多谐振荡器
多谐振荡器
谢谢观看
构成
运放构成 图1 在脉冲技术中,经常需要一个脉冲源,以满足数码的运算、信息的传递和系统的测试等用途的需要。多谐振荡 器就是脉冲源中比较常见的一种。它的输出波形近似于方波,所以也称之为方波发生器。由于方波是由许许多多不 同频率的正弦波所组成,因此取得了“多谐”的称呼。 一般来讲,象三角波、斜波、锯齿波和方波等非线性波型发生器,是由下述三部分构成:积分器(又称之为定时 电路),比较器和逻辑电路。如图1的方框图所示。这三部分的作用可以仅由一个或两个集成运算放大器来完成。 这个电路的特点是: 1、适于在音频范围内,对于在某个固定 频率下应用, 2、改变R:可以调整频率, 3、频率的稳定性主要取决于电容C和齐纳二极管的稳定性,所以即使是采用便宜的元器件也能得到频率漂移 相
类型
非稳态多谐振荡器 图3非稳态多谐振荡器电路图3说明了典型非稳态多谐振荡器电路的组态。 基本操作模式此电路运作在以下两种状态: 状态一 Q1导通,Q1的集电极电压为接近0V,C1由流经R2及Q1_CE的电流放电,由于电容C1提供反电压,使得Q2截止, C2经由R4及Q1_BE充电,输出电压为高(但因C2经由R4充电的缘故,较电源电压稍低)。 此状态一直持续到C1放电完成。由于R2提供基极偏置使得Q2导通:此电路进入状态二 状态二 Q2导通,Q2的集电极电压(即是输出电压)由高电位变为接近0V,由于电容C2提供反电压,使Q1瞬间截止, Q1截止,使得Q1集电极电压上升到高电位,C1经由R1及Q2_BE充电,C2流经R3以及Q2_CE的电流放电,由于电容 C2提供反电压,使得Q1截止。 此状态一直持续到直到C2放电完毕,由于R3对Q1基极提供偏置电压,Q1导通:此电路进入状态一。
数字电子技术 7-3多谐振荡器
uI1
显然: 任何≥3 奇 首尾接 可形成环
(uO)
(a)
tPd
数个反相器 在一起 形振荡器
振荡频率: f 1
O
uI2
tPd
t
2ntPd
---式中n为串联门的个数,n=3、5、7、…
uIO3 tPd
t
优点:电路简单
O
缺点:频率太高不可调不实用 tPd只有几十纳秒到一二百纳秒
t (b)
工作波形图
R
R1 Rs
R1 R
UOL1
R u13
UOH2
RS
C
uI3
可求得电容C充电时间T1
T1
RECln
UE
UTH UOH UE UTH
U OL
RECln
2UOH UTH UOH UTH
O
VCC R1
G3
UE
RE
u13
C UOL
UTH+(UOH UOL)
UTH t
UTH (UOH UOL )
7.3.1
获得较大电
VDD
压放大倍数
uI1
uI2
uO2
使uO1↓到UOL ,而uO2↑至UOH,电路进入暂稳态
1/2VDD
直线uO1=uI1
O
P
G1静态
工作点
1/2VDD
uI
电压传输特性
7.3.1
用门电路构 成的振荡器
➢ 随着C放电uI1↓=UTH时: 另一正反馈过程发生
uI1
uI2
uO2
使uO1↓UOH,
品质因数高 选频特性好
由阻抗频率特性知:
当外加电压 信号的频率
等于
电路中的多谐振荡器
电路中的多谐振荡器在电子学领域中,振荡器(Oscillator)是一种能够产生连续振荡信号的电路装置。
它是许多电子设备的核心组成部分,例如无线电收发器、时钟电路和音频发生器等。
在振荡器中,多谐振荡器(Multivibrator)是一种特殊类型的振荡器,它能够产生多个频率不同的输出信号。
多谐振荡器由至少两个元件组成,其中最常见的是双稳态(Bistable)振荡器。
双稳态振荡器由两个互补输出的非线性元件组成,例如晶体管、集成电路或其他电子组件。
这两个互补输出在一个固定的时间间隔内交替地切换,从而产生不同频率的振荡信号。
多谐振荡器有许多不同的类型和应用。
其中最常见的类型是双稳态振荡器的两种形式:正弦振荡器(Sine Wave Oscillator)和方波振荡器(Square Wave Oscillator)。
正弦振荡器是一种产生正弦波输出的多谐振荡器。
它常用于无线电收发器中的本地振荡器,以及音频发生器中产生音频信号。
常见的正弦振荡器包括皮尔逊振荡器(Pearson Oscillator)和科尔普接口(Colpitts Oscillator)。
方波振荡器是一种产生方波输出的多谐振荡器。
方波是一种矩形波形信号,其周期相对较短,而高电平和低电平的持续时间相等。
方波振荡器广泛应用于数字电路、时钟电路和计算机系统中。
最常见的方波振荡器包括皮尔逊振荡器和斯宾格勒(Schmitt)触发器。
无论是正弦振荡器还是方波振荡器,其核心原理都是通过正反馈(Positive Feedback)来实现自激振荡。
正反馈使得一部分输出信号经过放大后再次输入到电路中,从而维持振荡信号的频率和振幅。
同时,振荡器中的谐振电路(Resonant Circuit)也对振荡信号的频率起到重要作用。
谐振电路通常由电感和电容器组成,通过调节电感和电容器的数值可以改变振荡器的频率。
一些多谐振荡器还采用了复杂的电路拓扑结构,如双滤波器振荡器(Twin-T Oscillator)和莫斯特(Moog)滤波器等。
