离散数学答案命题逻辑

合集下载

离散数学答案版(全)

离散数学答案版(全)

则称 G1,G2,…,Gn 蕴涵 H,又称 H 是 G1,G2,…,Gn 的逻辑结果,记作(G1 ∧G2∧…∧Gn) H 或(G1,G2,…,Gn) H。 1.6.2 基本蕴涵式 (1)P∧Q P; (3)P P∨Q; (5) P (P→Q) ; (7) (P→Q) P; (9)P,P→Q Q; (11) P,P∨Q Q; (13)P∨Q,P→R,Q→R R; (15)P,Q P∧Q。 (2)P∧Q Q; (4) Q P∨Q; (6)Q (P→Q) ; (8) (P→Q) Q; (10) Q,P→Q P; (12)P→Q,Q→R P→R; (14)P→Q,R→S (P∧R)→(Q∧S) ;
变元,若将 A 和 A*写成 n 元函数形式,则 (1) A(P1,P2,…,Pn) A*( P1, P2,…, Pn) (2)A( P1, P2,…, Pn) A*(P1,P2,…,Pn) 定理(对偶原理)设 A、B 是两个命题公式,若 AÛB,则 A* B*,其中 A*、 B*分别为 A、B 的对偶式。 1.5.2 范式 定义 仅由有限个命题变元及其否定构成的析取式称为简单析取式,仅由有 限个命题变元及其否定构成的合取式称为简单合取式。 定义 仅由有限个简单合取式构成的析取式称为析取范式。仅由有限个简单 析取式构成的合取式称为合取范式。 定理(范式存在定理)任何命题公式都存在着与之等价的析取范式和合取范式。 1.5.3 主范式 定义 在含有 n 个命题变元 P1,P2,…,Pn 的简单合取范式中,若每个命
P
Q
PQ
1 0 0 0
0 0 1 1
0 1 0 1
性质: (1)P↓P ﹁(P∨Q) ﹁P; (2) (P↓Q)↓(P↓Q) ﹁(P↓Q) P∨Q; (3) (P↓P)↓(Q↓Q) ﹁P↓﹁Q ﹁(﹁P∨﹁Q) P∧Q。

(完整版)《离散数学》同步练习答案

(完整版)《离散数学》同步练习答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。

(2)设A,B都是命题公式,A B,则A B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

" 可符号化为: p q 。

(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。

(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。

”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。

(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。

(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。

(12)设P:你努力.Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。

(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。

()2.命题公式p q r是析取范式。

( √ )3.陈述句“x + y > 5”是命题。

离散数学-第二章命题逻辑等值演算习题及答案

离散数学-第二章命题逻辑等值演算习题及答案

第二章作业评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式. 等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律 真值表法2. (p→q)∧(p→r)⇔p→(q∧r)等值演算法(p→q)∧(p→r)⇔ (¬p∨q)∧(¬p∨r)蕴含等值式⇔¬p∨(q∧r)析取对合取的分配律⇔ p→(q∧r)蕴含等值式3. ¬(p↔q)⇔(p∨q)∧¬(p∧q)等值演算法¬(p↔q)⇔¬( (p→q)∧(q→p) )等价等值式⇔¬( (¬p∨q)∧(¬q∨p) )蕴含等值式⇔¬( (¬p∧¬q)∨(p∧q) )合取对析取分配律, 矛盾律, 同一律⇔ (p∨q)∧¬(p∧q)德摩根律4. (p∧¬q)∨(¬p∧q)⇔(p∨q)∧¬(p∧q)等值演算法(p∧¬q)∨(¬p∧q)⇔ (p∨q)∧¬(p∧q)析取对合取分配律, 排中律, 同一律说明: 用真值表法和解逻辑方程法证明相当于证明为永真式.等值演算法证明时每一步后面最好注明理由以加深印象, 熟练后可以不写. 由于等值演算法证明具有较强的技巧性, 平时应注意总结心得.二. 求下列公式的主析取范式与主合取范式(等值演算法与用成真赋值或成假赋值求解都至少使用一次):1.2.3.4.1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔ (p∨q)→(¬q∨p)蕴含等值式⇔ (¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔ (¬p∧¬q)∨¬q ∨ p结合律⇔ p∨¬q吸收律, 交换律⇔ M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设 (¬p→q)∧(q∧r) =1, 则¬p→q=1且 q∧r=1,解得q=1, r=1, p=0 或者 q=1, r=1, p=1, 从而所求主析取范式为 m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)(p q)(q r) 蕴含等值式(p q r)(q r) 对分配律, 幂等律(p q r) (p q r)(p q r) 同一律, 矛盾律, 对分配律m7 m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设 (p↔q)→r =0, 解得 p=q=1, r=0 或者 p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r((p q)(q p))r 等价等值式((p q)(q p))r 蕴含等值式(p q)(q p)r 德摩根律, 蕴含等值式的否定(参见PPT)(p q r)(q p r) 对分配律, 矛盾律, 同一律M0 M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)(p q)(q r) 蕴含等值式(p q)(p r)(q r) 对分配律, 矛盾律, 同一律(p q r)(p q r) (p q r)(p q r)(p q r)(p q r)m1 m0 m3 m7主合取范式为M2 M4 M5 M6.解逻辑方程法设 (p q) (q r) = 1, 则p q =1 且 q r =1.前者解得: p=0, q=0; 或者 p=0, q=1; 或者 p=1, q=1.后者解得: q=0, r=0; 或者 q=0, r=1; 或者 q=1, r=1.综上可得成真赋值为 000, 001, 011, 111, 从而主析取范式为m0m1m3m7, 主合取范式为M2 M4 M5 M6.真值表法公式 (p q) (q r) 真值表如下:p q r(p q) (qr)00010011010001111000101011001111013724 M5 M6.。

离散数学第3版习题答案

离散数学第3版习题答案

离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。

离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。

在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。

本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。

第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。

(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。

(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。

(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。

1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。

(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。

(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。

(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。

1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。

离散数学习题解答-第2章命题逻辑

离散数学习题解答-第2章命题逻辑

(2) 有 4 个不同的命题变元,使公式的真值为 0 的赋值有 p 0, q 0, r 1, w 0 ;
p 0, q 1, r 0, w 1 ; p 0, q 1, r 1, w 0 ; p 1, q 1, r 0, w 1 ;
3
p 1, q 1, r 1, w 1 ; 使 公 式 的 真 值 为 1 有 赋 值 有 p 0 , q 0 ,r 0 ,w ; 0 p 0, q 0, r 0, w 1 ; p 0, q 0, r 1, w 1 ; p 0, q 1, r 0, w 0 ; p 0, q 1, r 1, w 1 ; p 1, q 0, r 0, w 0 ; p 1, q 0, r 0, w 1 ; p 1, q 0, r 1, w 0 ; p 1, q 0, r 1, w 1 ; p 1, q 1, r 0, w 0 ; p 1, q 1, r 1, w 0 ;
((p q) s) (r t )
3. 列出下列各公式的所有赋值, 并指出哪些赋值使公式的真值为 1, 哪些赋值使公式的真值 为 0。 (1) ( p q) r r (2) (w q) ( p r ) w (3) (( p q) ( p q)) p (4) ((u q) (t r )) (r u) (5) (m q) ((q r ) s) (6) (m q) (t r ) q 解 : (1) 有 3 个 不 同 的 命 题 变 元 , 使 公 式 的 真 值 为 0 的 赋 值 有 p 0, q 0, r 0 ;
p 0, q 0, r 1 ; p 0, q 1, r 0 ; p 0, q 1, r 1 ; p 1, q 0, r 1 ; p 1, q 1, r 0 ; p 1, q 1, r 1 . 使公式的真值为 1 有赋值有 p 1, q 0, r 0 .

