2018届中考数学复习《统计与概率的应用》专题训练含答案
2018届中考数学复习《统计与概率的应用》专题训练及答案
2018届初三数学中考复习统计与概率的应用专题复习训练题1.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理90≤x≤100 c请根据上述统计图表,解答下列问题:(1)在表中,a=__0.1__,b=__0.3__,c=__18__;(2)补全频数分布直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?解:(2)补图略(3)平均成绩是81分(4)800×(0.3+0.2)=400,即“优秀”等次的学生约有400人2. 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为__12__; (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.解:(2)画树状图:乙 ∴乙获胜的概率为123.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,根据以上信息,解答下列问题:(1)家庭用水量在4.0<x≤6.5范围内的家庭有__13__户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是__30__%;(2)本次调查的家庭数为__50__户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是__18__%;(3)家庭用水量的中位数落在__C__组.(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.解:(4)估计该月用水量不超过9.0吨的家庭数为200×4+13+1550=128(户)4.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并绘制出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了__150__个评价;②请将图1补充完整;③图2中“差评”所占的百分比是__13.3%__;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.解:(1)②“好评”一共有150×60%=90(个),补图略.(2)列表:由表可知,一共有95种,∴两人中至少有一个给“好评”的概率是595.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.国画类 b 0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?解:(1)14÷0.28=50,a=18÷50=0.36(2)b=50×0.20=10,补图略(3)1500×0.28=420(人),估计该校最喜爱围棋的学生大约有420人6.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)15(2)画树状图(略),由树状图可知共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2257.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是__13__; (2)若甲、乙均可在本层移动.①用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率; ②黑色方块所构拼图是中心对称图形的概率是__29__.解:(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率P =39=138.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m 值;②求扇形统计图中阅读时间为5小时的扇形圆心角的度数;③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵m=15÷14=60 ②560×360°=30° ③第三小组的频数为60-10-15-10-5=20,补图略(2)众数为 3小时,中位数为3小时,平均数为2.75小时9. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴选择转盘1更合算10. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?解:(1)红球占40%,黄球占60%(2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40(个),即盒中红球有40个11. 某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图以上 严重污染 2(1)统计表中m =__20__,n =__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹12. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为__25__;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m 的运动员能否进入复赛.解:(2)x=1.61;众数是1.65;中位数是1.60(3)能;∵共有20个人,中位数是第10,11个数的平均数.∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,∴能进入复赛。
江苏省苏州市2018年中考数学二轮复习精练《统计与概率》(含答案)-最新教育文档
第八章统计与概率第一节统计(时间:90分钟分值:105分)评分标准:选择题和填空题每小题3分.基础过关1. (2019襄阳)下列调查中,调查方式选择合理的是()A. 为了解襄阳市初中生每天锻炼所用的时间,选择全面调查B. 为了解襄阳电视台《襄阳新闻》栏目的收视率,选择全面调查C. 为了解神舟飞船设备零件的质量情况,选择抽样调查D. 为了解一批节能灯的使用寿命,选择抽样调查2. (2019内江)为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最适合的是()A. 随机抽取100位女性老人;B. 随机抽取100位男性老人C. 随机抽取公园内100位老人;D. 在城市和乡镇各选10个点,每个点任选5位老人3. (2019广东省卷)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A. 95B. 90C. 85D. 804. (2019安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()第4题图A. 280B. 240C. 300D. 2605. (2019山西)在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A. 众数 B. 平均数 C. 中位数 D. 方差6. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高为1.65米,而小华的身高为1.66米.下列说法错误的是()A. 1.65米是该班学生身高的平均水平;B. 班上比小华高的学生不会超过25人C. 这组身高的中位数不一定是1.65米;D. 这组身高的众数不一定是1.65米7. (2019荆门)李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:则关于这20名学生阅读小时数的说法正确的是()A. 众数是8B. 中位数是3C. 平均数是3D. 方差是0.348. (2019新疆)某餐厅供应单价为10元、18元、25元三种价格的抓饭,右图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为________元.第8题图第9题图9. (2019重庆B卷)某同学在体育训练中统计了自己五次“1分钟跳绳”的成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是________个.10. (2019黄冈)需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是________.11. (8分)(2019德州)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分.为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其他),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):第11题图Array根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图;(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.12. (8分)(2019平顶山模拟)某校为了了解学生在家使用电脑的情况(分为“总是、较多、较少、不用”四种情况),随机在八、九年级各抽取相同数量的学生进行调查,绘制成部分统计图如下所示.请根据图中信息,回答下列问题:(1)九年级一共抽查了________名学生,图中的a=________,“总是”对应的圆心角为________度;(2)根据提供的信息,补全条形统计图;(3)若该校九年级共有900名学生,请你统计其中使用电脑情况为“较少”的学生有多少名?第12题图13. (8分)(2019贵港)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如下的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是________;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为__________,m的值为________;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球知识的了解程度为“基本了解”的人数.第13题图14. (8分)(2019江西)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.第14题图根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有______人,其中选择B类的人数有______人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.满分冲关1. (2019洛阳模拟)洛阳某中学“研究学习小组”的同学们进行了社会实践活动,其中则这30户家庭用水量的众数和中位数分别是()A. 25,27;B. 25,25;C. 30,27;D. 30,252. (2019泰州)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A. 平均数不变,方差不变;B. 平均数不变,方差变大C. 平均数不变,方差变小;D. 平均数变小,方差不变3. (2019江西)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.4. (2019巴中)两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为________.5. (10分)(2019绵阳)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查.从试验田中随机抽取了30株,得到的数据如下(单位:颗):182195201179208204186192210204175193200203188197212207185206188186198202221199219208187224(2)若某品种水稻共有3000株,试估计稻穗谷粒数大于或等于205颗的水稻有多少株?第5题图6. (10分)(2019邵阳)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)第6题图(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.7. (11分)(2019信阳模拟)“戒烟一小时,健康亿人行”.今年国际无烟日,某市团委组织人员就公众对在超市吸烟的态度进行了随机抽样调查.主要有四种态度:A.顾客出面制止;B.劝说进吸烟室;C.超市老板出面制止;D.无所谓.并将调查结果统计后绘制成统第7题图请你根据统计图,表提供的信息解答下列问题:(1)这次抽样的公众有________人;(2)将统计表和扇形统计图补充完整;(3)在统计图中“B”部分扇形所对应的圆心角是________度;(4)若该市有120万人,估计该市态度有“A.顾客出面制止”的有________万人.第二节 概 率(时间:90分钟 分值:105分)评分标准:选择题和填空题每小题3分.基础过关1. (2019新疆)下列事件中,是必然事件的是( )A. 购买一张彩票中奖;B. 通常温度降到0 ℃以下,纯净的水结冰C. 明天一定是晴天;D. 经过有交通信号灯的路口,遇到红灯2. (2019天水)下列说法正确的是( )A. 不可能事件发生的概率为0;B. 随机事件发生的概率为12C. 概率很小的事件不可能发生;D. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次3. (2019岳阳)从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )A. 15 B. 25 C. 35 D. 454. (2019宜昌)九(1)班在参加学校4×100 m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为 ( )A. 1B. 12C. 13D. 145. (2019东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )A. 47 B. 37 C. 27 D. 17第5题图 第7题图 第10题图6. (2019广西四市)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号之和等于5的概率是( )A. 16B. 516C. 13D. 127. (2019盐城)如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向红色区域的概率为________.8. (2019德州)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是________.9. (2019杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球.从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是________.10. (2019郑州模拟)一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是________.11. (2019南充)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是________.12. (2019平顶山模拟)现有三张分别画有正三角形、平行四边形、菱形图案的卡片,它们除图案外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片的图案既是轴对称图形又是中心对称图形的概率是________.13. (8分)(2019郑州模拟)初中生在数学运算中使用计算器的现象越来越普遍,某校一兴趣小组随机抽查了本校若干名学生使用计算器的情况.以下是根据抽查结果绘制出不完整的条形统计图和扇形统计图.第13题图请根据上述统计图提供的信息,完成下列问题:(1)这次抽查的样本容量是________;(2)请补全上述条形统计图和扇形统计图;(3)若从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是多少?14. (8分)(2019六盘水)端午节当天,小明带了四个粽子(除味道不同外,其他均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性;(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.15. (8分)(2019泉州)A、B两组卡片共5张,A中三张分别写有数字2、4、6,B中两张分别写有3、5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲、乙双方公平吗?