概率第二章4
概率论第二章知识点
第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =两点分布的方差:()(1)D X p p =-(2)二项分布: 若一个随机变量X 的概率分布由式{}(1),0,1,...,.k k n k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k e k k λλλ-==>=则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k e k k λλλ-==>=泊松分布的期望:()E X λ=泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt -∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度: 均匀分布的期望:()2a bE X +=均匀分布的方差:2()()12b a D X -=(2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩则称X 服从参数为λ的指数分布,记为 X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a ab x f ⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a ab x f指数分布的期望:1()E X λ=指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X 的概率密度为22()21()x f x ex μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()21()x f x ex μσ--=-∞<<+∞正态分布的期望:()E X μ=正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==2222()()x t xx ex e dt ϕφ---∞=⎰标准正态分布表的使用: (1)0()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数:设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
概率论与数理统计第二章笔记
概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。
在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。
二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。
根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。
离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。
2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。
对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。
通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。
三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。
这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。
2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。
这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。
四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。
通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。
通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。
个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。
通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。
结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。
《概率论与数理统计》第二章考点手册
《概率论与数理统计》第二章随机变量及其概率分布考点10 随机变量的概念(★三级考点,选择、填空)设Ω={ω}是试验的样本空间,如果对每个ω∈Ω,总有一个实数X(ω)与之对应,则称Ω上的实值函数X(ω)为E的一个随机变量。
随机变量常用X、Y、Z等表示。
考点11 离散型分布变量及其分布律(★★二级考点,选择、填空、计算)1.若随机变量X取值x1,x2,…,x n,…且取这些值的概率依次为p1,p2,…,p n,…,则称X为离散型随机变量,而称P{X=x k}=p k,(k=1,2,…)为X的分布律或概率分布。
可表为X~P{X=x k}=p k,(k=1,2,…),2.分布律的矩阵(表格)表示方法:3.分布律的性质1)p k ≥0,k=1,2,…;2)∑≥11kkp=考点12 0-1分布与二项分布(★★★一级考点,选择、填空)1.0-1分布设E是一个只有两种可能结果的随机试验,用Ω={ω1,ω2}表示其样本空间。
P({ω1})=p,P({ω2})=1-p记则称X服从参数p的(0-1)分布(或两点分布),记成X~B(1,p)。
2.二项分布设试验E只有两个结果AA或,记p=P(A),将试验E独立重复进行n次,则称这n次试验为n重伯努利试验。
若以X表示n重贝努里试验事件A发生的次数,则称X服从参数为n,p的二项分布。
记作X~B(n,p)其分布律为:),...,1,0(,)1(}{nkppkXP k nkknC=-==-考点13 泊松分布(★★★一级考点,选择、填空)1.泊松分布:设随机变量X所有可能取的值为:0,1,2,…,概率分布为:其中λ>0为常数,则称随机变量X 服从参数为λ的泊松分布,记为X~P (λ)。
2.二项分布与泊松分布的关系(泊松定理)对二项分布B (n ,p ),当n 充分大,p 又很小时,对任意固定的非负整数k ,有近似公式 .,!)1(), ( n k np e k p p C p n k k k n k k n <=»-=--,其中;l l l B 理解:泊松定理表明,泊松分布是二项分布的极限分布,当n 很大,p 很小时,二项分布就可近似地看成是参数λ=np 的泊松分布。
概率论与数理统计魏宗舒第二章(4)
若
i , j =1
∑ g( x , y ) p
i j
∞
ij
绝对收敛,则有
i , j =1
E (Z ) =
∑ g(x , y ) p .
i j ij
∞
数学期望的性质 则有 (1)设 C 为常数,
E(C) = C
(2)设 C 为常数,X 是一个随机变量,则有
E(CX ) = CE( X )
则有 (3)设 a , b 为常数,X ,Y 是随机变量,
E( XY ) = E( X )E(Y )
推广 设 X i ( i = 1 , 2 ,L , n) 是相互独立的 随机变量, 则有
E( X1 X2 LXn ) = E( X1 )E( X2 )LE( Xn )
§2.5 方差的定义和性质
方差( 方差(Variance) ) 前面我们介绍了随机变量的数学期望,它 体现了随机变量取值的平均水平,是随机变量 的一个重要的数字特征。 但对有些实际问题,仅仅知道平均值是不 够的。
k
k
这就是通常所说的加权平均(概率为权数)。 加权平均(概率为权数) 加权平均
他们的射击水平 例2 甲、乙两人射击, 由下表给出 X :甲击中的环数 Y :乙击中的环数
X P
8 9 10 0.1 0.3 0.6
Y P
8 9 10 0.2 0.5 0.3
试问哪个人的射击水平较高?
解:甲、乙二人的平均射击环数为
我们讨论了随机变量 在前面的课程中, 如果知道了随机变量 X 的概率分 及其分布, 布,那么 X 的全部概率特征也就知道了。 在实际问题中,概率分布一般是 然而, 而在一些实际应用中,人们并 较难确定的。 只要 不需要知道随机变量的一切概率性质, 知道它的某些数字特征就够了。 在对随机变量的研究中,确定某 因此, 些数字特征 数字特征是非常重要的。 数字特征
概率第二章
0 1 1 1 η ~ 2 2
(1)求ξ和η的联合分布列 (1)求 (2)问 (2)问ξ和η是否独立?为什么? 是否独立?为什么?
19
§2.3
随机变量函数的分布列
一、随机变量的函数 问题:已知随机变量ξ的分布, f(ξ 问题:已知随机变量ξ的分布,令η=f(ξ), 的分布。 求η的分布。 定理1 设ξ是(Ω,F,P)的一个随机变量,f(x)是一个 P)的一个随机变量 f(x)是一个 的一个随机变量, 定理1 可测函数, f(ξ 也是( P)上的的一个随机量 上的的一个随机量. 可测函数,则η=f(ξ)也是(Ω,F,P)上的的一个随机量.