离散数学答案命题逻辑

离散数学答案命题逻辑

第二章 命题逻辑习题.解 ⑴不是陈述句,所以不是命题。

⑵x 取值不确定,所以不是命题。

⑶问句,不是陈述句,所以不是命题。

⑷惊叹句,不是陈述句,所以不是命题。

⑸是命题,真值由具体情况确定。

⑹是命题,真值由具体情况确定。

⑺是真命题。

⑻是悖论,所以不是命题。

⑼是假命题。

2.解 ⑴是复合命题。

设p :他们明天去百货公司;q :他们后天去百货公司。

命题符号化为q p ∨。

⑵是疑问句,所以不是命题。

⑶是悖论,所以不是命题。

⑷是原子命题。

⑸是复合命题。

设p :王海在学习;q :李春在学习。

命题符号化为pq 。

⑹是复合命题。

设p :你努力学习;q :你一定能取得优异成绩。

p q 。

⑺不是命题。

⑻不是命题⑼。

是复合命题。

设p :王海是女孩子。

命题符号化为:p 。

3.解 ⑴如果李春迟到了,那么他错过考试。

⑵要么李春迟到了,要么李春错过了考试,要么李春通过了考试。

⑶李春错过考试当且仅当他迟到了。

⑷如果李春迟到了并且错过了考试,那么他没有通过考试。

4.解 ⑴p (q r )。

⑵p q 。

⑶q p 。

⑷q p 。

习题1.解 ⑴是1层公式。

⑵不是公式。

⑶一层: pq ,p二层:p q所以,)()(q p q p ↔⌝→∨是3层公式。

⑷不是公式。

⑸(pq )(q ( q r ))是5层公式,这是因为一层:p q ,q ,r二层:q r 三层:q ( qr )四层:(q ( q r ))2.解 ⑴A =(p q )q 是2层公式。

真值表如表2-1所示:pqq p ∨A0 0 0 0 0 1 1 1 1 0 1 0 1111⑵p q p q A →→∧=)(是3层公式。

真值表如表2-2所示:pqq p →)(q p q →∧A0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 11111⑶)()(q p r q p A ∨→∧∧=是3层公式。

真值表如表2-3所示:pqrq p ∧r q p ∧∧q p ∨A0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 111111⑷)()()(r q r p q p A ∨∧∨⌝∧∨=是4层公式。

离散数学命题逻辑和一阶逻辑的选择题解析

离散数学命题逻辑和一阶逻辑的选择题解析

离散数学命题逻辑和一阶逻辑的选择题解析在命题逻辑中,如果P为真,Q为假,那么P ∧ Q的值为?A. 真B. 假C. 无法确定D. 与P、Q无关解析:在命题逻辑中,合取运算(∧)表示“并且”。

如果P为真,Q为假,那么“P并且Q”显然为假。

因此,答案是B。

在一阶逻辑中,如果F(x)表示“x是人”,G(x)表示“x是聪明的”,那么“存在一个聪明的人”可以表示为?A. ∀x(F(x) → G(x))B. ∃x(F(x) ∧ G(x))C. ∃x(F(x) → G(x))D. ∀x(F(x) ∧ G(x))解析:在一阶逻辑中,存在量词(∃)表示“存在”。

因此,“存在一个聪明的人”可以表示为“存在一个x,使得x是人并且x是聪明的”,即∃x(F(x) ∧ G(x))。

因此,答案是B。

在命题逻辑中,如果P → Q为真,且P为真,那么Q的值为?A. 真B. 假C. 无法确定D. 与P无关解析:在命题逻辑中,如果P → Q为真,且P为真,那么根据蕴含运算(→)的定义,“如果P则Q”,Q必然为真。

因此,答案是A。

在一阶逻辑中,全称量词(∀)表示什么?A. 存在B. 所有C. 至少一个D. 不多于一个解析:在一阶逻辑中,全称量词(∀)表示“对于所有的”。

因此,答案是B。

在命题逻辑中,如果P为假,Q为真,那么P → Q的值为?A. 真B. 假C. 无法确定D. 与P、Q的值无关解析:在命题逻辑中,即使P为假,Q为真,蕴含式P → Q仍然为真。

这是因为蕴含式的定义是“如果P为真,则Q也为真”,但这并不排除“P为假而Q为真”的情况。

因此,答案是A。

在一阶逻辑中,如果F(x)表示“x是红的”,那么“所有的东西都是红的”可以表示为?A. ∃xF(x)B. ∀xF(x)C. ∀x¬F(x)D. ∃x¬F(x)解析:在一阶逻辑中,“所有的东西都是红的”可以表示为“对于所有的x,x都是红的”,即∀xF(x)。

因此,答案是B。

离散数学命题逻辑

离散数学命题逻辑

1-7 对偶与范式
7.1 对偶式
在前面介绍的命题定律中,多数是成对出现的, 这些成对出现的定律就是对偶性质的反映。
定义1-7.1 在给定的仅使用联结词、∧和∨的命
题公式A中,若把∧和∨互换,F和T互换而得到 一个命题公式A*,则称A*为A的对偶式。
显然,A也是A*的对偶式。可见A与A*互为对偶式.
如 P 、P 、P∨Q、P∨Q∨R 注:∵ P∨PP P∧PP ∴P是合(析)取式.
2.析取范式 公式A如果写成如下形式: A1∨A2∨...∨An (n≥1) 其中每个Ai (i=1,2..n) 是合取式,称之为A的析取范式。
3.合取范式 公式A如果写成如下形式: A1∧A2∧...∧An (n≥1) 其中每个Ai (i=1,2..n) 是析取式,称之为A的合取范式。
TT F
6.3 与非“ ”
定义:P,Q是命题公式,复合命题 P Q 为P,Q
的“与非”。
P Q 的真值为:
P Q P Q FF T
P Q的真值为F当且仅当
FT T
P,Q均为T.其余为T.
TF T
显然:P Q (P Q)
1)P P (P P) P T T F
2)(P Q) (P Q) (P Q) P Q
偶式;2)表明,命题变元否定的公式等价于对偶 式之否定。
此定理可以反复地使用德-摩根定律得以证明。
定理1-7.2 设A和B为两个命题公式,若AB,则 A*B*。
证明:因为 A(P1,P2,…,Pn)B(P1,P2,…,Pn) 故 A(P1,P2,…,Pn)B(P1,P2,…,Pn) 而 A(P1,P2,…,Pn)A*(P1,P2,…,Pn) B(P1,P2,…,Pn)B*(P1,P2,…,Pn) 故 A*(P1,P2,…,Pn) B*(P1,P2,…,Pn)

