离散数学作业
离散数学练习题(含答案)
离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∃x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。
离散数学期末考试卷
离散数学期末考试卷一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 幂集2. 命题逻辑中,下列哪个命题不是合取命题?A. (p ∧ q)B. (p ∨ q)C. (p → q)D. (p ↔ q)3. 关系R在集合A上是自反的,这意味着:A. 对于所有a∈A,(a, a)∈RB. R是对称的C. R是传递的D. R是反对称的4. 在图论中,下列哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 矩阵5. 布尔代数中,下列哪个操作不是基本操作?A. 与(AND)B. 或(OR)C. 非(NOT)D. 模(MOD)6. 函数f: A → B,下列哪个条件不是函数的一一对应的必要条件?A. 对于A中不同的元素,它们的函数值不同B. 对于B中的每个元素,A中至少有一个元素映射到它C. 对于A中的每个元素,B中只有一个元素映射到它D. A和B的元素数量相同7. 在组合数学中,下列哪个是排列的定义?A. 从n个不同元素中取出r个元素的所有可能组合B. 从n个不同元素中取出r个元素的所有可能排列C. 从n个元素中取出r个元素的所有可能组合,不考虑顺序D. 从n个元素中取出r个元素的所有可能排列,考虑顺序8. 逻辑等价是指两个命题:A. 总是同时为真或同时为假B. 在所有可能的真值分配下都具有相同的真值C. 只有在某些真值分配下具有相同的真值D. 至少在一个真值分配下具有相同的真值9. 递归函数的特点是:A. 只能通过迭代来实现B. 必须有一个或多个基本情况C. 只能通过递归调用自身来实现D. 不能包含任何循环结构10. 在证明中,归纳法的基本步骤是:A. 基础步骤和归纳步骤B. 假设步骤和证明步骤C. 假设步骤和归纳步骤D. 基础步骤和假设步骤二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集包含元素个数为______。
离散数学作业标准答案
离散数学作业一、选择题1、下列语句中哪个就是真命题(C )。
A.我正在说谎。
B.如果1+2=3,那么雪就是黑色的。
C.如果1+2=5,那么雪就是白色的。
D.严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 就是( C )。
A 、 恒假的B 、 恒真的C 、 可满足的D 、 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ∃∀→中的变元x ( C )。
A.就是自由变元但不就是约束变元 B.既不就是自由变元又不就是约束变元 C.既就是自由变元又就是约束变元 D.就是约束变元但不就是自由变元4、设A={1,2,3},则下列关系R 不就是等价关系的就是(C ) A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C.R={<1,1>,<2,2>,<3,3>,<1,4>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R,σ(x)= -x 2+2x-1,则σ就是( D )。
A.单射而非满射B.满射而非单射C.双射D.既不就是单射,也不就是满射 6、下列二元运算在所给的集合上不封闭的就是( D ) A 、 S={2x-1|x ∈Z +},S 关于普通的乘法运算 B 、 S={0,1},S 关于普通的乘法运算 C 、 整数集合Z 与普通的减法运算D 、 S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所示,哪个能使({a,b},*)成为含幺元半群( D )b b b a a a b a * a b b b a a b a *8( A )A B C D 9、下列各组数中,能构成无向图的度数列就是( D ) A.1,1,1,2,4 B.1,2,3,4,5 C.0,1,0,2,4 D.1,2,3,3,510、一棵树有2个4度顶点,3个3度顶点,其余都就是树叶,则该树中树叶的个数就是( B )A 、8B 、9C 、 10D 、 11 11、“所有的人都就是要死的。
(完整版)离散数学题目及答案
数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
离散数学习题
离散数学习题集合论1.A={?,1},B={{a}}求A的幂集、A×B、A∪B、A+B。
2.A={1,2,3,4,5},R={(x,y)|x3.A={a,b,c},R={(a,a),(b,a)},求R-1,R2,R-I A,I A-R,r(R),s(R),t(R),st(R),ts(R)。
4.A={a,b,c},R= I A∪{(a,b),(b,a)},求a和b关于R的等价类。
5.R是A上的等价关系,A/R={{1,2},{3}},求A,R。
6.请分别判断以下结论是否一定成立,如果一定成立请证明,否则请举出反例。
①如果A∪B?C,则A?C或者B?C。
②如果A×B=A×C且A≠?,则B=C。
7.如果R是A上的等价关系,R2,r(R)是否一定是A上的等价关系?证明或举例。
8.已知A∩C?B∩C,A-C?B-C,证明:A?B。
9.证明:A X(B∩C)=(A X B)∩(A X C)10.证明:P(A)∪P(B)?P(A∪B)11.证明:R[sym] iff R=R-112.证明:r(R)=R∪I A,S(R)=R∪R-1,t(R)=R∪R2∪...13.证明:s(R∪S)=s(R)∪s(S)14.R是A上的关系,证明:如果R是对称的,则r(R)也是对称的。
15.I是整数集,R={(x,y)|x-y是3的倍数},证明:R是I上的等价关系。
16.如果R是A上的等价关系,则A/R一定是A的划分。
17.R是集合A上的自反关系,S是A上的自反和对称关系,证明t(R∪S)是A上的等价关系。
18.I是正整数集合,R是I×I上的二元关系,R={<,>|xv=yu},证明:R是等价关系。
19.f:A→B,R是B上的等价关系,令S={|x∈A且y∈A且∈R},证明:S是A上的等价关系。
20.R是集合A上的自反关系,S是A上的自反和对称关系,证明t(R∪S)是A上的等价关系。
离散数学练习题(含答案)
离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。
2. 存在三个可识别的状态A,B,C。
置换群 $S_3$ 作用在状态集上。
定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。