为什么?16. (8分)(2019孝感)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”知识竞赛.赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.第16题图请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为________,表中:m=________,n=________;扇形统计图中,E等级对应扇形的圆心角α等于________度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.满分冲关1. (2019金华)某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A. 12 B.13 C.14 D.162. (2019济宁)如图,在4×4正方形网格中,灰色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂灰,使灰色部分的图形仍然构成一个轴对称图形的概率是()A. 613 B.513 C.413 D.313第2题图3. (2019兰州)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A. 20B. 24C. 28D. 304. 小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加综合实践活动的概率为________.5. (2019台州)三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.6. (2019聊城)如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是________.7. (2019黄石)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a +b =9的概率为________.8. (8分)某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会,根据平时成绩,把各项进入复选的学生情况绘制成如下不完整的统计图:第8题图(1)参加复选的学生总人数为______人,扇形统计图中短跑项目所对应圆心角的度数为________;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.9. (8分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式.为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.第9题图请根据图表信息解答下列问题:(1)a =________;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若全校有2019名学生,某老师随机的从校园里抽取一名学生,请估计该名学生的每天锻炼时间在1小时以上的概率.第八章 统计与概率第一节 统 计基础过关1. D2. D3. B4. A5. D6. B7. B8. 179. 183 10. 2.511. 解:(1)从C 可以得到:5÷0.1=50(人),答:这次被调查的学生有50人;(2)m =1050=0.2,n =0.2×50=10,p =0.4×50=20;补全条形统计图如解图所示:第11题解图(3)800×(0.1+0.4)=800×0.5=400(人).合理即可.比如:中学生使用手机要多用于学习;中学生要少用手机玩游戏等.12. 解:(1)200,19%,144;【解法提示】九年级一共抽查了80÷40%=200名学生,图中的a =38200×100%=19%,“总是”对应的圆心角为360°×40%=144°;(2)补全条形统计图,如解图所示:第12题解图【解法提示】b =1-40%-21%-19%=20%,则较少的人数为200×20%=40(名);较多的人数为200×21%=42(名).(3)900×20%=180(人),答:使用电脑情况为“较少”的学生有180名.13. 解:(1)120;【解法提示】本次接受调查的学生总人数为:20+30+60+10=120(名).(2)60°,25;【解法提示】∵“了解”的人数有20名,∴“了解”所对应扇形的圆心角的度数为20120×360°=60°;“基本了解”的百分比为30120×100%=25%,∴m 的值为25. (3)1500×25%=375(名).答:该校学生对足球知识的了解程度为“基本了解”的人数为375名.14. 解:(1)800,240;【解法提示】参与本次问卷调查的市民共有:200÷25%=800(人),选择B 类的人有:800×30%=240(人).(2)360°×(1-30%-25%-14%-6%)=360°×25%=90°,∴α=90°;补全条形统计图如解图所示:第14题解图【解法提示】选择A 类的人占25%,则800×25%=200(人). (3)12×(25%+30%+25%)=12×80%=9.6(万人), 答:估计该市“绿色出行”的人数为9.6万. 满分冲关1. D2. C3. 54. 75. 解:(1)3,6,B ,A ; 完善直方图如解图所示:第5题解图(2)3000×6+330=900(株).答:稻穗谷粒数大于或等于205颗的水稻有900株. 6. 解:(1)(815+780+800+785+790+825+805)÷7=800.将这组数据按从小到大排列为:780,785,790,800,805,815,825, ∴所求的平均数是800,中位数是800. (2)100800×100%=12.5%. (3)答案不唯一,例如:可以将洗衣服的水留着冲厕所, 采用以上建议,每天大约可以节约用水100升, 一个月估计可以节约用水100×30=3000升. 7. 解:(1)200;【解法提示】抽样的公众人数是30÷15%=200(人).(2)在统计表的空缺处填写70,在扇形统计图的A ,B ,D 区分别填写45%,35%,5%; 【解法提示】B 组的人数是200-90-30-10=70(人),A 组所占的百分比是90200×100%=45%,B 组所占的百分比是70200×100%=35%,D 组所占的百分比是10200×100%=5%.(3)126;【解法提示】35%×360°=126°. (4)54.【解法提示】120×45%=54(万人).第二节 概 率基础过关1. B2. A3. C4. D5. A6. C7. 138. 199. 49 10. 13 11. 19 12. 1913. 解:(1)160;【解法提示】100÷62.5%=160.(2)条形统计图和扇形统计图补全如下:第13题解图【解法提示】不常用计算器的人数为:160-100-20=40, 不常用计算器的百分比为:40÷160×100%=25%, 不用计算器的百分比为:20÷160×100%=12.5%. (3)“不常用”计算器的学生数为40,抽查的学生人数为160,∴从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是:40160=14.答:从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是14.14. 解:(1)设大枣味的两个棕子分别为A 1,A 2,火腿味的两个粽子分别为B 1,B 2. 则树状图如解图:第14题解图(2)由(1)可知,在上述12种等可能的情况中,小红拿到的两个粽子是同一味道的共有(A 1,A 2),(A 2,A 1),(B 1,B 2),(B 2,B 1)4种情况.∴P (同一味道)=412=13.15. 解:(1)P (抽到数字为2)=13;(2)由题意画出树状图如解图:第15题解图由解图可知一共有6种情况,甲获胜的情况有4种,∴P (甲获胜)=46=23,乙获胜的情况有2种,∴P (乙获胜)=26=13,∵P (甲获胜)>P (乙获胜),∴这样的游戏规则对甲乙双方不公平. 16. 解:(1)80,12,28,36; 【解法提示】样本容量24÷30%=80;m =80×15%=12;n =80-4-12-24-8-4=28; α=880×360°=36°.(2)或树状图如解图:第16题解图由列表或解图知,P (抽到甲和乙)=212=16.满分冲关1. D2. B3. D4. 135. 136. 177. 198. 解:(1)25,72°;【解法提示】参加复选的学生总人数为:8÷32%=25(人),短跑项目所对应的圆心角度数为360°×3+225=72°.(2)补全条形统计图如解图:第8题解图【解法提示】跳远占参加复选的学生总数的32%,长跑占参加复选的学生总数的12%,短跑占参加复选的学生的总数的3+225×100%=20%.∴跳高占参加复选的学生的总数的百分比:1-32%-12%-20%=36%,参加复选的学生中长跑的有:25×12%=3人,参加复选的学生中跳高的有:25×36%=9(人),∴参加复选的学生中长跑的男生有:3-2=1(人),参加复选的学生中跳高的女生有:9-4=5(人).(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人, ∴跳高项目中的男生被选中的概率为P =49.9. 解:(1)35;【解法提示】a =100-(5+20+30+10)=35. (2)补全条形统计图如解图:第9题解图(3)∵5+20=25<50,5+20+35=60>50,∴第50、51个数据在C 组, ∴小王每天锻炼时间在C 组,∴小王锻炼时间的范围是1<t ≤1.5; (4)∵全校有2019名学生,∴这些学生中,每天锻炼时间在1小时以上的人数为2019×35+30+10100=1500(名),∴该名学生的每天锻炼时间在1小时以上的概率为P =15002000=34.。
2018年中考数学统计与概率试题整理汇集-文档资料
2018年中考数学统计与概率试题整理汇集以下是查字典数学网为您推荐的2018年中考数学统计与概率试题整理汇集,希望本篇文章对您学习有所帮助。
2018年中考数学统计与概率试题整理汇集一、选择题1. (北京4分)北京今年6月某日部分区县的高气温如下表:区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温 32 32 30 32 30 32 29 32 30 32则这10个区县该日最高气温的众数和中位数分别是A、32,32B、32,30C、30,32D、32,31【答案】A。
【考点】众数,中位数。
【分析】一组数据中出现次数最多的一个数是众数,这一组数据中32是出现次数最多的,故众数是32;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),是这组数据的中位数,这组数据重新排列:29,30,30,30,32,32,32,32,32,32,位于这组数据中间位置的数是32、32,由中位数的定义可知,这组数据的中位数是32。
故选A。
2.(北京4分)一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为A、 B、 C、 D、【答案】B。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
根据题意可得:一个不透明的盒子中装有2个白球,5个红球和8个黄球,共15个,摸到红球的概率为。
故选B。
3.(天津3分)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是(A) 甲比乙的成绩稳定 (B) 乙比甲的成绩稳定(C) 甲、乙两人的成绩一样稳定 (D) 无法确定谁的成绩更稳定【答案】B。
【考点】条形统计图,平均数和方差。
【分析】甲的平均成绩为(84+92+104)10=9,乙的平均成绩为(83+94+103)10=9,甲的方差为[4(8-9)2+2(9-9)2+4(10-9)2]10=0.8,乙的方差为[3(8-9)2+4(9-9)2+3(10-9)2]10=0.6,∵甲的方差乙的方差,乙比甲的成绩稳定。
2018中考数学专题06 统计与概率的实际应用(解答题重难点题型)(原卷版)
中考指导:统计与概率部分在社会生活及科学领域中有广泛应用。
加强应用统计与概率的意识,不仅仅是学习的需要,更是工作生活必不可少的.加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。
这是当前课程改革的大势所趋。
本专题在中考题中多出现在极富有生活气息和时代特色的题目中,考查的问题通常有:(1)选择使用合适的统计图来表示统计量;(2)根据所哦给出的统计图提取有用的信息,并用这些信息解答问题;(3)能用加权平均数的公式求扇形统计图中的平均数,(4)求出购物券、福利彩票、摸奖等问题中有关事件的概率;(5)通过具体问题情境评判事件是否“合算”;(6)能用条形统计图或扇形统计图求平均数,题型多以选择、简答的形式出现,分值在3~9分.典型例题解析:【例1】(湖南省岳阳市十二校2018届九年级4月联考一模)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为________人.家长表示“不赞同”的人数为________人;(2)请在图①中把条形统计图补充完整;(3)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是________;(4)求图②中表示家长“无所谓”的扇形圆心角的度数.1【答案】(1)600、80(2)120人,补图见解析;(3)60%(4)24°.【解析】试题分析:(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;(2)用总人数×其所占百分比得到人数,画出图形即可;(3)根据扇形统计图即可得到恰好是“赞同”的家长的概率;(4)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解.试题解析:解:(1)调查的家长总数为:360÷60%=600人,很赞同的人数:600×20%=120人,不赞同的人数:600﹣120﹣360﹣40=80人;(2)600×20%=120,补充图形如图;(3)“赞同”态度的家长的概率是60%;2(4)表示家长“无所谓”的圆心角的度数为:×360°=24°.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【例2】(2018年河南省新乡市九年级下学期中考复习数学第一次模拟)2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表。
2018年中考数学真题专题汇编:统计与概率(解析版)
19.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从
, 两个景点中任意选择一个游玩,
下午从 、 、 三个景点中任意选择一个游玩, 用列表或画树状图的方法列出所有等可能的结果
.并求
小明恰好选中景点 和 的概率 .
【答案】 解:列树状图如下:
一共有 6 种可能,出现小明恰好选中景点
和 两景点的有 1 种可能
故答案为: A . 【分析】根据这组数据的平均数,列出方程,求解得出 公式即可得出这组数据的方差。
x 的值,进而得出这组数据的平均数,再根据方差
10.某排球队 名身高为
名场上队员的身高(单位: 的队员换下场上身高为
)是:
,
,
,
,
,
的队员,与换人前相比,场上队员的身高(
.现用一 )
A. 平均数变小,方差变小 C. 平均数变大,方差变小 【答案】 A
【分析】根据中位数的定义,一组数据从小到大排列后,处于最中间位置的数就是中位数,如果这组数据
的个数是偶数个,则处于中间位置的两个数的平均数就是该组数据的中位数;抽样调查适合于要求的数据
不是那么精准,具有破坏性,等的调查;根据平均数的计算方法,把该组数据的总和除以该组数据的个数
即可得出该组数据的平均数;求一天温差就是用当天的最高温度减去最低温度,根据有理数的减法法则即
∴被录取的教师为乙,其综合成绩为 故答案为: 78.8
78.8 分,
【分析】计算加权平均数时,每类所占的比重需要乘以该类得数才算进综合得数里
.