《离散数学》课后习题答案

《离散数学》课后习题答案

1-1,1-2(1)解:a)是命题,真值为T。

b)不是命题。

c)是命题,真值要根据具体情况确定。

d)不是命题。

e)是命题,真值为T。

f)是命题,真值为T。

g)是命题,真值为F。

h)不是命题。

i)不是命题。

(2)解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a)设P:王强身体很好。

Q:王强成绩很好。

P∧Qb)设P:小李看书。

Q:小李听音乐。

P∧Qc)设P:气候很好。

Q:气候很热。

P∨Qd)设P: a和b是偶数。

Q:a+b是偶数。

P→Qe)设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

P Qf)设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a)P:天气炎热。

Q:正在下雨。

P∧Qb)P:天气炎热。

R:湿度较低。

P∧Rc)R:天正在下雨。

S:湿度很高。

R∨Sd)A:刘英上山。

B:李进上山。

A∧Be)M:老王是革新者。

N:小李是革新者。

M∨Nf)L:你看电影。

M:我看电影。

┓L→┓Mg)P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh)P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。

(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。

吉林大学离散数学课后习题答案

吉林大学离散数学课后习题答案

第二章命题逻辑§2.2 主要解题方法2.2.1 证明命题公式恒真或恒假主要有如下方法:方法一.真值表方法。

即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。

真值表法比较烦琐,但只要认真仔细,不会出错。

例2.2.1 说明 G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。

解:该公式的真值表如下:表2.2.1由于表2.2.1中对应公式G所在列的每一取值全为1,故G恒真。

方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。

例2.2.2 说明 G= ((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)是恒真、恒假还是可满足。

解:由(P→R) ∨⌝ R=⌝P∨ R∨⌝ R=1,以及⌝ (Q→P) ∧ P= ⌝(⌝Q∨ P)∧ P = Q∧⌝ P∧ P=0知,((P→R) ∨⌝ R)→ (⌝ (Q→P) ∧ P)=0,故G 恒假。

方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。

方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G恒假,若最终结果有1,有0,则是可满足的。

例子参见书中例2.4.3。

方法五. 注意到公式G蕴涵公式H的充要条件是:公式G→H是恒真的;公式G,H等价的充要条件是:公式G↔H是恒真的,因此,如果待考查公式是G→H型的,可将证明G→H 是恒真的转化为证明G蕴涵H;如果待考查公式是G↔H型的,可将证明G↔H是恒真的转化为证明G和H彼此相蕴涵。

离散数学第1-2章参考答案-命题逻辑谓词逻辑

离散数学第1-2章参考答案-命题逻辑谓词逻辑

Page 49 第17题解:(1)令①P:李明学习努力;②Q:李明成绩好;③R:李明不热衷于玩扑克;(2)已知条件符号化,即①P→Q:如果李明学习努力,那么他成绩好;②R→P:如果李明不热衷于玩扑克,那么他就努力学习;(3)所求结论符号化,即①¬Q→¬R:李明成绩不好,所以李明热衷于玩扑克;(4)证明:原命题符号化为P→Q,R→P ¬Q→¬R;①P→Q P规则;②R→P P规则;③R→Q T规则①②;④Q∨¬R T规则③;⑤¬Q→¬R T规则④;(5)得证。

Page 50 第32题(2)解: P∨(¬P→(Q∨(¬Q→R)));⇔ P∨(P∨(Q∨(Q∨R)));⇔P∨Q∨R;①主合取范式为:P∨Q∨R;因为 P∨Q∨R ⇔∏M0 ⇔∑m1,2,3,4,5,6,7;②主析取范式为:∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧¬Q∧¬R)∨(P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R);Page 50 第32题(4)解: (P∧¬Q∧R)∨(¬P∧Q∧¬S);⇔ ((P∧¬Q∧R)∧(S∨¬S))∨((¬P∧Q∧¬S)∧(R∨¬R));⇔(P∧¬Q∧R∧S)∨(P∧¬Q∧R∧¬S)∨(¬P∧Q∧R∧¬S)∨(¬P∧Q∧¬R∧¬S);①主析取范式为:(¬P∧Q∧¬R∧¬S)∨(¬P∧Q∧R∧¬S)∨(P∧¬Q∧R∧¬S)∨(P∧¬Q∧R∧S) ⇔∑m4,6,10,11⇔∏M0,1,2,3,5,7,8,9,12,13,14,15;②主合取范式为:(¬P∨¬Q∨¬R∨¬S)∧(¬P∨¬Q∨¬R∨S)∧(¬P∨¬Q∨R∨¬S) ∧(¬P∨¬Q∨R∨S)∧(¬P∨Q∨¬R∨S)∧(¬P∨Q∨R∨S)∧(P∨¬Q∨¬R∨¬S) ∧(P∨¬Q∨¬R∨S)∧(P∨Q∨¬R∨¬S)∧(P∨Q∨¬R∨S)∧(P∨Q∨R∨¬S)∧(P∨Q∨R∨S);Page 50 第32题(6)解: (P→Q)→(P∨R);⇔¬(¬P∨Q)∨(P∨R);⇔(P∧¬Q)∨(P∨R);⇔(P∨R)∧(P∨¬Q∨R);⇔ ((P∨R)∨(¬Q∧Q))∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R)∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R);①主合取范式为:(P∨¬Q∨R)∧(P∨Q∨R);⇔∏M0,2;⇔∑m1,3,4,5,6,7;①主合取范式为:(¬P∨¬Q∨R)∧(¬P∨Q∨R)∧(P∨¬Q∨¬R)∧(P∨¬Q∨R)∧(P∨Q∨¬R)∧(P∨Q∨R);Page 51 第37题(2)解: P→Q P→(P∧Q)①P P规则(附加前提);②P→Q P规则;③Q T规则①,②,I;④P∧Q T规则①,③,I;⑤P→(P∧Q) CP规则;Page 51 第37题(4)解: (P∨Q)→R ⇒ (P∧Q)→R①P∧Q P规则(附加前提);②P T规则①,I;③P∨Q T规则②,I;④(P∨Q)→R P规则;⑤R T规则③,④,I;⑥(P∧Q)→R CP规则;Page 51 第38题(3)解:﹁(P→Q)→﹁(R∨S),((Q→P)∨﹁R),R ⇒ P↔Q①﹁(P↔Q) P规则(假设前提);②﹁((P→Q)∧(Q→P)) T规则①,I;③R P规则;④((Q→P)∨﹁R) P规则;⑤R→(Q→P) T规则④,I;⑥(Q→P) T规则③⑤,I;⑦R∨S T规则③,I;⑧﹁(P→Q)→﹁(R∨S) P规则;⑨(R∨S)→(P→Q) T规则⑧,I;⑩(P→Q) T规则⑦⑨,I;⑪(P→Q)∧(Q→P) T规则⑥⑩,I;⑫得证间接证明法②⑪;Page 51 第39题(1)解:(1)符号化已知命题①P:明天是晴天;②Q:明天下雨;③R:我去看电影;④S:我不看书;条件符号化:P∨Q,P→R,R→S;结论符号化:①﹁S→Q(2)证明:P∨Q,P→R,R→S ⇒﹁S→Q①P→R P规则;②R→S P规则;③P→S T规则①②;④﹁S→﹁P T规则③,I;⑤P∨Q P规则;⑥﹁P→Q T规则⑤,I;⑦﹁S→Q T规则④⑥,I;Page 51 第39题(2)解:(1)符号化已知命题①P:明天不下雨;②Q:能够买到车票;③R:我去参观计算机展览会;条件符号化:P∧Q→R;结论符号化:①﹁R→﹁P(2)证明:P∨Q,P→R,R→S ⇒﹁S→Q①P∧Q→R P规则;②﹁R P规则(附加前提);③﹁(P∧Q) T规则①②;④﹁P∨﹁Q T规则③,I;⑤也就是说或者明天下雨或者买不到票,所以原命题说不能参加计算机展览的原因只是明天下雨是不完全的,故原命题无效。