多谐振荡器实习报告
通过本次多谐振荡器实习,了解多谐振荡器的基本原理、电路组成、工作原理及性能特点,掌握多谐振荡器的调试方法,培养实际操作能力,提高对电路设计的理解。
二、实习内容1. 多谐振荡器的基本原理多谐振荡器是一种产生周期性方波信号的电路,其输出信号具有固定的频率和幅度。
多谐振荡器主要由放大器、比较器、延时电路和反馈电路组成。
2. 多谐振荡器的电路组成(1)放大器:放大器采用双极型晶体管或场效应晶体管,负责将输入信号放大。
(2)比较器:比较器将放大后的信号与参考电压进行比较,产生高电平或低电平输出。
(3)延时电路:延时电路用于产生时间间隔,使比较器输出信号的相位差为180度。
(4)反馈电路:反馈电路将比较器输出信号的一部分反馈到放大器输入端,以保证电路的稳定工作。
3. 多谐振荡器的工作原理(1)放大器放大输入信号,输出信号经过比较器与参考电压比较。
(2)比较器输出高电平或低电平信号,分别经过延时电路和反馈电路。
(3)延时电路产生的延时信号与比较器输出信号相差180度,使电路产生稳定的方波信号。
4. 多谐振荡器的调试方法(1)调整放大器电路参数,使放大器输出信号幅度适中。
(2)调整比较器电路参数,使比较器输出信号幅度稳定。
(3)调整延时电路参数,使延时时间符合要求。
(4)调整反馈电路参数,使电路产生稳定的方波信号。
1. 理论学习在学习过程中,了解多谐振荡器的基本原理、电路组成、工作原理及性能特点,掌握多谐振荡器的调试方法。
2. 电路搭建根据所学知识,搭建多谐振荡器电路,包括放大器、比较器、延时电路和反馈电路。
3. 调试电路根据调试方法,调整电路参数,使电路产生稳定的方波信号。
4. 测试与验证使用示波器观察输出信号,测试电路的频率、幅度和占空比等参数,验证电路是否满足设计要求。
四、实习结果通过本次实习,成功搭建并调试了一个多谐振荡器电路,实现了稳定的方波信号输出。
电路的频率、幅度和占空比等参数均满足设计要求。
五、实习总结1. 通过本次实习,掌握了多谐振荡器的基本原理、电路组成、工作原理及性能特点。
多谐振荡器电路的工作原理
多谐振荡器电路的工作原理
答案:
多谐振荡器是一种自激振荡电路,它能够产生矩形波,也称为方波发生器。
这种电路的工作原理基于深度正反馈和阻容耦合,通过使两个电子器件(如晶体管)交替导通与截止,从而自激产生方波输出。
多谐振荡器没有稳态,只有两个瞬态状态,这些状态由电路自行转换,无需外加输入信号。
当电源接通后,电路就能自动地产生矩形脉冲,这些脉冲含有丰富的高次谐波分量。
多谐振荡器的基本结构包括放大器、反馈网络和滤波器等部分。
当放大器的输出信号通过反馈网络返回到输入端口时,在适当条件下会发生自激振荡,并在滤波器的作用下产生多个频率的振荡信号。
此外,多谐振荡器的输出波形近似于方波,因此也称之为方波发生器。
由于方波是由许多不同频率的正弦波所组成,因此得名“多谐”。
在具体的工作过程中,例如在简易电子琴电路中,接通电源瞬间,电容C1来不及充电,其两端电压为低电平。
这时,电源通过R1对电容C1充电,使电压按指数规律上升。
当电压上升到一定值时,电路进入第一暂稳态。
随后,电容C1通过电阻R2和放电管放电,电路进入第二暂稳态。
这个过程不断重复,电路在两个暂稳态之间来回翻转,输出矩形波。
多谐振荡器的振荡频率取决于电阻和电容的数值。
电阻与电容的乘积越大,电容放电时间越长,振荡频率越低;反之,振荡频率会变高。
这种电路在脉冲技术中有着广泛的应用,如数字计算、信息传输和系统测试等。
多谐振荡器频率单位
多谐振荡器频率单位多谐振荡器是一种能够产生多个频率的振荡器。
它可以通过改变电容或电感的值来改变输出信号的频率。
多谐振荡器的频率单位可以是赫兹(Hz)或千赫兹(kHz)。
多谐振荡器的频率是由其电路元件的参数决定的。
常见的多谐振荡器电路包括RC多谐振荡器、LC多谐振荡器和LCR多谐振荡器。
我们来看一下RC多谐振荡器。
RC多谐振荡器是由一个电容和一个电阻组成的电路。
当电容和电阻的值适当时,RC多谐振荡器可以产生稳定的振荡信号。
其频率可以通过改变电容或电阻的值来调节。
例如,当电容值较大时,频率较低;当电容值较小时,频率较高。
接下来,我们来介绍LC多谐振荡器。
LC多谐振荡器是由一个电感和一个电容组成的电路。
当电感和电容的值适当时,LC多谐振荡器可以产生稳定的振荡信号。
其频率可以通过改变电感或电容的值来调节。
例如,当电感值较大时,频率较低;当电感值较小时,频率较高。
我们来介绍LCR多谐振荡器。
LCR多谐振荡器是由一个电感、一个电容和一个电阻组成的电路。
当电感、电容和电阻的值适当时,LCR 多谐振荡器可以产生稳定的振荡信号。
其频率可以通过改变电感、电容或电阻的值来调节。
例如,当电感和电容的值较大,电阻的值较小时,频率较低;当电感和电容的值较小时,电阻的值较大时,频率较高。
除了改变电容、电感和电阻的值,多谐振荡器的频率还可以通过改变输入信号的幅值来调节。
当输入信号的幅值较大时,频率较高;当输入信号的幅值较小时,频率较低。