引例3 引例 掷一枚硬币 , Ω = {ω1,ω2} 引例4 掷一枚硬币 , 10件产品,5件次品任取 件,其 引例 件产品, 件次品任取3件 件产品 件次品任取 中的次品数ξ=0。 中的次品数ξ=0。1,2,3
1
定义1 ,P)是概率空间, 是定义在Ω 定义1:设( Ω, F,P)是概率空间, ξ=ξ(ω)是定义在Ω 上的实值函数, 上的实值函数,如果 ∀x∈ R 有:{ω ξ (ω) < x}∈ F ∈ 则称ξ 随机变量。 则称ξ为随机变量。 定义2 离散型随机变量) 定义2:(离散型随机变量)
x1
x2
p2
x2 L p2 L
L
L
P p1
x1 p 1
或:
3
假设有10种同种电器元件,其中有2只废品, 10种同种电器元件 例5 假设有10种同种电器元件,其中有2只废品,装配仪 器时,从这批元件任取一只,如果是废品,扔掉再取, 器时,从这批元件任取一只,如果是废品,扔掉再取, 直到取出正品, 表示取出正品之前已取出的废品个 取出正品之前已取出的废品个, 直到取出正品,令ξ表示取出正品之前已取出的废品个, 数求ξ的分布列。 数求ξ的分布列。 例6 n=5的Bernoulli试验中 试验中, P(A)=p, 表示5 在n=5的Bernoulli试验中,设P(A)=p,令ξ表示5次
概率论第二章习题参考解答
P{η=j|ξ=i}=1/i, (i=1,2,3,4;j=1-i)
因此有
pij=P{ξ=i,η=j}=P{ξ=i}P{η=j|ξ=i}=1/(4i), (i=1,2,3,4;j=1-i),
联合概率分布如下表所示:
η
ξ
1
解:基本事件总数为 ,
有利于事件{ξ=i}(i=0,1,2,3,4)的基本事件数为 ,则
ξ
0
1
2
3
4
P
0.2817
0.4696
0.2167
0.031
0.001
6.一批产品包括10件正品, 3件次品,有放回地抽取,每次一件,直到取得正品为止,假定每件产品被取到的机会相同,求抽取次数ξ的概率函数.
解:每次抽到正品的概率相同,均为p=10/13=0.7692,则每次抽到次品的概率q=1-p=0.2308则ξ服从相应的几何分布,即有
0.260
0.095
0.018
以及η的边缘分布如下表所示:
η
0
1
2
3
4
5
6
P
0.202
0.273
0.208
0.128
0.1
0.06
0.029
当i=1及j=0时,
因
因此ξ与η相互间不独立.
21.假设电子显示牌上有3个灯泡在第一排, 5个灯泡在第二排.令ξ,η分别表示在某一规定时间内第一排和第二排烧坏的灯泡数.若ξ与η的联合分布如下表所示:
η
ξ
0
1/3
1
-1
0
1/12
1/3
0
1/6
概率论 第2
X的概率密度为:fX ( x)
1
e
(
x μ )2 2σ2
,
x
2πσ
Y的分布函数为:
FY
( y) P(
X
P(Y y) σy μ)
P( X μ σ
σy μ
y) 1 (
e 2πσ
x μ)2 2σ2
dx
于是Y的概率密度为: fY ( y) FY( y)
1
e
(
σy
μ 2σ2
μ
)2
一般地,有如下求离散型随机变量函数分布律的方法:
设X的分布律为:
X P
x1 p1
x2 xi p2 pi
Y 则Y g( X )的分布律为: P
g( x1 ) p1
g( x2 ) p2
g( xi ) pi
.
注:若g( xi )有相同的, 则把相应的pi相加, 即
P(Y y) pi g( xi ) y
h(
y)],
α
y 其它.
β,
(1)
当g x严格单调递增时,同理可得Y = g X 的概率密度
fY
(
y)
f
X
[h(
y )] 0,
h(
y),
α y β, 其它.
(2)
说 明 :将(1)和(2)统一起来,就得到Y =g(X )的
概率密度的统一表达式
fY
( y)
f X [h( y)] 0,
(σy
μ)
2πσ
1 2π
y2
e2
,
故
Y
X ~N (0,
1).
方法二:利用公式法 Y X μ 是X的单调递增函数, 则 σ
概率论第二章
分布函数与密度函数的关系
x
F ( x) = ∫
−∞
f (t )dt
密度函数性质
1. f ( x) ≥ 0 2. f ( x)dx = 1 ∫
−∞ +∞
3. P ( x ∈ (a, b)) = ∫ f ( x)dx
,−∞ < x < +∞
• 其中 µ , σ (σ > 0 ) 为常数 则称 服从参数为 为常数,则称 则称X服从参数为 2 的正态 µ ,σ 分布(或高斯分布 记为X~ N ( µ , σ 2 ) 或高斯分布),记为 分布 或高斯分布 记为 • 正态分布密度函数的图形关于直线 x = 对称,即对 对称 即对 任意常数 a, f ( µ − a ) = f ( µ + a ) • x = µ 时, f (x ) 取到最大值 取到最大值.
(1) P (Y ≥ 2 ) = 1 − 0 .9876 5 − 5 × 0 .9876 4 × 0 .0124 = 0 .0015
(2) P (Y ≥ 2 Y ≥ 1) = P ((Y ≥ 2) ∩ (Y ≥ 1)) P(Y ≥ 2) 0.0015 = = = 0.0248 5 P (Y ≥ 1) P(Y ≥ 1) 1 − 0.9876
, = 0, , k 1 L5 ,
例2 射击进行到目标被击中或4发子 弹被用完为止.如果每次射击的命中 率都是0.4,求总射击次数X的分布律.
解 X=k所对应的事件为前k-1次射击均 未击中,第k次射击击中,故X的分布律 为:
X
P
1
2
2
3
3
4
4
概率论与数理统计第2章随机变量及其分布
1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
概率论与数理统计第二章
1 ,max= 2
4. 渐近线 以X轴为渐进线
5. 曲线的变化规律
设X~ N ( , ) ,
2
X的分布函数是
1 F ( x) 2
x
(t ) 2 22Fra bibliotekedt , x
标准正态分布
0, 1 的正态分布称为标准正态分布.
若随机变量X的概率分布为: P(X=1)=p,0<p<1 P(X=0)=1-p=q 则称X服从参数为p的两点分布.
二项分布
例4 设射手每一次击中目标的概率为p,现连续 射击n次,求恰好击中次数X 的概率分布.
