物线,则下列平移方法中,正确的是()A . 向左平移3个单位B . 向右平移3个单位C . 向上平移3个单位D . 向下平移3个单位4. (2分) (2020九上·鹿城月考) 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A .B .C .D .5. (2分)在如图直角坐标系内,四边形AOBC是边长为2的菱形,E为边OB的中点,连结AE与对角线OC 交于点D,且∠BCO=∠EAO,则点D坐标为()A . (,)B . (1,)C . (,)D . (1,)6. (2分)已知⊙O的半径为3,一点到圆心的距离是5,则这点在()A . 在⊙O内B . 在⊙O上C . 在⊙O外D . 不能确定7. (2分)如图,在宽为,长为的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为,求道路的宽.如果设小路宽为,根据题意,所列方程正确的是().A .B .C .D .8. (2分)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A . 只能是x=﹣1B . 可能是y轴C . 可能在y轴右侧且在直线x=2的左侧D . 可能在y轴左侧且在直线x=﹣2的右侧9. (2分)(2020·遵义模拟) 如图,以正方形的顶点为坐标原点,直线为轴建立直角坐标系,对角线与相交于点,为上一点,点坐标为,则点绕点顺时针旋转90°得到的对应点的坐标是()A .B .C .D .10. (2分)(2019·苏州模拟) 如图,⊙ 中,直径与弦相交于点,连接,过点的切线与的延长线交于点,若,则的度数等于()A . 30°B . 35°C . 40°D . 45°二、填空题 (共5题;共5分)11. (1分) (2020八下·柯桥期末) 将方程x(x﹣2)=x+3化成一般形式后,二次项系数为________.12. (1分) (2016九上·大石桥期中) 已知函数是关于x的二次函数,则m的值为________.13. (1分) (2019八上·深圳月考) 如图,在边长为4的正方形中,是边的中点,将沿对折至,延长交于点,连接,则的长为________.14. (1分) (2018九上·青海期中) 若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________.15. (1分)(2018·南充) 如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).三、解答题 (共8题;共60分)16. (10分) (2019九上·綦江月考) 解下列方程(1)(2)17. (2分)(2020·聊城) 如图,在 ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6 ,求此时DE的长.18. (5分)用反证法证明:若二次方程8x2﹣(k﹣1)x+k﹣7=0有两个不等实数根,则两根不可能互为倒数.19. (10分)如图所示,已知等边△ABC的两个顶点的坐标为A(﹣4,0),B(2,0).(1)用尺规作图作出点C,并求出点C的坐标;(2)求△ABC的面积.20. (11分) (2019九上·西城期中) 某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.(1)如果市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元?(2)设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.若不考虑其他因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?21. (2分) (2020九上·台州月考) 如图,在平面直角坐标系中,△ 的三个顶点坐标分别为,, .( 1 )画出将△ 向左平移4个单位得到的△ ,并写出的坐标;( 2 )画出将△ 绕点逆时针旋转得到的△ ,并写出的坐标.22. (10分) (2020九上·覃塘期末) 把一副三角板按如图1所示放置,其中点在边上,,斜边 .将三角板绕点顺时针旋转,记旋转角为 .(1)在图1中,设与的交点为,则线段AF的长为________;(2)当时,三角板旋转到,的位置(如图2所示),连接,请判断四边形的形状,并证明你的结论;(3)当三角板旋转到的位置(如图3所示)时,此时点恰好在的延长线上.①求旋转角的度数;②求线段的长.23. (10分)(2014·宿迁) 如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共60分)答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-2、考点:解析:。
黑龙江省哈尔滨市九年级数学上学期期中试题 新人教版五四制
黑龙江省哈尔滨市2018届九年级数学上学期期中试题考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题 卡上填写清楚。
3.请按照题号的顺序在答题卡各题目的答题区域内作答,超出答题区域书 写的答案无效;在草纸、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹 的签字笔书写,字体工整、笔记清楚。
5.保持卡面整洁、不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修 正带、刮纸刀。
第Ⅰ卷 选择题(共30分)(涂卡)一、 选择题(每题3分,共计30分) 1.下列四个数中,绝对值最小的数是( )A.-3B.0C.1D.22.下列运算正确的是( )A.257()a a =B.642a a a =⋅C.22330a b ab -= D.2222a a ⎛⎫= ⎪⎝⎭3.下列的平面几何图形中,既是轴对称图形又是中心对称图形的是( )4.反比例函数y =k -3x的图象,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ) A.k <3 B.k ≤3 C.k >3 D.k ≥3 5.抛物线2)1(32+-=x y 的顶点坐标是( )A.(1,-2)B.(-1,2)C.(1,2)D.(-1,-2)6.已知:在△ABC 中,点D 为AB 上一点,过点D 作BC 的平行线交AC 于点E,过点EDE A作AB 的平行线交BC 于点F,连接CD,交EF 于点K.则下列说法不正确的是( ) A.FCBF FK BD =B.AC AE BC DE =C.AC AE AB AD =D.AB ADBC BF = 7.如图,将△ABC 绕点A 按逆时针方向旋转l20°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A.45°B.60°C.70°D.90°8.如图,AB 是⊙O 的直径,CD 为弦,连结AD 、AC 、BC ,若∠CAB=65°则∠D 的度数为( ) A.65° B.40° C.25° D.35°9.如图,有一轮船在A 处测得南偏东30°方向上有一小岛F ,轮船沿正南方向航行至B 处,测 得小岛F 在南偏东45°方向上,按原方向再航行10海里至C 处,测得小岛F 在正东方向上,则A ,B 之间距离是( ) A.10海里 B.(10-10)海里 C.10海里 D.(10-10)海里10.如图表示小亮从家出发步行到公交车站,等公交车最后到达学校,图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系,下列说法中正确的个数有( )①学校和小亮家的路程为8km ; ②小亮等公交车的时间为6min ;③小亮步行的速度是100m/min ;④公交车的速度是350m/min ; ⑤小亮从家出发到学校共用了24min. A.2个 B.3个 C.4个 D.5个第Ⅱ卷 非选择题(共90分)二、 填空题(每小题3分,共计30分)11.将1 027 000用科学记数法表示为 . 12.函数3-x 21x y +=中,自变量x 的取值范围是 . s /kmt /min30161081O第7题图CB′BA C′第8题图 第9题图13.计算313-48的结果是 . 14.把多项式22344ab b a a +-分解因式的结果是 .15.不等式组⎩⎪⎨⎪⎧3x -1<2-x -1<1的解集为 .16.方程13123x x =-+的解为 . 17.某商品经过连续两次降价,销售单价由原来的640元降到360元,则平均每次降价的百分率为 .18.如图,AB 为⊙O 的直径,弦CD⊥AB 于点E ,若AE=8,BE=2,则CD= . 19.已知:正方形ABCD 的边长为3,点P 是直线CD 上一点,若DP=1,则tan ∠BPC 的值是 .20.如图,△ABC 为等腰直角三角形,∠A BC =90°,过点B 作BQ ∥AC,在BQ 上取一点D ,连接CD 、AD,若AC=CD,BD=2,则AD= .三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分) 21.(本题7分) 先化简,再求代数式1112112+÷⎪⎭⎫ ⎝⎛---+a a a a 的值,其中︒+︒=45tan 60sin 2a .22.(本题7分)如图,网格中每个小正方形的边长均为1,线段AB 、线段EF 的端点均在小正方形的顶点上. (1)在图中画以EF 为直角边的等腰直角△DEF,点D 在小正方形的格点上;(2)在(1)的条件下,在图中画一个Rt△BAC,点C 在小正方形的格点上;使∠BAC=90°,且△BAC 的面积为2,连接CD ,直接写出线段CD 的长.DAQ BAE CDO第18题图BFA23.(本题8分)某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求本次调查共抽取了多少份书法作品? (2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B 级以上(即A 级和B 级)有多少份?24.(本题8分)四边形ABCD 为菱形,BD 为对角线,在对角线BD 上任取一点E ,连接CE ,把线段CE 绕点C 顺时针旋转得到线段CF ,使得∠ECF=∠BCD ,点E 的对应点为点F ,连接DF. (1)如图1,求证:BE=DF; (2)如图2,若DF=25CF=10, ∠DFC=2∠BDC,求菱形ABCD 的边长.25.(本题10分)某商品批发商场共用22000元同时购进A 、B 两种型号背包各400个,购进A 型号背包30个比购进B 型背包15个多用300元.(1)求A 、B 两种型号背包的进货单价各为多少元?(2)若商场把A 、B 两种型号背包均按每个50元定价进行零售,同时为扩大销售,拿出一部分背包按零售价的7折进行批发销售.商场在这批背包全部售完后,若总获利超过10500元,则商场用于批发ECB AF图1 EBCAF图2的背包数量最多为多少个? 26.(本题10分)已知:在⊙O 中,弦AC ⊥弦BD,垂足为H,连接BC,过点D 作DE ⊥BC 于点E ,DE 交AC 于点F. (1)如图1,求证:BD 平分∠ADF;(2)如图2,连接OC ,若OC 平分∠ACB,求证:AC=BC;(3)如图3,在(2)的条件下,连接AB,过点D 作DN ∥AC 交⊙O 于点N,若tan ∠ADB=43,AB=310,求DN 的长.27.(本题10分)如图,在平面直角坐标系中,点O 为坐标原点,抛物线y=-31x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C,直线y=x+6经过A 、C 两点. (1)求抛物线的解析式;(2)点P 是第二象限抛物线上的一个动点,过点P 作PQ ∥AC,PQ 交直线BC 于点Q ,设点P 的横坐标为t ,点Q 的横坐标为m,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);图1图2图3(3)在(2)的条件下,作点P 关于直线AC 的对称点点K,连接QK,当点K 落在直线 y=-512x 上时,求线段QK 的长.数学答案一、选择题1.B2.B3.D4.A5.C6.A7.D8.C9.D 10.B 二、填空题11.1.027×10612.x ≠23 13.33 14.a(a-2b)215.-2<x <1 16. x=6 17.25℅ 18.8 19.23或4320.2 三、解答题: 21.解:原式=11a ,a=3+1, 原式=3322.(1)略 (2)CD=1023.(1)120 (2)C:36 D:12 (3)45024. (2) 过点C 作CK ⊥BD 于点K,联立解△DEC 和△DBC,边长=74 25.解:(1)A:25元,B:30元(2)a <500,∵a 为正整数 ∴a 的最大正整数为499 26. (2)连接OA 、OB ,证△AOC ≌△BOC(3)连接BN ,过点O 作OP ⊥BD 于点P, 过点O 作OQ ⊥AC 于点Q,求得OP=HQ=29, ∴DN=2OP=9 27.解:(1) y=-31x 2-x+6 (2)过点P 作y 轴的平行线PK 交直线BC 于点K ,解△PQK 得m=91t 2+32t(3)连接CP 、CK 、PK,过点C 作CN ∥x 轴交过点P 平行于y 轴的直线于点N ,过点K 作KM ⊥y 轴于点M, 证△CNP ≌△CMK 可得K (-31t 2-t ,t+6),把K (-31t 2-t ,t+6)代入y=-512x 中,解得t 1=2(舍去),t 2=-415,∴K(-1615,49),Q(-1615,863),∴QK ∥y 轴,∴QK=863-49=845.。
【初三数学】哈尔滨市九年级数学上期中考试单元测试卷(含答案)