离散数学第1-2章参考答案-命题逻辑谓词逻辑

离散数学第1-2章参考答案-命题逻辑谓词逻辑

Page 49 第17题解:〔1〕令①P:李明学习努力;②Q:李明成绩好;③R:李明不热衷于玩扑克;〔2〕条件符号化,即①P→Q:假如李明学习努力,那么他成绩好;②R→P:假如李明不热衷于玩扑克,那么他就努力学习;〔3〕所求结论符号化,即①¬Q→¬R:李明成绩不好,所以李明热衷于玩扑克;〔4〕证明:原命题符号化为P→Q,R→P ¬Q→¬R;①P→Q P规那么;②R→P P规那么;③R→Q T规那么①②;④Q∨¬R T规那么③;⑤¬Q→¬R T规那么④;〔5〕得证。

Page 50 第32题〔2〕解: P∨(¬P→(Q∨(¬Q→R)));⇔ P∨(P∨(Q∨(Q∨R)));⇔P∨Q∨R;①主合取范式为:P∨Q∨R;因为 P∨Q∨R ⇔∏M0 ⇔∑m1,2,3,4,5,6,7;②主析取范式为:∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧¬Q∧¬R)∨(P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R);Page 50 第32题〔4〕解: (P∧¬Q∧R)∨(¬P∧Q∧¬S);⇔ ((P∧¬Q∧R)∧(S∨¬S))∨((¬P∧Q∧¬S)∧(R∨¬R));⇔(P∧¬Q∧R∧S)∨(P∧¬Q∧R∧¬S)∨(¬P∧Q∧R∧¬S)∨(¬P∧Q∧¬R∧¬S);①主析取范式为:(¬P∧Q∧¬R∧¬S)∨(¬P∧Q∧R∧¬S)∨(P∧¬Q∧R∧¬S)∨(P∧¬Q∧R∧S) ⇔∑m4,6,10,11⇔∏M0,1,2,3,5,7,8,9,12,13,14,15;②主合取范式为:(¬P∨¬Q∨¬R∨¬S)∧(¬P∨¬Q∨¬R∨S)∧(¬P∨¬Q∨R∨¬S) ∧(¬P∨¬Q∨R∨S)∧(¬P∨Q∨¬R∨S)∧(¬P∨Q∨R∨S)∧(P∨¬Q∨¬R∨¬S) ∧(P∨¬Q∨¬R∨S)∧(P∨Q∨¬R∨¬S)∧(P∨Q∨¬R∨S)∧(P∨Q∨R∨¬S)∧(P∨Q∨R∨S);Page 50 第32题〔6〕解: (P→Q)→(P∨R);⇔¬(¬P∨Q)∨(P∨R);⇔(P∧¬Q)∨(P∨R);⇔(P∨R)∧(P∨¬Q∨R);⇔ ((P∨R)∨(¬Q∧Q))∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R)∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R);①主合取范式为:(P∨¬Q∨R)∧(P∨Q∨R);⇔∏M0,2;⇔∑m1,3,4,5,6,7;①主合取范式为:(¬P∨¬Q∨R)∧(¬P∨Q∨R)∧(P∨¬Q∨¬R)∧(P∨¬Q∨R)∧(P∨Q∨¬R)∧(P∨Q∨R);Page 51 第37题〔2〕解: P→Q P→(P∧Q)①P P规那么〔附加前提〕;②P→Q P规那么;③Q T规那么①,②,I;④P∧Q T规那么①,③,I;⑤P→(P∧Q) CP规那么;Page 51 第37题〔4〕解: (P∨Q)→R ⇒ (P∧Q)→R①P∧Q P规那么〔附加前提〕;②P T规那么①,I;③P∨Q T规那么②,I;④(P∨Q)→R P规那么;⑤R T规那么③,④,I;⑥(P∧Q)→R CP规那么;Page 51 第38题〔3〕解:﹁(P→Q)→﹁(R∨S),((Q→P)∨﹁R),R ⇒ P↔Q①﹁(P↔Q) P规那么〔假设前提〕;②﹁((P→Q)∧(Q→P)) T规那么①,I;③R P规那么;④((Q→P)∨﹁R) P规那么;⑤R→(Q→P) T规那么④,I;⑥(Q→P) T规那么③⑤,I;⑦R∨S T规那么③,I;⑧﹁(P→Q)→﹁(R∨S) P规那么;⑨(R∨S)→(P→Q) T规那么⑧,I;⑩(P→Q) T规那么⑦⑨,I;⑪(P→Q)∧(Q→P) T规那么⑥⑩,I;⑫得证间接证明法②⑪;Page 51 第39题〔1〕解:〔1〕符号化命题①P:明天是晴天;②Q:明天下雨;③R:我去看电影;④S:我不看书;条件符号化:P∨Q,P→R,R→S;结论符号化:①﹁S→Q〔2〕证明:P∨Q,P→R,R→S ⇒﹁S→Q①P→R P规那么;②R→S P规那么;③P→S T规那么①②;④﹁S→﹁P T规那么③,I;⑤P∨Q P规那么;⑥﹁P→Q T规那么⑤,I;⑦﹁S→Q T规那么④⑥,I;Page 51 第39题〔2〕解:〔1〕符号化命题①P:明天不下雨;②Q:可以买到车票;③R:我去参观计算机展览会;条件符号化:P∧Q→R;结论符号化:①﹁R→﹁P〔2〕证明:P∨Q,P→R,R→S ⇒﹁S→Q①P∧Q→R P规那么;②﹁R P规那么〔附加前提〕;③﹁(P∧Q) T规那么①②;④﹁P∨﹁Q T规那么③,I;⑤也就是说或者明天下雨或者买不到票,所以原命题说不能参加计算机展览的原因只是明天下雨是不完全的,故原命题无效。