若随机变量X的概率分布为
Pn (k ) P( X k)C p (1 p)
k n k
3. F(x+0)=F(x)
例1:设随机变量X的分布函数为
a be x , x 0 F ( x) x0 0 ,
求常数a, b及概率 P( X 2)
2.2
离散型随机变量的概率分布
定义1 :设xk(k=1,2, …)是离散型随机变量X 所取的一切可能值,pk是X取 xk值的概率,称
0
1 8
1
a
2
2a
Pk
(1)求常数a ; (2) P( X 1), P(2 X 0), P( X 2)
例2 在五件产品中有两件次品,从中任取出两 件。用随机变量X表示其中的次品数,求X的分 布律和分布函数.
X
P
0
0.3
1
0.6
2
0.1
1.0 0.9
0 0.3 F ( x) 0.9 1.0
均匀分布
概率论 第二章 随机变量与概率分布
解 (1)X的分布函数为
0,
x 1
F
(
x)
1313,
1 2
5 6
,
1 x 1 1 x 2
1
1
1
1,
2 x
3 2 6
解 (2)P{0 X 2} F (2) F (0) 1 1 2 ,
33 P{0 X 2} P{0 X 2} P{X 2} 21 1.
a-b ab
2
0 1
x
2
解得:a=1/2 b=1/
X的密度为: f(x) = F(x) =
1 (1+ x2 )
(-<x<)
P{X2>1}=1-P{-1X 1}
=1-{F(1)-F(-1)}=1/ 2
例6. 设随机变量X的密度函数为:
ke-3x x>0
事件:{取到2白、1黑}={X=2}={Y=1}
4. 随机变量的分类 通常分为两类:
所有取值可以逐 个一一列举
离散型随机变量
随 机 变 量
全部可能取值不仅
如“取到次品的个数”,无穷多,而且还不能
一一列举,而是充满
“收到的呼叫数”等. 满一个或几个区间.
连续型随机变量 非离散型随机变量
非离散型非连续型
§4. 连续型随机变量的概率密度 1. 定义:对于随机变量X的分布函数F(x), 如果存在非负函数f(x),使对于任意实数x有:
F( x) x f (t)dt
则称X为连续型随机变量;称f(x)为X的概率 密度函数。简称概率密度。
概率密度的性质:
(1). f(x)0;
(2).
f
(
x)dx
概率论与数理统计第2章复习题解答
《概率论与数理统计》第二章复习题解答1. 将4只球(1-4号)随机放入4只盒子(1-4号)中去,一只盒子只放一球. 如一只球装入了与之同号的盒子, 称形成了一个配对. 记X 为总的配对数, 求X 的分布律. 解:241!41)4(===X P ; 0)()3(===ΦP X P ——因为当3个球形成配对时,另1个球一定也形成配对;41!41)2(24=⨯==C X P ——当4个球中的某2个形成配对时,另2个球(标号a,b )都不形成配对的放法只1种,即分别放入标号b,a 的盒中;31!42)1(14=⨯==C X P ——当4个球中的某1个形成配对时,另3个球都不形成配对的放法只2种:以abc 记3个空盒的号码排列,则3个球只能以bca 或cab 的次序对应放入3个盒中;249314102411)0(=----==X P . 于是,分布律为2. 盒中装有10个大小相等的球, 编号为0-9. 从中任取一个, 在号码“小于5”、“等于5”、“大于5”三种情况下,分别记随机变量.2,1,0=X 求X 的分布律、分布函数、分析2)1(-=X Y 服从什么分布.解:(1)10个球中号码“小于5”、“等于5”、“大于5”分别有5、1、4个,于是X 的分布律为(2)X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=2,1 21 ,6.010 ,.500 ,0 )(x x x x x F X ; (3)2)1(-=X Y 分布律为即2)1(-=X Y 服从参数为0.9的0-1分布.3. 设随机变量X 的分布密度为∞<<∞-=-x Aex f x X ,)(. 求(1)A 的值;(2))21(<<-X P ;(3)X的分布函数;(4)21X Y -=的分布密度. 解:(1)122)(0===⎰⎰∞-∞∞-A dx Ae dx x f x X , 21=∴A ,⎪⎪⎩⎪⎪⎨⎧≤>=∴-0,21 0,21)(x e x e x f x x X ; (2))(2112121)21(212001----+-=+=<<-⎰⎰e e dx e dx e X P x x ; (3)⎪⎪⎩⎪⎪⎨⎧≥-=+<===--∞-∞-∞-⎰⎰⎰⎰0 ,21121210 ,2121 )()(00x e dt e dt e x e dt e dt t f x F x x t t x x t xX X ; (4))1(1)1()1()()(222y X P y X P y X P y Y P y F Y -<-=-≥=≤-=≤=⎪⎩⎪⎨⎧≥-<-<<---=1 ,01 1,)11(1y y y X y P ⎪⎩⎪⎨⎧≥<--+--=1 ,11,)1()1(1y y y F y F X X 求导得⎪⎩⎪⎨⎧≥<---+-=1 ,0 1,121)]1()1([)(y y y y f y f y f X X Y⎪⎩⎪⎨⎧≥<-+=----1 ,0 1 ,121]2121[11y y y e e y y ⎪⎩⎪⎨⎧≥<-=--1 ,01,1211y y e y y .4. 根据历史资料分析, 某地连续两次强地震间隔的年数X 的分布函数为⎩⎨⎧<≥-=-0 ,00,1)(1.0x x e x F x ,现在该地刚发生了一次强地震,求(1)今后3年内再发生强地震的概率;(2)今后3-5年内再发生强地震的概率;(3)X 的分布密度)(x f ,指出X 服从什么分布.解:(1)26.01)3()3(31.0=-==≤⨯-e F X P ;(2)13.0)1()1()3()5()53(31.051.0=---=-=≤<⨯-⨯-e eF F X P . (3)X 的分布密度⎪⎩⎪⎨⎧≤>=⎩⎨⎧≤>=--0,0 0,1010 ,0 0,1.0)(1011.0x x e x x e x f x x ,故X 服从参数为10的指数分布. 5.(1)设),2(~p b X , ),3(~p b Y , 且95)1(=≥X P , 求)1(≥Y P .(2)设)(~λP X , 且)2()1(===X P X P , 求)4(=X P .(3)设),(~2σμN X ,试分析当↑σ时,概率)(σμ<-X P 的值将如何变化. 解:(1)),2(~p b X ,95)1(1)0(1)1(2=--==-=≥∴p X P X P ,故321=-p ,31=p . 从而)31,3(~b Y , 2719)32(1)1(1)0(1)1(33=-=--==-=≥∴p Y P Y P . (2))(~λP X , 且)2()1(===X P X P , 即λλλλ--=e e !2!121, 亦即λλ22=, 又0>λ, 2=∴λ.