非线性振动初步讲解共41页文档

合集下载

非线性振动汇总讲解

非线性振动汇总讲解

目录1.两端铰支偏置转子的瞬态涡动分析 (1)1.1转子动力学模型三维立体示意图:(UG) (3)1.2转子动力学模型二维平面示意图:(CAD) (4)1.3导出两端弹性支承刚性薄单盘偏置转子的瞬态涡动微分方程: (5)1.3.1偏置转子在平动坐标系中的动量矩 (5)1.3.2在平动坐标系中外力矩的表达 (7)1.3.3在平动坐标系中定点转动微分方程 (7)1.4形心稳态自由涡动时的频率方程,画出涡动角速度与自转角速度的关系曲线图: . 81.4.1同步涡动的临界转速: (9)1.4.2稳态自由涡动角速度与自转角速度的关系: (9)1.4.3涡动角速度与自转角速度的关系曲线如下: (10)1.5mathematic源代码 (11)2. 威尔逊-- 法求解等加速时的瞬态涡动幅频特性 (12)2.1 分析 (12)2.2 MATLAB编程求解 (16)两端铰支偏置转子的瞬态涡动分析已知:设有两端铰支偏置单盘转子,两端的滚动轴承简化为铰支座,弹性轴跨长57,l cm =直径 1.5,d cm =弹性模量62622.110/20.5810/E Kg cm N cm =⨯=⨯,材料密度337.810/Kg cm ρ-=⨯。

固定在离支承1/4处的圆盘厚2cm =,直径16D cm =,若不计重力影响与系统阻尼,圆盘的转动惯量近似按薄圆盘计算。

ϕ为自转角位移,取222 5.7/35.814/rad s rad s ϕπ=⨯=。

假设无质量偏心,不计重力影响,外力矩的作用是保证转子作等加速转动。

求:①画出转子动力学模型三维立体示意图,导出两端铰支承刚性薄单盘偏置转子的瞬态涡动微分方程;②应用Mathematic 软件求解该转子形心稳态自由涡动时的频率方程,画出涡动角速度与自转角速度的关系曲线图;③应用Wilson θ-数值方法求解等加速度时的瞬态涡动的幅频特性,并画出涡动振幅与自转角速度的幅频关系曲线图和瞬态涡动响应时间历程曲线。

(振动理论课件)非线性振动概述

(振动理论课件)非线性振动概述
➢ 由于处理非线性振动问题的数学工具尚不完备,数 值方法起着非常重要甚至是不可替代的作用。数值 方法在非线性振动中的突出作用是发现新现象,这 已成为非线性振动现代发展的突出特点。
气象学家洛伦兹教授在科学上是敏锐的,他并没有在经典科学 中寻找问题的答案,而是另辟蹊径地解答现象背后的深层次的 科学问题。他认为天气的变化是一个庞大而又复杂的非线性动 力学系统,用传统的线性动力学模型是无法描述那些非周期性 和对初始条件的敏感依赖性。
在复杂系统中,常常存在着系统发生的临界点。用著名的耗散 结构理论的创始人普里高津的话来说,系统存在着分叉点和涨 落机制,任何一个从经典科学来看不足为奇的小小干扰,往往 会导致系统从稳定转向不稳定,或从不稳定趋向稳定
非线性世界的发现
非线性世界是由一位气象学家发现的。
➢千百年以来,关于明天是晴还是雨,人们都是通过对云彩的观 察凭借经验估计。科学家一直希望天气变化的预报,能像日月 食和潮汐那样可以预言。
➢20世纪60年代初,美国麻省理工学院著名气象学家洛伦兹 教授最早尝试用计算机模拟天气。这种尝试完全是凭借着一种 信念:自然是有规律的,规律是可以认识的。一旦人们掌握了 这种规律,知道了初始条件,就可以通过逻辑和数学必然性的 桥梁,模拟过去,预见未来。
➢ 而上述各种实际现象在现代工程技术中愈来愈 频 繁 地 出 现 。 早 在 1940 年 美 国 塔 可 马 (Tacoma)吊桥因风载引起振动而坍塌的事故 就是典型的非线性振动引起破坏的例子。
➢ 有必要发展非线性振动理论,研究对非线性系 统的分析和计算方法,解释各种非线性现象的 物理本质,以分析和解决工程技术中实际的非 线性振动问题。
非线性振动概述
➢几何方法—研究非线性振动的定性分析方法
❖ 传统的几何方法 在常微分方程定性理论的基础上,根据相轨迹的几何 性质判断微分方程解的性质。利用相平面内的奇点和 极限环作为平衡状态和孤立周期运动的几何表述。