多谐振荡器在电子电路中有着广泛的应用。
例如,它可以用于产生音频信号、射频信号和微波信号等。
在无线通信系统中,多谐振荡器常用于产生载波信号。
在音频设备中,多谐振荡器常用于产生音频信号。
多谐振荡器是一种能够产生多个频率的振荡器。
它的频率可以通过改变电容、电感和电阻的值,以及输入信号的幅值来调节。
多谐振荡器在电子电路中有着广泛的应用,是现代电子技术中不可或缺的一部分。
如何设计和调试电子电路中的多谐振荡器
如何设计和调试电子电路中的多谐振荡器在电子电路设计中,振荡器是一种非常重要的电路元件,它能产生稳定的信号波形,广泛应用于通信、计算机、无线电、音频等领域。
多谐振荡器是一种特殊类型的振荡器,它可以同时产生多个频率的信号。
本文将介绍如何设计和调试电子电路中的多谐振荡器。
一、多谐振荡器的原理多谐振荡器的原理是通过多个谐振电路并联组成的,每个谐振电路都可以产生一个特定频率的信号。
这些谐振电路之间通过耦合方式相互联系,使得它们能够同时振荡,并产生多个频率的信号。
二、电路设计步骤1. 确定振荡器类型:根据具体应用需求,确定使用的多谐振荡器类型,例如相位移振荡器、LC谐振振荡器等。
2. 选择谐振电路:根据所需频率范围,选择合适的谐振电路,常见的包括LC谐振电路、RC谐振电路、谐振晶体等。
3. 确定频率范围和数量:根据应用需求和系统设计要求,确定多谐振荡器所要覆盖的频率范围和需要产生的频率数量。
4. 耦合方式选择:确定不同谐振电路之间的耦合方式,常见的耦合方式有电感耦合、电容耦合和变压器耦合等。
5. 根据谐振电路的特性参数,计算设计电路的元件数值,例如电感、电容、电阻等数值。
6. 绘制电路图:使用电子设计软件或手绘方式绘制多谐振荡器的电路图。
7. PCB设计:根据电路图设计PCB板,保证电路板的布局合理、信号传输良好。
8. 元器件选择:根据设计要求选择适合的元器件,包括电感、电容、晶体管等。
9. 元器件焊接:将选好的元器件焊接到PCB板上。
10. 电路调试:使用示波器等测试设备,对多谐振荡器进行电路调试,检查振荡器是否在设计的频率范围内正常工作。
11. 优化与改进:根据实际测试结果,对电路进行优化和改进,以满足系统的要求。
三、电路调试技巧1. 调整电路增益:通过调整电路的增益,使得振荡器能够产生稳定的振荡信号。
2. 调整谐振电路参数:根据需要调整谐振电路的参数,例如电感、电容等,以满足所要求的频率特性。
3. 降低电路噪声:通过优化电路布局和减小元器件的串扰,降低振荡器的噪声水平。
第6章 多谐振荡器讲解
6.4.5 石英晶体多谐振荡器 常用晶振: 32768Hz=215Hz 4.194304MHz=223Hz
各种固有振荡频率fo的石英晶体已做成成品,可根 据所购晶体的fo选择电路的外接RF 和C,
fo一般都很高,应利用分频器将fo分频为所需频率。
6.4.5 压控振荡器
压控振荡器(Voltage Controlled Oscillator , 简称VCO ) 是一种频率可控的振荡器,它的振荡频率随输 入控制电压的变化而改变。
vO
I= 0V电容充电 NhomakorabeavI
vI
v O1
vO
vI
G1 D1 vI D2 TP vO1 TN R D3 充电 D4 TP
G2 VDD
t
TN
vO
VDD 0 t
C
2. 工作原理
vO1=vOL VDD+ΔV+
(2)进入第二暂稳态瞬间,vo=VDD, vI=VDD+VTH 电容放电
vI
vO
当 v I =VTH 时, 迅速使得vO1=VOH, vI=vO=VOL
图6.4.5
改进电路如图6.4.7(a)所示, 其中增加了RC积分环节, 加大了第二节的延迟时间
图6.4.7(a)
6.4.2 环形振荡器
但RC电路的充、放电的持 续时间很短,为了获取更 大的延迟,将C的接地端 改到G1的输出端,如图 6.4.7(b)所示
图6.4.7(a)
其中Rs为保护电阻
图6.4.7(b)
vI
G1 D1 TP
v O1
电路返回第一暂稳态
G2 VDD D3 TP 放电
vI VTH O vO VDD O
VDD+V+
多谐振荡器
2 = ln
一、门电路组成的多谐振荡器
(3)则输出波形振荡周期为T:
= 1 + 2 = ln4 ≈ 1.4
图6-18 多谐振荡器波形图
二、石英晶体振荡器
由逻辑门组成的多谐振荡器电路较简单,但由于振荡器中电路的转换电
平UTH容易受电源电压和温度变化的影响,在电路状态临近转换时电容的充、
数字电子技术基础
多谐振荡器
小知识
多谐振荡器是一种自激振荡器,在接通电源以后,不需
要外加触发信号,便能自动地产生矩形脉冲。因为矩形
波中含有丰富的高次谐波分量,所以习惯上又把矩形波
振荡器称为多谐振荡器。该电路的特点是只有两个暂稳
态,没有稳定状态,高低电平的切换自动进行,所以也
被称为无稳态电路。前面所说的触发器和时序电路中的
电容C通过逻辑门G1、G2的导通电路放电,则uI逐渐下降。当uI下降到UTH时,迅速使uO1跳
变为高电平UOH,uO跳变为低电平UOL。电路回到第一暂稳态,电源又经逻辑门G1、G2的导