确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。
3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。
4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。
b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。
答案1. $A \cap B = \{2,4,6\}$。
2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。
这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。
所以合数的个数不小于任意$n$。
4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。
如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。
所以从这条路径中任意取出的子路径都是最短路径。
b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。
因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。
所以从$i$到$j$的最短路径可能不唯一。
《离散数学》典型例题
《离散数学》典型例题一、选择题1. 图1哈斯图所示的偏序集为格的是()。
2. 设有无向图如图2,则()是一条哈密顿回路。
A.gabcdefg B.abcdefg C.cfabcdeg D.efgabcd3. 哪个顶点可成为图3的割点?()A. aB. bC. cD. d4. 图4中()是欧拉图。
5.下列()是满2元树。
二、填空题1. 设A={1,2},B={2,3},C={a,b,c},则|(A∪B)×C|=______________________________。
2.无向完全图Kn的边数为_______________ 。
3. 给定A={1,2,3,4},A上的关系R={<1,3>,<1,4>,<2,3>,<2,4>,<3,4>}满足的性质是_________________________。
4. 设A ={a,b,c },F 是A 上的二元关系,F ={<a,a >,<b,b >,<c,c >},则其自反闭包为r (F )=______________________________。
5. 设A 和B 是有穷集合,|A |=m ,|B |=n ,A 到B 有_______多少个不同一对一映射。
三、判断题1.每个正整数都可以唯一地表示为素数的乘积。
( )2.集合X 上的关系R 如果是自反的、反对称的、传递的则称此关系为相容关系。
( )3.一条基本回路一定是简单回路,但一条简单回路不一定是基本回路。
( )4.树是不包含回路的连通图,在(n ,m )树中必有m=n+1( )5.一个有限群<G ,*>的阶n 一定被它的任一个子群的阶m 所等分。
( )四 、综合题1. 求公式(~P →Q) →(Q →~P)的主析取范式和主合取范式。
2. 6个人一起吃饭,围绕圆桌就餐,有多少种就座方式?如果要从4种不同的菜系中点足6道菜,问有多少种点法?3. 一个面包店里有5种不同口味的面包,要挑选8个面包,并且至少有2个奶油味面包和不超过2个咸味面包。
离散数学考试题及答案
离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
离散数学(大作业
一、请给出一个集合A ,并给出A 上既具有对称性,又具有反对称性的关系。
(10分) A:(A ∩B)∪A=A,(A ∪B)∩A=A.二、请给出一个集合A ,并给出A 上既不具有对称性,又不具有反对称性的关系。
(10分) A:(A ∩B)∪A=A,(A ∪B)∩A=A.三、设A={1,2},请给出A 上的所有关系。
(10分){1,2} {2,1}四、设A={1,2,3},问A 上一共有多少个不同的关系。
(10分)集合中有三个元素,3个元素对,可定义二元关系2^3=8种(3个元素对分别满足或者不满足关系R )五、证明: 命题公式G 是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。
(10分)证明:设公式G 的合取范式为:G ’=G 1∧G 2∧…∧G n若公式G 恒真,则G ’恒真,即子句G i ;i=1,2,…n 恒真为其充要条件。
G i 恒真则其必然有一个原子和它的否定同时出现在G i 中,也就是说无论一个解释I 使这个原子为1或0 ,G i 都取1值。
若不然,假设G i 恒真,但每个原子和其否定都不同时出现在G i 中。
则可以给定一个解释I ,使带否定号的原子为1,不带否定号的原子为0,那么G i 在解释I 下的取值为0。
这与G i 恒真矛盾。
因此,公式G 是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。
六、若G=(P ,L)是有限图,设P(G),L(G)的元数分别为m ,n 。
证明:n ≤2m C ,其中2m C 表示m 中取2的组合数。
(10分)证明:如果G=(P,L)为完全图,即对于任意的两点u 、v (u ≠v ),都有一条边uv ,则此时对于元数为m 的P(G),L(G)的元数取值最大为C m 2。
因此,若G=(P,L)为一有限图,设P(G)的元数为m ,则有L(G)的元数n ≤C m 2 ,其中C m 2 表示m 中取2的组合数。
离散数学
1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 6阶非Abel 群的2阶子群共有( )个,3阶子群共有( )个,4阶子群共有( )个.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图. 二、单选题1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}. (C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}. 2. 设R 是集合A 上的偏序关系,则1-⋃RR 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对 3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧. (C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝. 4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法. 5.4阶完全无向图4K 中含3条边的不同构的生成子图有 (A)3 (B)4 (C)5 (D)2三、设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.