振动理论及工程应用10第十章 非线性振动

振动理论及工程应用10第十章 非线性振动
第10章 非线性振动
一般来说,振动系统总是非线性的,线性系 统只是一种简单模型。如果线性理论能反映所要 考察的物理现象的定性性质和适当的定量结果, 那么就把它当作线性系统来处理;否则,就要研 究非线性系统。
在线性系统的研究中可以应用叠加原理,即 系统对不同激励的响应可以线性相加,而对非线 性系统叠加原理不成立,因此对非线性系统的研 究比线性系统要复杂得多。
,d


Y y
O

不妨设平衡点O为原点,则方程式可写成
x ax by X1x, y, y cx dy Y1x, y
对于线性方程组
x ax by, y cx dy
特征方程为
2 p q 0
两个特征根为
1

1 2
x f x, x 0
x y, y f x, y
对于更一般的情形,方程可表示为
x X x, y, y Y x, y
式中x表示质点的位移, y x 表示质点的速度。如
果把(x, y)看作平面上点的坐标(称为相点) ,该平 面称为相平面。
微分方程式的一个解x=x(t), y=y(t)对应于相平面 上的一条曲线,称为相轨迹,简称轨迹。
则称弹性恢复力为软特性恢复力(称为软弹簧)
例如
F x x x3 , 0
当 0 时表示硬弹簧;
当 0 时表示软弹簧。
硬弹簧曲线示意图 软弹簧曲线示意图
如果系统还受到阻力强迫力的作用,则系统的运
动微分方程为
mx x Fx Ft
在一般情况下,单自由度系统的运动微分方程为
若相平面上的点为
x 0, y 0

X xS , yS 0, Y xS , yS 0

非线性振动

非线性振动

非线性振动百科名片恢复力与位移不成正比或阻尼力不与速度一次方成正比的系统的振动。

尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。

一般说,线性模型只适用于小运动范围,超出这一范围,按线性问题处理就不仅在量上会引起较大误差,而且有时还会出现质上的差异,这就促使人们研究非线性振动。

目录编辑本段简介非线性振动恢复力与位移不成线性比例或阻尼力与速度不成线性比例的系统的振动。

尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。

一般说,线性振动只适用于小运动范围,超过此范围,就变成非线性振动。

非线性系统的运动微分方程是非线性的,不能用叠加原理求解。

方程中不显含时间的非线性系统称为非线性自治系统;显含时间的称为非线性非自治系统。

保守非线性自治系统的自由振动仍是周期性的,但其周期依赖于振幅。

对于渐硬弹簧,振幅越大,周期越短;对于渐软弹簧,振幅越大,周期越长。

非保守非线性自治系统具有非线性阻尼,阻尼系数随运动而变化,因而有可能在某个中间振幅下等效阻尼为零,从而能把外界非振动性能量转变为振动激励而建立起稳定的自激振动(简称自振)。

弦乐器和钟表是常见的自振系统。

周期地改变系统的某个参量而激起系统的大幅振动称参变激发。

当系统的固有频率⑴等于或接近参量变化频率的一半时,参变激发现象最易产生。

具有非线性恢复力的系统受到谐激励时,其定常受迫振动存在跳跃现象,即激励频率3缓慢变化时,响应振幅一般也平稳变化,但通过某些特定3值时,振幅会发生跳跃突变。

具有非线性恢复力且固有频率为 3 n 的系统,在受到频率为3的谐激励时,有可能产生频率为 3 /n (心3 n)的定常受迫振动(n为正整数),称为亚谐共振或分频共振。