通电路对电容C充电,又重复上述过程。因此,电路便不停地在两个暂稳态之间反复振荡。
翻转。
一、门电路组成的多谐振荡器
2、波形图分析
放电已经比较缓慢。在这种情况下转换电平微小的变化或轻微的干扰都会严
重影响振荡周期,造成电路状态转换时间的提前或滞后,最终使得由普通门
电路构成的多谐振荡器振荡频率不稳定。而在数字系统中,矩形脉冲信号常
用作时钟信号来控制和协调整个系统的工作,控制信号频率不稳定会直接影
响整个系统的运行,所以在对频率稳定性有较高要求时,必须采取稳频措施。
C2的比值,其中C1还可对振荡频率进行微调。G1输出端加反相器G2,用以改善输出波形
多谐振荡器的原理及应用
多谐振荡器的原理及应用1. 引言多谐振荡器是一种能够产生多个频率稳定且相互独立的输出信号的电子器件。
它在通信、无线电、音频等领域具有广泛的应用。
本文将介绍多谐振荡器的原理以及其在通信和音频领域的应用。
2. 多谐振荡器的原理多谐振荡器的原理基于谐振电路的特性。
谐振电路包括电感和电容元件,当系统中的电感和电容满足一定的条件时,谐振电路将产生稳定的振荡信号。
多谐振荡器通过使用多个谐振电路并调整每个谐振电路的参数,实现同时产生多个频率稳定的振荡信号。
3. 多谐振荡器的组成多谐振荡器通常由以下几个部分组成: - 振荡器核心:包括多个谐振电路以及相应的调节和连接元件。
振荡器核心是多谐振荡器的关键组件,决定了多谐振荡器的输出频率和性能。
- 稳定电源:为振荡器核心提供稳定的电源电压,以确保振荡信号的稳定性。
- 控制电路:用于调节每个谐振电路的参数,包括电容、电感或其他元件的数值和连接方式等。
- 输出接口:将多谐振荡器的输出信号连接到外部设备或系统。
4. 多谐振荡器的应用4.1 通信领域多谐振荡器在通信领域中有着重要的应用。
它能够提供多个频率稳定的信号,满足不同通信系统对频率的需求。
常见的应用包括: - 频率合成器:将多个谐振振荡器的输出信号合成为一个更高频率的信号,用于射频通信系统中的信号发生器或调频广播等设备。
- 信号源:为通信系统或测试仪器提供不同频率的参考信号。
- 频率分割器:将输入信号分割成多个频率范围,用于多信道通信系统中的频率分割和信号选择。
4.2 音频领域多谐振荡器也在音频领域中有着广泛的应用。
它可以用于声音合成、音乐乐器和音频效果器等设备。
具体应用包括: - 声音合成器:通过调节多谐振荡器输出信号的频率和强度,模拟各种乐器的声音。
- 数字音频处理器:利用多谐振荡器的多个输出信号,实现音频信号的时域和频域处理,例如混响、合唱和调制等效果。
5. 总结多谐振荡器是一种能够产生多个频率稳定且相互独立的输出信号的电子器件。
多谐振荡器作用(一)
多谐振荡器作用(一)多谐振荡器作用什么是多谐振荡器?多谐振荡器是一种电子滤波器,其设计旨在产生多个频率的振荡信号。
具体来说,多谐振荡器可以输出多个正弦波,这些正弦波在频率上略有差异。
多谐振荡器的作用多谐振荡器在许多领域都有着广泛的应用。
以下是一些典型的应用场景:1. 通信系统多谐振荡器可用于调制通信信号,以实现不同频率信号之间的传输。
例如,在无线电广播中,多谐振荡器被用作频率调制器以产生广播信号。
2. 声音合成多谐振荡器可以用来合成声音,例如合成音乐或语音。
通过调整多谐振荡器的频率,可以模拟不同音高的声音。
3. 信号处理多谐振荡器广泛应用于信号处理领域,例如用于图像处理中的灰度定标。
同时,在过滤掉信号中的噪声或不需要的频段方面,多谐振荡器也有着非常重要的应用。
4. 仪器测量多谐振荡器同样也可以用于制作仪器,例如频率计或信号源。
由于它可以生成不同频率的正弦波,因此可以轻松地测试和分析不同的电路元件。
总结综上所述,多谐振荡器具有非常广泛的应用领域。
从通信到音乐,再到信号处理和仪器测量,多谐振荡器都扮演着非常关键的角色。
随着技术的不断进步,相信多谐振荡器的应用领域还将进一步扩展和拓展。
多谐振荡器的原理多谐振荡器的工作原理基于反馈电路。
简单来说,其中一个电路元件的输出通过电路的其余部分反馈到输入端,不断地循环,从而产生振荡。
在具体设计多谐振荡器时,需要选择合适的电感、电容和放大器来生成所需的频率。
同时,还需要注意电路的稳定性和耐受能力。
多谐振荡器的应用示例具体来讲,以下是一些多谐振荡器的应用示例:•声音合成器:当多个正弦波以不同的频率和幅度唤起时,可以合成一个逼真的人声或者乐器音效。
•信号发生器:可以生成不同频率的信号,以用于测试或调整电路,或在混音台和音频生产方面产生不同的音调。
•仪器测量:多谐振荡器也常用于仪器测量,例如高精度频率计、光谱仪、电子滤波器等等。
结论总的来说,多谐振荡器扮演着重要的角色,无论在正常通信还是在卫星和深空通信方面。
多谐振荡器
2021/8/13
8
数字电子技术
2021/8/13
5
石英晶体具有很好 的选频特性。当振荡信 号的频率和石英晶体的 固有谐振频率fo相同时, 石英晶体呈现很低的阻 抗,信号很容易通过, 而其它频率的信号则被 衰减掉。
石英晶体的阻抗频率特性图
2021/8/13
6