15.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂 最关注的是 ________.
【答案】 众数 【解析】 :∵某鞋厂调查了商场一个月内不同尺码男鞋的销量,∴该鞋厂最关注的是众数。
2018年全国各地中考数学真题汇编:统计与概率(浙江专版)(解析卷)
2018年全国各地中考数学真题汇编(浙江专版)统计与概率参考答案与试题解析一.选择题(共12小题)1.(2018•杭州)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不易受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:C.2.(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.3.(2018•杭州)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.4.(2018•温州)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.5.(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.3解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.6.(2018•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.解:∵袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是=,故选:D.7.(2018•嘉兴)2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A.1月份销量为2.2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了1万辆D.1~4月新能源乘用车销量逐月增加解:由图可得,1月份销量为2.2万辆,故选项A正确,从2月到3月的月销量增长最快,故选项B正确,4月份销量比3月份增加了4.3﹣3.3=1万辆,故选项C正确,1~2月新能源乘用车销量减少,2~4月新能源乘用车销量逐月增加,故选项D错误,故选:D.8.(2018•湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=,故选:C.9.(2018•绍兴)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为,故选:A.10.(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,0°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.11.(2018•衢州)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0 B.C.D.1解:∵某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,∴老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是:=.故选:B.12.(2018•湖州)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:则这一天16名工人生产件数的众数是()A.5件B.11件C.12件D.15件解:由表可知,11件的次数最多,所以众数为11件,故选:B.二.填空题(共3小题)13.(2018•嘉兴)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我嬴.”小红赢的概率是,据此判断该游戏不公平(填“公平”或“不公平”).解:所有可能出现的结果如下表所示:因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,所以出现两个正面的概率为,一正一反的概率为=,因为二者概率不等,所以游戏不公平.故答案为:,不公平.14.(2018•衢州)数据5,5,4,2,3,7,6的中位数是 5 .解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.15.(2018•金华)如图是我国2013~2019年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9% .解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.三.解答题(共8小题)16.(2018•温州)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.解:(1)该市蛋糕店的总数为150÷=600家,甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.17.(2018•杭州)某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表(1)求a的值(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?解:(1)由频数分布直方图可知4.5~5.0的频数a=4;(2)∵该年级这周收集的可回收垃圾的质量小于4.5×2+5×4+5.5×3+6=51.5(kg),∴该年级这周收集的可回收垃圾被回收后所得金额小于51.5×0.8=41.2元,∴该年级这周收集的可回收垃圾被回收后所得金额不能达到50元.18.(2018•绍兴)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2019年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2019年机动车的拥有量,分别计算2010年~2019年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.解:(1)由图可得,2019年机动车的拥有量为3.40万辆,==120(次),==100(次)即;2010年~2019年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.19.(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.20.(2018•嘉兴)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:收集数据(单位:mm)甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.解:(1)甲车间样品的合格率为:×100%=55%;(2)∵乙车间样品的合格产品数为:20﹣(1+2+2)=15(个),∴乙车间样品的合格率为:×100%=75%,∴乙车间的合格产品数为:1000×75%=750(个);(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好..(2018•湖州)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.22.(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.23.(2018•衢州)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).淡若清风。
2018年全国各地中考数学真题汇编:统计与概率(湖南专版)(解析卷)
2018年全国各地中考数学真题汇编(湖南专版)统计与概率参考答案与试题解析一.选择题(共10小题)1.(2018•长沙)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选:C.2.(2018•株洲)从﹣5,﹣,﹣,﹣1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为()A.B.C.D.解:﹣5,﹣,﹣,﹣1,0,2,π这七个数中有两个负整数:﹣5,﹣1所以,随机抽取一个数,恰好为负整数的概率是:故选:A.3.(2018•湘潭)每年5月11日是由世界卫生组织确定的世界防治肥胖日,某校为了解全校2000名学生的体重情况,随机抽测了200名学生的体重,根据体质指数(BMI)标准,体重超标的有15名学生,则估计全校体重超标学生的人数为()A.15 B.150 C.200 D.2000解:估计全校体重超标学生的人数为2000×=150人,故选:B.4.(2018•邵阳)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定解:李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为=8,所以李飞成绩的方差为×[(5﹣8)2+2×(7﹣8)2+3×(8﹣8)2+3×(9﹣8)2+(10﹣8)2]=1.8;刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为=8,∴刘亮成绩的方差为×[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故选:C.5.(2018•岳阳)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,92解:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为92,众数为96.故选:B.6.(2018•常德)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.7.(2018•张家界)若一组数据a1,a2,a3的平均数为4,方差为3,那么数据a1+2,a2+2,a3+2的平均数和方差分别是()A.4,3 B.6,3 C.3,4 D.6,5解:∵数据a1,a2,a3的平均数为4,∴(a1+a2+a3)=4,∴(a1+2+a2+2+a3+2)=(a1+a2+a3)+2=4+2=6,∴数据a1+2,a2+2,a3+2的平均数是6;∵数据a1,a2,a3的方差为3,∴[(a1﹣4)2+(a2﹣4)2+(a3﹣4)2]=3,∴a1+2,a2+2,a3+2的方差为:[(a1+2﹣6)2+(a2+2﹣6)2+(a3+2﹣6)2]=[(a1﹣4)2+(a2﹣4)2+(a3﹣4)2]=3.故选:B.8.(2018•郴州)甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市解:A、甲超市的利润逐月减少,此选项正确;B、乙超市的利润在1月至4月间逐月增加,此选项正确;C、8月份两家超市利润相同,此选项正确;D、乙超市在9月份的利润不一定超过甲超市,此选项错误;故选:D.9.(2018•怀化)下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2,0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生解:A、调查舞水河的水质情况,采用抽样调查的方式,正确;B、数据2,0,﹣2,1,3的中位数是1,错误;C、可能性是99%的事件在一次实验中不一定会发生,错误;D、从2000名学生中随机抽取100名学生进行调查,样本容量为2000,错误;故选:A.10.(2018•湘西州)在某次体育测试中,九年级(1)班5位同学的立定跳远成绩(单位:m)分别为:1.8l,1.98,2.10,2.30,2.10.这组数据的众数为()A.2.30 B.2.10 C.1.98 D.1.81解:在数据1.8l,1.98,2.10,2.30,2.10中,2.10出现2次,出现的次数最多,∴这组数据的众数是2.10,故选:B.二.填空题(共14小题)11.(2018•岳阳)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.解:任取一个数是负数的概率是:P=,故答案为:.12.(2018•长沙)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.解:正方体骰子共六个面,点数为1,2,3,4,5,6,偶数为2,4,6,故点数为偶数的概率为=,故答案为:.13.(2018•株洲)睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是8.4小时.解:根据题意得:(7.8+8.6+8.8)÷3=8.4小时,则这三位同学该天的平均睡眠时间是8.4小时,故答案为:8.4小时14.(2018•长沙)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形的圆心角为90度.解:“世界之窗”对应扇形的圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.15.(2018•湘潭)我市今年对九年级学生进行了物理、化学实验操作考试,其中物理实验操作考试有4个考题备选,分别记为A,B,C,D,学生从中随机抽取一个考题进行测试,如果每一个考题抽到的机会均等,那么学生小林抽到考题B的概率是.解:∵物理实验操作考试有4个考题备选,且每一个考题抽到的机会均等,∴学生小林抽到考题B的概率是:.故答案是:.16.(2018•常德)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.17.(2018•衡阳)某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是0.6万元.解:由表可知0.6万元出现次数最多,有4次,所以该公司工作人员的月工资的众数是0.6万元,故答案为:0.6万元.18.(2018•邵阳)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为16000人.解:该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为,故答案为:1600019.(2018•常德)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.20.(2018•郴州)在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是8.解:这组数据8出现的次数最多,所以众数为8,故答案为8.21.(2018•郴州)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:则这个厂生产的瓷砖是合格品的概率估计值是0.95.(精确到0.01)解:由击中靶心频率都在0.95上下波动,所以这个厂生产的瓷砖是合格品的概率估计值是0.95,故答案为:0.95.22.(2018•永州)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是100.解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.23.(2018•怀化)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号1,2,3,4,5,随机摸出一个小球,摸出的小球标号为奇数的概率是.解:摸出的小球标号为奇数的概率是:,故答案为:.24.(2018•娄底)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.解:画树状图如下:由树状图可知,共有6种等可能结果,其中选修地理和生物的只有1种结果,所以选修地理和生物的概率为,故答案为:.三.解答题(共14小题)25.(2018•长沙)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)请根据图中信息,解答下列问题:(1)本次调查一共抽取了50名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?