四、设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =. 五、分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.六、设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. 在同构意义下,3阶群有( )个,4阶群有( )个,5阶群有( )个.4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ), 其中( )是B 的所有原子组成的集合.5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵. 二、单选题1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ). (A)()()),()()(y x H x T x y B y →∀∧∃. (B)()()),()()(y x H x T x y B y ∧∀→∃. (C)()()),()()(y x H x T y B y x ∧→∃∀. (D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). (A)域 (B)域和整环 (C)整环 (D) 有零因子环5.设G 是简单图,G 是G 的补图,若G G ≅,则称G 为自补图. 5阶不同构的自补图个数为( ). (A)0. (B)1. (C)2. (D)3.三、设C B g B A f →→:,:, 若g f 是单射,证明f 是单射,并举例说明g 不一定是单射. 四、设A = {a , b , c , d }上的关系R = {(a , b ), (b , d ), (c , c ), (a , c )}, 画出R 的关系图,并求出R 的自反闭包r (R )、对称闭包s (R )和传递闭包t (R ).五、设G 是(6,12) 的简单连通平面图,则G 的面由多少条边围成,为什么? 六、任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.G SG R1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A – B = { }, B – A = { }, A ⊕ B = { }.2. 实数集合R 关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z (x ): x 是整数,O (x ): x 是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ). 二、单选题1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律. 2. 设集合A 中有4个元素,则A 上的等价关系共有( )个. (A)13 (B)14 (C)15 (D)16 3.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法. 4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单图有( )个.(A)4 (B)5 (C)3 (D)2三、设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射. 四、在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y yx xR y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性. 五、利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.六、将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.1. 集合A 上的等价关系R 必满足( 、 、 ).2. 任意6阶群的平凡子群一定是( )群.3. 设集合A = {1, 2, 3},则A 上的置换共有( )个.4. 设集合A 关于*满足( 、 ),则(A , *)构成独异点.5. ( )无向图称为无向树. 二、单选题1. 设集合A 中有99个元素,则A 的子集有( )个. (A)299. (B)99. (C) 2100. (D)100.2. 设集合A 中有4个元素,则A 上的划分共有( )个. (A)13 (B)14 (C)15 (D)163.设集合A = {1, 2, 3, 4, 5}上的关系R = {(x , y )|x , y ∈ A 且x + y = 6},则R 的性质是( ). (A) 自反的. (B) 对称的. (C) 对称的、传递的. (D) 反自反的、传递的.4.下列联结词中,不满足交换律的是( ).(A)∧. (B)∨. (C)⊕. (D) →.5.谓词公式)())()((x R y yQ x P x →∃∨∀中,x ∀的辖域为( ).(A)))()((y yQ x P x ∃∨∀. (B))(x P . (C))()(y yQ x P ∃∨. (D))(x P 和)(x R . 三、设),(≤A 是偏序集,定义函数)(:A P A f →如下:对于任意A a ∈,},|{)(a x A x x a f ≤∈=.证明f 是单射,且当b a ≤时有)()(b f a f ⊆.四、(1)列出与非联结词“↑”的运算表.(2)仅使用与非联结词“↑”分别表示∨∧⌝,,.五、求))),(),((),,((v y vQ u x uQ z y x zP y x ∃→∃∧∃∀∀的前束范式. 六、 (1)给出(n , m )连通平面图的面数r 计算公式.(2)若(n , m )连通平面图的每个面至少由5条边围成,给出n 和m 所满足的关系式. (3)证明:Petersen 图不是平面图.1. 对于任意集合A , 若|A | = n , 则A 的幂集合P (A )有( )个元素.2. 整数集合Z 上的小于关系“<”具有( ).3. 联结词集合},{→⌝( )功能完备的.4. 设Q 是有理数集合,Q 关于数的乘法运算“⋅”能构成( ).5. 设≤是非空集合L 上的偏序,若L 中的任意两个元素均存在( ),则称(L ,≤)是格. 二、单选题1. 设A = ∅,B = {∅, {∅}},则B – A 为( ).(A){{∅}}. (B){∅}. (C) {∅, {∅}}. (D) ∅. 2. 设R 和S 是集合A 上的关系,则下述命题成立的有( ). (A)若R 和S 是自反的,则S R ⋂是自反的. (B)若R 和S 是对称的,则S R 是对称的. (C)若R 和S 是反对称的,则S R 是反对称的. (D)若R 和S 是传递的,则S R ⋃是传递的. 3.