它的出现不仅与系统和激励的参数有关,而且依赖于初始条件。

亚谐共振可以解释为,由于非线性系统的响应不是谐和的,频率3/n的响应中存在频率为 3 的高次谐波,激励对高次谐波作功而维持了振动。

(振动理论课件)非线性振动概述

(振动理论课件)非线性振动概述
而线性常微分方程的数学理论已十分完善,因此将非 线性系统以线性系统代替是工程中常用的有效方法, 但仅限于一定的范围。 ➢ 至于什么属于线性振动问题,在未说明该系统预期工 作范围之前没有明确答复。因为系统中某些部件响应 与其激励之间的关系可能会依赖与其工作范围
非线性振动概述
➢ 当非线性因素较强时,用线性理论得出的结果 不仅误差过大,而且无法对自激振动、参数振 动、多频响应、超谐和亚谐共振、跳跃现象等 实际现象作出解释。
A
几何非线性
➢几何非线性—例2
单摆振动方程 gsin 0
l 这是一个非线性方程,对于小偏角,sin
可以得到足够精确的线性方程 g 0
l
可得单摆的固有振动周期为 T 2 l 与摆角无关,具有等时性
g
但是对于较大的偏角,必须考虑动非线性的影响。如果偏角并不 十分大,可以对sinθ展开成泰勒级数只取前两项,
非线性振动概述
➢几何方法—研究非线性振动的定性分析方法
❖ 传统的几何方法是利用相平面内的相轨迹作为对运动 过程的直观描述。
❖ 在常微分方程定性理论的基础上,根据相轨迹的几何 性质判断微分方程解的性质。利用相平面内的奇点和 极限环作为平衡状态和孤立周期运动的几何表述。
❖ 因此,关于奇点的类型和稳定性的研究,关于极限环 的存在性和稳定性的研究,以及稳定性随参数变化的 研究,是传统几何方法讨论的主要内容。
➢ 在工程问题中,稳态运动往往对应于机械系统的正常 工作状态。这种工作状态必须是稳定的,因为只有稳 定的运动才是可实现的运动。
非线性振动的定性分析方法
➢ 相平面法是最直观的定性分析方法,它只适用于单 自由度系统
➢ 相平面法利用相轨迹描绘系统的运动性态。相轨迹 的奇点和极限环分别对应于系统的平衡状态和周期 运动。

非线性振动概论

非线性振动概论

★ 对于一般单摆的运动方程(受周期性驱动力作 用的阻尼单摆) :
ml d 2 l d mg sin F cost
dt 2
dt
●一个复杂的非线性系统。其解更为复杂。
结论:对于一个非线性系统,在确定的初始条件 下,其解可能具有不可预测的随机性。
第5章 非线性振动 5. 3.1 非线性振动的近似解析方法
• 线性系统中自由振动总是衰减的
x Aent sin(t )
(5) 强迫振动系统有超谐波响应和次谐波响应成分
• 简谐激振力作用下的非线性系统 响应波形除了与激振力频 率相同的谐波外,还含有频率为激振频率的几分之一.
• 由于存在次谐波与超谐波振动,非线性系统共振频率的数目 将多于系统的自由度
(6) 存在多个简谐激振力作用下的组合振动
线性振动与非线性振动的最大区别:
线性振动满足叠加原理 非线性振动不满足叠加原理
非线性振动方程的一般形式
线性振动方程 mx cx kx f (t) 非线性振动方程
fm (x, x, x) fc (x, x, x) fk (x, x, x) f (x, x, x,t)
变质量 惯性力
非线性 阻尼力
第5章 非线性振动 5. 3.1 非线性振动的近似解析方法
谐波平衡法
谐波平衡法的基本思想是设振动系统微分方程的解能用 系数未知的傅立叶级数表示,然后将外激励展成同样周期的 傅立叶级数,代入方程。由动力学方程两端同阶谐波的系数 相等,得到未知系数的线性代数方程组,解方程组,得到振 动系统微分方程傅立叶级数形式的解。
F(t) f1n cos(n t) f2 n sin(n t)
n1
其中,
f1 n
1 T
T/
T