新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④答案 B3.下面说法:①线段AC=BC,则C是线段AB的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )A.3cmB.6cmC.11cmD.14cm答案 B6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A .40°B .50°C .25°D .60°答案C13.如图,C 、D 是线段AB 上的点,若AB =8,CD =2,则图中以A 、C 、D 、B 为端点的所有线段的长度之和为A .24B .22C .20D .26答案D14.角α和β互补,α>β,则β的余角为A .α–βB .180°–α–βC .D .答案C二、填空题15.如图,从A 到B 的最短的路线是 .答案 A →F →E →B16.如图所示,延长线段AB 到C,使BC=4,若AB=8,则线段AC 的长是BC 的 倍.答案 317.如图,已知M 、N 分别是AC 、CB 的中点,MN=6 cm,则AB= cm.1()2αβ-90αβ︒-答案1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于.答案2419.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC20.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”)答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.答案(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).而AD=AC=3cm,故BD=DA+AB=3+2=5(cm).24.如图,七年级小林同学在一张透明纸上画了一条长8cm的线段MN,并在线段MN上任意找了一个不同于M、N的点C,然后用折纸的方法找出了线段MC、NC的中点A和B,并求出了线段AB的长为4cm.回答:(1)小林是如何找到线段MC、NC的中点的?又是如何求出线段AB的长为4cm的?(2)在反思解题过程时,小林想到:如果点C在线段MN的延长线上,“AB=4cm”这一结论还成立吗?请你帮小林画出图形,并解决这一问题.答案(1)纸是透明的,小林将纸对折,依次使点M、C重合,点N、C重合,两个折痕与线段MN的交点就分别是中点A和B,AB=AC+BC=MC+NC=MN=×8=4(cm).(2)成立.理由:如图,若点C在线段MN的延长线上,AB=AC-BC=MC-NC=(MC-NC)=MN=×8=4(cm).25.如图所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC 的度数.答案因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BO新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④答案 B3.下面说法:①线段AC=BC,则C是线段AB的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )A.3cmB.6cmC.11cmD.14cm答案 B6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A .40°B .50°C .25°D .60°答案C13.如图,C 、D 是线段AB 上的点,若AB =8,CD =2,则图中以A 、C 、D 、B 为端点的所有线段的长度之和为A .24B .22C .20D .26答案D14.角α和β互补,α>β,则β的余角为A .α–βB .180°–α–βC .D .答案C二、填空题15.如图,从A 到B 的最短的路线是 .答案 A →F →E →B16.如图所示,延长线段AB 到C,使BC=4,若AB=8,则线段AC 的长是BC 的 倍.答案 317.如图,已知M 、N 分别是AC 、CB 的中点,MN=6 cm,则AB= cm.答案 1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于 .1()2αβ-90αβ︒-答案2419.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC20.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”) 答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.答案(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).而AD=AC=3cm,故BD=DA+AB=3+2=5(cm).24.如图,七年级小林同学在一张透明纸上画了一条长8cm的线段MN,并在线段MN上任意找了一个不同于M、N的点C,然后用折纸的方法找出了线段MC、NC的中点A和B,并求出了线段AB的长为4cm.回答:(1)小林是如何找到线段MC、NC的中点的?又是如何求出线段AB的长为4cm的?(2)在反思解题过程时,小林想到:如果点C在线段MN的延长线上,“AB=4cm”这一结论还成立吗?请你帮小林画出图形,并解决这一问题.答案(1)纸是透明的,小林将纸对折,依次使点M、C重合,点N、C重合,两个折痕与线段MN 的交点就分别是中点A和B,AB=AC+BC=MC+NC=MN=×8=4(cm).(2)成立.理由:如图,若点C在线段MN的延长线上,AB=AC-BC=MC-NC=(MC-NC)=MN=×8=4(cm).25.如图所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC 的度数.答案因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BO新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y=2x2-1的顶点坐标是(A)A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)2.如果x=-1是方程x2-x+k=0的解,那么常数k的值为(D)A.2 B.1 C.-1 D.-23.将抛物线y=x2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A.y=(x+2)2+1 B.y=(x-2)2+1 C.y=(x+2)2-1 D.y=(x-2)2-1 4.小明在解方程x2-4x-15=0时,他是这样求解的:移项,得x2-4x=15,两边同时加4,得x2-4x+4=19,∴(x-2)2=19.∴x-2=±19.∴x1=2+19,x2=2-19.这种解方程的方法称为(B)A.待定系数法 B.配方法 C.公式法 D.因式分解法5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=-2x2+x经过A(-1,y1)和B(3,y2)两点,那么下列关系式一定正确的是(C)A.0<y2<y1 B.y1<y2<0 C.y2<y1<0 D.y2<0<y17.已知a,b,c分别是三角形的三边长,则方程(a+b)x2+2cx+(a+b)=0的根的情况是(D)A.有两个不相等的实数根 B.有两个相等的实数根C.可能有且只有一个实数根 D.没有实数根8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(D)A.68° B.20° C.28° D.22°9.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是(D)A.a>b>c B.c>a>b C.c>b>a D.b>a>c10.如图,将△ABC 绕着点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ.若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2016年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a ≠0)中x ,y 的部分对应值如下表:则当x =-2时,y 的值为11.15.如图,射线OC 与x 轴正半轴的夹角为30°,点A 是OC 上一点,AH ⊥x 轴于H ,将△AOH 绕着点O 逆时针旋转90°后,到达△DOB 的位置,再将△DOB 沿着y 轴翻折到达△GOB 的位置.若点G 恰好在抛物线y =x 2(x >0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分)(1)解方程:x(x+5)=5x+25;解:x(x+5)=5(x+5),x(x+5)-5(x+5)=0,∴(x-5)(x+5)=0.∴x-5=0或x+5=0.∴x1=5,x2=-5.(2)已知点(5,0)在抛物线y=-x2+(k+1)x-k上,求出抛物线的对称轴.解:将点(5,0)代入y=-x2+(k+1)x-k,得0=-52+5×(k+1)-k,解得k=5.∴y=-x2+6x-5.∴该抛物线的对称轴为直线x=-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y=ax2.由图象可知,点B(10,-4)在函数图象上,代入y=ax2,得100a=-4,解得a=-125,∴该抛物线的解析式为y=-125x2.18.(本题7分)如图,在平面直角坐标系中,有一Rt△ABC,已知△A1AC1是由△ABC绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A1AC1顺时针旋转90°,180°后的三角形.解:如图,△B1A1C2,△BB1C3即为所求作图形.19.(本题7分)(1)求二次函数y =x 2+x -2与x 轴的交点坐标; (2)若二次函数y =-x 2+x +a 与x 轴只有一个交点,求a 的值. 解:(1)令y =0,则有x 2+x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴只有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形. 解:(1)FG ⊥DE ,理由如下:∵把△ABC 绕点B 顺时针旋转90°至△DBE ,∴∠DEB =∠ACB. ∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A.∵∠ABC =90°,∴∠A +∠ACB =90°.∴∠DEB +∠GFE =90°.∴∠FHE =90°. ∴FG ⊥DE.(2)证明:根据旋转和平移可得∠GEF =90°,∠CBE =90°,CG ∥EB ,CB =BE , ∵CG ∥EB ,∴∠BCG =∠CBE =90°.∴四边形CBEG 是矩形. 又∵CB =BE ,∴四边形CBEG 是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均每天可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意,得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理,得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y=600时,600=-2x2+20x+400,整理,得x2-10x+100=0,∵Δ=(-10)2-4×1×100=-300<0,∴方程没有实数根.故该专卖店平均每天盈利不可能为600元.22.(本题12分)综合与实践:问题情境:(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是FH=FG,位置关系是FH⊥FG;合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A ,C ,E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(2)(1)中的结论还成立.证明:延长AD 交BE 于点M.∵CD =CE ,AC =BC ,∠ACD =∠BCE =90°, ∴△ACD ≌△BCE(SAS).∴AD =BE ,∠CAD =∠CBE.∵∠CBE +∠CEB =90°,∴∠CAD +∠CEB =90°.∴∠AME =90°.∴AD ⊥BE. ∵F ,H ,G 分别是DE ,AE ,BD 的中点,∴FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∴FH =FG.∵AD ⊥BE ,∴FH ⊥FG.∴(1)中结论还成立. (3)(1)中的结论仍成立.证明:连接AD ,BE ,两线交于点Z ,AD 交BC 于点X. 同(2)可得FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∵△ECD ,△ACB 都是等腰直角三角形,∠ECD =∠ACB =90°,∴CE =CD ,AC =BC. ∴∠ACD =∠BCE.∴△ACD ≌△BCE(SAS).∴AD =BE ,∠EBC =∠DAC.∴FH =FG. ∵∠DAC +∠CXA =90°,∠CXA =∠DXB ,∴∠DXB +∠EBC =90°.∴∠BZA =180°-90°=90°.∴AD ⊥BE. ∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG.∴(1)中的结论仍成立.23.(本题14分)综合与探究:如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B新九年级上册数学期中考试试题(含答案)一、选择题(本题共16分,每小题2分)1.