解:(1)共抽取:4+10+15+11+10=50(人),故答案为50;(2)平均数=(4×6+10×7+15×8=11×9+10×10)=8.26;众数:得到8分的人最多,故众数为8.中位数:由小到大排列,知第25,26平均分为8分,故中位数为8分;(3)得到10分占10÷50=20%,故500人时,需要一等奖奖品500×20%=100(份).26.(2018•湘潭)为进一步深化基础教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.(1)学生小红计划选修两门课程,请写出她所有可能的选法;(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?解:(1)画树状图为:共有12种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率==.27.(2018•株洲)为提高公民法律意识,大力推进国家工作人员学法用法工作,今年年初某区组织本区900名教师参加“如法网”的法律知识考试,该区A学校参考教师的考试成绩绘制成如下统计图和统计表(满分100分,考试分数均为整数,其中最低分76分)(1)求A学校参加本次考试的教师人数;(2)若该区各学校的基本情况一致,试估计该区参考教师本次考试成绩在90.5分以下的人数;(3)求A学校参考教师本次考试成绩85.5~96.5分之间的人数占该校参考人数的百分比.解:(1)由表格中数据可得:85.5以下10人,85.5以上35人,则A学校参加本次考试的教师人数为45人;(2)由表格中85.5以下10人,85.5﹣90.5之间有:15人;故计该区参考教师本次考试成绩在90.5分以下的人数为:×900=500(人);(3)由表格中96.5以上8人,95.5﹣100.5之间有:9人,则96分的有1人,可得90.5﹣95.5之间有:35﹣15﹣9=11(人),则A学校参考教师本次考试成绩85.5~96.5分之间的人数占该校参考人数的百分比为:×100%=60%.28.(2018•湘潭)今年我市将创建全国森林城市,提出了“共建绿色城”的倡议.某校积极响应,在3月12日植树节这天组织全校学生开展了植树活动,校团委对全校各班的植树情况进行了统计,绘制了如图所示的两幅不完整的统计图.(1)求该校的班级总数;(2)将条形统计图补充完整;(3)求该校各班在这一活动中植树的平均棵树.解:(1)该校的班级总数=3÷25%=12,答:该校的班级总数是12;(2)植树11棵的班级数:12﹣1﹣2﹣3﹣4=2,如图所示:(3)(1×8+2×9+2×11+3×12+4×15)÷12=12(棵),答:该校各班在这一活动中植树的平均数约是12棵数.29.(2018•衡阳)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.请根据图中信息完成下列各题.(1)将频数分布直方图补充完整人数;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.解:(1)70到80分的人数为50﹣(4+8+15+12)=11人,补全频数分布直方图如下:(2)本次测试的优秀率是×100%=54%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:AB、AC、AD、BC、BD、CD,所以小明与小强同时被选中的概率为.30.(2018•邵阳)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;(2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.解:(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)李明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.31.(2018•岳阳)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为120人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.解:(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.32.(2018•常德)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,33.(2018•张家界)今年是我市全面推进中小学校“社会主义核心价值观”教育年.某校对全校学生进行了中期检测评价,检测结果分为A(优秀)、B(良好)、C(合格)、D (不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行数据处理,制作了如下所示不完整的统计表和统计图.请根据图提供的信息,解答下列问题:(1)本次随机抽取的样本容量为100;(2)a=30,b=0.31;(3)请在图2中补全条形统计图;(4)若该校共有学生800人,据此估算,该校学生在本次检测中达到“A(优秀)”等级的学生人数为240人.解:(1)本次随机抽取的样本容量为:35÷0.35=100,故答案为:100;(2)a=100×0.3=30,b=31÷100=0.31,故答案为:30,0.31;(3)由(2)知a=30,补充完整的条形统计图如右图所示;(4)800×0.3=240(人),故答案为:240.34.(2018•郴州)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:(1)这次随机抽取的献血者人数为50人,m=20;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),如图,故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,35.(2018•永州)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为40人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为15%;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率为.解:(1)参观的学生总人数为12÷30%=40(人);(2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%;(3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得:∵共有12种等可能的结果,甲同学被选中的有6种情况,∴甲同学被选中的概率是:=.故答案为:40;15%;.36.(2018•怀化)为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了100名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为36°;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)“民乐”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢书法的学生人数为2000×25%=500人.37.(2018•娄底)为了取得扶贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为A、B、C、D四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:(1)求样本容量;(2)补全条形图,并填空:n=10;(3)若全市有5000人参加了本次测试,估计本次测试成绩为A级的人数为多少?解:(1)样本容量为18÷30%=60;(2)C等级人数为60﹣(24+18+6)=12人,n%=×100%=10%,补全图形如下:故答案为:10;(3)估计本次测试成绩为A级的人数为5000×=2000人.38.(2018•湘西州)中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中抽取n名学生进行调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)求n的值;(2)请将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校四大古典名著均已读完的人数.解:(1)根据题意得:30÷30%=100(人),则n的值为100;(2)四大古典名著你读完了2部的人数为100﹣(5+15+30+25)=25(人),补全条形统计图,如图所示:(3)根据题意得:25%×2000=500(人),则该校四大古典名著均已读完的人数为500人.。
【九年级语文】2018年中考数学真题汇编统计与概率的综合题(含解析)
2018年中考数学真题汇编统计与概率的综合题(含解析)
5
c
二、填空题
1 (2018甘肃兰州,17,4分)一个不透明的口袋里装有若干除颜色外其他完全小童的小球.其中有6个黄球.将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现.摸到黄球的频率稳定在30﹪.由此估计口袋中共有小球____个.【答案】20
【逐步提示】先根据大量重复实验中频率的稳定值确定摸到黄球的概率,再把数据代入“摸到黄球的概率=”中求得口袋中共有的小球数
【详细解答】解因为通过大量重复上述实验后发现.摸到黄球的频率稳定在30﹪,所以P(摸到黄球)=30﹪,因为P(摸到黄球)= ,所以 =30﹪,解得所有小球的数量为20,故答案为20
【解后反思】用频率估计概率,样本容量越大,估计越精确;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事A包含其中的种结果,那么事A发生的概率.【关键词】频率估计概率;概率计算式
2 (2018 镇江,8,2分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有个红球
【答案】6
【逐步提示】①本题考查了用频率估计概率,解题的关键是知道在多次大量重复摸球实验后,某个事发生的频率就接近于该事发生的概率.②据摸到的红球的频率稳定值及总数,可求估计纸箱内红球的个数.。
中考专题:数学统计与概率(答案解析)
高频考点统计与概率试题参考答案与试题解析一.选择题(共9小题)1.(2018•河北)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:==13, ==15:s 甲2=s 丁2=3.6,s 乙2=s丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁解:∵=>=,∴乙、丁的麦苗比甲、丙要高, ∵s 甲2=s 丁2<s 乙2=s 丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐, 综上,麦苗又高又整齐的是丁, 故选:D .2.(2018•山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件): 太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( ) A .319.79万件 B .332.68万件 C .338.87万件D .416.01万件解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87 所以这组数据的中位数是338.87 故选:C .3.(2018•呼和浩特)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9解:A 、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B 、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C 、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D 、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意; 故选:D .4.(2018•山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .B .C .D .解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为, 故选:A .5.(2018•呼和浩特)随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )A .①的收入去年和前年相同B .③的收入所占比例前年的比去年的大C .去年②的收入为2.8万D .前年年收入不止①②③三种农作物的收入 解:A 、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;B 、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×1005=32.5%,此选项错误; C 、去年②的收入为80000×=28000=2.8(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误;故选:C.6.(2018•包头)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1D.5,2解:数据1,3,4,4,4,5,5,6的众数是4,,则=2,故选:B.7.(2018•黑龙江)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94D.极差是20解:A 、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.8.(2018•齐齐哈尔)我们家乡的黑土地全国特有,肥沃的土壤、绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg 装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数B.平均数C.中位数D.方差解:对这个米店老板来说,他最应该关注的是这些数据(袋数)中的哪一包装卖得最多,即是这组数据的众数.故选:A.9.(2018•大庆)已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=()A.98 B.99 C.100 D.102 解:数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为 [92+94+98+91+95]=94,其方差为 [(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6所以a+b=94+6=100.故选:C.二.填空题(共7小题)10.(2018•天津)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.11.(2018•包头)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.解:列表如下:﹣2 ﹣1 1 2 ﹣2 2 ﹣2 ﹣4﹣1 2 ﹣1 ﹣21 ﹣2 ﹣1 22 ﹣4 ﹣2 2由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.12.(2018•北京)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤35 35<t≤40 40<t≤45 45<t≤50 合A 59 151 166 124 5B 50 50 122 278 5C 45 265 167 23 5早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B 线路公交车用时不超过45分钟的可能性为=0.444,C 线路公交车用时不超过45分钟的可能性为=0.954,∴C 线路上公交车用时不超过45分钟的可能性最大, 故答案为:C .13.(2018•呼和浩特)已知函数y=(2k ﹣1)x +4(k 为常数),若从﹣3≤k ≤3中任取k 值,则得到的函数是具有性质“y 随x 增加而增加”的一次函数的概率为 .