离散数学综合练习及答案

离散数学综合练习及答案

北京科技大学远程教育学院《离散数学》综合练习(一)参考答案数理逻辑一、判断下列句子是否是命题,若是命题判断真值,并将其符号化。

1、今天天气真好!解:不是命题。

2、王华和张民是同学。

解:是命题。

真值视实际情况而定。

p:王华和张民是同学。

3、我一边吃饭,一边看电视。

解:是命题。

真值视实际情况而定。

p:我吃饭。

q:我看电视。

p∧q 4、没有不呼吸的人。

解:是命题。

真值为1。

M(x):x是人。

F(x):x呼吸。

∀x(M(x)→F(x))二、求命题公式的真值表和成真赋值、成假赋值。

p→∧qr∧→(p])[(r)解:成真赋值:000,001,010,011,101,111;成假赋值100,110三、用真值表、等值演算两种方法判别公式类型。

1、r q q p →∧→])[( 解:rq q p r q q q p r q q p rq q p r q q p r q q p ∨⌝∧⌝∨⇔∨⌝∨⌝∧⌝∨⇔∨⌝∨⌝∧⇔∨⌝∨∨⌝⌝⇔∨∧∨⌝⌝⇔→∧→])[()]()[()()(])[(])[(可满足式2、))((p q p q ∧∨⌝⌝∨ 解:))((p q p q A ∧∨⌝⌝∨=1)()()())((⇔∨⌝∨∨⌝⌝⇔⌝∨∨⌝⌝∨⇔∧∨⌝⌝∨q p q p p q p q p q p q永真式四、求命题公式的主析取范式和成真赋值、成假赋值。

)(r q p →→ 解:∑=→→),,,,,,7543210()(r q p 成真赋值:000,001,010,011,100,101,111;成假赋值110 五、解释I 如下:D 是实数集,特定元素a =0;特定函数f (x ,y )=x -y ;特定谓词F (x ,y ):x<y 。

在解释I 下判别公式真、假。

1、)])(([x y x f F y x ,,⌝∀∀ 解:)])[()])(([)]([)])(([x y x y x x y x y x x y x F y x x y x f F y x ≥-∀∀⇔<-⌝∀∀⇔-⌝∀∀⇔⌝∀∀,,,真值为假2、)]()([)({z y f z x f F y x F z y x ,,,,→∀∀∀ 解:)]()()[()]}()([)({z y z x y x z y x z y f z x f F y x F z y x -<-→<∀∀∀⇔→∀∀∀,,,,真值为真 六、1、求前束范式)()(y x yG x xF ,∀→⌝∃ 解:)]()([)()()()()()(y t G x F y x y t yG x xF y x yG x xF y x yG x xF ,,,,∨∀∃⇔∀∨∃⇔∀∨∃⇔∀→⌝∃2、证明:B x xA B x A x →∀⇔→∃)())(( 证明:Bx xA Bx xA B x A x B x A x B x A x →∀⇔∨⌝∀⇔∨⌝∃⇔∨⌝∃⇔→∃)()()())(())((七、写出下面推理的证明,要求写出前提、结论,并注明推理规则。

离散数学习题课带答案

离散数学习题课带答案

三.重言蕴涵式的证明方法
方法1.列真值表。(即列永真式的真值表) (略) 方法2.假设前件为真,推出后件也为真。 方法3.假设后件为假,推出前件也为假。 证明 (A(B∨C) )∧(D∨E)∧((D∨E)A) B∨C 方法2 证明:
设前件(A(B∨C) )∧(D∨E)∧((D∨E)A) 为真,则 A(B∨C) , D∨E, (D∨E)A 均为真。 由D∨E, (D∨E)A 均为真,得 A为真, 又由A(B∨C)为真,得 B∨C为真。所以 (A(B∨C) )∧(D∨E)∧((D∨E)A) B∨C
方法3 (P→Q)→(P→(P∧Q)) (P∨Q)∨(P∨(P∧Q)) (P∧Q)∨P∨(P∧Q) (P∧Q)∨(P∧(Q∨Q))∨(P∧Q) (P∧Q)∨(P∧Q)∨(P∧Q)∨(P∧Q) (P∧Q)∨(P∧Q)∨(P∧Q)∨(P∧Q) 可见,该公式的主析取范式含有全部(四个) 小项,这表明(P→Q)→(P→(P∧Q))是永真式
六. 逻辑推理 熟练掌握三种推理方法。 (1) (A∨B)(C∧D), (D∨E)P AP 1.直接推理 ⑴ (A∨B)(C∧D) P ⑵ (A∨B)∨(C∧D) T ⑴ E ⑶ (A∧B) ∨(C∧D) T ⑵ E ⑷ (A∨C)∧(B∨C)∧(A∨D)∧(B∨D) T ⑶ E ⑸ A∨D T ⑷ I ⑹ AD T⑸ E ⑺ (D∨E)P P ⑻ (D∨E)∨P T ⑺ E ⑼ (D∧E)∨P T ⑻ E ⑽ (D ∨P) ∧(E∨P) T ⑼ E ⑾ D∨P T ⑽ I ⑿ DP T ⑾ E ⒀AP T ⑹⑿ I
(4)某些汽车比所有的火车都慢,但至少有一列火车比每辆 汽车快 C(x):x是汽车;H(x):x是火车;S(x,y): x比y慢 x(C(x)∧y(H(y)→S(x,y)))∧z(H(z)∧y(C(y) →S(y,z)))