设R 是集合A 上的偏序关系,则1-⋃RR 是( )关系.(A) 偏序. (B) 等价. (C) 相容. (D) 线性序.4.令A (x ): x 是人,B (x ): x 犯错误,则“没有不犯错误的人”符号化为( ). (A)))()((x B x A x ∧∀. (B)))()((x B x A x ⌝→⌝∃. (C)))()((x B x A x ∧⌝∃. (D)))()((x B x A x ⌝∧⌝∃.5.在任意n 阶连通图中,其边数( ).(A)至多n – 1条. (B)至少n – 1条. (C)至多n 条. (D) 至少n 条. 三、设R 为实数集合,定义f : R ⨯ R → R ⨯ R 为),()),((y x y x y x f -+=.(1)证明f 是双射. (2)求f 的逆函数1-f .(3)计算f f1-及f f .四、设集合},,{c b a A =,在A 上的关系)},(),,(),,{(c b b a a a R =,求)(),(),(R t R s R r . 五、用构造法证明:)))()(()((x R y Q x P x ∧→∀,⇒∀)(x xP ))()(()(x R x P x y Q ∧∀∧.六、证明:阶数2≥的任意无向树中的最长路径的端点都是树叶,即度数为1.一、填空题1. 设全集为整数集合Z ,且}30|{2<=xx A ,}20,|{<=x x x B 是素数,}5,3,1{=C ,则=⋃-C A B )({ }.2. 设集合A 为同一平面内的所有直线组成的集合,R 表示两直线的垂直关系,则R 2表示( )关系.3. 命题公式)(r q p ⌝∧∨的成真赋值(p , q , r )为( ).4. 设G = {1, 5, 7, 11}, “12⋅”为模12的乘法运算,则群),(12⋅G 中元素5的阶为( ).5. 图1所示的图G 的色数=)(G χ().二、单选题1. 设集合X ≠ ∅,则P (X )关于集合的⋃运算的单位元为( ). (A)X . (B) ∅. (C) P (X ). (D)以上答案均不成立.2. 令Z (x ): x 是整数,N (x ): x 是负数,S (x , y ): y 是x 的平方,则“任何整数的平方均非负”可符号化为( ).(A)())(),()(y N y x S x Z y x ⌝→∧∀∀.(B)())(),()(y N y x S x Z y x ⌝→∧∃∀.(C)())(),()(y N y x S x Z y x ⌝∧→∀∀ . (D)())(),()(y N y x S x Z x ⌝→∧∀. 3.设),(≤L 是格,G 为),(≤L 到自身的格同态映射组成的集合,则G 关于映射的复合“ ”运算构成( ).(A) 群. (B) 环. (C) 格. (D) 独异点. 4.给定下列序列,可构成简单无向图的节点度数序列的为( ). (A)(1, 3, 4, 4, 5). (B)(0, 1, 3, 3, 3). (C)(1, 1, 2, 2, 2). (D) (1, 1, 2, 2, 3). 5.设G 是n 阶简单无向图,则其最大度)(G ∆( ). (A) < n . (B) ≤ n . (C) > n . (D) ≥ n .三、设R 是实数集合,f : R ×R → R ×R , f (x , y ) = (x + y , x - y ).(1) 证明f 是双射. (2) 求出f 的逆函数f -1、f f1-和f f .四、图2给出的是集合A = {1,2,3,4,5,6}上关系R 的关系图,试画出R 的传递闭包t (R )的关系图,并用集合表示.五、利用真值表求命题公式()())()(p q r r q p →→↔→→的主析取范式和主合取范式.六、求赋权分别为2, 3, 5, 7, 8的最优2叉树.图2一、1. 32,0,30.2.))()(())()((x G x F x x F x G x ⌝∧∃∧→∀.3.∅,X ,X .4. 3,1,0.5.n 为奇数,3,4≤n .二、1(C); 2(B); 3(D); 4(D); 5(A). 三、证 ==⇔=-B A B B A ∅. (⇐)显然.(⇒)因为B A B A ⋂=-,根据B B A =-得B B B B A ⋂=⋂⋂)(,于是B = ∅,进而A = ∅. 四、解 由于R 和S 是对称的,所以S SR R==--11,.(⇐)因为R S S R =,两边取逆得11)()(--=R S S R ,而S R SRR S ==---111)(.所以S R S R =-1)(,因此S R 是对称关系.(⇒)由于S R 对称,所以S R S R =-1)(. 而R S RSS R ==---111)(,因而R S S R =. 五、解 (1)等值演算法 A 的主合取范式:))(())((r q p p q r A ∨→→→∨⌝= = ))(())((r q p p q r ∨∨⌝→∨⌝∨⌝= )())((r q p p q r ∨∨⌝∨∨⌝∨⌝⌝ = )()(r q p p q r ∨∨⌝∨⌝∧∧ = r q p ∨∨⌝(由吸收律得到). 于是,A 的主析取范式为))(())((r q p p q r A ∨→→→∨⌝== ∨⌝∧⌝∧∨⌝∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝)()()()(r q p r q p r q p r q p )()()(r q p r q p r q p ∧∧∨⌝∧∧∨∧⌝∧.(2)真值表法由表可知,))(())((r q p p q r A ∨→→→∨⌝=的主合取范式为r q p A ∨∨⌝=.A 的主析取范式为A = ∨⌝∧⌝∧∨⌝∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝)()()()(r q p r q p r q p r q p )()()(r q p r q p r q p ∧∧∨⌝∧∧∨∧⌝∧.七、证(反证)假设G 中不含圈. 设G 有k (k ≥ 1)个连通分支k G G G ,...,,21,其节点个数分别为k n n n ,...,,21,其边数分别为k m m m ,...,,21. 这时,iG为树,根据树的基本性质有1-=i i n m )1(k i i ≤≤. 进而n k n n m m ki i ki i <-=-==∑∑==)1(11,与已知n m ≥矛盾. 证毕.一、1. ∈,∈,⊆.2.{(1,5), (3, 2), (2, 5)}, {(4, 2), (3, 2), (1, 4)}, {(1, 2), (2, 2)}.3. 1, 2, 1.4. ,,,),((⋂⋃X P ∅, X ), 2n , n .5. 3, 9.二、1(D); 2(B); 3(A); 4(C); 5(C).三、证 对于任意A x x ∈21,,若)()(21x f x f =,则))(())((21x f g x f g =,于是))(())((21x f g x g f =. 