从而)2(~P X , 2!2)(-==e k k X P k, .2,1,0 =k 于是22432!42)4(--===e e X P . (3)),(~2σμN X ,故6826.01)1(2)1()1()()(=-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P . 故当↑σ时,概率)(σμ<-X P 的值.6. 设某城市男子的身高(单位:cm))6,170(~2N X .(1)应如何设计公共汽车的车门高度, 才能使该地男子与车门碰头的概率小于0.01?(2)若车门高度为182cm, 求100个男子中会与车门碰头的人数至多是1的概率.解:(1)设公共汽车的车门高度应为x cm. 则 要使01.0)6170(1)(1)(<-Φ-=≤-=>x x X P x X P , 只须)33.2(99.0)6170(Φ=>-Φx , 从而只要33.26170>-x , 于是98.183>x 即可.(2)若车门高度为182cm, 则1个男子会与车门碰头的概率为 0228.0)2(1)6170182(1)182(1)182(=Φ-=-Φ-=≤-=>=X P X P p 设100个男子中会与车门碰头的人数为Y , 于是)0228.0,100(~b Y , 从而34.09772.00228.09772.00228.0)1()0()1(991110010000100=+==+==≤C C Y P Y P Y P .7. 设带有3颗炸弹的轰炸机向敌人的铁路投弹, 若炸弹落在铁路两旁40米以内, 即可破坏铁路交通. 记弹落点与铁路的距离为X (单位: 米), 落在铁路一侧时X 的值为正, 落在另一侧时为负. X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤-+=其它 ,0 1000 ,100001000100,10000100)(x x x x x f若3颗炸弹全部使用, 求敌人铁路交通受到破坏的概率.解:1颗炸弹落在铁路两旁40米以内的概率为64.01000010010000100)()40(4000404040=-++==<=⎰⎰⎰--dx x dx x dx x f X P p 设3颗炸弹中落在铁路两旁40米以内的颗数为Y , 则)64.0,3(~b Y ,从而至少1颗炸弹落在铁路两旁40米以内(可破坏铁路交通)的概率为95.0)64.01(1)0(1)1(3=--==-=≥Y P Y P8. 设),(~b a U X , 证明: 当0>k 时, l kX Y +=仍服从均匀分布.证明:),(~b a U X ,⎪⎩⎪⎨⎧<<-=∴其它,0 ,1)(b x a a b x f X ,而)()()()()(k l y F k l y X P y l kX P y Y P y F X Y -=-≤=≤+=≤= 求导得k k l y f y f X Y 1)()(-=. 又因为⇔≠-0)(k l y f X l bk y l ak b kl y a +<<+⇔<-<,故 ⎪⎩⎪⎨⎧+<<+-=其它,0 ,)(1)(l bk y l ak ka b y f Y . 即当0>k 时, l kX Y +=在),(l bk l ak ++上服从均匀分布. 证毕.9.(1)设X 的分布密度⎩⎨⎧<<--=其它 ,0 11,1)(x x x f X , 用分布函数法求X Y =的分布密度;(2)设)1,0(~U X , 用公式法求XY +=11的分布密度. 解:(1)⎩⎨⎧≤>--=<<-=≤=≤=0 ,00,)()()()()()(y y y F y F y X y P y X P y Y P y F X X Y , 求导得 ⎩⎨⎧≤>-+=0 ,0 0,)()()(y y y f y f y f X X Y 注意到当且仅当10<<y 时)(),(y f y f X X -取非零表达式,故⎩⎨⎧<<-=--+-=其它 ,010),1(2)1()1()( y y y y y f Y (2))1,0(~U X ,⎩⎨⎧<<=∴其它,0 10,1 )(x x f X ,而当10<<x 时x y +=11单调可导;反函数为11)(-=y y h ,21)('y y h -=;21)1(,1)0(==y y ,由定理知⎪⎩⎪⎨⎧<<=其它 ,0 121 ,)('))(()( y y h y h f y f X Y ⎪⎩⎪⎨⎧<<=其它 ,0 121 ,12y y 10. 试证明:若 ,3,2,1,)1()(1=-==-k p p k X P k , 则)()(t X P s X t s X P >=>+>, 其中t s ,是非负整数.(即几何分布具有“无记忆性”) 证明:t t t k k t k k p p p p p p p p t X P )1()1(1)1()1()1()(1111-=---=-=-=>∑∑∞+=-∞+=-, )()()(),()(s X P t s X P s X P s X t s X P s X t s X P >+>=>>+>=>+>,由上一步结果知 t s ts p p p s X t s X P )1()1()1()(-=--=>+>+,故)()(t X P s X t s X P >=>+>对任意非负整数t s ,成立. 即几何分布与指数分布一样,具有“无记忆性”. 证毕.第 1 页:第二章 随机变量及其分布习 题 课**************************************************第二章随机变量及其分布习 题 课第 2 页:**************************************************随 机 变 量离 散 型随机变量连 续 型随机变量分 布 函 数分 布 律密 度 函 数均匀分布指数分布正态分布两点分布二项分布泊松分布随机变量的函数的分布定义知识结构特征数第 3 页:随机变量与普通的函数不同**************************************************随机变量与普通的函数不同随机变量随机变量的取值具有一定的概率规律设 ={}为某随机现象的样本空间,称定义在上的实值函数 X=X() 为随机变量.用来表示随机现象结果的变量。
概率论第二章
3
1
记 Ai={第i个人破译出密码} 所求为 P(A1∪A2∪A3)
i=1,2,3 3
已知, P(A1)=1/5,P(A2)=1/3,P(A3)=1/4 P(A1∪A2∪A3) = 1 − P ( A1 U A2 U An ) 2
= 1 − P ( A1 A2 A3 )
= 1 − P ( A1 ) P ( A2 ) P ( A3 )
P( Ai1 Ai2 LAik ) = P( Ai1 )P( Ai2 )LP( Aik )
则称A1,A2, …,An为相互独立的事件. 包含等式总数为: n n
n 2 + +L+ n 3 n n = (1 + 1) n − − = 2n − n − 1 1 0
得Α与 B 独立。
证明: P ( B ) = 0,∀A, A = AS = AB + AB ,
P ( A ) = P ( AB ) + P( AB ) = P ( AB ) + P ( A )P ( B )
= P ( AB ).