解:当2k ﹣1>0时,解得:k >,则<k ≤3时,y 随x 增加而增加, 故﹣3≤k <时,y 随x 增加而减小,则得到的函数是具有性质“y 随x 增加而增加”的一次函数的概率为: =.故答案为:.14.(2018•赤峰)一组数据:﹣1,3,2,x ,5,它有唯一的众数是3,则这组数据的中位数是 3 .解:∵一组数据:﹣1,3,2,x ,5,它有唯一的众数是3, ∴x=3,∴此组数据为﹣1,2,3,3,5, ∴这组数据的中位数为3, 故答案为3.15.(2018•哈尔滨)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6, 故骰子向上的一面出现的点数是3的倍数的概率是: =. 故答案为:.16.(2018•通辽)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD 内随意投掷飞镖. 他们的各项成绩如下表所示:候选人 笔试成绩/分面试成绩/分甲 90 88 乙 84 92 丙 x 90 丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x 的值; (3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.解:(1)这四名候选人面试成绩的中位数为: =89(分);(2)由题意得,x ×60%+90×40%=87.6 解得,x=86,答:表中x 的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分), 乙候选人的综合成绩为:84×60%+92×40%=87.2(分), 丁候选人的综合成绩为:88×60%+86×40%=87.2(分), ∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.23.(2018•通辽)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m )绘制成不完整的频数分布表和频数分布直方图. 学生立定跳远测试成绩的频数分布表分组 频数 1.2≤x <1.6 a 1.6≤x <2.0 12 2.0≤x <2.4 b 2.4≤x <2.810 请根据图表中所提供的信息,完成下列问题:(1)表中a= 8 ,b= 20 ,样本成绩的中位数落在 2.0≤x <2.4 范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有多少人?解:(1)由统计图可得, a=8,b=50﹣8﹣12﹣10=20,样本成绩的中位数落在:2.0≤x <2.4范围内, 故答案为:8,20,2.0≤x <2.4;(2)由(1)知,b=20,补全的频数分布直方图如右图所示;(3)1000×=200(人),答:该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有200人.24.(2018•赤峰)国家为了实现2020年全面脱贫目标,实施“精准扶贫”战略,采取异地搬迁,产业扶持等措施.使贫困户的生活条件得到改善,生活质量明显提高.某旗县为了全面了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)将图1补充完整;(2)通过分析,贫困户对扶贫工作的满意度(A、B、C类视为满意)是95%;(3)市扶贫办从该旗县甲乡镇3户、乙乡镇2户共5户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.解:(1)∵被调查的总户数为60÷60%=100,∴C类别户数为100﹣(60+20+5)=15,补全图形如下:(2)贫困户对扶贫工作的满意度(A、B、C类视为满意)是×100%=95%,故答案为:95%;(3)画树状图如下:由树状图知共有20种等可能结果,其中这两户贫困户恰好都是同一乡镇的有8种结果,所以这两户贫困户恰好都是同一乡镇的概率为=.25.(2018•通辽)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查为优秀,那么估计获得优秀奖的学生有多少人?解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.27.(2018•哈尔滨)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.28.(2018•齐齐哈尔)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有50人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?解:(1)全班学生人数为6÷0.12=50人,故答案为:50;(2)第二、三组频数之和为50×0.48=24,则第三组频数为24﹣6=18,∵自左至右第三,四,五组的频数比为9:8:3,∴第四组频数为16、第五组频数为6,则第六组频数为50﹣(1+6+18+16+6)=3,补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.29.(2018•大庆)九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不完整的频数分布表和扇形统计图.类别频数(人数)频率小说16戏剧 4散文 a其他 b合计 1根据图表提供的信息,解答下列问题:(1)直接写出a,b,m的值;(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的2人恰好是乙和丙的概率.解:(1)∵被调查的学生总人数为4÷10%=40人,∴散文的人数a=40×20%=8,其他的人数b=40﹣(16+4+8)=12,则其他人数所占百分比m%=×100%=30%,即m=30;(2)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,所以选取的2人恰好乙和丙的概率为=.。
中考数学专题复习《统计与概率》经典例题及测试题(含答案)
中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
【中考数学】2018题型专项(四) 统计与概率的实际应用
题型专项(四)统计与概率的实际应用统计与概率是云南各地中考中必定考查的内容,且考查方式一般都以解答题的形式出现,重点考查从统计图表中获取信息并应用的能力,利用树状图或列举法计算随机事件发生的概率,并能根据发生的概率判断游戏规则的公平性,预计2018年的中考也会涉及此类问题,在平时的复习中应加强训练.类型1统计的实际应用1.(2017·曲靖二模)当前,“校园ipad”现象已经受到社会的广泛关注,某教学兴趣小组对“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:(1)求出共调查了多少人,并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3 000名学生,请您估计该校持“反对”态度的学生人数.解:(1)共调查了40÷0.8=50(人).如图.(2)∵赞成的频率为0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°.(3)0.8×3 000=2 400(人).答:该校持“反对”态度的学生人数是2 400人.2.(2017·红河州个旧市一模)某社区为了进一步提高居民珍惜水、保护水和水忧患意识,提倡节约用水,从本社区5 000户家庭中随机抽取100户,调查他们家庭每季度的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图和表:请根据上面的统计图表,解答下列问题: (1)在频数分布表中:m =20,n =0.25;(2)根据题中数据补全频数直方图;(3)如果自来水公司将基本季度用水量定为每户每季度9吨,不超过基本季度用水量的部分享受基本价格,超出基本季度用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?解:(2)补全频数直方图如图所示. (3)(10+20)÷100×5 000=1 500(户).答:该社区用户中约有1 500户家庭能够全部享受基本价格.3.(2017·普洱市思茅三中一模)我市某中学为了了解本校学生对普洱茶知识的了解程度,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在本次抽样调查中,共抽取了80名学生; (2)在扇形统计图中,“不了解”部分所对应的圆心角的度数为36°;(3)补全条形统计图;(提示:一定要用2B 铅笔作图)(4)若该校有1 860名学生,根据调查结果,请估算出对普洱茶知识“了解一点”的学生人数. 解:(3)了解一点的人数为:80-16-8=56(人), 补全条形统计图如图.(4)根据题意,得80-16-880×1 860=1 302(人).答:对普洱茶知识“了解一点”的学生有1 302人.4.(2016·云南模拟)为了解某校九年级学生中考体育时学生的身高情况,随机抽取该校若干名九年级学生进行抽样调查,利用所得数据绘制如下统计图表.根据图表提供的信息,回答下列问题:身高情况分组表 (单位:cm )(1)在样本中,学生的身高众数在B 组,中位数在C 组;(2)若将学生身高情况绘制成扇形统计图,则C 组部分的圆心角为90°;(3)已知该校共有九年级学生1 200人,请估计身高在165 cm 及以上的学生约有多少人? 解:∵1 200×8+640=420(人),∴估计该校学生身高在165 cm 及以上的学生约有420人.5.(2017·昆明市官渡区二模)我市某中学为了深入学习社会主义核心价值观,特对本校部分学生(随机抽样)进行了一次相关知识的测试.(成绩分为A ,B ,C ,D ,E 五个组,x 表示测试成绩)通过对测试成绩的分析,(1)填空:参加调查测试的学生共有400人,A 组所占的百分比为25%,在扇形统计图中,C 组所在扇形的圆心角为72度;(2)请将条形统计图补充完整;(3)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3 000人,请估计全校测试成绩为优秀的学生有多少人?解:(2)B 组的人数是400×30%=120(人). (3)3 000×55%=1 650(人).答:全校测试成绩为优秀的学生有1 650人.类型2 概率的实际应用 6.(2017·曲靖二模)有四张正面分别标有数字-1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“-1”的概率; (2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“-1”的只有1种,∴抽到数字“-1”的概率为14.(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果.∴第一次抽到数字“2”且第二次抽到数字“0”的概率为112.7.(2017·曲靖市罗平县二模)如图,有四张背面完全相同的卡片A ,B ,C ,D ,小伟将这四张卡片背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能出现的结果;(卡片可用A ,B ,C ,D 表示)(2)求摸出两张卡片所表示的几何图形是轴对称图形而不是中心对称图形的概率.解:(1)画树状图如图:则共有16种等可能的结果.(2)∵是轴对称图形而不是中心对称图形情况为(C ,C), ∴是轴对称图形而不是中心对称图形的概率=116.8.(2017·普洱市思茅三中一模)在形状、大小、质量完全相同且不透明的四张卡片中,分别写有数2,3,5,6,随机抽取一张卡片记下数字后放回,洗匀后,再抽取一张卡片记下数字.(1)请用列表或画树状图的方法表示可能出现的所有结果;(2)设第一次取出的数字记为x ,第二次取出的数字记为y ,求两次抽到数字组成的点(x ,y)在直线y =x -1上的概率.解:(1)列表得:则共有16种等可能的结果.(2)∵这样的点落在直线y =x -1上的有:(3,2),(6,5), ∴这样的点落在直线y =x -1上的概率为216=18.9.(2017·昆明市五华区一模)甲、乙两人进行摸牌游戏,现有三张形状大小完全相同的牌,正面分别标有数字2,3,5,将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法写出所有可能的结果;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.解:(1)从表格可以看出,总共有9(2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种, ∴甲获胜的概率为59,乙获胜的概率为13.∵59>13, ∴甲获胜的概率大,游戏不公平.10.(2017·昆明市官渡区二模)已知有甲、乙两个不透明的袋子,甲袋内装有标记数字-1,2,3的三张卡片,乙袋内装有标记数字2,3,4的三张卡片(卡片除数字不同其余都相同).先从甲袋中随机抽取一张卡片,记录下数字,再从乙袋中随机抽取一张卡片,记录下数字.(1)利用列表或画树状图的方法(只选其中一种)表示出所抽两张卡片上数字之积所有可能的结果; (2)求抽出的两张卡片上的数字之积是3的倍数的概率. 解:(1)列表如下:共有9种结果,(2)∵数字之积为3的倍数的情况共有5种:-3,6,6,9,12, ∴抽出的两张卡片上的数字之积是3的倍数的概率为59.11.(2015·云南)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方体骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率; (2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.解:(1)如图所示:∵共18种情况,数字之积为6的情况有3种, ∴P(数字之积为6)=318=16.(2)由上图可知,该游戏所有可能的结果共18种,其中骰子向上一面出现的数字与卡片上的数字之积大于7的有7种,骰子向上一面出现的数字与卡片上的数字之积小于7的有11种,所以小明赢的概率为718,小王赢的概率为1118,故小王赢的可能性更大.类型3 统计与概率的综合应用 12.(2017·云南考试说明)某中学共有学生2 000名,各年级男、女生人数如下表所示:,八年级女生对应的扇形的圆心角为44.28°.(1)求x ,y ,z 的值;(2)求各年级男生人数的中位数; (3)求各年级女生人数的平均数;(4)从八年级随机抽取36名学生参加社会实践活动,求抽到八年级某同学的概率. 解:(1)x =2 000×0.12=240(人); y =2 000×44.28°360°=246(人);z =2 000-(240+250)-244-(254+246)-(258+252)=256(人). (2)中位数为(254+256)÷2=255. (3)平均数为(240+244+246+252)÷4=245.5. (4)随机抽到八年级某同学的概率P =36254+246=9125.13.(2017·曲靖模拟)东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A :足球,B :篮球,C :排球,D :羽毛球,E :乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图.(如图)(1)将统计图补充完整; (2)求出该班学生人数;(3)若该校共有学生3 500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.解:(1)∵该班人数为8÷16%=50(人), ∴C 的人数为24%×50=12(人), E 的人数为8%×50=4(人),∴A 的人数为50-8-12-4-6=20(人),A 所占的百分比为2050×100%=40%,D 所占的百分比为650×100%=12%,如图.(2)由(1)得该班学生人数为50人. (3)3 500×40%=1 400(人), 估计有1 400人选修足球. (4)画树状图如下:共有20种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占6种. ∴选出的2人恰好1人选修篮球,1人选修足球的概率为620=310.14.(2017·云南模拟样卷)2017年1月,某市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题: (1)本次抽取的学生人数是30;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.解:(1)补全统计图如图所示. (2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道.∴P(A)=820=25.。