非线性物理(单摆杜芬方程)讲义

非线性物理(单摆杜芬方程)讲义

面。所有相轨线都将呈现在柱
2 任意角度无阻尼单摆振动
单摆周期 周期与摆角无关?
T0 2 / 0 2 l g ? T ?
T0为零摆角极限下的周期 看看实验结果:
T/T0
0 1.0000 5 1.0005 10 1.0019 20 1.0077 30 1.0174 45 1.0369
定性结论:
1. 周期随摆角增加 而增加 2. 随摆角增加波形 趋于矩形
d 2 g sin 0 2 dt l
d 2 2 0 sin 0 2 dt
(1) (2) (3)
非线性方程, 式中角频率:
0 g / l
线性化处理
d 2 2 0 sin 0 2 dt
x x x sin x x 3! 5! 7!
g l
t
看作 t ),可得
(16)
1 2 E 1 cos H 2 mgl
由此解得
常量
2H 1 cos
(17)
3 任意角度无阻尼单摆的相图与势能曲线
单摆完整相图
0 ]附近相轨线为近似椭圆形的闭合道; 1.坐标原点[ 0, 2.平衡点[ 0 ]为单摆倒置点(鞍点),附近相轨线双曲线; 0 ]或相反的连线为分界线. 0 ]到[ 3.从[
相图
引入代换 0t t 得: d 2 0 2 dt 一次积分后:
1 d 1 2 E 2 dt 2
2
(6)
式中E 为积分常数,由初始条件决定。把 d dt , 看作为两 个变量,则方程是一个圆周方程,圆的半径为 2 E ,振动过 程是一个代表点沿圆周转动。

大学物理非线性振动讲解

大学物理非线性振动讲解
f=1.15,相轨迹分布看似没有规律,反映了某种内在的结构特征;
f=1.35,相轨迹又呈现比较简单分布, 恢复单倍周期状态,但此 时单摆并非作来回振动,而是作单向的旋转;
f =1.45,单摆运动出现2倍的周期,作单向旋转;
f=1.47,单摆出现4倍的周期,作单向旋转; f=1.50, 又出现貌似无规则的运动,但比 f=1.15,时更为混乱.
说明鞍点是不稳定的平衡点,
因为与之相连的四条相轨迹中
两条指向它,两条背离它,而
附近相轨迹呈双曲线状.
Ep
o

d
dt
o

势能曲线、相图、鞍点
假定存在阻尼和驱动力,让摆作受迫振动.这样一来, 双曲点就成了敏感区.能量稍大,单摆就会越过势垒的 顶峰,跨到它的另一侧;能量稍小,则为势垒所阻,滑 回原来的一侧单摆向回摆动。
g 4 2 64 2
式中θm是最大角位移,即单摆振动的角摆幅。
当m 时,T→∞,T/T’随摆幅θm变化关系如图所示。
可见单摆的周期是一个向无
穷大发展的非线性变化。
T T
单摆线性振动的相图
d2 g sin
2
dt 2 L
1
两边积分得
( d
dt
)2
2
2