P ( A) P ( B ) = P ( AB )
同理可证: A 与Β,A 与 B 也分别独立。
或 P(B|A)
= P(B)
更好,它不受P(B)>0或P(A)>0的制约.
这就是说,已知事件B发生,并不影响事件A发 生的概率,这时称事件A、B独立.
一、两事件独立的定义 若两事件A、B满足 P(AB)= P(A) P(B) (1)
例1 从一副不含大小王的扑克牌中任取一 张,记 A={抽到K}, B={抽到的牌是黑色的} 问事件A、B是否独立?
至少6门炮。
第二章4-5第四版 概率论与数理统计答案
∫
x
−∞
e
− u 2 /2
d u = Φ ( x),
若X~N(μ,σ2), 则它的分布函数F(x)可写成: ⎧X −μ x−μ⎫ ⎛ x−μ ⎞ ≤ F ( x) = P{ X ≤ x} = P ⎨ ⎬ = Φ⎜ ⎟. σ ⎭ ⎩ σ ⎝ σ ⎠
(4.16)
77
重要应用:
当 X ~ N ( μ , σ ) 时 P { a < X ≤ b} = φ (
将FY(y)关于y求导数, 即得Y的概率密度为
⎧ 1 [ f X ( y ) + f X (− y )], ⎪ fY ( y ) = ⎨ 2 y ⎪0, ⎩ y > 0, y ≤ 0.
19
(5.1)
例如:设X~N(0,1), 其概率密度为 1 − x2 /2 ϕ ( x) = e , −∞ < x < ∞ 2π 则Y=X2的概率密度为
3
2π
+∞
⇒ I = 2π ⇒ ∫−∞ f ( x)dx = 1
+∞
正态分布 X ~ N ( μ , σ 2 ) 的性质
1、f ( x)关于x = μ对称 1 2、f max = f ( μ ) = 2π σ 3、 lim f ( x) = 0
| x − μ |→ +∞
称μ为位置参数(决定对称轴位置) σ为尺度参数(决定曲线分散性)
⎧ 1 y −1/2 e − y /2 , y > 0, ⎪ fY ( y ) = ⎨ 2 π ⎪0, y ≤ 0. ⎩
此时称Y服从自由度为1的χ2分布.
定理:设X ∼ f X (x), −∞ < x < +∞,g '(x) > 0 (或g '(x) < 0)。 ~ Y = g( X ), Y具有概率密度为: 则
概率论第二章第四节
分布函数
密度函数
则称X为连续性随机变量,其中函数f (x)称为X的
概率密度函数, 简称概率密度.
连续型随机变量的分布函数一定是连续函数.
3
x
2. 密度函数的性质
用这两条性质判断 F( x) f (t)dt
是否为连续型随机
1
f (x) 0 ;
变量的密度函数
(非负性)
y
f (x)
2 f ( x)dx 1 ; (归一性)
0
3
2
1 2
kx2
3 0
2 x
1 4
x
2
4
3
9 2
k
1 4
,
令 9k 1 1 k 1.
24
6
9
(2)
x
求X的分布函数,F(x) f
0,
x0,
x xdx , 0 x 3
(t )dt
,
f
(
x)
206x,,2x
,
0 x3, 3 x4,
其他.
F ( x)
06
3xdx
x
x
(2 )d x ,
0
0,
o
x 0, 1 ex ,
x 0, 0,
x
x 0,
x 0.
18
(3) 指数分布的背景 电子元件的寿命; 生物的寿命; 电话的通话时间; ……
“寿命”服从指数分 布
指数分布广泛 应用于可靠性 理论和排队论
19
指数分布的重要性质 :“无记忆性”.
对于任意s, t 0 , 有 P{X s t X s} P{(X s t) ( X s)}
证明 Z X 的分布函数为
概率论第二章
将 p = 0.5 代入,得
1 0 X ~ 0 .5 0.25 2 0.125 3 0 .0625 0 .0625 4
下面,重点介绍三种离散型随机变量的概率分 布。 (一)0-1分布 分布 若X 的分布律为 k 1− k P { X = k } = p (1 − p ) , k = 0 ,1 或者 0 1 X p pk 1− p 则称随机变量 X 服从参数为 的0-1分布 参数为p的 分布. 参数为 如果试验的结果只有两个:成功与失败,并且成 功的概率为p,则成功的次数 X 服从参数为p的0-1 分布。
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.99) − 20(0.01)(0.99) = 0.0169 设A为“四个人中至少有一个人来不及维修”这 一事件,则有
20 19
P( A) ≥ P{ X ≥ 2} = 0.0169
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.98)
400
− 400(0.02)(0.98)
399
直接计算上式比较麻烦,为此需要一个近似计算 公式。我们先引入一个重要的分布。
(三) 泊松分布 三 泊松分布(Poisson Distribution) 如果随机变量 X 的分布律为:
例6 社会上定期发行某种奖券,中奖率为p.某人 每次购买一张奖券,如果没有中奖则下次继续购买1 张,直至中奖为止.求该人购买次数的分布律. 解 设该人购买的次数为X ,则X的可能取值为
1, 2 , L .
{X = 1} 表示第一次购买就中奖,其概率为p.