2018年全国各地中考数学真题汇编:统计与概率(江苏专版)(解析版)
2018年全国各地中考数学真题汇编(江苏专版)统计与概率参考答案与试题解析一.选择题(共8小题)1.(2018•南京)某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大解:原数据的平均数为=188,则原数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(192﹣188)2+(194﹣188)2]=,新数据的平均数为=187,则新数据的方差为×[(180﹣187)2+(184﹣187)2+(188﹣187)2+(190﹣187)2+(186﹣187)2+(194﹣187)2]=18,所以平均数变小,方差变小,故选:A.2.(2018•连云港)一组数据2,1,2,5,3,2的众数是()A.1 B.2 C.3 D.5解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故选:B.3.(2018•无锡)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元解:由表可知,这5天中,A产品平均每件的售价为=98(元/件),故选:C.4.(2018•盐城)一组数据2,4,6,4,8的中位数为()A.2 B.4 C.6 D.8解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选:B.5.(2018•扬州)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则该日气温的极差是5℃解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,该日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.6.(2018•连云港)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.解:∵共6个数,大于3的有3个,∴P(大于3)==;故选:D.7.(2018•淮安)若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.7解:由题意(3+4+5+x+6+7)=5,解得x=5,故选:B.8.(2018•泰州)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球.故选:C.二.填空题(共4小题)9.(2018•盐城)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为解:∵正方形被等分成9份,其中阴影方格占4份,∴当蚂蚁停下时,停在地板中阴影部分的概率为,故答案为:.10.(2018•泰州)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是众数.解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.故答案为:众数.11.(2018•宿迁)小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是1.解:若小明第一次取走1根,小丽也取走1根,小明第二次取2根,小丽不论取走1根还是两根,小明都将取走最后一根,若小明第一次取走1根,小丽取走2根,小明第二次取1根,小丽不论取走1根还是两根,小明都将取走最后一根,由小明先取,且小明获胜是必然事件,故答案为:1.12.(2018•淮安)某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是0.90(精确到0.01).解:由击中靶心频率都在0.90上下波动,所以该射手击中靶心的概率的估计值是0.90,故答案为:0.90.三.解答题(共16小题)13.(2018•南京)随机抽取某理发店一周的营业额如下表(单位:元):(1)求该店本周的日平均营业额;(2)如果用该店本周星期一到星期五的日平均营业额估计当月的营业总额,你认为是否合理?如果合理,请说明理由;如果不合理,请设计一个方案,并估计该店当月(按30天计算)的营业总额.解:(1)该店本周的日平均营业额为7560÷7=1080元;(2)因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额,所以去掉周六、日的营业额对平均数的影响较大,故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合理,方案:用该店本周一到周日的日均营业额估计当月营业额,当月的营业额为30×1080=32400元.14.(2018•无锡)某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)解:设男同学标记为A、B;女学生标记为1、2,可能出现的所有结果列表如下:共有12 种可能的结果,且每种的可能性相同,其中恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为=.15.(2018•连云港)随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费情况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:(1)本次被调査的家庭有150户,表中m=42;(2)本次调查数据的中位数出现在B组.扇形统计图中,D组所在扇形的圆心角是36度;(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少户?解:(1)样本容量为:36÷24%=150,m=150﹣36﹣27﹣15﹣30=42,故答案为:150,42;(2)中位数为第75和76个数据的平均数,而36+42=78>76,∴中位数落在B组,D组所在扇形的圆心角为360°×=36°,故答案为:B,36;(3)家庭年文化教育消费10000元以上的家庭有2500×=1200(户).16.(2018•南京)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)下列事件中,概率最大的是D.A.摸出的2个球颜色相同B.摸出的2个球颜色不相同C.摸出的2个球中至少有1个红球D.摸出的2个球中至少有1个白球解:(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为=;(2)∵摸出的2个球颜色相同概率为=、摸出的2个球颜色不相同的概率为=,摸出的2个球中至少有1个红球的概率为=、摸出的2个球中至少有1个白球的概率为,∴概率最大的是摸出的2个球中至少有1个白球,故选:D.17.(2018•无锡)某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手轿车3000辆.(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为54度.解:(1)该汽车交易市场去年共交易二手轿车1080÷36%=3000辆,故答案为:3000;(2)C类别车辆人数为3000×25%=750辆,补全条形统计图如下:(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为360°×=54°,故答案为:54.18.(2018•连云港)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?解:(1)甲队最终获胜的概率是;故答案为;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.19.(2018•淮安)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了50名学生;(2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.解:(1)本次调查中,该学校调查的学生人数为20÷40%=50人,故答案为:50;(2)步行的人数为50﹣(20+10+5)=15人,补全图形如下:(3)估计该学校学生中选择“步行”方式的人数为1500×=450人.20.(2018•盐城)端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.解:(1)肉粽记为A、红枣粽子记为B、豆沙粽子记为C,由题意可得,(2)由(1)可得,小悦拿到的两个粽子都是肉馅的概率是:=,即小悦拿到的两个粽子都是肉馅的概率是.21.(2018•盐城)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了400名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.解:(1)本次调查的总人数为80÷20%=400人,故答案为:400;(2)B类别人数为400﹣(80+60+20)=240,补全条形图如下:C类所对应扇形的圆心角的度数为360°×=54°;(3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×=100人.22.(2018•淮安)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.解:(1)列表得:(2)由表可知,共有6种等可能结果,其中点A落在第四象限的有2种结果,所以点A落在第四象限的概率为=.23.(2018•扬州)江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表根据以上信息,请回答下列问题:(1)这次调查的样本容量是50,a+b11.(2)扇形统计图中“自行车”对应的扇形的圆心角为72°.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).24.(2018•泰州)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B 两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C的概率.解:列表如下:由表可知共有6种等可能的结果数,其中小明恰好选中景点B和C的结果有1种,所以小明恰好选中景点B和C的概率为.25.(2018•泰州)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.解:(1)a=100﹣(10+40+30)=20,∵软件总利润为1200÷40%=3000,∴m=3000﹣(1200+560+280)=960;(2)网购软件的人均利润为=160元/人,视频软件的人均利润=140元/人;(3)设调整后网购的人数为x、视频的人数为(10﹣x)人,根据题意,得:1200+280+160x+140(10﹣x)=3000+60,解得:x=9,即安排9人负责网购、安排1人负责视频可以使总利润增加60万元.26.(2018•宿迁)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如下不完整的两幅统计图表.征文比赛成绩频数分布表请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是0.2;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为:0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).27.(2018•扬州)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.。
2018年九年级数学中考统计与概率专题复习
2018 年 九年级数学中考 统计与概率专题复习一、选择题 :1.学校为认识七年级学生参加课外兴趣小组的状况,随机检查了40 名学生,将结果绘制成了以下图的统计图,则七年级学生参加绘画兴趣小组的频次是()A .B .C .D .2. 自来水企业检查了若干用户的月用水量x ( 单位:吨 ) ,按月用水量将用户分红 ,,,, 五组进行统计,ABCDE并制作了以下图的扇形统计图 . 已知除 B 组之外,参加检查的用户共 64 户,则全部参加检查的用户中月用水量在 6 吨以下的共有 ()A .18 户B .20 户C .22 户D .24 户3.已知 a,b,c,d,e 的均匀分是 m,则 a+5,b+12,c+22,d+9,e+2 的均匀分是 ()A . m-1B . m+3C . m+1 0D . m+124.如图是交警在一个路口统计的某个时段来往车辆的车速(单位: 千米 / 时)状况. 则这些车的车速的众数、中位数分别是()A . 8, 6B . 8, 5C . 52, 53D . 52,525. 已知 5 名学生的体重分别是 41、 50、 53、 49、 67(单位: kg ),则这组数据的极差是()A . 8B . 9C . 26D . 416. 以下说法正确的选项是()A .“翻开电视机,正在播《民生当面》”是必定事件B. “一个不透明的袋中装有6 个红球,从中摸出 1 个球是红球”是随机事件C.“概率为 0.0001 的事件”是不行能事件D.“在操场上向上抛出的篮球必定会着落”是确立事件7.九年级一班和二班每班选 8 名同学进行投篮竞赛, 每名同学投篮 10 次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6 个的最多”乙说:“二班同学投中次数最多与最少的相差6 个.”上边两名同学的谈论能反应出的统计量是()A .均匀数和众数B .众数和极差C .众数和方差D .中位数和极差8.在 2016 年我县中小学经典朗读竞赛中,10 个参赛单位成绩统计以下图, 关于这 10 个参赛单位的成绩,以下说法中错误的选项是()A .众数是 90B .均匀数是 90C .中位数是 90D .极差是 159.小明统计了他家今年 5 月份打电话的次数及通话时间,并列出了频数散布表:则通话时间不超出15min 的频次为()A .B .C .D .10. 桌面上放有 6 张卡片(卡片除正面的颜色不一样外,其他均同样) ,此中卡片正面的颜色3 张是绿色, 2 张是红色, 1 张是黑色.现将这6 张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是A.1B.1C.1D.1 2 3 4 6二、填空题 :11.若数据 1、﹣ 2、 3、x 的均匀数为2,则 x=.12.2016 年 6 月尾,九年级学生马上毕业,好朋友甲、乙、丙三人决定站成一排合影纪念,则甲、乙二人相邻的概率是.13.布袋内装有大小、形状同样的3 个红球和 1 个白球,从布袋中一次摸出两个球,那么两个都摸到红球的概率是.14.甲、乙两地5 月下旬的日均匀气温统计如表(单位:℃):甲地气温24 30 28 24 22 26 27 26 29 24乙地气温24 26 25 26 24 27 28 26 28 26则甲、乙两地这10 天日均匀气温的方差大小关系为:S 甲2S 乙2.(填“>”、“<”或“ =”)15. 如图,圆形转盘中,A,B,C三个扇形地区的圆心角分别为150°, 120°和 90°.转动圆盘后,指针停止在任何地点的可能性都同样(若指针停在分界限上,则从头转动圆盘),则转动圆盘一次,指针停在B区域的概率是.BCA16. 某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击竞赛.在选拔赛中,每人射击10 次,他们 10 次成绩的均匀数及方差以下表所示.