因此,将石英晶体串接在多谐振荡器的回路中 就可组成石英晶体振荡器,这时,振荡频率只取决 于石英晶体的固有谐振频率fo,而与RC无关。
替。
利用放电管T作为一个受控电子开关,使电容充电、
放电而改变T电H=容TCR充,电则交替置0、置1。电容C放电
τ充=( R1+R2)C
τ放= R2C
2021/8/13
振荡器输出脉冲uO的工作周期为: T≈0.7(R1+2R2)C
图7-20 555定时器构成的多谐振荡器
(a)电路
(b)工作波形
3
2. 图8.20(a)所示电路只能产生占空比大于0.5的矩形 波, 而图8.21所示电路可以产生占空比处于0和1之间的 矩形波。这是因为它的充放电的路径不同,
+UD D
RA RW
84 7
RB
D2
555 3 6
uo
D1
21 5
C1
C2
2021/8/13
图7-21 可调占空比的多谐振荡器
4
2. 石英晶体振荡器
前面介绍的多谐振荡器的一个共同特点就是振 荡频率不稳定,容易受温度、电源电压波动和RC参 数误差的影响。
多谐振荡器
Vc继续上升到Vc>2/3Vcc时, 进入状态C:输出翻转为0, 7脚对地导通;此时Vcc的充 电电流将由7脚到地,不能 再对C充电。C上电荷将由 D2经Rb通过第7脚对地泄放。 放电使Vc下降,到 Vc<1/3Vcc时,再次进入A 状态…C循环充放电,555将
555的振荡频率可根据公式计算得到约为720Hz,处于听觉范围内 555的电阻配为1k、100k,输出占空比为101/201,接近于50%,实验
证明,此种占空比较不刺耳
四、实验步骤
占空比连续可调的多谐振荡器
连接完电路后,将555的输出连接到电平灯上,应可看到电平灯闪烁。 调节电位器Rw,改变输出矩形波的占空比,将使电平灯亮灭的时间比发 生变化
按图中参数,不计二极管
导通电阻,则占空比为1Fra bibliotek~11 12 12
三、Ra 实7脚对验地 内容 导通
555 D1 Rb
D2
C
调节Rw,将改变Ra、Rb的值, 从而改变输出矩形波的占空比;
矩形波周期T=K×C×(Ra+Rb), 因为调节Rw时,如果不考虑二 极管的导通电阻,Ra+Rb将始 终保持不变,所以不会改变 555输出矩形波的频率
三、Ra 实7脚对验地 内容 导通
D1 Rb
D2
C
充电回路与放电回路如图所 示。充电时,555输出1;放 电时,555输出0。因为都是 对电容C充放电,如果不计 二极管的导通电阻,则555 的充放电时间正比于充放电 电阻。
占空比的计算可表达为
Ra 1 Rb
多谐振荡器完整PPT
由于它的频率稳定度很高,所以走时很准。 R的选择应使G1工作在电压传输特性的转折区。
74LS04 (TTL) CD4069 (CMOS)
图5-14 对称式多谐振荡器
图5-16最简单的环形振荡器
图5-21 石英晶体振荡器电路
当振荡信号的频率和石英晶体的固有谐振频率fo相同时,石英晶体呈现很低的阻抗,信号很容易通过,而其它频率的信号则被衰减掉
由于充电时间常数小于放电时间常数,所以充电速度较快,uC首先上升到G2的阈值电压UTH,并引起如下的正反馈过程:
图5-21 石英晶体振荡器电路
此后,C 放电、C 充电,C 充电使u 上升,会 (a) 电路 (b) 工作波形
1 2 图5-18 RC环形振荡器的工作波形
利用电容C的充放电,改变uI3的电平(因为RS很小,在分析时往往忽略它。
3. CMOS反相器构成的多谐振荡器
图5-19 CMOS反相器构成的多谐振荡器
R的选择应使G1工作在电压传输特性的转折区。 此时,由于uO1即为uI2,G2也工作在电压传输特性 的转折区,若uI有正向扰动,必然引起下述正反馈过程:
随着电容C的不断充电,uI不断上升,当uI≥UTH 时,电路又迅速跳变为第一暂稳态。如此周而复始,
使uO1迅速变成低电平,而uO2迅速变成高电平,电路进入第一暂稳态。
此时,电容C通过R放电,然后uO2向C反向充电。
使u 迅速跳变为低电平、u 迅速跳变为高电 O2 利用电容C的充放电,改变uI3的电平(因为RS很小,在分析时往往忽略它。
图5-21 石英晶体振荡器电路
O1
平,电路进入第二暂稳态。 图5-16最简单的环形振荡器
1. 最简单的环形振荡器
图5-16最简单的环形振荡器 (a) 电路 (b) 工作波形
什么是多谐振荡器如何设计一个多谐振荡器电路
什么是多谐振荡器如何设计一个多谐振荡器电路什么是多谐振荡器?如何设计一个多谐振荡器电路多谐振荡器(Multi-Harmonic Oscillator)是一种能够产生多种频率的信号的电路或设备。
它可以同时输出多个谐波频率的正弦波或方波,并且这些频率之间是按照一定的数学关系相互关联的。
设计一个多谐振荡器电路需要考虑多种因素,包括所需的谐波频率范围、稳定性要求、输出功率等。
下面将介绍一个常见的多谐振荡器电路设计。
【1. 介绍振荡器电路的基本原理】多谐振荡器电路一般由能产生振荡信号的振荡器核心部分和滤波电路两部分组成。
振荡器核心负责生成多个谐波频率的信号,而滤波电路则用于滤除不需要的谐波分量。
【2. 振荡器核心的选取】常见的多谐振荡器核心包括 RC 型振荡器、LC 型振荡器和晶体振荡器等。