北师大高中数学选修23作业:第2章 概率4 含解析
第二章 §4A 级 基础巩固一、选择题1.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响.则他恰好击中目标3次的概率为( C )A .0.93×0.1B .0.93C .C 34×0.93×0.1D .1-0.13[解析] 由独立重复试验公式可知选C .2.口袋中有5只白色乒乓球,5只黄色乒乓球,从中任取5次,每次取1只后又放回,则5次中恰有3次取到白球的概率是( D )A .12B .35C .C 35C 510D .C 35·0.55 [解析] 本题是独立重复试验,任意取球5次,取得白球3次的概率为C 350.53(1-0.5)5-3=C 350.55.3.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是( B )A .16625B .96625C .192625D .256625[解析] P =C 24⎝⎛⎭⎫452⎝⎛⎭⎫152=96625. 4.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第ξ次首次测到正品,则P (ξ=3)=( C )A .C 23⎝⎛⎭⎫142×34 B .C 23⎝⎛⎭⎫342×14 C .⎝⎛⎭⎫142×34D .⎝⎛⎭⎫342×145.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( A )A .[0.4,1)B .(0,0.4]C .[0.6,1)D .(0,0.6][解析] 由条件知P (ξ=1)≤P (ξ=2),∴C 14p (1-p )3≤C 24p 2(1-p )2,∴2(1-p )≤3p ,∴p ≥0.4,又0≤p <1,∴0.4≤p <1.6.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( D )A .0.216B .0.36C .0.432D .0.648[解析] 甲获胜有两种情况,一是甲以20获胜,此时p 1=0.62=0.36;二是甲以21获胜,此时p 2=C 12·0.6×0.4×0.6=0.288,故甲获胜的概率p =p 1+p 2=0.648. 二、填空题7.下列例子中随机变量ξ服从二项分布的有__①③__.①随机变量ξ表示重复抛掷一枚骰子n 次中出现点数是3的倍数的次数; ②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③有一批产品共有N 件,其中M 件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M <N );④有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数.[解析] 对于①,设事件A 为“抛掷一枚骰子出现的点数是3的倍数”,P (A )=13.而在n次独立重复试验中事件A 恰好发生了k 次(k =0、1、2……n )的概率P (ξ=k )=C k n ×⎝⎛⎭⎫13k ×⎝⎛⎭⎫23n -k,符合二项分布的定义,即有ξ~B (n ,13).对于②,ξ的取值是1、2、3……P (ξ=k )=0.9×0.1k -1(k =1、2、3……n ),显然不符合二项分布的定义,因此ξ不服从二项分布.③和④的区别是:③是“有放回”抽取,而④是“无放回”抽取,显然④中n 次试验是不独立的,因此ξ不服从二项分布,对于③有ξ~B ⎝⎛⎭⎫n ,M N . 故应填①③.8.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有一位同学通过测试的概率为__1-(1-p )n __.[解析] 所有同学都不通过的概率为(1-p )n ,故至少有一位同学通过的概率为1-(1-p )n . 9.如果X ~B (20,p ),当p =12且P (X =k )取得最大值时,k =__10__.[解析] 当p =12时,P (X =k )=C k 20⎝⎛⎭⎫12k ·⎝⎛⎭⎫1220-k =⎝⎛⎭⎫1220·C k20,显然当k =10时,P (X =k )取得最大值. 三、解答题10.(2019·大连高二检测)某工厂为了检查一条流水线的生产情况,从该流水线上随机抽取40件产品,测量这些产品的重量(单位:克),整理后得到如下的频率分布直方图(其中重量的分组区间分别为(490,495],(495,500],(500,505],(505,510],(510,515]).(1)若从这40件产品中任取2件,设X 为重量超过505克的产品数量,求随机变量X 的分布列;(2)若将该样本分布近似看作总体分布,现从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率.[解析] (1)根据频率分布直方图可知,重量超过505克的产品数量为[(0.01+0.05)×5]×40=12,由题意得随机变量X 的所有可能取值为0,1,2, P (X =0)=C 228C 240=63130,P (X =1)=C 128C 112C 240=2865,P (X =2)=C 212C 240=11130.∴随机变量X 的分布列为:X 0 1 2 P63130286511130(2)由题意得该流水线上产品的重量超过505克的概率为0.3,设Y 为从该流水线上任取5件产品重量超过505克的产品数量,则Y ~B (5,0.3),故所求概率为P (Y =2)=C 25×0.32×0.73=0.308 7. B 级 素养提升一、选择题1.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( B )A .(12)5B .C 25(12)5C .C 35(12)3D .C 25C 35(12)5[解析] 由于质点每次移动一个单位,移动的方向向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动二次,向上移动三次,故其概率为C 35(12)3(12)2=C 35(12)5=C 25(12)5. 2.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率为95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( A )A .0.665B .0.56C .0.24D .0.285[解析] 设A =“从市场上买到一个灯泡是甲厂生产的”,B =“从市场上买到一个灯泡是合格品”,则A 、B 相互独立,则事件AB =“从市场上买到一个是甲厂生产的合格灯泡”.∵P (A )=0.7,P (B |A )=0.95,∴P (AB )=P (A )·P (B |A )=0.7×0.95=0.665. 二、填空题3.设随机变量X ~B (2,p ),Y ~B (4,p ),若P (X ≥1)=59,则P (Y ≥2)的值为__1127__.[解析] 由条件知,P (X =0)=1-P (X ≥1)=49=C 02P 0(1-P )2,∴P =13, ∴P (Y ≥2)=1-P (Y =0)-P (Y =1)=1-C 04P 0(1-P )4-C 14P (1-P )3=1-1681-3281=1127.4.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为__35__.[解析] 设篮球运动员罚球的命中率为P ,则由条件得P (ξ=2)=1-1625=925,∴C 22·P 2=925,∴P =35.三、解答题5.某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.(1)求某应聘人员被录用的概率;(2)若4人应聘,设X 为被录用的人数,试求随机变量X 的分布列.[解析] 设“两位专家都同意通过”为事件A ,“只有一位专家同意通过”为事件B ,“通过复审”为事件C .(1)设“某应聘人员被录用”为事件D ,则D =A +BC , ∵P (A )=12×12=14,P (B )=2×12×(1-12)=12,P (C )=310,∴P (D )=P (A +BC )=P (A )+P (B )P (C )=25.