C1

(d dt)2
§8.3 非线性振动
一、非线性振动系统
由非线性微分方程所描述的振动,称其为非线性振动。
下面以单摆做自由振动为例进行分析
单摆的线性振动
d2
mL dt 2
mg sin
d 2
dt 2

g sin
L
将sinθ按泰勒级数展开可得

振动理论及工程应用9 第十章 非线性振动

振动理论及工程应用9 第十章 非线性振动

从研究方法上或是振动过程的变化规律上, 非线性振动与线性振动之间有本质区别。
研究非线性振动有两种基本方法
定性方法:
定性方法关心的是在已知解的邻域内系统的一 般稳定性特征,并非寻求与时间相关的解。
定量方法:
定量方法关心的是运动的时间历程,一般应用 摄动法来求得这类方程的近似解析解。
10.1 非线性振动的例子
x3
0
如果不再假设位移x很小,那么弹簧的弹性恢复
力一般地是位移x的非线性函数
一般非线性系统的运动微分方程可表示为
mx Fx 0
如果 xFx 0
则称弹性恢复力为硬特性恢复力(称为硬弹簧);
如果 xFx 0
则称弹性恢复力为软特性恢复力(称为软弹簧)
例如
F x x x3 , 0
当 0 时表示硬弹簧;
1 2
稳定结点
1 2 稳定非正常结点
1 2
稳定星形结点
(2)两特征值均为正实数(p<0 , p2≥ 4q>0),则平 衡点是不稳定结点。分别称为不稳定结点,不稳定非 正常结点和不稳定星形结点。图形分别与上图相似, 但箭头方向相反。
(3)特征值为相异实数(q<0),则平衡点称为鞍 点,如图所示。
运动微分方程为
mx 2 S AEl sin 0
l
其中A, E和l分别表示钢丝的横截面 积,弹性模量和长度增量; 为钢丝 与竖直线的偏角。
运动微分方程为
其中
mx 2 S AEl sin 0
l
l l 2 x2 l x2 2l
代入整理得
sin
x
x
l2 x2 l
mx
2S l
x
AE l3
微分方程式的一个解x=x(t), y=y(t)对应于相平面 上的一条曲线,称为相轨迹,简称轨迹。

机械振动第6章非线性振动

机械振动第6章非线性振动

F (t ) f1 n cos(n t ) f 2 n sin(n t )
其中,
1 T /2 f1 n T / 2 F (t ) cos (n t ) d t T 1 T /2 f 2 n T / 2 F (t ) sin (n t ) d t T
n 1


2 T
d d ml 2 l mg sin F cos t dt dt
2
●一个复杂的非线性系统。其解更为复杂。
结论:对于一个非线性系统,在确定的初始条件 下,其解可能具有不可预测的随机性。
第5章 非线性振动
5. 3.1 非线性振动的近似解析方法
定性分析方法讨论振动系统在奇点(平衡位置) 附近的运动稳定性,它不需要求解系统的动力学微 分方程。但定性分析方法的研究对象主要限于自治 系统,而且不能定量地计算系统运动的时间历程,
第五章 非线性系统的振动
5.1 非线性振动概述
5.2 非线性振动问题的主要特点 5.3 非线性振动问题的研究方法 5.4 分叉与混沌的概念
王卫滨
5.1 非线性振动概述
不能用线性微分方程描述的振动称为非线性振动。恢复力与位移不成 正比或阻尼力不与速度一次方成正比的系统的振动。 工程技术与自然界中的振动问题及现象,绝大多数属于非线性的,线 性振动系统往往是对非线性系统进行性 恢复力
非线性 激振力
5.2 非线性振动问题的主要特点
• (1) 非线性振动系统的频率与系统响应的振幅和初始条件有关
线性振动系统的振动周期不随振幅大小而变化
(2) 对于非线性振动系统,叠加原理不适用
• 对于线性微分方程
• 对于非线性系统
d n x1 x2 d n x1 d n x2 n n dt dt dt n

第一章非线性振动初步

第一章非线性振动初步

x ' (t ) A0e
t
cos( t )
2 0 2
2 2 2
A
F

e i
( 2 2 )2 4 2 2
1.线性单摆的受迫振动
小摆角驱动单摆的通解
A F e i

x " (t ) Ae
i t
x " (t )
F

e i e i( t )
代入、 以后特解为:
x " (t ) F ( 2 2 )2 4 2 2 cos( t x(t ) x' x" A0e t cos( t ) F ( 2 2 )2 4 2 2 cos( t tg1 2 ) 2 2
A
2. 杜芬方程的受迫振动
杜芬方程解
2. 方程解(续)
F cos 0 2 1 F 1 A2 sin 0 16 A ( + ) F cos 0 2 F e sin 0 A( + )
A
A
e 1