根据所需谐波频率的范围和稳定性要求,选择合适的振荡器核心。
【3. 确定谐波频率】根据设计需求确定所需的谐波频率范围和步进值。
谐波频率一般是基准频率的整数倍,比如 2 倍、3 倍、4 倍等。
【4. 振荡器电路的设计】根据振荡器核心的特性和所需谐波频率的范围,设计振荡器电路的元件数值和拓扑结构。
可采用共射电路、共集电路、共基电路或组合电路等。
【5. 滤波电路的设计】为了滤除不需要的谐波分量,设计并接入适当的滤波电路,如低通滤波器或带通滤波器。
滤波器的参数应根据需要进行调整,以实现对指定谐波频率的滤波功能。
【6. 输出信号的处理】通过适当的放大电路和输出接口,将多谐振荡器电路的输出信号处理成符合使用要求的电平和形态。
【7. 电路的调试和优化】在完成设计和组装后,对多谐振荡器电路进行调试和优化。
通过测量和测试,对电路进行参数调整和组件更换,以达到所需的输出性能和稳定性。
总结起来,多谐振荡器是一种能够产生多种频率信号的电路或设备,在无线通信、音频信号处理等领域有着广泛的应用。
设计一个多谐振荡器电路需要考虑振荡器核心的选择、谐波频率的确定、振荡器和滤波电路的设计等因素,并进行调试和优化,以满足所需的输出性能和稳定性要求。
什么是多谐振荡器它在电路中的应用有哪些
什么是多谐振荡器它在电路中的应用有哪些多谐振荡器是一种电子电路,它能够产生多个谐振频率。
谐振是指当外加信号频率等于电路的特定频率时,电路会产生共振现象,输出信号的幅度达到最大值。
多谐振荡器通过能够产生多个谐振频率,因此在电路中有着广泛的应用。
多谐振荡器在电子学领域扮演着重要的角色,它在通信系统、音频设备和测量仪器等电路中发挥了重要作用。
接下来,本文将详细介绍多谐振荡器的原理和应用。
I. 多谐振荡器的原理多谐振荡器是由负反馈放大器和谐振网络组成的,其中谐振网络决定了振荡器的谐振频率。
常见的多谐振荡器包括Colpitts振荡器、Hartley振荡器和Crystal振荡器等。
Colpitts振荡器采用电容和电感构成的谐振网络,通过改变电容或电感的数值,可以调节振荡频率。
Hartley振荡器也是利用电容和电感构成的谐振网络,但布局和Colpitts振荡器不同。
而Crystal振荡器则采用晶体谐振元件构成的谐振网络。
以上是几种常见的多谐振荡器,它们的工作原理相似,在整个电子电路中起到振荡信号的作用。
II. 多谐振荡器的应用1. 通信系统中的应用多谐振荡器在通信系统中非常重要。
例如,无线电通信系统中的发射器需要产生稳定的射频信号,这就需要利用多谐振荡器来产生频率稳定的信号源。
通信系统中的多谐振荡器往往需要能够调节频率,从而实现对信号的调制和解调。
2. 音频设备中的应用多谐振荡器在音频设备中也有广泛的应用。
例如,音频合成器中使用多谐振荡器来产生不同音调的信号。
此外,音频放大器中的振荡电路也需要多谐振荡器来提供稳定的输入信号。
3. 测量仪器中的应用在测量仪器中,多谐振荡器被用于提供稳定精确的时钟信号或参考信号。
例如,频谱分析仪和示波器中常常需要一个高精度的时钟源,多谐振荡器能够提供这样的信号。
此外,多谐振荡器还可以用于频率计、计时器和锁相环等更复杂的测量系统中。
总结:多谐振荡器是一种能够产生多个谐振频率的电子电路,在通信系统、音频设备和测量仪器等电路中有着广泛的应用。
多谐振荡器
t
tWH tWL Ⅰ
Ⅰ Ⅱ
t
(二)工作原理、工作波形与周期估算
电容 C 如此循环充电和放电, 使电路产生振荡,输出矩形脉冲。
周期与占空比估算 uC 2 VCC 3 1 VCC 3 O uO UOH UOL O
Ⅰ Ⅱ
tWH 0.7 (R1 + R2)C tWL 0.7 R2C t
tWH tWL Ⅰ Ⅱ Ⅰ
t
Ⅰ Ⅱ tWH tWL Ⅰ Ⅱ Ⅰ
t
(二)工作原理、工作波形与周期估算
工作原理 放电 UOL uC 2 VCC 3 1 VCC 3 O uO UOH UOL O TH = TR ≥ 2/3 VCC 接通 VCC 后,开始时 TH = TR = uC 0,uO 为高电平,放电管截止,VCC 经 R1、R2 向 C 充电,uC 上升,这时电 路处于暂稳态Ⅰ。 当 uC 上升到 TH = TR = uC ≥ 2/3 VCC 时,uO 跃变为低电平,同时放电管 V 导通,C 经 R2 和 V 放电,uC 下降, 电路进入暂稳态 Ⅱ。
当 uC 上升到 TH = TR = uC ≥ 2/3 VCC时,uO 跃变为低电平,同时放电管 V 导通,C 经 R2 和 V 放电,uC 下降, 电路进入暂稳态 Ⅱ。 当 uC 下降到 TH = TR = uC ≤1/3 VCC 时, uO 重新跃变为高电平,同时 放电管 V 截止,C 又被充电,uC 上升, 电路又返回到暂稳态Ⅰ。
T = tWH + tWL 0.7 (R1 + 2R2)C
t WH R1 R2 q T R1 2 R2
t
[ 例 ] 指出右图中 控制扬声器鸣响与否和 R1 调节音调高低的分别是 R2 哪个电位器?若原来无 声,如何调节才能鸣响? RP1 欲提高音调,又该如何 C 调节?