(2分)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形A.B.C.D.2.(2分)二次函数y=(x+2)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(2分)如图,⊙O的直径为10,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8B.6C.4D.104.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5.(2分)如图4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.A点B.B点C.C点D.D点6.(2分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=6,阴影部分图形的A.4πB.3πC.2πD.π7.(2分)已知抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表:①物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2以上结论中其中的是()A.①④B.②④C.②③D.③④8.(2分)如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从A点出发,沿弧AM→线段BM→线段BC→线段CND.从C点出发,沿线段CN→弧ND→弧DA→线段AB二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.10.(2分)平面直角坐标系xOy中,以原点O为圆心,5为半径作⊙O,则点A(4,3)在⊙O(填:“内”或“上“或“外”)11.(2分)如图所示,把一个直角三角尺ACB绕30°角的顶点B顺时计旋转,使得点A 落在CB的延长线上的点E处,则∠BCD的度数为.12.(2分)将抛物线y=x2﹣6x+5化成y=a(x﹣h)2﹣k的形式,则hk=.13.(2分)若正六边形的边长为2,则其外接圆的面积为.14.(2分)二次函数满足下列条件:①函数有最大值3;②对称轴为y轴,写出一个满足以上条件的二次函数解析式:15.(2分)圆锥底面半径为6,高为8,则圆锥的侧面积为.16.(2分)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本原共68分,第17-22题,每小题5分,第23、24、26、28题,每小题5分,第25,27题,每小题5分)17.(5分)如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1.(2)求点B旋转到点B1所经过的路线长(结果保留π)18.(5分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示.(1)确定二次函数的解析式;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.(5分)如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.20.(5分)关于x一元二次方程x2+mx+n=0.(1)当m=n+2时,利用根的判别式判断方程根的情况.(2)若方程有实数根,写出一组满足条件的m,n的值,并求此时方程的根.21.(5分)如图,P A,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.22.(5分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w (双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?23.(6分)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.24.(6分)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE ⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,∠F=30°,求DE的长.25.(7分)如图,Q是弧AB与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交弧AB于点C,连接BC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,B,C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x的取值范围是.(2)按下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值.(3)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并面出函数y1,y2的图象.(4)结合函数图象,解决问题:当△BPC为等腰三角形时,AP的长度约为cm.26.(6分)在平面直角坐标系中xOy中,抛物线y=x2﹣4x+m+2的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上一点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标.②抛物线与直线y=1交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.27.(7分)已知:在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°(1)如图①,若∠ACD=60°,BC=1,CD=3,则AC的长为;(2)如图②,若∠ACD=45°,BC=1,CD=3,求出AC的长;(3)如图③,若∠ACD=30°,BC=a,CD=b,直接写出AC的长.28.(6分)在平面直角坐标系xOy中,点A的坐标为(0,m),且m≠0,点B的坐标为(n,0),将线段AB绕点B顺时针旋转90°.得到线段BA1,称点A1为点A关于点B的“伴随点”,图1为点A关于点B的“伴随点”的示意图(1)已知点A(0,4),①当点B的坐标分别为(1,0),(﹣2,0)时,点A关于点B的“伴随点”的坐标分别为,;②点(x,y)是点A关于点B的“伴随点”,直接写出y与x之间的关系式;(2)如图2,点C的坐标为(﹣3,0),以C为圆心,为半径作圆,若在⊙C上存在点A关于点B的“伴随点”,直接写出点A的纵坐标m的取值范围.2018-2019学年北京市朝阳区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.2.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴二次函数y=(x+2)2+3的图象的顶点坐标是(﹣2,3).故选:A.3.【解答】解:连接OA,∵OA=5,OC=3,OC⊥AB,∴AC===4,∵OC⊥AB,∴AB=2AC=2×4=8.故选:A.4.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选:B.5.【解答】解:如图,连接NN1,PP1,可得其垂直平分线相交于点B,故旋转中心是B点.故选:B.6.【解答】解:连接BC,OD,设CD交AB于E.∵∠BOC=2∠CDB,∠CDB=30°,∴∠COB=60°,∵OC=OB,∴△BOC是等边三角形,∴∠CBO=60°,∵CD⊥AB,CD=6,∴=,CE=ED=3,∴∠BOC=∠BOD=60°,EO=,OC=2,∴∠CBO=∠BOD,∴BC∥OD,∴S△BCD=S△BCO,∴S阴=S扇形OBC==2π.故选:C.7.【解答】解:从表格可以看出,函数的对称轴是x=1,顶点坐标为(1,﹣1),函数与x轴的交点为(0,0)、(2,0),①物线y=ax2+bx+c的开口向下.抛物线开口向上,错误;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1,错误;③方程ax2+bx+c=0的根为0和2,正确;④当y>0时,x的取值范围是x<0或x>2,正确.故选:D.8.【解答】解:根据画出的函数的图象,C符合,故选:C.二、填空题(本题共16分,每小题2分)9.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).10.【解答】解:∵点A(新九年级上册数学期中考试试题(含答案)一、选择题(本题共16分,每小题2分)1.(2分)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.(2分)二次函数y=(x+2)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(2分)如图,⊙O的直径为10,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8B.6C.4D.104.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5.(2分)如图4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.A点B.B点C.C点D.D点6.(2分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=6,阴影部分图形的面积为()A.4πB.3πC.2πD.π7.(2分)已知抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表:①物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2以上结论中其中的是()A.①④B.②④C.②③D.③④8.(2分)如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从A点出发,沿弧AM→线段BM→线段BC→线段CND.从C点出发,沿线段CN→弧ND→弧DA→线段AB二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.10.(2分)平面直角坐标系xOy中,以原点O为圆心,5为半径作⊙O,则点A(4,3)在⊙O(填:“内”或“上“或“外”)11.(2分)如图所示,把一个直角三角尺ACB绕30°角的顶点B顺时计旋转,使得点A 落在CB的延长线上的点E处,则∠BCD的度数为.12.(2分)将抛物线y=x2﹣6x+5化成y=a(x﹣h)2﹣k的形式,则hk=.13.(2分)若正六边形的边长为2,则其外接圆的面积为.14.(2分)二次函数满足下列条件:①函数有最大值3;②对称轴为y轴,写出一个满足以上条件的二次函数解析式:15.(2分)圆锥底面半径为6,高为8,则圆锥的侧面积为.16.(2分)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本原共68分,第17-22题,每小题5分,第23、24、26、28题,每小题5分,第25,27题,每小题5分)17.(5分)如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1.(2)求点B旋转到点B1所经过的路线长(结果保留π)18.(5分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示.(1)确定二次函数的解析式;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.(5分)如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.20.(5分)关于x一元二次方程x2+mx+n=0.(1)当m=n+2时,利用根的判别式判断方程根的情况.(2)若方程有实数根,写出一组满足条件的m,n的值,并求此时方程的根.21.(5分)如图,P A,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.22.(5分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w (双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?23.(6分)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.24.(6分)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE ⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,∠F=30°,求DE的长.25.(7分)如图,Q是弧AB与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交弧AB于点C,连接BC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,B,C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x的取值范围是.(2)按下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值.(3)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并面出函数y1,y2的图象.(4)结合函数图象,解决问题:当△BPC为等腰三角形时,AP的长度约为cm.26.(6分)在平面直角坐标系中xOy中,抛物线y=x2﹣4x+m+2的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上一点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标.②抛物线与直线y=1交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.27.(7分)已知:在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°(1)如图①,若∠ACD=60°,BC=1,CD=3,则AC的长为;(2)如图②,若∠ACD=45°,BC=1,CD=3,求出AC的长;(3)如图③,若∠ACD=30°,BC=a,CD=b,直接写出AC的长.。