1 2 A 16
等效自 振频率
考虑近共振:
2
e
A F cos 2 2 (e )A F sin
sin2 cos2 1
A= F [(e2 2 )2 + ()2 ]
共振 频率
将分母根号下对频率求导并令其等于零: df (v ) d [( 2 2 )2 42 2 ] 0 (2 2 ) 22 d d
r 2 2 2
共振频率r小于系统自振频率,

非线性振动

非线性振动
g sin 0
l
/ rad
t/s
Testing Techniques
工程振动与测试
质量m在拉紧着的钢丝中的振动。设质量m附着在 长度为2l的钢丝中间,钢丝两端的拉力为S。当质点从 其平衡位置侧向移动距离x时,钢丝产生恢复力,
运动微分方程为
mx 2 S AEl sin 0
l
其中A, E和l分别表示钢丝的横截面 积,弹性模量和长度增量; 为钢丝 与竖直线的偏角。
Testing Techniques
工程振动与测试
10.1 非线性振动的例子
单摆的有限振幅振动是最简单的一个例子
运动微分方程为
g sin 0
l
对于微小振动,sin
g 0
l
如果振幅不是很小
线性系统
g l
3
6
0
非线性系统
Testing Techniques
工程振动与测试 单摆运动特性
m
它是x和 x 的非线性函数。
如果函数 f 不显含t,则称这个系统为自治系统, 否则称为非自治系统。
Testing Techniques
工程振动与测试
10.2 相平面
设自治系统可表示为

x f x, x 0
x y, y f x, y
对于更一般的情形,方程可表示为
x X x, y, y Y x, y
Testing Techniques
工程振动与测试
运动微分方程为
其中
mx 2 S AEl sin 0
l
l l 2 x2 l x2 2l
代入整理得
sin
x
x
l2 x2 l
mx
2S l

非线性振动

非线性振动

x (t, ) x0 (t ) x1 (t ) x2 (t )
2
第5章 非线性振动
5. 3.1 非线性振动的近似解析方法
)在 将原系统周期解的表达式代入原方程两端,并将f(x, x
0)的领域内展开成泰勒级数: 基本解(x0, x
2 0 x x F (t ) x (t, ) x0 (t ) x1 (t ) 2 x2 (t )
(4) 某些有阻尼的非线性振动系统会出现自激振动,振幅不 衰减 • 线性系统中自由振动总是衰减的
x Aent sin(t )
(5) 强迫振动系统有超谐波响应和次谐波响应成分 • 简谐激振力作用下的非线性系统 响应波形除了与激振力频 率相同的谐波外,还含有频率为激振频率的几分之一.
纽马克法来自于梯形法,它按照泰勒级数展开式,保留 到二阶导数加速度项,并引入两个参数 和对截去的高阶小 量作修正。
Duffing方程的倍周期分叉现象与混沌运动
5.3 非线性振动问题的研究方法
实物或模型实验— —结合计算机处理数据 实验方法: 空间平面法) 定性方法(几何法或相 在相平面上研究解或平 衡点的性质,即相轨迹 在相平面上分布 情况;确定奇点、极限 环、特殊轨线,解的全 局性态。 法) 初值法(如Rouge kut t a 边值法(Shoot ingMot hed) 数值解法: 直接 点映射法 胞映射法 跌代法 分析方法: (小参数法) 摄动法 定量方法 渐进法(平均法) 多尺度法 (近似法)解析法: 伽辽金法 谐波平衡法 等价线性化法