由于g f 是单射,所以21x x =,因此f 是单射.例如,A = {a , b }, B = {1, 2, 3}, C = {α, β, γ}, f = {(a , 1), (b , 2)}, g = {(a , α), (b , β), (c , β)}, 这时)},2(),,1{(βα=g f ,它是A 到C 的单射,但g 不是单射.四、解 R 的关系图如下:}),(),,(),,(),,(),,(),,(),,{()(d d b b a a c a c c d b b a R r =, }),(),,(),,(),,(),,(),,(),,{()(a c b d a b c a c c d b b a R s =. }),(),,(),,(),,(),,{()(d a c a c c d b b a R t =.五、证 根据Euler 公式,G 的面数为r = 12 – 6 +2 = 8. 由握手定理知,∑=⋅=vv 24122)deg(,而简单连通平面图的每个面至少由3条边围成,所以G 的每个面恰由3条边围成.六、证 用6个节点分别表示这6个人,可得6阶完全无向图6K . 若两个人认识,则在相应的两个节点所在的边上涂上红色,若两个人不认识,则在相应的两个节点所在的边上涂上蓝色.对于任意的6K 的节点v ,因为5)deg(=v ,与v 邻接的边有5条,当用红、蓝颜色去涂时,至少3条边涂的是同一种颜色,不妨设321,,vv vv vv 是红色. 若3条边21v v ,32v v ,31v v 是红色,则存在红色3K,这意味着有3个人相互认识; 若21v v ,32v v ,31v v 都是蓝色,则存在蓝色3K,这意味着有3个人相互不认识. 结论成立.abd一、1.{1, 3, {1, 2}, {3}};{{2, 3}, {1}};{1, 3, {1, 2}, {3}, {2, 3}, {1}}.2.0,1,0.3. ))()((x O x Z x →⌝∀.4. p n , p 为素数,n 为正整数.5. 是,3,10.二、1(B); 2(C); 3(D); 4(C); 5(A).三、证 对于任意C z ∈,由于g f 是满射,必存在A x ∈,使得z x f g x g f ==))(())(( . 令B x f y ∈=)(,有z y g =)(,因此,g 是满射.设},,{c b a A =,}3,2,1{=B ,},{βα=C ,令B A f →:,,:C B g → 3)(,3)(,2)(===c f b f a f ,βαβ===)3(,)2(,)1(g g g .这时,α==))(())((a f g a g f ,β==))(())((b f g b g f ,显然有},{)(ran βα=g f ,g f 是满射. 而ran f = {2, 3},f 不是满射. 四、证 (1)对于任意x ∈ Z , 由于x xx x+=+22, 所以(x , x ) ∈ R , 即R 是自反的.(2)因为(0, 0) ∈ R , 因此R 不是反自反的. (3)对于任意x , y ∈ Z , 若(x , y ) ∈ R , 则y yx x +=+22, 于是x xy y+=+22, 进而(y , x ) ∈ R , 即R是对称的.(4)因为(2, -3) ∈ R 且(-3, 2) ∈ R ,因此R 不是反对称的. (5)对于任意x , y , z ∈ Z , 若(x , y ) ∈ R 且(y , z ) ∈ R , 则y yx x +=+22且z zy y+=+22,于是z zx x+=+22,所以(x , z ) ∈ R , 即R 是传递的.综上所述,知R 是自反的、对称的和传递的.五、解 命题公式)())(q p q p A ⌝→↔→⌝=的真值表如下:A 的主析取范式为:)()(q p q p A ⌝∧∨∧=.A 的主合取范式为:)()(q p q p A ∨∧⌝∨=.六、证 对于任意的6K 的节点v ,因为5)deg(=v ,与v 邻接的边有5条,当用红、蓝颜色去涂时,至少3条边涂的是同一种颜色,不妨设321,,vv vv vv 是红色. 若3条边21v v ,32v v ,31v v 是红色,则存在红色3K ; 若21v v ,32v v ,31v v 都是蓝色,则存在蓝色.一、1.自反性、对称性和传递性.2. Abel.3. 6.4. 封闭性和结合性.5. 不含圈的连通.二、1(A); 2(C); 3(B); 4(D); 5(C).三、证 对于任意A b a ∈,,假定)()(b f a f =. 由于≤是偏序,于是a a ≤,所以)(a f a ∈,进而)(b f a ∈,根据定义知b a ≤. 同理可证,a b ≤. 根据偏序的反对称性有b a =,因此f 是单射.当b a ≤时,对于任意)(a f x ∈,于是a x ≤. 根据偏序的传递性有b x ≤,即)(b f x ∈,故)()(b f a f ⊆.四、证 (1) 与非联结词“↑”的运算表如下:(2)p p p p p ↑=∧⌝=⌝)(.)()()())((q p q p q p q p q p ↑↑↑=↑⌝=∧⌝⌝=∧. )()()()()(q q p p q p q p q p ↑↑↑=⌝↑⌝=⌝∧⌝⌝=∨.五、解 ))),(),((),,((v y vQ u x uQ z y x zP y x ∃→∃∧∃∀∀=))),(),((),,((v y vQ u x uQ z y x zP y x ∃∨⌝∃∧∃∀∀ =))),(),((),,((v y vQ u x Q u z y x zP y x ∃∨⌝∀∧∃∀∀ =))),(),((),,((v y Q u x Q v u z y x zP y x ∨⌝∃∀∧∃∀∀ =))),(),((),,((v y Q u x Q z y x P v u z y x ∨⌝∧∃∀∃∀∀ 六、证 (1)根据Euler 公式,有2+-=n m r . (2)31052)2(5-≤⇒≤+-n m m n m .(3) 若Petersen 图是平面图,由于其每个面至少5条边围成,于是由(2)知3105-≤n m . 因为在Petersen图中,m = 15, n = 10, 于是31010515-⋅≤,矛盾.一、1. 2n 2. 反自反、反对称、传递 3. 是 4. 独异点 5. 上确界和下确界.二、1(C); 2(A); 3(B); 4 (D); 5(B).三、(1)证 对于任意∈),(),,(2211y x y x R ⨯ R ,若)),(()),((2211y x f y x f =,于是),(),(22221111y x y x y x y x -+=-+,进而2211y x y x +=+且2211y x y x -=-. 由此可得,2121,y y x x ==,因而),(),(2211y x y x =,故f 是单射.对于任意∈),(q p R ⨯ R ,取2,2q p y q p x -=+=,容易得知),(),()),((q p y x y x y x f =-+=.