2011离散数学作业9_命题逻辑

2011离散数学作业9_命题逻辑
1
(2)(¬P∨R)→(P↔¬Q) ⇔¬(¬P∨R) ∨[(¬P∨¬Q)∧(P∨Q)] ⇔(P∧¬R)∨[(¬P∧P)∨(¬P∧Q)∨(¬Q∧P)∨(¬Q∧Q)] ⇔(P∧¬R)∨0∨(¬P∧Q)∨(¬Q∧P)∨0 ⇔(P∧¬R)∨(¬P∧Q)∨(¬Q∧P) ⇔(P∧¬R∧(Q∨¬Q))∨(¬P∧Q∧(R∨¬R))∨(¬Q∧P∧(R∨¬R)) ⇔( P∧Q∧¬R)∨(P∧¬Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧Q∧¬R)∨(P∧¬Q∧ R)∨(P∧¬Q∧¬R) ⇔( P∧Q∧¬R)∨(P∧¬Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧Q∧¬R)∨(P∧¬Q∧ R) ⇔m110∨m100∨m011∨m010∨m101 ⇔m6∨m4∨m3∨m2∨m5 ⇔∑(2,3,4,5,6) (主析取范式) (¬P∨R)→(P↔¬Q) ⇔∏(0,1,7) ⇔M000∧M010∧M111 ⇔(P∨Q∨R)∧(P∨¬Q∨R)∧(¬P∨¬Q∨¬R) (主合取范式) (3)P∨(¬P→(Q∨(¬Q→R))) ⇔P∨(P∨(Q∨(Q∨R))) ⇔P∨Q∨R⇔m111⇔m7 (主析取范式)
6
结论为:r。 下面证明结论的有效性。 (1)¬p P (2)¬p→q∨r P (3)q∨r (1),(2),假言推理 (4)¬s P (5)¬s→¬q P (6)¬q (4),(5), 假言推理 (7)r (3),(6), 析取三段论
离散数学作业 作业 9——范式、推理
1.利用真值表求下列公式的主析取范式和主合取范式。 (1) P∧(Q∨R) (2) (¬P∨R)→(P↔¬Q) (3) P∨(¬P→(Q∨(¬Q→R))); 解:(1)P∧(Q∨R)⇔(P∧Q)∨(P∧R) ⇔(P∧Q∧(¬R∨R))∨(P∧R∧(¬Q∨Q)) ⇔(P∧Q∧¬R) ∨(P∧Q∧R) ∨(P∧R∧¬Q) ∨(P∧R∧Q) ⇔(P∧Q∧¬R) ∨(P∧Q∧R)∨(P∧¬Q∧R) ⇔m110∨m111∨m101⇔m7∨m6∨m5⇔∑(5,6,7) (主析取范式) P∧(Q∨R) ⇔ (P∨(¬Q∧Q) ∨(¬R∧R))∧((¬P∧P)∨Q∨R) ⇔(P∨¬Q∨¬R)∧(P∨¬Q∨R)∧(P∨Q∨¬R)∧(P∨Q∨R) ∧(¬P∨Q∨R) ∧(P∨Q∨R) ⇔(P∨¬Q∨¬R)∧(P∨¬Q∨R)∧(P∨Q∨¬R)∧(P∨Q∨R) ∧(¬P∨Q∨R) ⇔M011∧M010∧M001∧M000∧M100 ⇔M3∧M2∧M1∧M0∧M4 ⇔∏(0,1,2,3,4) (主合取范式)

离散数学 第3章 命题逻辑的推理理论

离散数学 第3章 命题逻辑的推理理论

例 构造下面推理的证明 2 是素数或合数. 若 2 是素数,则 2 是无理数. 若 2 是无理数,则 4 不是素数. 所以,如果 4 是素数,则 2 是合数. 用附加前提证明法构造证明 (1)设 p:2 是素数,q:2 是合数, r: 2 是无理数,s:4 是素数 (2)形式结构 前提:pq, pr, rs 结论:sq
结论(不正确)是对的 方法四 直接观察出 10 是成假赋值
解(2)答案:推理正确 方法一 方法二 方法三 方法四 真值表法(自己做) 等值演算法(自己做) 主析取范式法(自己做) P 系统中构造证明 ① pr ② rp ③ qr ④ qp (前提引入) (①置换) (前提引入) (③②假言三段论)
(8) 假言三段论规则: AB BC AC (9) 析取三段论规则: AB B A (10) 构造性二难推理规则: AB CD AC BD
(11) 破坏性二难推理规则: AB CD BD AC (12)合取引入规则: A B AB
三、P 中的证明 例 在自然推理系统 P 中构造下面推理的证明: (1)前提:p∨q,q→r,p→s,┐s 结论:r∧(p∨q) (2)前提:┐p∨q, r∨┐q ,r→s 结论:p→s 解 (1)证明: ① p→s 前提引入 ② ┐s 前提引入 ③ ┐p ①②拒取式 ④ p∨q 前提引入 ⑤ q ③④析取三段论 ⑥ q→r 前提引入 ⑦ r ⑤⑥假言推理 ⑧ r∧(p∨q) ⑦④合取 此证明的序列长为 8,最后一步为推理的结论,所以推理正确,r∧(p∨q) 是有效结论。

判断下面推理是否正确:
(1)若 a 能被 4 整除,则 a 能被 2 整除;a 能被 4 整除。所以 a 能被 2 整除。 (2)若 a 能被 4 整除,则 a 能被 2 整除;a 能被 2 整除。所以 a 能被 4 整除。 (3)下午马芳或去看电影或去游泳;她没有看电影。所以,她去游泳 了。 (4)若下午气温超过 30℃,则王小燕必去游泳;若她去游泳,她就不 去看电影了。所以王小燕没有去看电影,下午气温必超过了 30℃。

离散数学命题逻辑推理理论

离散数学命题逻辑推理理论
Bj 就是简单析取式 3、 以A1,A2,…,At为前提, 使用归结规则推出每一个Bj, 1
s 4、 由合取引入规则得到结论B1ÙB2Ù…ÙBs
在自然推理系统P中只需下述推理规则: (1) 前提引入规则 (2) 结论引入规则 (3) 置换规则 (4) 化简规则 (5) 合取引入规则 (6) 归结规则
归结证明法得基本步骤
1、 将每一个前提化成等值得合取范式, 设所有合取范式得 全部简单析取式为A1, A2,…, At 2、 将结论化成等值得合取范式B1ÙB2Ù…ÙBs, 其中每个
欲证明 前提:A1, A2, … , Ak 结论:B 将ØB加入前提, 若推出矛盾, 则得证推理正确、
理由: A1ÙA2Ù…ÙAk®B Û Ø(A1ÙA2Ù…ÙAk)ÚB Û Ø(A1ÙA2Ù…ÙAkÙØB)
括号内部为矛盾式当且仅当 (A1ÙA2Ù…ÙAk®B)为重言式
实例
例5 构造下面推理得证明
明天就是5号、 解 设 p: 今天就是1号, q: 明天就是5号 推理得形式结构为 (p®q)Ùp®q 证明 用等值演算法
(p®q)Ùp®q Û Ø((ØpÚq)Ùp)Úq Û ((pÙØq)ÚØp)Úq Û ØpÚØqÚq Û 1
得证推理正确
实例( 续 )
(2) 若今天天冷,小王就穿羽绒服。小王就穿羽绒服。 所以, 今天天冷。
前提: (pÚq)®r, r®s, Øs
结论: ØpÙØq
实例( 续 )
前提: (pÚq)®r, r®s, Øs
结论: ØpÙØq
证明 ① r®s ② Øs ③ Ør ④ (pÚq)®r
前提引入 前提引入 ①②拒取式 前提引入
Ø(pÚq)
③④拒取式
⑥ ØpÙØq

离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案

离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q 前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

离散数学命题逻辑练习题及答案

离散数学命题逻辑练习题及答案

离散数学命题逻辑练习题及答案1. 命题逻辑基础1.1 命题逻辑概念1.什么是命题?答案:命题是可以判断真假的陈述句。

2.命题的两个基本操作是什么?答案:命题的两个基本操作是合取和析取。

1.2 命题逻辑表达式3.将以下中缀表达式转换为后缀表达式:((P ∧ Q) → (R ∨ S)) ∨ T答案:后缀表达式为P Q ∧ R S ∨ → T ∨4.使用真值表验证以下命题逻辑公式是否为重言式(永远为真):(P ∨ Q) ∧ (¬P ∨ Q) ⟺ Q答案:P Q(P ∨ Q) ∧ (¬P ∨ Q)QT T T TT F T FF T T TF F F F结论:命题逻辑公式(P ∨ Q) ∧ (¬P ∨ Q)是重言式。