多谐振荡器工作原理
多谐振荡器工作原理
多谐振荡器是一种电子电路,能够产生多个频率的正弦波信号。
它由一个频率稳定的基频振荡器和多个频率可变的次谐波振荡器组成。
基频振荡器的工作原理是利用一个反馈网络,在一个放大器电路中产生振荡。
该放大器电路通常由一个放大器和一个频率选择网络组成。
放大器的增益必须大于1,以弥补反馈网络的耗损。
频率选择网络则是根据所需的基频来选择元件的值,以确保仅有一个频率被放大器放大而其他频率被抑制。
次谐波振荡器则是根据基频振荡器的频率产生更高频率的振荡信号。
它通常包括一个参考信号和一个非线性元件。
参考信号可以来自于基频振荡器的输出或其他参考源。
非线性元件会对参考信号进行非线性操作,产生次谐波信号。
通过调整非线性元件的参数,可以生成不同频率的次谐波信号。
多谐振荡器的工作原理就是将基频振荡器和次谐波振荡器连接在一起,使它们相互作用并共同工作。
基频振荡器提供基本频率的振荡信号,而次谐波振荡器产生其他频率的振荡信号。
这些振荡信号通过反馈网络进行耦合,形成一个稳定的多谐振荡器。
通过调整基频振荡器和次谐振荡器的参数,可以改变多谐振荡器的输出频率。
这使得多谐振荡器在通信系统、音频处理和信号发生器等领域中得以广泛应用。
555多谐振荡器频率计算公式
555多谐振荡器频率计算公式555 多谐振荡器是一种能够产生矩形脉冲波的电路,在电子电路中有着广泛的应用。
要想深入了解 555 多谐振荡器,就不得不提到它的频率计算公式啦。
先来说说 555 多谐振荡器的工作原理哈。
它主要是通过电容的充放电来实现输出状态的变化。
简单来讲,就是电容充电时,输出为高电平;电容放电时,输出为低电平。
就这样,一高一低,不断循环,就产生了我们需要的脉冲信号。
那它的频率计算公式到底是啥呢?公式是:f = 1.44 / ((R1 + 2R2) * C) 。
这里的 f 就是频率啦,R1 和 R2 是两个电阻的值,C 则是电容的值。
我记得有一次,我给学生们讲解这个知识点的时候,有个特别调皮的小家伙一直嚷嚷着:“这有啥用啊,我又不搞发明!”我笑着跟他说:“你想想看啊,咱们家里的闹钟,是不是得有个准确的时间信号才能准时响铃?这个 555 多谐振荡器产生的脉冲信号,就像是闹钟的心跳,决定了它能不能准点叫你起床呢!”那孩子眨眨眼睛,好像有点明白了。
在实际应用中,这个公式可太重要了。
比如说,我们要设计一个闪烁频率适中的彩灯电路,那就得根据我们想要的闪烁效果,通过这个公式来选择合适的电阻和电容值。
如果频率太高,彩灯闪得跟疯了似的,那可不好看;要是频率太低,半天不闪一下,也没啥意思。
再比如说,在一些自动控制的设备中,比如温度控制器,通过 555 多谐振荡器产生合适频率的脉冲信号,来控制设备的工作节奏,保证设备能够稳定、准确地运行。
而且哦,这个公式不仅仅是在电子电路设计中有用,对于理解电子学的基本原理也是很关键的。
通过研究这个公式,我们能更深入地理解电阻、电容对电路性能的影响,这对于我们进一步学习更复杂的电路知识,那可是打基础的重要一步。
所以说呀,别小看这个 555 多谐振荡器的频率计算公式,它虽然看起来只是几个字母和数字的组合,但其背后蕴含的知识和应用可是非常广泛和有趣的。
不管是在简单的小制作中,还是在复杂的工业设备里,都能找到它的身影。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
路的振荡频率可在几赫到几兆赫的范围内变化。
2014-4-18
10
5.3.2
环形振荡器
1. 最简单的环形振荡器
图5-16最简单的环形振荡器 (a) 电路 (b) 工作波形
如此周而复始,便产生了自激振荡。 利用集成门电路的传输延迟时间,将奇数个 反相器首尾相连便可构成最简单的环形振荡器。 振荡周期 该电路没有稳定状态。 T=6tpd。 2014-4-18 11
2014-4-18荡周期为 T≈2.2RC R不能选得太大(一般1kΩ左右),否则电路不 能正常振荡。 。
2014-4-18 13
3. CMOS反相器构成的多谐振荡器
图5-19 CMOS反相器构成的多谐振荡器
R的选择应使G1工作在电压传输特性的转折区。 此时,由于uO1即为uI2,G2也工作在电压传输特性 的转折区,若uI有正向扰动,必然引起下述正反馈过程:
1.多谐振荡器没有稳定状态,只有两个暂稳态。 2.通过电容的充电和放电,使两个暂稳态相互交 替,从而产生自激振荡,无需外触发。 3.输出周期性的矩形脉冲信号,由于含有丰富的 谐波分量,故称作多谐振荡器。
2014-4-18
3
对称方波, 是偶函数且奇谐函数,只有奇次谐波的余弦项。
A 振 幅 A A
A
A
2014-4-18 7
使uO2迅速跳变为低电平、uO1迅速跳变为高电 平,电路进入第二暂稳态。 此后,C1放电、C2充电,C2充电使uI1上升,会 引起又一次正反馈过程,电路又回到第一暂稳态。 这样,周而复始,电路不停地在两个暂稳态之 间振荡,输出端产生了矩形脉冲。