动力系统的非线性振动分析

动力系统的非线性振动分析

动力系统的非线性振动分析动力系统的非线性振动是指在外部激励下,动力系统输出的振动不符合线性系统的响应规律,而出现非线性现象。

非线性振动是一种复杂而有趣的现象,广泛应用于各个领域,如机械工程、航空航天、电力电子等。

非线性振动的分析对于设计和优化动力系统至关重要,因此本文将介绍非线性振动的基本理论、方法和应用。

非线性振动的基本理论基于非线性动力学,非线性动力学研究非线性振动系统的运动规律。

非线性振动系统通常由一系列非线性微分方程描述,如Duffing方程、Van der Pol方程等。

这些方程往往包含非线性项,如非线性刚度、非线性阻尼、非线性耗散等。

非线性系统的解析解很难获得,因此需要借助数值模拟和近似方法来进行分析。

数值模拟是研究非线性振动的常用方法之一、通过数值方法可以求解非线性微分方程的数值解,得到系统的时域响应。

常用的数值方法包括Euler法、Runge-Kutta法、有限元法等。

数值模拟可以模拟系统在不同参数和激振条件下的响应,确定系统的稳定性和动态特性。

非线性振动还可以通过近似方法进行分析。

近似方法不依赖于数值计算,通过一系列数学变换和经验公式,将非线性系统简化为线性或半线性系统,以更好地理解系统的振动行为。

常用的近似方法有受激扰动法、多尺度方法和平均法等。

这些方法可以得到系统的解析解或近似解,为设计和优化动力系统提供参考。

非线性振动的应用广泛,其中一个重要应用是结构动力学领域。

在建筑、桥梁和飞行器等结构中,非线性振动会导致结构的破坏和失效。

通过对结构的非线性振动分析,可以预测并避免结构的振动失控,以提高结构的安全性和可靠性。

此外,非线性振动还在能量传输和能量转换系统中发挥着重要作用。

如能量管道、振动发电器和能量吸收器等系统,其中非线性振动可以改善系统的能量传输效率和转换效率。

通过对非线性振动的分析和优化,可以提高能量系统的性能,降低能量损耗。

总之,非线性振动的分析是设计和优化动力系统的重要环节。

振动理论及其运用第6章非线性振动-1

振动理论及其运用第6章非线性振动-1

0
(i, j1, 2)

X1(x1, X2(x1,
x2) x2)
相平面上个别的平衡点就是以下方程的解:
X 1 ( x 1 ,x 2 ) 0 , X 2 ( x 1 ,x 2 ) 0
第6章 非线性振动 6. 2 非线性振动的定性分析方法
不失一般性,将坐标原点移至奇点处,并将函数在奇 点(0,0)附近展开为泰勒级数,得到:
2n
凡是{X}T{X} Xi2 0的点称为普通点、相点或正则 i1
点;而{X} ={ 0 }的点称为奇异点或平衡点。
从状态方程可以看出平衡点的速度与加速度为零。 未扰解和被扰解
xi= fi (t )为方程的一个已知解,称为未扰解。研究系统在 fi (t )领域中的运动xi (t )称为被扰运动。
其中, qi是广义坐标,fi是广义坐标和广义速度的非线性函数。 位形空间
由变量qi规定的n维笛卡儿空间称为位形空间。方程的解qi(t) 可用位形空间的n维矢量表示。
设 qi , xi q和i xni, xni Xi fi Xni 方程可写为 x i(t)X i(x 1 ,x2 或,..x .2n ,,t) {x}{X}
非线性振动的研究方法
非线性振动研究的方法有:定性分析、定量分析和数值分析方法。
定性法 研究已知解的领域内系统的一般稳定性特征,而不是运动的时间 历程。通常采用几何方法描述系统的运动特征。
定量法 通过一些渐近的解析方法研究系统运动的时间历程。
数值法 通过数值计算方法研究系统非线性振动的规律和现象。
第6章单 非线性振动 6.1 非线性振动概述
振动理论及其应用
第6章 非线性振动
6.1 非线性振动概述 6.2 非线性振动的定性分析方法 6.3 非线性振动的近似解析方法 6.4 非线性振动的数值分析方法 6.5 分叉与混沌的概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档