人教版初中数学九年级上册期中试题(黑龙江省哈尔滨市
2018-2019学年黑龙江省哈尔滨市西部新优质教育集团九年级(上)期中数学试卷一、选择题(每题3分,共计30分)1.(3分)在2,﹣6,0,π这四个数中,最小的数是()A.2B.﹣6C.0D.π2.(3分)下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4C.x2+x3=x5D.(x3)4=x73.(3分)下列四个图形中是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.(3分)把抛物线y=3x2向右平移2个单位,然后向下平移6个单位,则平移后抛物线的解析式为()A.y=3(x+2)2+6B.y=3(x﹣2)2+6C.y=3(x+2)2﹣6D.y=3(x﹣2)2﹣65.(3分)分式方程的解是()A.x=20B.x=﹣20C.x=﹣5D.x=56.(3分)对于每一象限内的双曲线y=,y都随x的增大而增大,则m的取值范围是()A.m>﹣4B.m>4C.m<﹣4D.m<47.(3分)如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=15米,则树的高AB(单位:米)为()A.B.C.15tan 37°D.15sin 37°8.(3分)如图,P A、PB是⊙O的切线,切点分别是A、B,如果∠E=60°,那么∠P等于()A.60°B.90°C.120°D.150°9.(3分)如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()A.=B.=C.=D.=10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论,其中正确的结论是()A.abc>0B.b>a+c C.2a+b>0D.b2﹣4ac<0二、填空题(每小题3分,共计30分)11.(3分)将0.000 002 06用科学记数法表示为.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)计算的结果为.14.(3分)把多项式x3y﹣6x2y+9xy分解因式的结果是.15.(3分)某扇形的弧长为5πcm,圆心角为150°,则此扇形的面积为.16.(3分)不等式组的解集是.17.(3分)二次函数y=﹣2(x﹣3)2+7的最大值为.18.(3分)如图,AB是⊙O的直径,C,D两点在⊙O上,∠BCD=27°,则∠AOD的度数为.19.(3分)已知△ABC,O为AC中点,点P在AC上,若OP=1,sin∠A=,∠B=120°,BC=2,则AP=.20.(3分)如图,在四边形ABCD中,∠ADC=∠ABC=45°,CD=,BC=,连接AC、BD,若AC⊥AB,则BD的长度为.三、解答题(21、22题各7分,23、24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式÷(x﹣)的值,其中x=2sin60°+tan45°.22.(7分)如图,每个小正方形的边长都是1的方格纸中,有线段AC和EF,点A、C、E、F都在小正方形的顶点上.(1)在方格纸中画出一个以线段AC为对角线的正方形ABCD,所画的正方形的各顶点必须在小正方形的顶点上.(2)在方格纸中以EF为腰画出等腰三角形△EFM,点M在小正方形的顶点上,且MF=MC.(3)在(1)、(2)的条件下,连接MA,请直接写出线段MA的长.23.(8分)为迎接2019年中考,对道里区西部优质教育联盟九年级学生进行了一次数学期中模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学生共有多少人,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆心角度数;(3)若该联盟九年级共有1050人参加了这次数学考试,估计九年级这次考试共有多少名学生的数学成绩可以达到优秀?24.(8分)已知BD是△ABC的角平分线,点E在边AB上,BC=BE,过点E作EF∥AC,交BD于点F,连接CF.(1)如图1,求证:四边形CDEF是菱形;(2)如图2,当四边形CDEF是正方形,且AC=BC时,在不添加辅助线的情况下,请直接写出图中度数等于30°的角.25.(10分)某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?26.(10分)如图,AB、AC、AD是⊙O的弦,弧BC=弧BD,CE⊥AB于M,交⊙O于E,交AD于F.(1)如图1,求证:AF=AC;(2)如图2,连接BF、AE、BE,交AD于H,求证:∠DAE=∠EBF;(3)如图3,连接BO,并延长交AE于Q,交AD于点G,连接BC,若QG=4,FH=GF,tan∠BCE=1,求线段AB的长.27.(10分)在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交于点C,二次函数y=﹣+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)求二次函数的表达式;(2)如图1,点D是抛物线第四象限上的一动点,连接DC,DB,当S△DCB=S△ABC时,求点D坐标;(3)如图2,在(2)的条件下,点Q在CA的延长线上,连接DQ,AD,过点Q作QP∥y轴,交抛物线于P,若∠AQD=∠ACO+∠ADC,请求出PQ的长.2018-2019学年黑龙江省哈尔滨市西部新优质教育集团九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共计30分)1.(3分)在2,﹣6,0,π这四个数中,最小的数是()A.2B.﹣6C.0D.π【分析】将各数按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣6<0<2<π,则最小的数是﹣6,故选:B.【点评】此题考查了有理数大小比较,将各数正确的排列是解本题的关键.2.(3分)下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4C.x2+x3=x5D.(x3)4=x7【分析】根据单项式乘法、完全平方公式、合并同类项法则、幂的乘方的运算方法,利用排除法求解.【解答】解:A、2x2•x3=2x5,故本选项正确;B、应为(x﹣2)2=x2﹣4x+4,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、应为(x3)4=x12,故本选项错误.故选:A.【点评】本题主要考查了合并同类项的法则,完全平方公式,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.3.(3分)下列四个图形中是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)把抛物线y=3x2向右平移2个单位,然后向下平移6个单位,则平移后抛物线的解析式为()A.y=3(x+2)2+6B.y=3(x﹣2)2+6C.y=3(x+2)2﹣6D.y=3(x﹣2)2﹣6【分析】先根据二次函数的性质得到抛物线y=3x2的顶点为(0,0),再利用点平移的规律得到点(0,0)平移后的对应点的坐标为(3,﹣2),然后根据顶点式写出平移后抛物线的解析式.【解答】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向右平移2个单位,再向下平移6个单位所得对应点的坐标为(2,﹣6),所以平移后抛物线的解析式为y=3(x ﹣2)2﹣6.故选:D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.(3分)分式方程的解是()A.x=20B.x=﹣20C.x=﹣5D.x=5【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:100(15﹣x)=50(15+x),去括号得:1500﹣100x=750+50x,移项合并得:﹣150x=﹣750,解得:x=5,经检验x=5是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.6.(3分)对于每一象限内的双曲线y=,y都随x的增大而增大,则m的取值范围是()A.m>﹣4B.m>4C.m<﹣4D.m<4【分析】根据反比例函数的性质可以得到m的取值范围,本题得以解决.【解答】解:∵对于每一象限内的双曲线y=,y都随x的增大而增大,∴m+4<0,解得,m<﹣4,故选:C.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.7.(3分)如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=15米,则树的高AB(单位:米)为()A.B.C.15tan 37°D.15sin 37°【分析】通过解直角△ABC可以求得AB的长度.【解答】解:如图,在直角△ABC中,∠B=90°,∠C=37°,BC=15m,∴tan C=,则AB=BC•tan C=15tan37°.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.8.(3分)如图,P A、PB是⊙O的切线,切点分别是A、B,如果∠E=60°,那么∠P等于()A.60°B.90°C.120°D.150°【分析】直接利用切线的性质得出∠OAP=∠OBP=90°,进而利用圆周角定理结合四边形内角和定理得出答案.【解答】解:连接OA,OB,∵P A、PB是⊙O的切线,切点分别是A、B,∴∠OAP=∠OBP=90°,∵∠E=60°,∴∠AOB=120°,∴∠P=360°﹣120°﹣90°﹣90°=60°.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确把握切线的性质是解题关键.9.(3分)如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()A.=B.=C.=D.=【分析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴=,故A正确,选项不符合题意;∴=正确,B选项不符合题意;=,正确,故C不符合题意;∴=,错误,D符合题意.故选:D.【点评】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论,其中正确的结论是()A.abc>0B.b>a+c C.2a+b>0D.b2﹣4ac<0【分析】根据函数图象和二次函数的性质,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:由图象可得,a<0,b>0,c>0,∴abc<0,故选项A错误,当x=﹣1时,y=a﹣b+c<0,则a+c<b,故选项B正确,=1,得b=﹣2a,即2a+b=0,故选项C错误,抛物线与x轴两个交点,则b2﹣4ac>0,故选项D错误,故选:B.【点评】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.二、填空题(每小题3分,共计30分)11.(3分)将0.000 002 06用科学记数法表示为 2.06×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 002 06=2.06×10﹣6.故答案为:2.06×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)在函数y=中,自变量x的取值范围是x≠6.【分析】让分式的分母不为0列式求值即可.【解答】解:根据题意知x﹣6≠0,解得:x≠6,故答案为:x≠6.【点评】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于0.13.(3分)计算的结果为.【分析】先化简各二次根式,再合并同类二次根式即可得.【解答】解:=3﹣4×=3﹣2=,故答案为:.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的加减运算顺序和运算法则.14.(3分)把多项式x3y﹣6x2y+9xy分解因式的结果是xy(x﹣3)2.【分析】直接提取公因式xy,再利用完全平方公式分解因式得出答案.【解答】解:x3y﹣6x2y+9xy=xy(x2﹣6x+9)=xy(x﹣3)2.故答案为:xy(x﹣3)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.15.(3分)某扇形的弧长为5πcm,圆心角为150°,则此扇形的面积为15πcm2.【分析】首先设此扇形的半径是r,根据扇形的弧长为5πcm,圆心角为150°,求出扇形的半径是多少;然后根据扇形的面积公式计算可得.【解答】解:∵l=5πcm,n=150°,∴l=,∴r===6(cm),则此扇形的面积为=15π(cm2),故答案为:15πcm2.