1.3 命题逻辑推理5.使用命题逻辑进行推理,判断以下论断是否成立(推理过程可用真值表验证):P → Q, Q → R ∈ L, ∴ P → R答案:P Q R P → Q Q → R P → R T T T T T TT T F T F FT F T F T TT F F F T FF T T T T TF T F T F TF F T T T TF F F T T T结论:论断P → R成立。

2. 命题逻辑的应用2.1 命题逻辑在计算机科学中的应用6.命题逻辑在计算机科学中有哪些应用?答案:命题逻辑在计算机科学中的应用包括逻辑电路设计、计算机程序的正确性验证、控制流分析等。

7.请简要说明命题逻辑在逻辑电路设计中的应用。

答案:命题逻辑在逻辑电路设计中用于描述逻辑电路的功能和工作原理。

通过使用命题逻辑符号和逻辑运算,可以建立逻辑电路的逻辑模型,进而进行电路的设计、优化和验证。

2.2 命题逻辑推理的应用8.请举一个命题逻辑推理在实际生活中的应用例子。

答案:命题逻辑推理在实际生活中的一个应用例子是法庭判案。

法庭根据掌握的事实和证据,通过进行命题逻辑推理来确定被告是否犯罪或无罪,从而作出最终的判决。

离散数学之命题逻辑考试答案

离散数学之命题逻辑考试答案

离散数学之命题逻辑考试1、分析下列语句那些是命题,哪些不是命题。

(每小题1分,正确 “T ”错误写 “F ”,共10分) (1)、北京是中国首都。

(2)、大连是多么美丽啊! (3)、素数只有有限个。

(4)、请勿吸烟! (5)、6+8≥14。

(6)、明天有离散数学课吗? (7)、不存在最大素数。

(8)、9<+Y X 。

(9)、所有素数都是奇数。

(10)实践出真理。

2、设P 表示命题“我学习努力”。

Q 表示命题“我考试通过”。

R 表示命题“我很快乐”。

(每小题2分,共6分) 试用符号表示下列命题:1) 我考试没通过,但我很快乐。

2) 如果我努力学习,那么我考试通过。

3) 如果我学习努力并且考试通过,那么我很快乐。

3、将下列命题符号化:(每小题2分,共14分)1) 我美丽而又快乐。

2) 如果我快乐,那么天就下雨。

3) 电灯不亮,当且仅当灯泡或开关发生故障。

4) 仅当你去,我将留下。

5) 如果老张和老李都不去,他就去。

6) 你不能既吃饭又看电视。

7) 张刚总是在图书馆看书,除非图书馆不开门或张刚生病。

4、给出下列公式的真值表 (每小题5分,共10分)⑴ )(R Q P ∨→⑵ )(Q P ∨⌝⇄)(Q P ⌝∧⌝5、证明下列等价式。

(每小题3分,共12分) 1) P Q P Q P ⇔⌝∧∨∧)()( 2) P Q Q P P ⌝→⌝⇔→→)(3) C B A C B A →⌝∧⇔∨→)()(4) C A D B C D B C B A →→∧⇔∨→∧→∧))(())(())((6、求下列命题公式的主析取范式和主合取范式。

(每小题10分,共20分) 1) )()(Q R Q P →∧→ 2) R Q P →∨⌝)(7、对于下列一组前提,请给出它们的有效结论并证明。

(每小题4分,共8分)a) 如果我努力学习,那么我能通过考试,但我没有通过考试。

b) 统计表有错误,其原因有两个:一个原因是数据有错误;另一个原因是计算有错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 命题逻辑习题.解 ⑴不是陈述句,所以不是命题。

⑵x 取值不确定,所以不是命题。

⑶问句,不是陈述句,所以不是命题。

⑷惊叹句,不是陈述句,所以不是命题。

⑸是命题,真值由具体情况确定。

⑹是命题,真值由具体情况确定。

⑺是真命题。

⑻是悖论,所以不是命题。

⑼是假命题。

2.解 ⑴是复合命题。

设p :他们明天去百货公司;q :他们后天去百货公司。

命题符号化为q p ∨。

⑵是疑问句,所以不是命题。

⑶是悖论,所以不是命题。

⑷是原子命题。

⑸是复合命题。

设p :王海在学习;q :李春在学习。

命题符号化为p q 。

⑹是复合命题。

设p :你努力学习;q :你一定能取得优异成绩。

p q 。

⑺不是命题。

⑻不是命题⑼。

是复合命题。

设p :王海是女孩子。

命题符号化为:p 。

3.解 ⑴如果李春迟到了,那么他错过考试。

⑵要么李春迟到了,要么李春错过了考试,要么李春通过了考试。

⑶李春错过考试当且仅当他迟到了。

⑷如果李春迟到了并且错过了考试,那么他没有通过考试。

4.解 ⑴p (q r )。

⑵p q 。

⑶q p 。

⑷q p 。

习题1.解 ⑴是1层公式。

⑵不是公式。

⑶一层: p q ,p二层:p q所以,)()(q p q p ↔⌝→∨是3层公式。

⑷不是公式。

⑸(pq )(q ( q r ))是5层公式,这是因为一层:p q ,q ,r二层:q r 三层:q ( qr )四层:(q( qr ))2.解 ⑴A =(p q )q 是2层公式。

真值表如表2-1所示:表2-1pqq p ∨A0 0 0 0 0 1 1 1 1 0 1 0 1111⑵p q p q A →→∧=)(是3层公式。

真值表如表2-2所示:表2-2⑶)()(q p r q p A ∨→∧∧=是3层公式。

真值表如表2-3所示:表2-3⑷)()()(r q r p q p A ∨∧∨⌝∧∨=是4层公式。

真值表如表2-4所示:3.解 ⑴p q p A ∨⌝∧⌝=)(真值表如表2-5所示:表2-5所以其成真赋值为:00,10,11;其成假赋值为01。

⑵)(q p r A ∧→=真值表如表2-6所示:表2-6所以其成真赋值为:000,010,100,110,111;其成假赋值为001,011,101。

⑶)()(q p q p A ⌝∨↔→=真值表如表2-7所示,所以其成真赋值为:00,11;成假赋值为:01,10,。

4.解 ⑴设)(q p p A ∧⌝∨=,其真值表如表2-8所示:表2-8pqq p ∧)(q p ∧⌝A0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 111故)(q p p A ∧⌝∨=为重言式。

⑵设A =(p q )(p q ),其真值表如表2-9所示:表2-9pqp qp q(p q ) A0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 111故A =(p q )(p q )为矛盾式。

⑶设A =(p q )(p q ),其真值表如表2-10所示:表2-10pqp ⌝q p ↔⌝q p →A0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 11故A =(p q )(p q )为可满足式。