由上可知,f 是双射. (2)解 由上的证明过程知,⎪⎭⎫⎝⎛-+=-2,2)),((1y x y x y x f.(3)解 很显然If f=- 1R ⨯R ,即),()),)(((1y x y x f f=- .)2,2())()(),()(()),(()),)(((y x y x y x y x y x y x y x f y x f f =--+-++=-+= .四、解 }),(),,(),,(),,(),,{()(c c b b c b b a a a I R R r A=⋃=.}),(),,(),,(),,(),,{()(1b c a b c b b a a a RR R s =⋃=-.}),(),,(),,(),,{()(c a c b b a a a R t =. 五、证(1))(x xP ∀ P (2)P (c ) US(1) (3))))()(()((x R y Q x P x ∧→∀ P (4)))()(()(c R y Q c P ∧→ US(3) (5))()(c R y Q ∧ T(2)(4)I (6)Q (y ) T(5)I (7)R (c ) T(5)I (8))()(c R c P ∧ T(2)(7)I (9)))()((x R x P x ∧∀ UG(8) (10)))()(()(x R x P x y Q ∧∀∧ T(6)(9)I六、证 设G 是一棵阶数2≥的无向树,k k v v v v L 121...:-是G 中的最长路径. `若1v 和k v 至少有一个不是树叶,不妨设k v 不是树叶,即2)deg(≥k v ,则k v 除与1-k v 邻接外,还存在1+k v 与k v 邻接. 若1+k v 在L 上,则G 中存在圈,不可能. 若1+k v 不在L 上,则G 中存在一条比L 长1的路径1121...+-k k k v v v v v ,与L 是G 中最长路径矛盾.一、1. 1,3,5,7,11,13,17,19.2. 平行.3. 010, 100, 101, 110, 111.4. 2.5. 3.二、1(B); 2(A); 3(D); 4(C); 5(A). 三、(1)证任意∈),(),,(2211y x y x R ×R , 若),(),(2211y x f y x f =,则),(),(22221111y x y x y x y x -+=-+,进而2211y x y x +=+且2211y x y x -=-,于是21x x =且21y y =,从而f 是单射.任意∈),(q p R ×R , 取⎪⎩⎪⎨⎧-=+=22qp y q p x , 通过计算易知),(),(q p y x f =,因此f 是满射. 故f 是双射.(2) 解 由上面的证明知,f 存在逆函数且⎪⎭⎫⎝⎛-+=-2,2),(1y x y x y x f.又()()),(2,2,1y x y x y x f y x ff=⎪⎭⎫⎝⎛-+=- ,即If f=- 1R ×R ,而()()())2,2())()(),()((,,y x y x y x y x y x y x y x f y x ff=--+-++=++= .四、解 R 的传递闭包t (R )的关系图如下:于是,有t (R ) = {(1, 3), (3, 1), (2, 3), (4, 3), (4, 5), (6, 5), (1, 1), (3, 3),(2,1),(4,1)}. 五、解 首先写出命题公式()())()(p q rr q p A →→↔→→=的真值表如下:从真值表可得命题公式A 的主析取范式为:∨⌝∧⌝∧∨∧⌝∧∨∧∧=)()()(r q p r q p r q p A)()()(r q p r q p r q p ⌝∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝.命题公式A 的主合取范式为:)()(r q p r q p A ∨⌝∨⌝∧⌝∨⌝∨=.七、解 对于2, 3, 5, 7, 8,先组合两个最小的权2+3 = 5, 得5, 5, 7, 8;在所得到的序列中再组合5+5 = 10, 重新排列后为7, 8, 10;再组合7+8 =15, 得10, 15;最后组合10+15 = 25.2515108710875587532所求的最优2叉树树如下:。
苏XI友离散数学作业(13篇)
作业6
补充作业:用等值演算证明下列等值式. (1)∃x∃y¬ (F(x)∧¬ G(y))∀xF(x)→∃yG(y). 证.∃x∃y¬ (F(x)∧¬ G(y))
∃x∃y(¬ F(x)∨G(y))或 ∃x(¬ F(x)∨∃yG(y)) ∃x∃y(F(x)→G(y)) ∃x¬ F(x)∨∃yG(y) ∃x(F(x)→∃yG(y)) ¬ ∀xF(x)∨∃yG(y) ∀xF(x)→∃yG(y). ∀xF(x)→∃yG(y)
2020
感谢 观看
*北京林业大学信息学院 苏喜友
作业6
P55-2.15 求下列各式的前束范式, 要求使用自 由变项换名规则.
(2)∃x(F(x)∧∀yG(x,y,z))→∃zH(x,y,z) 解.∃x(F(x)∧∀yG(x,y,z))→∃zH(x,y,z)
∃x(F(x)∧∀yG(x,y,u))→∃zH(v,w,z) ∃x∀y(F(x)∧G(x,y,u))→∃zH(v,w,z) ∀x∃y((F(x)∧G(x,y,u))→∃zH(v,w,z)) ∀x∃y∃z((F(x)∧G(x,y,u))→H(v,w,z)).
作业1
P33-1.7 (7)设A=(p∨¬ p)→((q∧¬ q)∧¬ r)
p q r ¬ p ¬ q ¬ r p∨¬ p q∧¬ q (q∧¬ q)∧¬ r A
000 1 1 1 1
0
0
0
001 1 1 0 1
0
0
0
010 1 0 1 1
0
0
0
011 1 0 0 1
0
0
0
100 0 1 1 1
0
*北京林业大学信息学院 苏喜友
作业5
(5)任何金属都可以溶解在某种液体中. 设M(x):x是金属, L(x):x是液体, R(x,y):x 溶解在y中. 符号化为: ∀x(M(x)→∃y(L(y)∧R(x,y))).
离散数学试题及答案解析
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
《离散数学》作业
A. 0
B. 1
C. 2
D. 不能确定
18.设无向图 G 有 16 条边且每个顶点的度数都是 2,则图 G 有(D )个顶点。
A. 10
B. 4
C. 8
D. 16
19.A,B,C是三个集合,则下列哪几个推理正确:(A)
A. A B,B C=> A C
B. A B,B C=> A∈B C. A∈B,B∈C=> A∈C
(3),(4)
(6) Q→S
前提
(7) S
(5),(6)
(8) R S
CP,(1),(8)
2.A→(C B),B→ A,D→ C => A→ D
第 5 页 共 13 页 在您完成作业过程中,如有疑难,请登录学院网站“辅导答疑”栏目,与老师进行交流讨论!