请你依据表中数据选一人参加竞赛,最适合的人选是.三、解答题 :17.某地域在一次九年级数学质量检测试题中,有一道分值为8 分的解答题,全部考生的得分只有四种,即:0 分, 3 分, 5 分, 8 分,老师为认识此题学生得分状况,从全区4500 名考生试卷中随机抽取一部分,剖析、整理此题学生得分状况并绘制了以下两幅不完好的统计图:请依据以上信息解答以下问题:(1)本次检查从全区抽取了份学生试卷;扇形统计图中a=,b=;(2)补全条形统计图;(3)该地域此次九年级数学质量检测中,请预计全区考生这道8 分解答题的均匀得分是多少?得8 分的有多少名考生?18.为认识某地域七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜欢状况,从该地域随机抽取部分七年级学生作为样本,采纳问卷检查的方法采集数据(参加问卷检查的每名同学只好选择此中一类节目),并检查获得的数据用下边的表和扇形图来表示(表、图都没制作达成)依据表、图供给的信息,解决以下问题:(1)计算出表中 a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地域七年级学生共有 47500 人,试预计该地域七年级学生中喜欢“新闻”类电视节目的学生有多少人?19. 为进一步增强和改良学校体育工作,确实提升学生体质健康水平,决定推动“一校一球队、一级一专项、一人一技术”活动计划,某校决定对学生感兴趣的球类项目(A:足球, B:篮球, C:排球, D:羽毛球, E:乒乓球)进行问卷检查,学生可依据自己的爱好选修一门,李老师对某班全班同学的选课状况进行统计后,制成了两幅不完好的统计图(如图)(1)将统计图增补完好;(2)求出该班学生人数;(3)若该校共用学生 3500 名,请预计有多少人选修足球?(4)该班班委 5 人中, 1 人选修篮球, 3 人选修足球, 1 人选修排球,李老师要从这 5 人中任选 2 人认识他们对体育选修课的见解,请你用列表或画树状图的方法,求选出的 2 人恰巧 1 人选修篮球, 1 人选修足球的概率.20.一袋中装有形状大小都同样的四个小球,每个小球上各标有一个数字,分别是1,4, 7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;而后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定获得全部可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于 4 且小于 7 的概率.第5页共7页参照答案9. D.11.答案为: 6.12.答案为.13.答案为: 0.5 .14.答案为:>.15.答案为:16.答案为:丁;17.解:( 1)24÷ 10%=240份, 240﹣ 24﹣108﹣ 48=60 份,60÷ 240=25%, 48÷ 240=20%,抽取了240 份学生试卷;扇形统计图中a=25,b=20;(2)如图:(3) 0× 10%+3× 25%+5× 45%+8× 20%=4.6 分, 4500× 20%=900名.答:这道8 分解答题的均匀得分是 4.6 分;得 8 分的有 900 名考生.18.解:( 1)162, 135;( 2) 108°;( 3)3800.19.解:( 1)检查的家长总数为: 360÷ 60%=600人,很赞成的人数: 600× 20%=120人,不赞成的人数:600﹣ 120﹣ 360﹣ 40=80 人;(2)“赞成”态度的家长的概率是60%;(3)表示家长“无所谓”的圆心角的度数为:24°.20.解:( 1)画树状图:共有 16 种等可能的结果数,它们是: 11, 41,71, 81,14, 44, 74, 84, 17, 47, 77, 87, 18, 48, 78,88;(2)算术平方根大于 4 且小于 7 的结果数为6,因此算术平方根大于 4 且小于 7 的概率 = =.。
2018届甘肃中考数学《第八章统计与概率》总复习练习题(含答案)
第八章统计与概率第26讲统计(时间70分钟满分85分)A卷一、选择题(本大题共7小题,每小题4分,共28分)1.(2017·重庆A)下列调查中,最适合采用全面调查(普查)方式的是(D)A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查2.为了解某市七年级20000名学生的身高,从中抽取了500名学生,对其身高进行统计分析.以下说法中正确的是(D)A.20000名学生是总体B.每名学生是个体C.500名学生是抽取的一个样本D.每名学生的身高是个体3.(2017·苏州)有一组数据:2,5,5,6,7,这组数据的平均数为(导学号35694223)(C) A.3B.4C.5D.64.则这组数据的中位数与众数分别是(A)A.27,28 B.27.5,28 C.28,27 D.26.5,275.(2017·安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是(导学号35694224)(A)A.280 B.240 C.300 D.2606.(2017·潍坊)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示,欲选一名运动员参赛,从平均数与方差两个因素分析,应选(C)A.甲B.乙C.丙D.丁7.下列说法正确的是(A)A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差分别是s甲2=3.2,s乙2=2.9,则甲组数据更稳定二、填空题(本大题共7小题,每小题3分,共21分)8.(2017·上海)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是__80__万元.(导学号35694225)9.(2017·南宁)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有__680__人.10.(2017·日照)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183191169190177则在该时间段中,通过这个路口的汽车数量的平均数是__182__.11.(2017·益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为__48人__.12.(2017·苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是__8__环.13.(2017·沈阳)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是s甲2=0.53,s乙2=0.51,s丙2=0.43,则三人中成绩最稳定的是__丙__.(填“甲”或“乙”或“丙”)(导学号35694226)14.(2017·南京)如图是某市2013-2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是__2016__年,私人汽车拥有量年增长率最大的是__2015__年.三、解答题(本大题共2小题,共18分)15.(9分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类)A:共享单车;B:步行;C:公交车;D:的士;E:私家车,并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有__800__人,其中选择B类的人数有__240__人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.解:(2)补全条形统计图略;(3)12×(25%+30%+25%)=9.6(万人).答:估计该市“绿色出行”方式的人数为9.6万人.16.(8分)(2017·齐齐哈尔)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a =__70____0.40__(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第__3__组;(4)请估计该校七年级学生日阅读量不足1小时的人数. 解:(2)补全条形统计图略; (4)1200×(0.05+0.10)=1200×0.15=180(人).答:估计该校七年级学生日阅读量不足1小时的人数为180人.B 卷1.(4分)(2017·嘉兴)已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a -2,b -2,c -2的平均数和方差分别是(B )A .3,2B .3,4C .5,2D .5,4 2.(4分)(2016·南京)若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为(导学号 35694227)(C )A .1B .6C .1或6D .5或6 3.(3分)(2017·咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)__1.4,1.35__. 4.(8分)(2017·沈阳)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m =__50__,n =__30__;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是__72__度;(3)请根据以上信息补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书. 解:(3)补图略;(4)由题意可得,600×1550=180(名).答:该校600名学生中约有180名学生最喜欢科普类图书.第27讲 概 率(时间70分钟 满分75分)一、选择题(本大题共7小题 ,每小题4分,共28分) 1.(2017·沈阳)下列事件中,是必然事件的是(A ) A .将油滴入水中,油会浮在水面上 B .车辆随机到达一个路口,遇到红灯 C .如果a 2=b 2,那么a =bD .掷一枚质地均匀的硬币,一定正面向上 2.(2017·巴中)下列说法正确的是(C )A .“打开电视机,正在播放体育节目”是必然事件B .了解夏季冷饮市场上冰淇淋的质量情况适合用普查C .抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为12D .甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是s 甲2=0.3,s 乙2=0.5,则乙的射击成绩稳定3.(2017·岳阳)从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是(C )A.15B.25C.35D.454.(2017·赤峰)小明向如图所示的正方形ABCD 区域内投掷飞镖,点E 是以AB 为直径的半圆与对角线AC 的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为(B )A.12B.14C.13D.185.(2017·南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为(C )A.15B.14C.13D.126.(2017·海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为(D )A.12B.14C.18D.1167.(2017·金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是(导学号 35694228)(D )A.12B.13C.14D.16三、填空题(本大题共5小题 ,每小题3分,共15分) 8.(2017·泰州)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为4”,这个事件是__不可能事件__.(填“必然事件”“不可能事件”或“随机事件”)9.(2017·徐州)如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为__23__.10.(2017·福建)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是__红球__.(导学号 35694229)11.(2017·营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是__15__个.12.(2016·重庆B )点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是__15__.(导学号 35694230)三、解答题(本大题共4小题,共32分) 13.(8分)(2017·毕节)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.解:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=24=12;(2)4种, ∴P (小王胜)=416=14,P (小张胜)=416=14,∴游戏公平.14.(8分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-2,乙袋中有三个完全相同的小球,分别标有数字-1,0和2,小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x ,再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ).(1)请用列表或画树状图的方法列出点P 所有可能的坐标; (2)求点P 在一次函数y =-x 图象上的概率. 解:(1)画树状图如解图所示:∴点P 所有可能的坐标为:(1,-1),(1,0),(1,2),(-2,-1),(-2,0),(-2,2);(2)∵只有(1,-1),(-2,2)这两点在一次函数y =-x 图象上,∴P (点P 在一次函数y =-x 的图象上)=26=13.15.(8分)(2016·曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y =3x图象上的所有“整点”A 1,A 2,A 3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率. 解:(1)整点坐标有A 1(-3,-1),A 2(-1,-3),A 3(3,1),A 4(1,3);(2)由表得共12∴P (关于原点对称)=412=13.16.(8分)(2017·西宁)西宁市教育局在局属各初中学校设立“自主学习日”,规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E .社会实践;F .其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为__1000__,请补全条形统计图; (2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人? (3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.(导学号 35694231) 解:(1)补图略;(2)参加体育锻炼的人数的百分比为40%,用样本估计总体:40%×40000=16000人.答:全市学生中选择体育锻炼的人数约有16000人;(3)设两名女生分别用A 1,A 2,一名男生用B 表示,画树状图如解图,共有6种等可能的情况,恰好1男1女的有4种可能, 所以恰好选到1男1女的概率是46=23.第八章 统计与概率自我测试(时间80分钟 满分90分)一、选择题(本大题共7小题 ,每小题4分,共28分) 1.(2017·长沙)下列说法正确的是(D )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,-2的中位数是4D .“367人中有2人同月同日出生”为必然事件 2.(2017·阿坝州)对“某市明天下雨的概率是75%”这句话,理解正确的是(D ) A .某市明天将有75%的时间下雨 B .某市明天将有75%的地区下雨 C .某市明天一定下雨D .某市明天下雨的可能性较大 3.