⑷设)())()((r p r q q p A →→→∧→=,其真值表如表2-11所示:表2-11pqrq p →r q →)()(r q q p →∧→r p →A0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 11111 1 1 1 1 1 1 1故)())()((r p r q q p A →→→∧→=为重言式。

习题1.解 ⑴真值表如表2-12所示:表2-12pqp ⌝q ⌝q p ⌝∧⌝q p ∨)(q p ∨⌝0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 111由真值表可以看出)(q p ∨⌝和q p ⌝∧⌝所在的列相应填入值相同,故等值。

⑵真值表如表2-13所示:表2-13pqq ⌝q p ∧q p ⌝∧)()(q p q p ⌝∧∨∧0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1111由真值表可以看出p 和)()(q p q p ⌝∧∨∧所在的列相应填入值相同,故等值。

⑶真值表如表2-14所示:表2-14pqp ⌝q ⌝qp →qp ⌝→)()(q p q p ⌝→∧→0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 0 111由真值表可以看出p 和(p q )(p q )所在的列相应填入值相同,故等值。

⑷真值表如表2-15所示:pqrq rp (q r )p q(p q )r0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 111表2-15由真值表可以看出p (q r )和(pq )r 所在的列相应填入值相同,故等值。

2.证明 ⑴(p q ) (p q ) (p q )( pq )p (qq ) p 。

⑵(p q )(q p )(p q ) (q p ) (pq )(p p )( qq )(q p ) ( p q )(pq )。

⑶由⑵可得,(pq )(( pq )(p q ))( p q )(p q )(qp )(p q )p q 。

⑷p(q r ) p (q r )q (p r ) q ( p r )。

⑸)()(r q p r q p ∨∨⌝⇔∨→r q p ∨∨⌝⇔)(r q p ∨⌝∧⌝⇔)( r q p →⌝∧⇔)(⑹)()()()(q r q p q r q p∨⌝∧∨⌝⇔→∧→q r p ∨⌝∧⌝⇔)(q r p →∨⇔)(3.解 ⑴(pq )(p q )p q ⑵(pq )( pq )p q⑶(p q )((pq )(q p ))(pq )(q p )(p q ) (p q ) p q 。

⑷同理可证(p q ) p q 。

4.解 ⑴与习题22第4(4)相同。

⑵真值表如表2-16所示:表2-16pqpqp qq pA0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 11111所以公式是重言式。

⑶真值表如表2-17所示,所以公式是矛盾式。

表2-17pqp ⌝q ⌝q p ∨⌝q p ⌝∧A0 0 1 1 1 0 0 01111 1 1 1 1 1 11 0 0 1 0 1 01 1 0 0 1 0 0⑷真值表如表2-18所示,所以公式是重言式。

表2-18p q r qp∧rqp∧∧A0 0 0 0 0 10 0 1 0 0 10 1 0 0 0 10 1 1 0 0 11 0 0 0 0 11 0 1 0 0 11 1 0 1 0 11 1 1 1 1 1⑸真值表如表2-19所示,所以公式仅为可满足式。

表2-19p q p⌝qp→⌝)(qp→⌝⌝A0 0 1 0 1 10 1 1 1 0 11 0 0 1 0 01 1 0 1 0 0⑹真值表如表2-20所示,所以公式是重言式。

表2-20p q rpqrqpr(p q)(rq)(p r)qA0 0 0 1 1 0 1 1 10 0 1 1 0 0 0 1 10 1 0 1 1 0 1 1 10 1 1 1 1 0 1 1 11 0 0 0 1 0 0 1 11 0 1 0 0 1 0 0 11 1 0 1 1 0 1 1 11 1 1 1 1 1 1 1 15.解⑴设p:他努力学习;q:他会通过考试。

则命题符号化p q。

其否定(p q) p q。

所以语句的否定:他学习很努力但没有通过考试。

⑵设p:水温暖;q:他游泳。

则命题符号化p q。

其否定(p q) p q。

所以语句的否定:当且仅当水不温暖时他游泳。

⑶设p:天冷;q:他穿外套;r:他穿衬衫。

则命题符号化p(q r)其否定( p(q r)) (p(q r))p( q r) p(q r)所以语句的否定:天冷并且他不穿外套或者穿衬衫。

⑷设p :他学习;q :他将上清华大学;r :他将上北京大学。

则命题符号化)(r q p ∨→其否定))((r q p∨→⌝))((r q p ∨∨⌝⌝⇔r q p ⌝∧⌝∧⇔所以语句的否定:他努力学习,但是没有上清华大学,也没有上北京大学。

6.解 设p :张三说真话;q :李四说真话;r :王五说真话。

则:p q , qr (q r ), r (p q )为真,因此p(pq )(ppq )(p (p q ))p q 为真。

因此,p 为假,q 为真,所以r 为假。

故张三说谎,李四说真话,王五说谎。

7.解 设p :甲得冠军;q :乙得亚军;r :丙得亚军;s :丁得亚军。

前提:p (q r ),qp ,s r ,p结论:s证明 p (qr )为真,其前件p 为真,所以q r 为真,又q p 为真,其后件p 为假,所以要求q 为假,所以r 为真。

又s r 为真,其后件r 为假,所以要求s 为假,故s 为真。

习题1.解 ⑴设p :明天下雨;q :后天下雨。

命题符号化q p ∨。

⑵设p :明天我将去北京;q :明天我将去上海。

命题符号化q p ∨。

2.解 ⑴p q p∨→)())(())((p q p p q p ∧→⌝∨⌝∧→⇔ ))(())((p q p p q p ∧∨⌝⌝∨⌝∧∨⌝⇔ )(p q p p ∧⌝∧∨⌝⇔q p ⌝∨⌝⇔⑵)(p q p ∨↓))((p q p ∨∨⌝⇔))()((p q p q p ∧⌝∨⌝∧∨⌝⇔ ))((p q p ⌝∧∨⌝⇔ )(q p ∨⌝⇔q p ⌝∧⌝⇔⑶r q p↓↑)())((r q p ∨↑⌝⇔))((r q p ∨∧⌝⌝⇔r q p ⌝∧∧⇔3.证明 因为,{↔→∧∨⌝,,,,}是功能完备联结词集,所以,含有{↔→∧∨⌝,,,,}外的其他联结词的公式均可以转换为仅含{↔→∧∨⌝,,,,}中的联结词的公式。

又因为q p q p ∨⌝⇔→)()()()(p q q p p q q p q p ∨⌝∧∨⌝⇔→∧→⇔↔即含有↔→,的公式均可以转换为仅含{∧∨⌝,,}中的联结词的公式。

因此,含{∧∨⌝,,}外其他联结词的公式均可以转换为仅含{∧∨⌝,,}中的联结词的公式。

故{∧∨⌝,,}是功能完备联结词集。

4.证明 },{∧⌝是极小功能完备集,因而只需证明},{∧⌝中的每个联结词都可以用 表示,就说明}{↑是功能完备集。

只有一个联结词,自然是极小功能完备集。

相关文档
最新文档