【点评】此题主要考查了扇形的面积的计算方法,解答此题的关键是熟练掌握扇形的面积公式和弧长公式.16.(3分)不等式组的解集是2≤x<3.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≥2,由②得,x<3,故不等式组的解集为:2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(3分)二次函数y=﹣2(x﹣3)2+7的最大值为7.【分析】利用二次函数的一般形式中的顶点式,判断开口方向进而得出最值解决问题.【解答】解:二次函y=﹣2(x﹣3)2+7,a=﹣2<0,开口向下,函数有最大值是7.故答案为:7【点评】本题主要考查了二次函数的性质,正确判断二次函数的开口方向,顶点坐标是解决问题的关键.18.(3分)如图,AB是⊙O的直径,C,D两点在⊙O上,∠BCD=27°,则∠AOD的度数为126°.【分析】根据圆周角定理即可解决问题;【解答】解:∵∠BOD=2∠BCD,∠BCD=27°,∴∠BOD=54°,∴∠AOD=180°﹣54°=126°,故答案为126°.【点评】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(3分)已知△ABC,O为AC中点,点P在AC上,若OP=1,sin∠A=,∠B=120°,BC=2,则AP=或.【分析】作CD⊥AB的延长线于D,求得∠CBD=60°,解直角三角形求得DC=3,进而求得AC=9,即可求得AO=AC=,然后求得AP的长.【解答】解:作CD⊥AB的延长线于D,∵∠ABC=120°,∴∠CBD=60°,∵BC=2,∴DC=BC•sin60°=2•=3,∵sin A=,∴AC=9,∴AO=AC=,∵OP=1,∴AP=或.故答案为:或.【点评】本题考查了解直角三角形,此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20.(3分)如图,在四边形ABCD中,∠ADC=∠ABC=45°,CD=,BC=,连接AC、BD,若AC⊥AB,则BD的长度为2.【分析】过A作AE⊥AD,使AE=AD,连接CE,DE,过C作CF⊥AD于F,得到△ADE 是等腰直角三角形,证明△DAB≌△EAC得:EC=BD,在Rt△DCE中,利用勾股定理求EC的长,于是得到结论.【解答】解:过A作AE⊥AD,使AE=AD,连接CE,DE,过C作CF⊥AD于F,则△ADE是等腰直角三角形,∵∠ADC=45°,∴△CDF是等腰直角三角形,∴CF=DF=CD=1,∵AC⊥AB,∠ABC=45°,∴△ABC是等腰直角三角形,∴AC=BC=,∴AF==2,∴AD=3,∴DE=AD=3,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE,(SAS),∴CE=BD,∵∠ADE=∠ADC=45°,∴∠CDE=90°,∴CE==2,∴BD=CE=2.故答案为:2.【点评】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.三、解答题(21、22题各7分,23、24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式÷(x﹣)的值,其中x=2sin60°+tan45°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=,当x=2×+1=+1时,原式=.【点评】此题考查了分式的化简求值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.22.(7分)如图,每个小正方形的边长都是1的方格纸中,有线段AC和EF,点A、C、E、F都在小正方形的顶点上.(1)在方格纸中画出一个以线段AC为对角线的正方形ABCD,所画的正方形的各顶点必须在小正方形的顶点上.(2)在方格纸中以EF为腰画出等腰三角形△EFM,点M在小正方形的顶点上,且MF=MC.(3)在(1)、(2)的条件下,连接MA,请直接写出线段MA的长.【分析】(1)根据正方形的性质,求出正方形的边长,即可解决问题;(2)根据点M在CF的垂直平分线上,MF=EF=5,即可画出图形;(3)利用勾股定理计算即可解决问题;【解答】解:(1)正方形ABCD如图所示;(2)以EF为腰的等腰三角形△EFM如图所示;(3)AM==.【点评】本题考查作图﹣应用与设计、等腰三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(8分)为迎接2019年中考,对道里区西部优质教育联盟九年级学生进行了一次数学期中模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学生共有多少人,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆心角度数;(3)若该联盟九年级共有1050人参加了这次数学考试,估计九年级这次考试共有多少名学生的数学成绩可以达到优秀?【分析】(1)用“良”的人数除以它所占的百分比得到调查的总人数,然后计算出成绩为“中”的人数后补全条形统计图;(2)用“优”所占的百分比乘以360°得到优”所对应的圆心角度数;(3)用1050乘以即可.【解答】解:(1)22÷44%=50,所以这次被调查的学生共有50人;成绩为中的人数为50﹣10﹣22﹣8=10,补图条形统计图为:(2)360°×=72°,答:“优”所对应的圆心角度数72°;(3)1050×=210,答:估计九年级这次考试共有210名学生的数学成绩可以达到优秀.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.24.(8分)已知BD是△ABC的角平分线,点E在边AB上,BC=BE,过点E作EF∥AC,交BD于点F,连接CF.(1)如图1,求证:四边形CDEF是菱形;(2)如图2,当四边形CDEF是正方形,且AC=BC时,在不添加辅助线的情况下,请直接写出图中度数等于30°的角.【分析】(1)直接由SAS得出△BDE≌△BDC,得出DE=DC,∠BDE=∠BDC.再由SAS 证明△BFE≌△BFC,得出EF=CF.由EF∥AC得出∠EFD=∠BDC,从而∠EFD=∠BDE,根据等角对等边得出DE=EF,从而DE=EF=CF=DC,由菱形的判定可知四边形CDEF是菱形;(2)如图2,利用正方形的性质可得∠DFE=45°,然后证明∠FEB=∠CBE=2∠FBE即可.【解答】证明:在△BDE和△BDC中,,∴△BDE≌△BDC;∴DE=DC,∠BDE=∠BDC同理△BFE≌△BFC,∴EF=CF∵EF∥AC∴∠EFD=∠BDC,∴∠EFD=∠BDE,∴DE=EF,∴DE=EF=CF=DC,∴四边形CDEF是菱形;(2)∵四边形CDEF是正方形,∴∠CDE=∠DEF=2∠EFD=90°,∵AC=BC,∴∠A=∠CBE,∵∠A+∠AED=180°﹣90°=90°,∠AED+∠FEB=90°,∴∠A=∠FEB=∠CBE=2∠EBF,∵∠EBF+∠FEB=∠DFE=45°,∴∠EBF=15°,∴∠FEB=30°,∴∠A=∠ABC=∠FEB=30°,∵△BFE≌△BFC,∴∠FEB=∠FCB=30°,图中度数等于30°的角是∠A,∠ABC,∠FEB,∠FCB.【点评】本题主要考查了全等三角形、菱形的判定,正方形的性质等知识.关键是由SAS 得出△BDE≌△BDC.25.(10分)某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?【分析】(1)直接利用乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元,分别得出等式求出答案;(2)利用这两种商品全部售出后总利润不少于870元,得出不等关系求出答案.【解答】解:(1)设甲种商品每件的进价是x元,乙两种商品每件的进y元.,解得:,答:甲种商品每件的进价是120元,乙两种商品每件的进100元;(2)设甲种商品可购进a件.(145﹣120)a+(120﹣100)(40﹣a)≥870解得:a≥14,答:甲种商品至少可购进14件.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.26.(10分)如图,AB、AC、AD是⊙O的弦,弧BC=弧BD,CE⊥AB于M,交⊙O于E,交AD于F.(1)如图1,求证:AF=AC;(2)如图2,连接BF、AE、BE,交AD于H,求证:∠DAE=∠EBF;(3)如图3,连接BO,并延长交AE于Q,交AD于点G,连接BC,若QG=4,FH=GF,tan∠BCE=1,求线段AB的长.【分析】(1)根据圆周角定理得到∠CAB=∠DAB,根据三角形的内角和得到∠ACM=∠AFM,由等腰三角形的判定定理即可得到结论;(2)如图(2),连接BC,根据全等三角形的性质得到∠ACB=∠AFB,根据圆内接四边形的性质得到∠AEB=∠BFH,根据余角的性质即可得到结论;(3)过点O作OK⊥BE于K,根据垂径定理得到BH=EH,求得∠BCE=∠BAE=∠BOK =∠BGH=∠GBH=45°,推出△GHB为等腰直角三角形,过Q作QR⊥AB于R,QT ⊥AD于T,解直角三角形即可得到结论.【解答】(1)证明:∵=,∴∠CAB=∠DAB,∵CE⊥AB,∴∠AMC=∠AMF=90°,∵180°﹣∠ABC﹣∠AMC=180°﹣∠DAB﹣∠AMF,即∠ACM=∠AFM,∴AC=AF;(2)证明:如图(2),连接BC,在△ABC与△ABF中,∴△ACB≌△AFB,(SAS),∴∠ACB=∠AFB,∵四边形ACBE为圆内接四边形,∴∠ACB+∠AEB=∠AFB+∠BFH=180°,∴∠AEB=∠BFH,∵=,∴∠BEC=∠BAD,∵∠AFM=∠EFH,∴∠EHF=∠AMF=90°,∴∠BHF=90°,∴∠DAE+∠AEB=∠BFH+∠EBF=90°,∴∠DAE=∠EBF;(3)解:∵∠CMB=90°,tan∠BCE=1,∠BCE=∠BAE=45°,过点O作OK⊥BE于K,∴BH=EH,∠BGH=∠BAE=45°,∴∠OBH=∠BGH=45°,∴∠BCE=∠BAE=∠BOK=∠BGH=∠GBH=45°,∴△GHB为等腰直角三角形,∵∠EAB=∠EAD+∠DAB=∠BGD=∠BAD+∠ABO=45°,∴∠ABO=∠DAE,∵FH=GF,∴tan∠EBF=tan∠DAE=tan∠ABO==,过Q作QR⊥AB于R,QT⊥AD于T,∵QG=4,∴QT=TG=2,在Rt△ATQ中,∠ATQ=90°,tan∠TAQ=,∴AT=2TQ=4,∴AQ==2,∴AR=RQ=2,∴BR=2QR=4,∴AB=AR+BR=6.【点评】本题考查了垂径定理,圆周角定理,全等三角形的判定和性质,解直角三角形,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.27.(10分)在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交于点C,二次函数y=﹣+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)求二次函数的表达式;(2)如图1,点D是抛物线第四象限上的一动点,连接DC,DB,当S△DCB=S△ABC时,求点D坐标;(3)如图2,在(2)的条件下,点Q在CA的延长线上,连接DQ,AD,过点Q作QP∥y轴,交抛物线于P,若∠AQD=∠ACO+∠ADC,请求出PQ的长.【分析】(1)y=﹣x+2与x轴交于点B,与y轴交于点C,则B(4,0)、C(0,2),把B,C两点坐标代入二次函数,即可求解;(2)证明四边形DLCA为矩形,tan∠BAD=∠tan∠CBA==,设:点D的坐标为(m,n),n=﹣m2+m+2,…①,则:tan∠BAD==…②,联立①②即可求解;(3)证明△AQD为等腰直角三角形、Rt△AQD≌Rt△ADM,即可求解.【解答】解:(1)y=﹣x+2与x轴交于点B,与y轴交于点C,则B(4,0)、C(0,2),把B,C两点坐标代入二次函数,解得,二次函数的表达式为:y=﹣x2+x+2,则:A(﹣1,0);(2)由A、B、C点坐标得:AB2=AC2+BC2,∴∠ACB=90°,过点D作DL⊥CB交BC于L点,S△DCB=S△ABC,DL=AC,而DL∥AC,∴四边形DLCA为平行四边形,又∠ACB=90°,∴四边形DLCA为矩形,∴∠ACB=∠BAD,∴tan∠BAD=tan∠CBA==,设:点D的坐标为(m,n),n=﹣m2+m+2,…①则:tan∠BAD==…②,联立①②解得:m=5,m=﹣1(舍去),则D(5,﹣3);(3)如下图:设直线CD与x轴交于R,过点D作DM⊥x轴,DT⊥y轴,把C、D坐标代入一次函数表达式,解得:直线BC所在的方程为:y=﹣x+2,令y=0,则R(2,0),∴OR=OC=2,∴RCO=45°,∴∠ACO+∠DCB=90°﹣45°=45°,而∠CDA=∠DCB∴∠AQD=∠ACO+∠ADC=ACO+∠DCB=45°,∵四边形DLCA为矩形,则△AQD为等腰直角三角形,∴AQ=AD,而∠DAB=∠AQN∴Rt△AQD≌Rt△ADM,∴AN=BM=3,QN=AM=6∴N(﹣4,0),把x=﹣4代入二次函数表达式,解得P(﹣4,﹣12),则PQ=6.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2018年秋人教版九年级上册数学期中检测试卷(有答案)-精品(20191212155300)
(1) 若苗圃园的面积为 72 平方米 , 求 x;
(2) 若平行于墙的一边长不小于 8 米 , 这个苗圃园的面积有最大值和最小值吗 如果没有 , 请说明理由 ; (3) 当这个苗圃园的面积不小于 100 平方米时 , 直接写出 x 的取值范围 . 解 :(1) 根据题意得 (30 - 2x) x=72, 解得 x=3, x=12, ∵30- 2x≤ 8, ∴x=12.