(2)根据题意,X =0,1,2,3,4, ∵P (X =0)=C 04×(35)4=81625, P (X =1)=C 14×25×(35)3=216625, P (X =2)=C 24×(25)2×(35)2=216625, P (X =3)=C 34×(25)3×35=96625, P (X =4)=C 44×(25)4×(35)0=16625. ∴X 的分布列为:6.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.(1)求在1次游戏中玩家甲胜玩家乙的概率;(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X ,求X 的分布列.[解析] (1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是(石头,石头),(石头,剪刀),(石头,布),(剪刀,石头),(剪刀,剪刀),(剪刀,布),(布,石头),(布,剪刀),(布,布),共9个基本事件.玩家甲胜玩家乙的基本事件分别是(石头,剪刀),(剪刀,布),(布,石头),共有3个.所以在1次游戏中玩家甲胜玩家乙的概率P =13.(2)由题意知:X =0,1,2,3. ∵P (X =0)=C 03·(23)3=827, P (X =1)=C 13·(13)1·(23)2=49, P (X =2)=C 23·(13)2·(23)1=29, P (X =3)=C 33·(13)3=127. ∴X 的分布列如下:C 级 能力拔高(2019·吉林高二检测)清明节小长假期间,某公园推出飞镖和摸球两种游戏,甲参加掷飞镖游戏,已知甲投中红色靶区的概率为12,投中蓝色靶区的概率为14,不能中靶概率为14;该游戏规定,投中红色靶区记2分,投中蓝色靶区记1分,未投中标靶记0分;乙参加摸球游戏,该游戏规定,在一个盒中装有大小相同的10个球,其中6个红球和4个黄球,从中一次摸出3个球,一个红球记1分,黄球不记分.(1)求乙恰得1分的概率;(2)求甲在4次投掷飞镖中恰有三次投中红色靶区的概率; (3)求甲两次投掷后得分ξ的分布列.[解析] (1)设“乙恰得1分”为事件A ,则P (A )=C 24C 16C 310=310.(2)因每次投掷飞镖为相互独立事件,故在4次投掷中,恰有3次投中红色靶区的概率P 4(3)=C 34(12)3(1-12)=14. (3)两次投掷后得分ξ的取值为0、1、2、3、4, 且P (ξ=0)=14×14=116;P (ξ=1)=C 12×14×14=18; P (ξ=2)=C 12×12×14+14×14=516; P (ξ=3)=C 12×12×14=14; P (ξ=4)=12×12=14,∴ξ的分布列为:。
概率论第二章
三。几种常用的离散型分布 (一)二项分布
B ( n, p )
在贝努里试验中,如果每次试验事件 发生的概率为 发生的概率为P, 在贝努里试验中,如果每次试验事件A发生的概率为 ,即
P ( A) = p,0 < p < 1, q = 1 − p
并设随机变量X表示在 次试验中事件 发生的次数 并设随机变量 表示在n次试验中事件 发生的次数, 表示在 次试验中事件A发生的次数 则称X服从二项分布,记作 则称 服从二项分布,记作X~ B ( n, 服从二项分布 其分布列为: p ) ,其分布列为: k k n−k 。 ) P{ X = k} = Cn p (1 − p) , k = 0,1,..., n (2。3) 特别, 特别,当n=1时,X~ B (1, 时
G ( p)
在贝努里试验中,如果每次试验事件 发生的概率为 发生的概率为P, 在贝努里试验中,如果每次试验事件A发生的概率为 ,即
P ( A) = p,0 < p < 1, q = 1 − p
并设随机变量X表示事件 首次发生的试验次数 则称X 并设随机变量 表示事件A首次发生的试验次数,则称 表示事件 首次发生的试验次数, 服从几何分布, 其分布列为: 服从几何分布, 几何分布 记作 X ~ G ( p ) ,其分布列为:
0 3 3 解:P ( X = 0) = C2 C3 / C5 = 1 / 10,
1 3 P( X = 1) = C2C32 / C5 = 6 / 10, 2 1 3 P( X = 2) = C2 C3 / C5 = 3 / 10,
通式为: 通式为:
2
k 3 3 P( X = k ) = C2 C3 − k / C5 , k = 0,1,2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
−∞
a
f ( x)d x = ∫ f ( x) d x.
a
∞
(4) 若 f ( x ) 在点 x 处连续 , 则有 F ′( x ) = f ( x ).
注意 对于任意可能值 a ,连续型随机变量取 a 连续型随机变量取 的概率等于零.即 的概率等于零 即 P { X = a } = 0. 证明
P { X = a } = lim ∫
1 1 a = + arcsin( ) − 0 2 π 2a
1 1 π 2 = + × = . 2 π 6 3
( 3) 随机变量 X 的概率密度为
1 π a 2 − x 2 , − a < x < a , f ( x ) = F ′( x ) = 其它 . 0,
二、常见连续型随机变量的分布
第四节
连续型随机变量及其概率 密度
一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结
一、概率密度的概念与性质
1.定义 如果对于随机变量 X 的分布函数 F ( x ) , 存在 定义
非负函数 , 使对于任意实数 x 有 F ( x ) = ∫ 密度函数 , 简称概率密度 . ,简称概率密度
+∞ −∞
+∞
证明
1 = F (∞ ) = ∫
f ( x )d x.
x2 x1
(3) P{ x1 < X ≤ x2 } = F ( x2 ) − F ( x1 ) = ∫
证明
f ( x)d x ;
P{ x1 < X ≤ x2 } = F ( x2 ) − F ( x1 ) = ∫ f ( x ) d x − ∫ f ( x) d x = ∫ −∞ −∞
1 x − 1 − e 2000 , F ( x) = 0,
x ≥ 0, x < 0.
(1) P { X > 1000}= 1 − P { X ≤ 1000} = 1 − F (1000)
1 2
=e
−
≈ 0.607.
( 2) P{ X > 2000 X > 1000}
P { X > 2000, X > 1000} = P { X > 1000} P { X > 2000} = P { X > 1000}
概率密度 函数图形
•
a
o
•
b
x
均匀分布的意义
在区间 ( a , b ) 上服从均匀分布的随机 变量 X , 落在区间 (a , b )中任意等长度的子区间 内的可能
性是相同的 .
l p= b−a
•
f ( x)
678 4l 4 123 4 4 1 l
a
o
b−a
•
b
x
分布函数
x < a, 0, x − a F ( x) = , a ≤ x < b, b − a x ≥ b. 1,
指数分布分布函数图形演示 指数分布分布函数图形演示
应用与背景 某些元件或设备的寿命服从指数分布.例如 某些元件或设备的寿命服从指数分布 例如 电力设备的寿命、 无线电元件的寿命 、电力设备的寿命、动物的 寿命等都服从指数分布. 寿命等都服从指数分布
例5 设某类日光灯管的使用寿命 X 服从参数为 θ=2000的指数分布 单位 小时 的指数分布(单位 小时). 的指数分布 单位:小时 (1)任取一只这种灯管 求能正常使用 任取一只这种灯管, 求能正常使用1000小时以 任取一只这种灯管 小时以 上的概率. 上的概率 (2) 有一只这种灯管已经正常使用了 有一只这种灯管已经正常使用了1000 小时以 求还能使用1000小时以上的概率 小时以上的概率. 上,求还能使用 求还能使用 小时以上的概率 解 X 的分布函数为
x2 x1
x2
x1
f ( x )d x.