证明:(1) (2) (3) (4) (5) (6) (7) (8) (9)
A. m-n+2
B. n-m-2
C. n+m-2
D. m+n+2。
24.设无向图 G 有 18 条边且每个顶点的度数都是 3,则图 G 有( D )个顶点。
A. 10
B. 4
C. 8
D. 12
25、A,B,C 是三个集合,则下列哪个推理正确?( 1 )
(1) A B,B C A C
(2) A B,B C A B
D. xy(y=2x) ( T )
3.有 n 个结点的树,其结点度数之和是( 2n-2
)。
4.举出集合 A 上的既是等价关系又是偏序关系的一个例子。( IA ) 5.群<G,*>的等幂元是( 单位元 ),有( 1 )个。
6.下面给出的集合中,哪一个不是前缀码( A )。
离散数学习题答案精选全文完整版
可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)5是无理数。
(3)3是素数或4是素数。
(4)x2+3<5,其中x是任意实数。
(5)你去图书馆吗?(6)2与3都是偶数。
(7)刘红与魏新是同学。
(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。
(11)只有6是偶数,3才能是2的倍数。
(12)8是偶数的充分必要条件是8能被3整除。
(13)2025年元旦下大雪。
1、2、3、6、7、10、11、12、13是命题。
在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。
2.将上题中是简单命题的命题符号化。
(1)p:中国有四大发明。
(2)q:5是无理数。
(7)r:刘红与魏新是同学。
(10)s:圆的面积等于半径的平方乘π。
(1)t:2025年元旦下大雪。
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。
“5是有理数”的否定式是“5不是有理数”。
解:原命题可符号化为:p:5是有理数。
其否定式为:非p。
非p的真值为1。
4.将下列命题符号化,并指出真值。
(1)2与5都是素数。
(2)不但π是无理数,而且自然对数的底e也是无理数。
(3)虽然2是最小的素数,但2不是最小的自然数。
(4)3是偶素数。
(5)4既不是素数,也不是偶数。
a:2是素数。
b:5是素数。
c:π是无理数。
d:e是无理数。
f:2是最小的素数。
g:2是最小的自然数。
h:3是偶数。
i:3是素数。
j:4是素数。
k:4是偶数。
解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。
这五个复合命题的真值分别为1,1,1,0,0。
5.将下列命题符号化,并指出真值。
a:2是偶数。
b:3是偶数。
c:4是偶数。
离散数学作业
第一章 命题逻辑的基本概念一、单项选择题1.下列语句中不是命题的有( ).A 9+5≤12 B. 1+3=5 C. 我用的电脑CPU 主频是1G 吗D.我要努力学习。
2. 下列语句是真命题为( ).A. 1+2=5当且仅当2是偶数B. 如果1+2=3,则2是奇数C. 如果1+2=5,则2是奇数D. 你上网了吗3. 设命题公式)(r q p∧→⌝,则使公式取真值为1的p ,q ,r 赋值分别是( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A ( 4. 命题公式q q p →∨)(为 ( )(A) 矛盾式 (B) 仅可满足式 (C) 重言式 (D) 合取范式5. 设p:我将去市里,q :我有时间.命题“我将去市里,仅当我有时间时”符号化为为( )q p q p q p p q ⌝∨⌝↔→→)D ()C ()B ()A (6.设P :我听课,Q :我看小说. “我不能一边听课,一边看小说”的符号为( )A. Q P ⌝→ ;B. Q P →⌝;C. P Q ⌝∧⌝ ;D. )(Q P ∧⌝二、判断下列语句是否是命题,若是命题是复合命题则请将其符号化(1)中国有四大发明。
(2)2是有理数。
(3)“请进!”(4)刘红和魏新是同学。
(5)a+b(6)如果买不到飞机票,我哪儿也不去。
(8)侈而惰者贫,而力而俭者富。
(韩非:《韩非子显学》)(9)火星上有生命。
(10)这朵玫瑰花多美丽啊!二、将下列命题符号化,其中p:2<1,q:3<2(1)只要2<1,就有3<2。
(2)如果2<1,则32。
(3)只有2<1,才有32。
(4)除非2<1,才有32。
(5)除非2<1,否则32。
(6)2<1仅当3<2。
三、将下列命题符号化(1)小丽只能从筐里拿一个苹果或一个梨。
(2)王栋生于1992年或1993年。
四、设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
《离散数学》试卷及答案精选全文完整版
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题逻辑的基本概念一、单项选择题1.下列语句中不是命题的有( ).A 9+5≤12 B. 1+3=5 C. 我用的电脑CPU 主频是1G 吗D.我要努力学习。
2. 下列语句是真命题为( ).A. 1+2=5当且仅当2是偶数B. 如果1+2=3,则2是奇数C. 如果1+2=5,则2是奇数D. 你上网了吗3. 设命题公式)(r q p∧→⌝,则使公式取真值为1的p ,q ,r 赋值分别是( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A ( 4. 命题公式q q p →∨)(为 ( )(A) 矛盾式 (B) 仅可满足式 (C) 重言式 (D) 合取范式5. 设p:我将去市里,q :我有时间.命题“我将去市里,仅当我有时间时”符号化为为( )qp q p q p p q ⌝∨⌝↔→→)D ()C ()B ()A (6.设P :我听课,Q :我看小说. “我不能一边听课,一边看小说”的符号为( )A. Q P ⌝→ ;B. Q P →⌝;C. P Q ⌝∧⌝ ;D. )(Q P ∧⌝二、判断下列语句是否是命题,若是命题是复合命题则请将其符号化(1)中国有四大发明。
(2)2是有理数。
(3)“请进!”(4)刘红和魏新是同学。
(5)a+b(6)如果买不到飞机票,我哪儿也不去。
(8)侈而惰者贫,而力而俭者富。
(韩非:《韩非子显学》)(9)火星上有生命。
(10)这朵玫瑰花多美丽啊!二、将下列命题符号化,其中p:2<1,q:3<2(1)只要2<1,就有3<2。
(2)如果2<1,则32。
(3)只有2<1,才有32。
(4)除非2<1,才有32。
(5)除非2<1,否则32。
(6)2<1仅当3<2。
三、将下列命题符号化(1)小丽只能从筐里拿一个苹果或一个梨。
(2)王栋生于1992年或1993年。
四、设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)(2)(p↔r)∧(﹁q∨s)(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)(4)(⌝r∧s)→(p∧⌝q)五、用真值表判断下列公式的类型:(1) p∧(p→q)∧(p→⌝q)(2) (p∧r) ↔(⌝p∧⌝q)(2)((p→q) ∧(q→r)) →(p→r)命题逻辑等值演算一、填空(1)给定两个命题公式A,B,若,则称A和B时等值的,记作A B.(2)德摩根律为:。
(3)蕴涵等值式为。
(4)由已知的等值式推演出另外一些等值式的过程称为。