2014-4-18 8
电压传输特性:
从而使uO1迅速变成高电平,uO2迅速变成低电平, 电路进入第二暂稳态。此时, uO1 通过 R 向电容 C 充 电。
2014-4-18 16
5.3.3 石英晶体振荡器
前面介绍的多谐振荡器的一个共同特点就是振
荡频率不稳定,容易受温度、电源电压波动和RC参
数误差的影响。 而在数字系统中,矩形脉冲信号常用作时钟信 号来控制和协调整个系统的工作。因此,控制信号 频率不稳定会直接影响到系统的工作,显然,前面 讨论的多谐振荡器是不能满足要求的,必须采用频 率稳定度很高的石英晶体多谐振荡器。
2. RC环形振荡器 最简单的环形振荡器构成十分简单,但是并不 增加 RC延迟环节,即可组成RC环形振荡器电路。 实用。因为集成门电路的延迟时间 tpd 极短,而且振 荡周期不便调节。
图5-17
RS 是 限 流 电 阻 ( 保 护 G3 ) , 通 常选100Ω左右。 RC环形振荡器
利用电容 C 的充放电,改变 uI3 的电平 ( 因为 RS 很小,在分析时往往忽略它。)来控制G3周期性的导 通和截止,在输出端产生矩形脉冲。
2014-4-18
20
uO/V 5 4 3 2 1 0 0 1 2 3 4 5 ui/V uO/V 5 4 3 2 1 0 0 1 2 3 4 5 ui/V
74LS04 (TTL)
CD4069 (CMOS)
图5-15 对称式多谐振荡器的工作波形
2014-4-18 9
3. 主要参数
矩形脉冲的振荡周期为
T≈1.3RFC
当取RF=1kΩ、C=I00 pF~100 μF时,则该电
10.4
多谐振荡器
结束 放映
10.4.1 对称式多谐振荡器
10.4.3 环形振荡器
10.4.5 石英晶体振荡器
2014-4-18
1
复习
脉冲电路的研究重点与数字电路有何不同? 常用脉冲波形的产生与变换电路有哪些? 周期性矩形波的主要参数? 施密特触发器的特点和主要应用?
2014-4-18
2
10.4.1 多谐振荡器
2014-4-18
图5-14 对称式多谐振荡器
6
2.
工作原理
假定接通电源后,由于某种原因使uI1有微小正跳 变,则必然会引起如下的正反馈过程 :
R
+↑
A
1 G1
-B↓
C
R
C↓
1 G2
C
+↑
•
D
1 G3
uO
使uB迅速跳变为低电平、uD迅速跳变为高电平, 电路进入第一暂稳态。 此后,uD的高电平对C1电容充电使uC升高,电 容C2放电使uA降低。由于充电时间常数小于放电时 间常数,所以充电速度较快,uC首先上升到G2的阈 值电压UTH,并引起如下的正反馈过程:
2014-4-18 17
石英晶体具有很好 的选频特性。当振荡信 号的频率和石英晶体的 固有谐振频率fo相同时, 石英晶体呈现很低的阻 抗,信号很容易通过, 而其它频率的信号则被 衰减掉。
石英晶体的阻抗频率特性图
2014-4-18
18
因此,将石英晶体串接在多谐振荡器的回路中 就可组成石英晶体振荡器,这时,振荡频率只取决 于石英晶体的固有谐振频率fo,而与RC无关。 在对称式多谐振荡器的基础上,串接一块石英 晶体,就可以构成一个石英晶体振荡器电路。该电 路将产生稳定度极高的矩形脉冲,其振荡频率由石 英晶体的串联谐振频率fo决定。
2014-4-18
14
随着电容C的不断充电,uI不断上升,当uI≥UTH 时,电路又迅速跳变为第一暂稳态。如此周而复始, 电路不停地在两个暂稳态之间转换,电路将输出矩 形波。
图5-20 CMOS反相器构成 多谐振荡器的工作波形
2014-4-18
振荡周期为
T=1.4RC
15
使uO1迅速变成低电平,而uO2迅速变成高电平, 电路进入第一暂稳态。此时,电容C通过R放电,然 后 uO2 向 C 反向充电。随着电容 C 的的放电和反向充 电,uI不断下降,达到uI=UTH时,电路又产生一次 正反馈过程:
2014-4-18
图5-21 石英晶体振荡器电路
19
目前,家用电子钟几乎都采用具有石英晶体振
荡器的矩形波发生器。由于它的频率稳定度很高, 所以走时很准。 通常选用振荡频率为32768HZ的石英晶体谐振 器,因为32768=215,将32768HZ经过15次二分频, 即可得到1HZ的时钟脉冲作为计时标准。
A
A
t t t t 振幅A t 直流分量 时间t 基波
频率f 九次谐波 七次谐波 五次谐波 三次谐波 B
t
A
2014-4-18
4
对称方波有限项的傅里叶级数:
有限项的N越大,误差越小例如: N=11时,
2014-4-18
5
10.4.1 对称式多谐振荡器
1. 电路组成 由两个TTL反相器经电容交叉耦合而成。 通常令C1=C2=C,R1=R2=RF。 为了使静态时反相器工作在转折区,具有较强的 放大能力,应满足ROFF<RF<RON的条件。