∴Δ =( ) 2- 4× - =0, 整理得 a+b-2c=0①, 又 ∵3cx+2b=2a 的根为 x=0, ∴a=b②, 把 ②代入 ①得 a=c, ∴a=b=c,
∴△ ABC为等边三角形 ; (2) a, b 是方程 x2+mx-3m=0 的两个根 , ∴方程 x2+mx-3m=0 有两个相等的实数根 ∴Δ =m2- 4×( - 3m) =0, 即 m2+12m=0, ∴m1=0, m2=-12.
期中检测卷
(120 分钟 150 分 )
ቤተ መጻሕፍቲ ባይዱ
题号
一
二
三
四
五
六
七
八
总分
得分
一、选择题 ( 本大题共 10 小题 , 每小题 4 分 , 满分 40 分 )
题号
1
2
3
4
5
6
7
8
9
10
答案
A
C
B
B
A
B
D
D
C
B
1. 下列标志中 , 是中心对称图形的是
2. 把方程 x2- 12x+33=0 化成 ( x+m) 2=n 的形式 , 则 m, n 的值是
解 :(1) 如图 1, 延长 EB交 DG于点 H,
【5套打包】哈尔滨市初三九年级数学上期中考试单元测试卷(含答案)
新九年级(上)数学期中考试题 ( 含答案 )一、选择题(每题 4 分,共 40 分)1、圆内接四边形 ABCD 中,已知∠ A = 70°,则∠ C =()A .20°B . 30°C .70°D .110°2、⊙O 的半径为 5cm ,点 A 到圆心 O 的距离 OA = 3cm ,则点 A 与圆 O 的地点关系为()A .点A 在圆上B .点 A 在圆内C .点 A 在圆外D .没法确立3、将抛物线 y =x 2+1 向右平移 2 个单位,再向上平移 3 个单位后,抛物线的分析式为()A.=() 2 B .y =( x ﹣2) 2﹣4yx+2+4C .=(x ﹣ )2D .y =( x+2) 2﹣ 4y 2 +44、若圆锥的母线长是 12,侧面睁开图的圆心角是 120°,则它的底面圆的半径为()A .2B . 4C .6D .85.如图,以某点为位似中心,将△ AOB 进行位似变换获取△ CDE ,记△ AOB 与△CDE 对应边的比为 k ,则位似中心的坐标和 k 的值分别为( )A .(0,0),2B .(2,2),1C .( 2,2),2D .(2,2),326、如图,在△ ABC 中,点 D 是AB 边上的一点,若∠ ACD =∠ B ,AD =1,AC =3,△ ADC 的面积为 1,则△ ABC 的面积为()A .9B . 8C .3D .27、如图,若二次函数 y = ax 2+bx+c (a ≠0)图象的对称轴为 x =1,与y 轴交于 点C ,与x 轴交于点 A 、点B (﹣1,0),则① 二次函数的最大值为 a+b+c② a ﹣b+c <0;③ b 2﹣4ac < 0; ④ 当 y > 0 时,﹣ 1< x < 3.此中正确的个数是()A .1B .2C .3D .48、如图,在平行四边形 ABCD 中,点 E 在CD 上,若 DE :CE =1:2,则△ CEF 与△ ABF 的周长比为()A .1:2B .1:3C .2:3D .4:99、圆心角为 60°的扇形面积为 S ,半径为 r ,则以下图象能大概描绘 S 与r 的函数关系的是()A .B .C .D .10、 对某一个函数给出以下定义:假如存在常数M ,对于随意的函数值 y ,都知足 y ≤ M ,那么称这个函数是有 上界函数;在所有知足条件的M 中,其最小值称为这个函数的上确界.比如,函数 y =﹣( x+1)2+2 ,y ≤2, 因 此是有上界函数,其上确界是 2,假如函数 y =﹣ 2x+1(m ≤x ≤ n , m < n )的上确界是 n ,且这个函数的最 小值不超出 2m ,则 m 的取值范围是( )A . m ≤1 1 1 1 13B . mC .mD . m3322二、填空题(每题 4分,共24分)11.如图,△ ABC 中,点 D 、 E 分别在边 AB 、 BC 上, DE ∥ AC .若 BD = 4, DA = 2, BE = 3,则 EC = 12、在二次函数 yx 2 2x 1 的图像中,若 y 随x 增大而增大,则 x 的取值范围是 . 13、 如图, ⊙ O 与△ ABC 的边 AB 、AC 、 BC 分别相切于点 D 、 E 、 F ,假如 AB = 4, AC = 5, AD = 1,那么 BC的长为.第 8题第11题第13题14、 高 4m的旗杆在水平川面上的影子长6m ,此时,旗杆旁教课楼的影长 24m ,则教课楼高 m .15、若对于 x 的一元二次方程 内有解,则 k 的取值范围是 16、如图,正方形 ABCD 的边长为x 2 2x6,点 Ok 0 (k 为常数)在 2 x。
2018-2019学年黑龙江省九年级(上)期中数学试卷
2018-2019学年黑龙江省九年级(上)期中数学试卷一、填空题:(本题共30分)1.为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为元.2.在函数y=中,自变量x的取值范围是.3.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.4.不等式组的解集是x>﹣1,则a的取值范围是.5.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为.6.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.7.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是.8.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.9.如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD 上,EC=1,则PC+PE的最小值是.10.观察图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…则第2017个图形中有个三角形,第n个图形中有个三角形.二、选择题:(本题共30分)11.下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b212.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6 B.3.8 C.3.6或3.8 D.4.214.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.515.将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.1016.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A. B. C. D.17.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤118.在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.1819.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种 C.6种 D.7种20.如图已知在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB和AC于点E、F,给出以下五个结论正确的个数有()①AE=CF②∠APE=∠CPF ③△BEP≌△AFP④△EPF是等腰直角三角形⑤当∠EPF=S△ABC.在△ABC内绕顶点P旋转时(点E不与A、B重合),S四边形AEPFA.2 B.3 C.4 D.5三、解答题:(共60分)21.先化简,再求值:÷(x﹣),其中x=﹣2.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.23.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点C,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAC的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.24.我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?.25.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?26.如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE 所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.27.某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨大米?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用w(元)与租用甲种货车的数量x(辆)之间的函数关系式.(3)在(2)的条件下,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?28.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b与坐标轴交于C,D两点,直线AB与坐标轴交于A,B两点,线段OA,OC的长是方程x2﹣3x+2=0的两个根(OA>OC).(1)求点A,C的坐标;(2)直线AB与直线CD交于点E,若点E是线段AB的中点,求直线AB的解析式;(3)在(2)的条件下,点M在直线CD上,坐标平面内是否存在点N,使以点B,E,M,N为顶点的四边形是菱形?若存在,请直接写出满足条件的点N的坐标;若不存在,请说明理由.2018-2019学年黑龙江省九年级(上)期中数学试卷参考答案与试题解析一、填空题:(本题共30分)1.为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为 1.6×1010元.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将160亿=16000000000用科学记数法表示为:1.6×1010.故答案为:1.6×1010.2.在函数y=中,自变量x的取值范围是x≠1.【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.3.如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF或AD=BE (只需添加一个即可),使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).4.不等式组的解集是x>﹣1,则a的取值范围是a≤﹣.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可确定a的范围.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式a﹣x<0,得:x>3a,∵不等式组的解集为x>﹣1,则3a≤﹣1,∴a≤﹣,故答案为:a≤﹣.5.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为10%.【考点】AD:一元二次方程的应用.【分析】先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1﹣x),第二次降价后的售价是原来的(1﹣x)2,再根据题意列出方程解答即可.【解答】解:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.6.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为80°.【考点】MC:切线的性质.【分析】根据切线的性质得出∠C=90°,再由已知得出∠ABC,由外角的性质得出∠COD的度数.【解答】解:∵AC是⊙O的切线,∴∠C=90°,∵∠A=50°,∴∠B=40°,∵OB=OD,∴∠B=∠ODB=40°,∴∠COD=2×40°=80°,故答案为80°.7.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是50°.【考点】R2:旋转的性质;K7:三角形内角和定理.【分析】已知旋转角为80°,即∠DOB=80°,欲求∠α的度数,必须先求出∠AOB 的度数,利用三角形内角和定理求解即可.【解答】解:由旋转的性质知:∠A=∠C=110°,∠D=∠B=40°;根据三角形内角和定理知:∠AOB=180°﹣110°﹣40°=30°;已知旋转角∠DOB=80°,则∠α=∠DOB﹣∠AOB=50°.故答案为:50°.8.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为100元.【考点】8A:一元一次方程的应用.【分析】根据题意可知商店按零售价的8折再降价10元销售即销售价=150×80%﹣10,得出等量关系为150×80%﹣10﹣x=x×10%,求出即可.【解答】解:设该商品每件的进价为x元,则150×80%﹣10﹣x=x×10%,解得x=100.即该商品每件的进价为100元.故答案是:100.9.