(2017·宜昌)九一(1)班在参加学校4×100 m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为(D )A .1 B.12 C.13 D.144.(2017·温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有(D )A .75人B .100人C .125人D .200人 5.(2017·南宁)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是(C )A .8.8分,8.8分B .9.5分,8.9分C .8.8分,8.9分D .9.5分,9.0分6.(2016·锦州)如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是(D )A.14B.34C.12D.387.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是(A )A .12B .9C .4D .38.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是(B )A .0.2B .0.17C .0.33D .0.14 9.(2017·烟台)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是(C )A .两地气温的平均数相同B .甲地气温的中位数是6℃C .乙地气温的众数是4℃D .乙地气温相对比较稳定 二、填空题(本大题共5小题 ,每小题3分,共15分)10.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有__35__.11.(2017·张家界)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50__4__12.(2017·随州)“抛掷一枚质地均匀的硬币,正面向上”是__随机__事件(从“必然”、“随机”、“不可能”中选一个).(导学号 35694232) 13.(2017·江西)已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是__5__.14.(2017·杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是__49__.三、解答题(本大题共5小题,共47分) 15.(8分)(2017·哈尔滨)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名. 解:(1)10÷20%=50(名).答:本次调查共抽取了50名学生; (2)补图略;(3)1350×2050=540(名).答:估计最喜欢太阳岛风景区的学生有540名.16.(9分)现有分别标有数字1,2,3,4,5,6的6个质地和大小完全相同的小球. (1)若6个小球都装在一个不透明的口袋中,从中随机摸出一个,其标号为偶数的概率是多少?(2)若将标有数字1,2,3的小球装在不透明的甲口袋中,标有数字4,5,6的小球装在不透明的乙口袋中,现从甲、乙两个口袋中各随机摸出1个球,用列表或画树状图的方法表示所有可能出现的结果,并求摸出的两个小球上数字之和为6的概率.(导学号 35694233)解:(1)∵6个数中有3个偶数,∴选中标号为偶数的概率是12;(2)∴P (两个球上数字之和为6)=29.17.(9分)(2017·岳阳)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a =__25__,b =__0.10__;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?解:(2)补图略;(3)根据题意得:2000×0.10=200(人).答:该校2000名学生中评为“阅读之星”的约有200人. 18.(9分)(2016·黔南州)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”. (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为14;(2)画树状图如解图,共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1, ∴恰好小红抽中“唐诗”且小明抽中“宋词”的概率为112.19.(12分)(2017·辽阳)某校以“我最喜爱的体育项目”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其他项目(每位同学仅选一项),根据调查数据绘制了如下不完整的统计表和扇形统计图:(1)统计表中的m =__30__,n =__0.20__;(2)在扇形统计图中,“篮球”所在扇形的圆心角为__108__度;(3)该学校共有2400名学生,据此估计有多少名学生最喜爱乒乓球?(4)将2名最喜爱篮球的学生和2名最喜爱羽毛球的学生编为一组,从中随机抽取两人,请用列表或画树状图的方法求出所抽取的两人都选择了最喜爱篮球的概率.(导学号 35694234)解:(3)根据题意得2400×0.20=480(人). 答:估计有480名学生最喜爱乒乓球;(4)将喜爱篮球的两名学生标号为A 1,A 2,将喜爱羽毛球的两名同学标号为B 1,B 2,根据题意画树状图如解图,由图可知总共有12种结果,每种结果出现的可能性相同,其中两人都选择篮球的结果有2种,所以抽取的两人都选择了最喜爱篮球的概率是212=16.。
2018中考数学总复习统计与概率检测试卷湘教版有答案
课时训练 ( 三十 ) 数据的采集与统计图 | 夯实基础| 一、选择题 1. [2017 ?襄阳 ] 以下检查中,检查方式选择合理的是() A .为认识襄阳市初中生每日锻炼所用的时间,选择全面检查 B .为认识襄阳电视台《襄阳新闻》栏目的收视率,选择全面检查C.为认识神舟飞船设施部件的质量状况,选择抽样检查D .为认识一批节能灯的使用寿命,选择抽样检查 2 .一个样本有若干个数据,分为 5 组,第三组的频数为 12,频次为0.15 ,则样本容量是() A . 60 B . 75C . 80 D. 180 3 . [2017 ? 宁夏 ] 某商品四天内每日每斤的进价与售价信息如图K30- 1所示,则售出这类商品每斤收益最大的是() A .第一天 B .次日 C .第三天D .第四天 4 . [2017 ? 邵阳 ] “治病救人”是我国的传统美德.某媒体就“老人跌倒该不该扶”进行了检查,将获得的数据经统计剖析后绘制成如图 K30 - 2 所示的扇形统计图.依据统计图判断以下说法,此中错误的一项为哪一项20 ×20() A .以为依状况而定的占27% B .认为该扶的在统计图中所对应的圆心角是234°C .以为不应扶的占8% D.以为该扶的占92%5 . [2017 ? 安徽 ] 为认识某校学生今年五一时期参加社团活动时间的状况,随机抽查了100 名学生进行统计,并绘成如图K30- 3 所示的频数直方图,已知该校共有1000名学生.据此预计,该校五一时期参加社团活动时间在 8 ~ 10小时之间的学生数大概是()图 K30- 3A . 280B . 240C . 300D . 260 6 .如图K30 - 4 分别是某班全体学生上学时搭车、步行、骑车人数的条形统计图和扇形统计图( 两图都不完好) ,则以下结论错误的选项是() 图K30-4A.该班总C.乘车人人数为50人B.步行人数为30人数是骑车人数的2.5倍D.骑车人数占 20%二、填空题7.某市今年中考数学学科开考时间是6月22日15时,数串“201706221500”中“0”出现的频数是________ . 8 .某班数学老师想了解20 ×20学生对数学的喜欢程度,对全班50名学生进行调查,根据调查结果绘制了扇形统计图(如图K30-5所示),其中A表示“很喜欢”,B表示“一般”,C表示“不喜欢”,则该班“很喜欢”数学的学生有________人.20 ×20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届中考数学复习《统计与概率的应用》专题训练含答案
2018届初三数学中考复习 统计与概率的应用 专题复习训练题
1.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,90≤x≤100 c
请根据上述统计图表,解答下列问题:
(1)在表中,a =__0.1__,b =__0.3__,c =__18__;
(2)补全频数分布直方图;
(3)根据以上选取的数据,计算七年级学生的平均成绩;
(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?
解:(2)补图略 (3)平均成绩是81分 (4)800×(0.3+0.2)=400,即“优秀”等次的学生约有400人
2. 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:
①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);
②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;
③游戏结束前双方均不知道对方“点数”;
④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.
现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.
(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为__12
__; (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然
后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.
解:(2)画树状图:
∴乙获胜的概率为
12
3.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,
根据以上信息,解答下列问题:
(1)家庭用水量在4.0<x≤6.5范围内的家庭有__13__户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是__30__%;
(2)本次调查的家庭数为__50__户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是__18__%;
(3)家庭用水量的中位数落在__C__组.
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.
解:(4)估计该月用水量不超过9.0吨的家庭数为200×4+13+1550
=128(户)
4.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.
(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并绘制出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:
①小明一共统计了__150__个评价;
②请将图1补充完整;
③图2中“差评”所占的百分比是__13.3%__;
(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.
解:(1)②“好评”一共有150×60%=90(个),补图略.
(2)列表:
由表可知,一共有95种,∴
两人中至少有一个给“好评”的概率是59
5.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.
国画类 b 0.20
根据以上信息完成下列问题:
(1)直接写出频数分布表中a 的值;
(2)补全频数分布直方图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?
解:(1)14÷0.28=50,a =18÷50=0.36 (2)b =50×0.20=10,补图略
(3)1500×0.28=420(人),估计该校最喜爱围棋的学生大约有420人
6.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 mL )、红茶(500 mL )和可乐(600 mL ),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.
根据以上规则,回答下列问题:
(1)求一次“有效随机转动”可获得“乐”字的概率;
(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.
解:(1)15
(2)画树状图(略),由树状图可知
共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概
率为225
7.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是__13
__;
(2)若甲、乙均可在本层移动.
①用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率; ②黑色方块所构拼图是中心对称图形的概率是__29
__.
解:(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率P =39=13
8.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):
(1)根据以上信息回答下列问题:
①求m 值;
②求扇形统计图中阅读时间为5小时的扇形圆心角的度数;
③补全条形统计图.
(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.
解:(1)①∵m=15÷14=60
②560
×360°=30° ③第三小组的频数为60-10-15-10-5=20,补图略
(2)众数为 3小时,中位数为3小时,平均数为2.75小时
9. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.
(1)若他选择转动转盘1,则他能得到优惠的概率为多少?
(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.
解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+
0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴
选择转盘1更合算
10. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?
解:(1)红球占40%,黄球占60%
(2)设总球数为x 个,由题意得8x =450
,解得x =100,100×40%=40(个),即盒中红球有40个
11. 某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中
随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请
以上严重污染 2
(1)统计表中m=__20__,n=__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?
(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.
解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略
(3)建议不要燃放烟花爆竹
12. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)图①中a的值为__25__;
(2)求统计的这组初赛成绩数据的平均数、众数和中位数;
(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m的运动员能否进入复赛.
解:(2)x=1.61;众数是1.65;中位数是1.60
(3)能;
∵共有20个人,中位数是第10,11个数的平均数.
∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,
∴能进入复赛。