二、用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)三、用等值演算法证明下面等值式(1)(p→q)∧(p→r)⇔(p→(q∧r))(2)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)三、用等值演算求下列公式的析取范式与合取范式。
(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)命题逻辑的推理理论填空1.数理逻辑的的主要任务是。
推理是指,前提是,结论是。
2.推理正确是指:3.命题公式A1,A,2,,A,k推B的推理正确当且仅当二、先把下列命题符号化,再写出前提、结论、推理的形式结构,然后用真值表法、等值演算法证明下列推理是正确的。
若今天是星期一,则明天是星期三。
明天不是星期三,所以今天不是星期一。
自然推理系统下用直接法或用附加前提法或用归谬法构造推理证明(1)前提:p→q,⌝(q∧r),r 结论:⌝p(2)前提:q→p,q↔s,s↔t,t∧r 结论:p∧q(3)前提:p→(q→r),s→p,q (4)前提:p→⌝q,⌝r∨q,r∧⌝s 结论:s→r 结论:⌝p在自然推理系统下构造下列推理的证明1.如果我学习,那么我数学不会不及格。
如果不热衷于玩游戏,那么我将学习。
但我数学不及格。
因此我热衷于玩游戏。
2.只要A曾到过受害者房间并且11点以前没离开,A就是谋杀嫌犯。
A曾到过受害者房间。
如果A在11点以前离开,看门人就会看见他。
看门人没看见他。
所以A是谋杀嫌犯。
第五章一、1.设个体域D是正整数集合,确定下列命题为真的是()A.x y (xy=y) B. x y(x+y=y)C. x y(x+y=x)D. x y(y=2x)2. 设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式x(P(x)Q(x))在哪个个体域中为真( )A.自然数B. 实数C.复数D. (1)--(3)均成立3.令R(x):x是实数,Q(x):x是有理数。
则命题“并非每个实数都是有理数”的符号化表示为二、在一阶逻辑中将下列命题符号化:(1) 没有不能表示成分数的有理数。
(2) 在北京卖菜的人不全是外地人。
(3)乌鸦都是黑的。
(4)有的人天天锻炼身体。
三、设个体域D={a,b,c},消去下列各式的量词(1) x y(F(x) ∧G(y))(2) x y(F(x) ∨G(y))(3) x F(x) →y G(y)四、设个体域D={1,2,3,4},F(x):x是2的倍数,G(x):x是奇数。
将命题x (F(x) → G(y))中的量词消去,并讨论命题的真值。
五、在自然推理系统用直接法或用附加前提法或用归谬法构造下列推理的证明(1)前提:x (F(x) →G(x)), x F(x)结论:x G(x)(2) 前提:x(F(x)→G(x))结论:xF(x)→x G(x)(3) 前提:x(F(x)∨G(x)),┐x G(x)结论:x F(x)第六章集合论一、单项选择题1.若集合A={a,b},B={ a,b,{ a,b }},则().A.A B,且A B B.A B,但A BC.A B,但A B D.A B,且A B2.若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}A B.{ a }AC.{2}A D.∅A3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}A B.{2}AC.{a}A D.A4.若集合A={a,b,{1,2 }},B={1,2},则().A.B A,且B A B.B A,但B AC.B A,但B A D.B A,且B A5.设集合A = {1, a },则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}6.若集合A的元素个数为10,则其幂集的元素个数为().A.1024 B.10 C.100 D.1二、1.设集合A有n个元素,那么A的幂集合P(A)的元素个数为.2.设集合A={a,b},那么集合A的幂集是.3.设A, B代表集合,命题A B的真值为.4. 设A, B为任意集合,命题A B的真值为.5. 设集合A={,{a}},则A的幂集P(A)=6. 设集合A={{a,b},c}, B={c,d}, 那么A-B=三、(1)B、C为任意的三个集合,如果A∪B=A∪C,判断结论B=C是否成立并说明理由.(2)B、C为任意的三个集合,如果A⊕B=A⊕C,判断结论B=C是否成立并说明理由.四、1.设集合A={a, b, c},B={b, d, e},求(1)B A;(2)A B;(3)A-B;(4)B A.2.设A={{a, b}, 1, 2},B={ a, b, {1}, 1},试计算(1)(A B)(2)(A∪B)(3)(A∪B)(A∩B)五.证明集合等式:A B=A∩~B六、某班有25个学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。
已知6个会打网球的人都会打篮球或排球。
求不会打球的人数。
第七章 二元关系(1)一、单项选择题1.集合A ={1, 2, 3, 4, 5, 6, 7, 8}上的关系R ={<x ,y >|x +y =10且x , y ∈A },则R 的性质为( ).A .自反的B .对称的C .传递且对称的D .反自反且传递的2.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b >a , b ∈A , 且a +b = 8},则R 具有的性质为( ).A .自反的B .对称的C .对称和传递的D .反自反和传递的3.集合A ={a,b,c}上二元关系R 的关系矩阵M R=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001011010, R( ),(A) {<a,b>,<b,a>,<b,b>,<a,c>} (B) {<a,b>,<b,a>,<b,b>,<c,b>}(C) {<a,b>,<a,a>,<b,b>,<c,a>} (D) {<a,b>,<b,a>,<b,b>,<c,a>}4.设A={a ,b ,c},R={<a ,a>,<b ,b>},则R 具有性质( )(A) 自反的 (B) 反自反的 (C) 反对称的 (D) 等价的二、填空题1.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系, },,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的有序对集合为 .2.设集合A ={0, 1, 2},B ={0, 2, 4},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的关系矩阵M R =.3.设集合A ={a ,b ,c },A 上的二元关系R ={<a , b >,<c . a >},S ={<a , a >,<a , b >,<c , c >}则(R S )-1= .4.设集合A ={a ,b ,c },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则二元关系R 具有的性质是 .三、设A={a ,b},构成集合ρ(A )×A 。
四、(1)列出集合A={2,3,4}上的恒等关系I A ,全域关系E A ,小于或等于关系L A ,整除关系D A .(2)设A={a,b,c,d},1R ,2R 为A 上的关系,其中1R ={},,,,,a a a b b d {}2,,,,,,,R a d b c b d c b = 求23122112,,,R R R R R R o o 。