如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD 上,EC=1,则PC+PE的最小值是5.【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,则AE的长即为PC+PE的最小值,再根据勾股定理求出AE的长即可.【解答】解:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PC+PE的最小值,∵CD=4,CE=1,∴DE=3,在Rt△ADE中,∵AE===5,∴PC+PE的最小值为5.故答案为:5.10.观察图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…则第2017个图形中有8065个三角形,第n个图形中有4n﹣3个三角形.【考点】38:规律型:图形的变化类.【分析】结合图形数出前三个图形中三角形的个数,发现规律:后一个图形中三角形的个数总比前一个三角形的个数多4.【解答】解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3,当n=2017时,4n﹣3=8065,故答案为:8065;4n﹣3.二、选择题:(本题共30分)11.下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6b3,不符合题意;B、原式=27a6,符合题意;C、原式=x4,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选B12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.13.一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6 B.3.8 C.3.6或3.8 D.4.2【考点】W5:众数;W1:算术平均数.【分析】根据众数的定义得出正整数a的值,再根据平均数的定义求解可得.【解答】解:∵数据:a,3,4,4,6(a为正整数),唯一的众数是4,∴a=1或2,当a=1时,平均数为=3.6;当a=2时,平均数为=3.8;故选:C.14.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5【考点】M2:垂径定理;KQ:勾股定理.【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选C.15.将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.10【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】抛物线y=x2﹣1向下平移8个单位长度后的到的新的二次函数的解析式为y=x2﹣9,令x2﹣9=0求其解即可知道抛物线与x轴的交点的横坐标,两点之间的距离随即可求.【解答】解:将抛物线y=x2﹣1向下平移8个单位长度,其解析式变换为:y=x2﹣9而抛物线y=x2﹣9与x轴的交点的纵坐标为0,所以有:x2﹣9=0解得:x1=﹣3,x2=3,则抛物线y=x2﹣9与x轴的交点为(﹣3,0)、(3,0),所以,抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为6故选B16.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A. B. C. D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】本题可先由反比例函数y=﹣图象得到字母a的正负,再与一次函数y=ax+1的图象相比较看是否一致即可解决问题.【解答】解:A、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a <0故选项A错误.B、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a>0,且交于y轴于正半轴,故选项A正确.C、y=ax+1(a≠0)的图象应该交于y轴于正半轴,故选项C错误.D、由函数的图象可知a<0,由y=ax+1(a≠0)的图象可知a>0,故选项D错误.故选B.17.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】根据分式方程的解法即可求出a的取值范围;【解答】解:3(3x﹣a)=x﹣3,9x﹣3a=x﹣3,8x=3a﹣3∴x=,由于该分式方程有解,令x=代入x﹣3≠0,∴a≠9,∵该方程的解是非负数解,∴≥0,∴a≥1,∴a的范围为:a≥1且a≠9,故选(C)18.在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.18【考点】L5:平行四边形的性质.【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=22.故选:C.19.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种 C.6种 D.7种【考点】95:二元一次方程的应用.【分析】设购买80元的商品数量为x,购买120元的商品数量为y,根据总费用是1000元列出方程,求得正整数x、y的值即可.【解答】解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:80x+120y=1000,整理,得y=.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故选:A.20.如图已知在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB和AC于点E、F,给出以下五个结论正确的个数有()①AE=CF②∠APE=∠CPF ③△BEP≌△AFP④△EPF是等腰直角三角形⑤当∠EPF=S△ABC.在△ABC内绕顶点P旋转时(点E不与A、B重合),S四边形AEPFA.2 B.3 C.4 D.5【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】根据等腰直角三角形的性质可得AP⊥BC,AP=PC,∠EAP=∠C=45°,根据同角的余角相等求出∠APE=∠CPF,判定②正确,然后利用“角边角”证明△APE 和△CPF全等,根据全等三角形的可得AE=CF,判定①正确,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,判定④正确;根据全等三角形的判定判断③正确;根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半,判定⑤正确.【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,故②正确;在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,故③正确;∴△EFP是等腰直角三角形,故④正确;∵△APE≌△CPF,=S△CPF,∴S△APE=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.,故⑤正确,∴四边形AEPF综上所述,正确的结论有①②③④⑤共5个.故选D三、解答题:(共60分)21.先化简,再求值:÷(x﹣),其中x=﹣2.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=÷=•=,当x=﹣2时,原式=﹣.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.【考点】R8:作图﹣旋转变换;P7:作图﹣轴对称变换.【分析】根据题意画出相应的三角形,确定出所求点坐标即可.【解答】解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点C,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAC的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.【考点】HA:抛物线与x轴的交点;H3:二次函数的性质;H8:待定系数法求二次函数解析式;PA:轴对称﹣最短路线问题.【分析】(1)根据点A及抛物线的对称轴,可求出点B的坐标,再根据点A、B 的坐标利用待定系数法即可求出抛物线的解析式;(2)连接BC交直线x=2于点P,利用两点之间线段最短可得出此时△PAC的周长最小,利用二次函数图象上点的坐标特征可求出点C的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标,此题得解.【解答】解:(1)∵抛物线y=x2﹣bx+c交x轴于点A(1,0),对称轴是直线x=2,∴点B的坐标为(3,0).将点A(1,0)、B(3,0)代入y=x2﹣bx+c,,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)连接BC交直线x=2于点P,此时△PAC的周长最小,如图所示.当x=0时,y=x2﹣4x+3=3,∴点C的坐标为(0,3).设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x+3,当x=2时,y=﹣x+3=1,∴点P的坐标为(2,1),∴存在点P(2,1),使△PAC的周长最小.24.我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了200名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是36度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)求得喜爱《挑战不可能》节目的人数,将条形统计图补充完整即可;(3)用360°×喜爱《地理中国》节目的人数占总人数的百分数即可得到结论;(4)直接利用样本估计总体的方法求解即可求得答案.【解答】解:(1)30÷15%=200名,答:本次调查中共抽取了200名学生;故答案为:200;(2)喜爱《挑战不可能》节目的人数=200﹣20﹣60﹣40﹣30=50名,补全条形统计图如图所示;(3)喜爱《地理中国》节目的人数所在的扇形的圆心角是360°×=36度;故答案为:36;(4)2000×=600名,答:该学校喜欢《最强大脑》节目的学生人数是600人.25.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?【考点】FH:一次函数的应用.【分析】(1)根据速度=路程÷时间,即可解答;(2)求出妈妈原来的速度,妈妈原来走完3000米所用的时间,即可解答;(3)分别求出张强和妈妈的函数解析式,根据张强与妈妈相距1000米,列出方程,即可解答.【解答】解:(1)3000÷(50﹣30)=3000÷20=150(米/分),答:张强返回时的速度为150米/分;(2)(45﹣30)×150=2250(米),点B的坐标为(45,750),妈妈原来的速度为:2250÷45=50(米/分),妈妈原来回家所用的时间为:3000÷50=60(分),60﹣50=10(分),妈妈比按原速返回提前10分钟到家;(3)如图:设线段BD的函数解析式为:y=kx+b,把(0,3000),(45,750)代入得:,解得:,∴y=﹣50x+3000,线段OA的函数解析式为:y=100x(0≤x≤30),设线段AC的解析式为:y=k1x+b1,把(30,3000),(50,0)代入得:解得:,∴y=﹣150x+7500,(30<x≤50)当张强与妈妈相距1000米时,即﹣50x+3000﹣100x=1000或100x﹣(﹣50x+3000)=1000或(﹣150x+7500)﹣(﹣50x+3000)=1000,解得:x=35或x=或x=,∴当时间为35分或分或分时,张强与妈妈何时相距1000米.26.如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE 所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【考点】KD:全等三角形的判定与性质;LE:正方形的性质;PB:翻折变换(折叠问题).【分析】(1)由折叠可得AB=AB′,BE=B′E,再根据四边形ABCD是正方形,易证B′E=B′F,即可证明DF+BE=AF;(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明图(2):延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,根据CB∥AD,得∠AEB=∠EAD,即可得出∠B′AE=∠DAG,则∠GAF=∠DAE,则∠AGD=∠GAF,即可得出答案BE+DF=AF.【解答】解:(1)由折叠可得AB=AB′,BE=B′E,∵四边形ABCD是正方形,∴AB=DC=DF,∠B′CE=45°,∴B′E=B′F,∴AF=AB′+B′F,即DF+BE=AF;(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;图(2)的证明:延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,∵CB∥AD,∴∠AEB=∠EAD,∵∠BAE=∠B′AE,∴∠B′AE=∠DAG,∴∠GAF=∠DAE,∴∠AGD=∠GAF,∴GF=AF,∴BE+DF=AF;图(3)的证明:在BC上取点M,使BM=DF,连接AM,需证△ABM≌△ADF,∵∠BAM=∠FAD,AF=AM∵△ABE≌AB′E∴∠BAE=∠EAB′,∴∠MAE=∠DAE,∵AD∥BE,∴∠AEM=∠DAB,∴∠MAE=∠AEM,∴ME=MA=AF,∴BE﹣DF=AF.27.