同时得以下计算公式
P{ X ≤ a} = F (a) = ∫
a
−∞
f ( x )d x,
P{ X > a} = 1 − P{ X ≤ a} = 1 − F (a )
= ∫ f ( x) d x − ∫ f ( x) d x
−∞ −∞
∞
a
=∫
∞
−∞
f ( x)d x + ∫
a ( 2) P{− a < X < }; 2 ( 3) 随机变量 X 的概率密度 .
是连续型随机变量, 解 (1) 因为 X 是连续型随机变量 所以 F ( x ) 连续, 故有 F ( − a ) = lim F ( x ),
x→− a
F (a ) = lim F ( x ) ,
x→a →
即
− a = A − π B = 0, A + B arcsin 2 a
由 F ( x) = ∫
x
−∞
f ( x)d x 得
0, x < 0, xx ∫ d x , 0 ≤ x < 3, 0 6 F ( x) = 3 x x d x + ( 2 − x ) d x , 3 ≤ x < 4, ∫3 2 ∫0 6 1, x ≥ 4.
x < 0, 0, 2 x , 0 ≤ x < 3, 12 即 F ( x) = x2 − 3 + 2 x − , 3 ≤ x < 4, 4 1, x ≥ 4.
(4) 曲线在 x = µ ± σ 处有拐点;
1 ; 2 πσ
(5) 曲线以 x 轴为渐近线;
(6) 当固定 σ , 改变 µ 的大小时 , f ( x ) 图形的形状不变 , 只是沿 着 x 轴作平移变换 ;
(7 ) 当固定 µ, 改变 σ 的大小时 , f ( x ) 图形的对称轴 不变 , 而形状在改变 , σ 越小,图形越高越瘦 , σ越大, 图形越矮越胖 .
F ( x)
1•
a o
• •
b
x
均匀分布分布函数图形演示 均匀分布分布函数图形演示
是一个随机变量, 例3 设电阻值 R 是一个随机变量,均匀分布在 900 Ω ~ 1100 Ω .求 R 的概率密度及 R 落在 950 Ω ~ 1050 Ω 的概率. 的概率. 解 由题意 的概率密度为 由题意,R
a + ∆x
∆x → 0 a
f ( x ) d x = 0.
由此可得
P{a ≤ X ≤ b} = P{a < X ≤ b} = P{a ≤ X < b} = P{a < X < b}.
连续型随机变量取值落在某一 区间的概率与区间的开闭无关
注意 是连续型随机变量, 若X是连续型随机变量,{ X=a }是不 是连续型随机变量 是不 可能事件, 可能事件,则有 P { X = a } = 0 .
定义 设连续型随机变量 X 的概率密度为 1 −x θ e , x > 0, f ( x ) = θ 0, x ≤ 0. 其中 θ > 0 为常数 , 则称 X 服从参数为θ 的指数 分布.
指数分布密度 函数图形演示 函数图形演示
分布函数
1 −x θ 1 − e , x > 0, F ( x) = θ 0, x ≤ 0.
1 − P{ X ≤ 2000} = 1 − P { X ≤ 1000}
1 − F ( 2000) = 1 − F (1000) =e
− 1 2
≈ 0.607.
无记忆性” 指数分布的重要性质 :“无记忆性”. 无记忆性
3. 正态分布 或高斯分布) 正态分布(或高斯分布
( x − µ )2 − 2σ 2
1 (1100 − 900 ), f (r ) = 0,
P { 950 < R ≤ 1050 }=
900 < r ≤ 1100 , 其他 .
故有
∫950
1050
1 d r = 0 .5 . 200
上服从均匀分布, 例4 设随机变量 X 在 [ 2, 5 ]上服从均匀分布 现 上服从均匀分布 对 X 进行三次独立观测 ,试求至少有两次观测值 试求至少有两次观测值 大于3 的概率. 大于 的概率 解 X 的分布密度函数为
1 , 2 ≤ x ≤ 5, f ( x) = 3 0, 其他 .
表示“ 的次数” 设 A 表示“对 X 的观测值大于 3 的次数”, 即 A={ X >3 }.
1 2 由于 P ( A) = P { X > 3} = ∫ d x = , 33 3
5
表示3次独立观测中观测值大于 的次数, 次独立观测中观测值大于3的次数 设Y 表示 次独立观测中观测值大于 的次数 则 因而有
高斯资料
定义 设连续型随机变量 X 的概率密度为 1 f ( x) = e , − ∞ < x < +∞ , 2 πσ 其中 µ, σ (σ > 0) 为常数 , 则称 X 服从参数为 µ, σ 的正态分布或高斯分布 , 记为 X ~ N ( µ, σ 2 ).
正态概率密度函数的几何特征
(1) 曲线关于 x = µ 对称; ( 2) 当x = µ时, f ( x )取得最大值 ( 3) 当 x → ±∞ 时, f ( x ) → 0;
正态分布密度函数图形演示 正态分布密度函数图形演示
正态分布的分布函数
1 F ( x) = ∫e 2 πσ
( t − µ )2 x − 2σ 2 −∞
dt
正态分布分布函数图形演示 正态分布分布函数图形演示
正态分布的应用与背景 正态分布是最常见最重要的一种分布,例如 正态分布是最常见最重要的一种分布 例如 测量误差, 人的生理特征尺寸如身高、 测量误差 人的生理特征尺寸如身高、体重等 ; 正常情况下生产的产品尺寸:直径、长度、 正常情况下生产的产品尺寸 直径、长度、重量 直径 高度等都近似服从正态分布. 高度等都近似服从正态分布