某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨大米?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用w(元)与租用甲种货车的数量x(辆)之间的函数关系式.(3)在(2)的条件下,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?【考点】FH:一次函数的应用.【分析】(1)根据题意列出方程组求解即可;(2)将两车的费用相加即可求得总费用的函数解析式;(3)根据一次函数得到当x越小时,总费用越小,分别代入1,2,3,4得到最小值即可.【解答】解:(1)设甲种货车x辆,乙种货车y辆,根据题意得:,解得:,答:甲车装8吨,乙车装7吨;(2)设甲车x辆,则乙车为(8﹣x)辆,根据题意得:w=500x+450(8﹣x)=50x+3600(1≤x≤8);(3)∵当x=1时,则8﹣x=7,w=8+7×7=57<60吨,不合题意;当x=2时,则8﹣x=6,w=8×2+7×6=58<60吨,不合题意;当x=3时,则8﹣x=5,w=8×3+7×5=59<60吨,不合题意;当x=4时,则8﹣x=4,w=8×4+7×4=60吨,符合题意;∴租用4辆甲车,4辆乙车时总运费最省,为50×4+3600=3800元.28.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b与坐标轴交于C,D两点,直线AB与坐标轴交于A,B两点,线段OA,OC的长是方程x2﹣3x+2=0的两个根(OA>OC).(1)求点A,C的坐标;(2)直线AB与直线CD交于点E,若点E是线段AB的中点,求直线AB的解析式;(3)在(2)的条件下,点M在直线CD上,坐标平面内是否存在点N,使以点B,E,M,N为顶点的四边形是菱形?若存在,请直接写出满足条件的点N的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)利用分解因式法解一元二次方程x2﹣3x+2=0即可得出OA、OC的值,再根据点所在的位置即可得出A、C的坐标;(2)根据点C的坐标利用待定系数法即可求出直线CD的解析式,根据点A、B 的横坐标结合点E为线段AB的中点即可得出点E的横坐标,将其代入直线CD 的解析式中即可求出点E的坐标,再利用待定系数法即可解决问题;(3)假设存在,设点M的坐标为(m,﹣m+1),分别以BE为边、BE为对角线来考虑.根据菱形的性质找出关于m的方程,解方程即可得出点M的坐标,再结合点B、E的坐标即可得出点N的坐标.【解答】解:(1)x2﹣3x+2=(x﹣1)(x﹣2)=0,∴x1=1,x2=2,∵OA>OC,∴OA=2,OC=1,∴A(﹣2,0),C(1,0).(2)将C(1,0)代入y=﹣x+b中,得:0=﹣1+b,解得:b=1,∴直线CD的解析式为y=﹣x+1.∵点E为线段AB的中点,A(﹣2,0),B的横坐标为0,∴点E的横坐标为﹣1.∵点E为直线CD上一点,∴E(﹣1,2).设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=2x+4.(3)假设存在,设点M的坐标为(m,﹣m+1),以点B,E,M,N为顶点的四边形是菱形分两种情况(如图所示):①以线段BE为边时,∵E(﹣1,2),A(﹣2,0),E为线段AB的中点,∴B(0,4),∴BE=AB==.∵四边形BEMN为菱形,∴EM=BE或BE=BM.当EM=BE时,有EM==BE=,解得:m1=,m2=,∴M(,2+)或(,2﹣),∵B(0,4),E(﹣1,2),∴N(﹣,4+)或(,4﹣);当BE=BM时,有BM==BE=,解得:m3=﹣1(舍去),m4=﹣2,∴M(﹣2,3),∵B(0,4),E(﹣1,2),∴N(﹣3,1);②以线段BE为对角线时,MB=ME,∴=,解得:m3=﹣,∴M(﹣,),∵B(0,4),E(﹣1,2),∴N(0﹣1+,4+2﹣),即(,).综上可得:坐标平面内存在点N,使以点B,E,M,N为顶点的四边形是菱形,点N的坐标为(﹣,4+)或(,4﹣)或(﹣3,1)或(,);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省哈尔滨市2018届九年级数学上学期期中试题
考生须知:
1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题 卡上填写清楚。
3.请按照题号的顺序在答题卡各题目的答题区域内作答,超出答题区域书 写的答案无效;在草纸、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹 的签字笔书写,字体工整、笔记清楚。
5.保持卡面整洁、不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修 正带、刮纸刀。
第Ⅰ卷 选择题(共30分)(涂卡)
一、 选择题(每题3分,共计30分) 1.下列四个数中,绝对值最小的数是( )
A.-3
B.0
C.1
D.2
2.下列运算正确的是( )
A.257
()a a = B.642a a a =⋅ C.22330a b ab -= D.2
222a a ⎛⎫= ⎪⎝⎭
3.下列的平面几何图形中,既是轴对称图形又是中心对称图形的是( )
4.反比例函数y =
k -3
x
的图象,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ) A.k <3 B.k ≤3 C.k >3 D.k ≥3 5.抛物线2)1(32
+-=x y 的顶点坐标是( )
A.(1,-2)
B.(-1,2)
C.(1,2)
D.(-1,-2)
6.已知:在△ABC 中,点D 为AB 上一点,过点D 作BC 的平行线交AC 于点E,过点E
B
A
第6题图
作AB 的平行线交BC 于点F,连接CD,交EF 于点K.则下列说法不正确的是( ) A.
FC
BF
FK BD = B.AC AE BC DE = C.AC AE AB AD = D.AB AD BC BF = 7.如图,将△ABC 绕点A 按逆时针方向旋转l20°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )
A.45°
B.60°
C.70°
D.90°
8.如图,AB 是⊙O 的直径,CD 为弦,连结AD 、AC 、BC ,若∠CAB=65°则∠D 的度数为( ) A.65° B.40° C.25° D.35°
9.如图,有一轮船在A 处测得南偏东30°方向上有一小岛F ,轮船沿正南方向航行至B 处,测 得小岛F 在南偏东45°方向上,按原方向再航行10海里至C 处,测得小岛F 在正东方向上,则A ,B 之间距离是( ) A.10
海里 B.(10
-10)海里 C.10海里 D.(10
-10)海里
10.如图表示小亮从家出发步行到公交车站,等公交车最后到达学校,图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系,下列
说法中正确的个数有( )
①学校和小亮家的路程为8km ; ②小亮等公交车的时间为6min ;
③小亮步行的速度是100m/min ;④公交车的速度是350m/min ; ⑤小亮从家出发到学校共用了24min. A.2个 B.3个 C.4个 D.5个
第Ⅱ卷 非选择题(共90分)
二、 填空题(每小题3分,共计30分)
11.将1 027 000用科学记数法表示为 . 12.函数3
-x 21
x y +=
中,自变量x 的取值范围是 .
第7题图
第8题图 第9题图
13.计算3
1
3
-48的结果是 . 14.把多项式2
2
3
44ab b a a +-分解因式的结果是 .
15.不等式组⎩
⎪⎨⎪⎧3x -1<2
-x -1<1的解集为 .
16.方程
13123
x x =-+的解为 . 17.某商品经过连续两次降价,销售单价由原来的640元降到360元,则平均每次降价的百分率为 .
18.如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=8,BE=2,则CD= . 19.已知:正方形ABCD 的边长为3,点P 是直线CD 上一点,若DP=1,则tan ∠BPC 的值是 .
20.如图,△ABC为等腰直角三角形,∠A BC =90°,过点B作BQ∥AC,在BQ上取一点D,连接CD、AD,若AC=CD,BD=2,则
AD= .
三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分) 21.(本题7分) 先化简,再求代数式111211
2+÷
⎪⎭
⎫ ⎝⎛---+a a a a 的值,其中︒+︒=45tan 60sin 2a .
22.(本题7分)
如图,网格中每个小正方形的边长均为1,线段AB 、线段EF 的端点均在小正方形的顶点上.
(1)在图中画以EF 为直角边的等腰直角△DEF,点D 在小正方形的格点上;
(2)在(1)的条件下,在图中画一个Rt△BAC,点C 在小正方形的格点上;使∠BAC=90°,且△BAC 的面积为2,连接CD ,直接写出线段CD 的长.
A
(第22题图)
23.(本题8分)
某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:
根据上述信息完成下列问题:
(1)求本次调查共抽取了多少份书法作品? (2)请在图②中把条形统计图补充完整;
(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B 级以上(即A
级和B 级)有多少份?
24.(本题8分)
四边形ABCD 为菱形,BD 为对角线,在对角线BD 上任取一点E ,连接CE ,把线段CE 绕点C 顺时针旋转得到线段CF ,使得∠ECF=∠BCD ,点E 的对应点为点F ,连接DF. (1)如图1,求证:BE=DF; (2)如图2,若DF=2
5
CF=10, ∠DFC=2∠BDC,求菱形ABCD 的边长.
25.
某商品批发商场共用
22000元同时购进A 、B
30个比购进B 型背包15个多用300元.
(1)求A 、B 两种型号背包的进货单价各为多少元?
(2)若商场把A 、B 两种型号背包均按每个50元定价进行零售,同时为扩大销售,拿出一部
B 图1
分背包按零售价的7折进行批发销售.商场在这批背包全部售完后,若总获利超过10500元,则商场用于批发的背包数量最多为多少个? 26.(本题10分)
已知:在⊙O 中,弦AC ⊥弦BD,垂足为H,连接BC,过点D 作DE ⊥BC 于点E ,DE 交AC 于点F.
(1)如图1,求证:BD 平分∠ADF;
(2)如图2,连接OC ,若OC 平分∠ACB,求证:AC=BC;
(3)如图3,在(2)的条件下,连接AB,过点D 作DN ∥AC 交⊙O 于点N,若tan ∠ADB=4
3
,AB=310,求DN 的长.
27.(本题10分)
如图,在平面直角坐标系中,点O为坐标原点,抛物线y=-3
1x 2
+bx+c 交x轴于A、B两点,交y轴于点C,直线y=x+6经过A、C两点. (1)求抛物线的解析式;
图1
图2
图3
(2)点P是第二象限抛物线上的一个动点,过点P作PQ∥AC,PQ交直线BC于点Q,设点P的横坐标为t,点Q 的横坐标为m,求m 与t之间的函数关系式(不要求写出自变量t的取值范围); (3)在(2)的条件下,作点P关于直线AC的对称点点K,连接QK,当点K落在直线 y=-5
12
x 上时,求线段QK的长.
数学答案
一、选择题
1.B
2.B
3.D
4.A
5.C
6.A
7.D
8.C
9.D 10.B 二、填空题
11.1.027×106
12.x ≠2
3 13.33 14.a(a-2b)2
15.-2<x <1 16. x=6 17.25℅ 18.8 19.
23或4
3
20.2
21.解:原式=
11 a ,a=3+1, 原式=3
3
22.(1)
(2)CD=10
23.(1)120 (2)C:36 D:12 (3)450
24. (2) 过点C 作CK ⊥BD 于点K,联立解△DEC 和△DBC,边长=74 25.解:(1)A:25元,B:30元
(2)a <500,∵a 为正整数 ∴a 的最大正整数为499 26. (2)连接OA 、OB ,证△AOC ≌△BOC
(3)连接BN ,过点O 作OP ⊥BD 于点P, 过点O 作OQ ⊥AC 于点Q,求得OP=HQ=2
9
, ∴DN=2OP=9 27.解:(1) y=-
3
1x 2
-x+6 (2)过点P作y轴的平行线PK交直线BC于点K,解△PQK得m=9
1t 2+3
2t(3)连接CP、CK、PK,过点
C作CN∥x轴交过点P平行于y轴的直线于点N,过点K作KM⊥y轴于点M, 证△CNP≌△CMK可得K(-31t 2-t,t+6),把K(-3
1t 2-t,t+6)代入y=-
5
12
x 中,解得t 1=2(舍去),t 2=-4
15,∴K(-1615,49),Q(-1615,8
63),∴QK∥y轴,
∴QK=863-49=8
45.。