2014年苏北四市高三数学期末有答案

合集下载

2014年江苏省高考数学试题及答案

2014年江苏省高考数学试题及答案

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1。

已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ .2。

已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ 。

3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 ▲ 。

5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),zxxk 它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ 。

6。

设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm 。

7。

在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ 。

8。

设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 ▲ .9。

在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ 。

10。

已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 ▲ 。

11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数) zxxk 过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ 。

12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,(第3题)100 80 90 110 120 底部周长/cm(第6题)(第12题)PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是 ▲ .13。

2014年江苏省苏北四市(徐州、连云港、淮安、宿迁)高考数学一模试卷

2014年江苏省苏北四市(徐州、连云港、淮安、宿迁)高考数学一模试卷

2014年江苏省苏北四市(徐州、连云港、淮安、宿迁)高考数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.设复数z1=2-i,z2=m+i(m∈R,i为虚数单位),若z1•z2为实数,则m的值为______ .【答案】2【解析】解:∵z1•z2=(2-i)(m+i)=2m+1+(2-m)i为实数,∴2-m=0,解得m=2.故答案为:2.利用复数的运算法则即可得出.本题考查了复数的运算法则,属于基础题.2.已知集合A={2+,a},B={-1,1,3},且A⊆B,则实数a的值是______ .【答案】1【解析】解:∵集合,,B={-1,1,3},且A⊆B,∴a=-1或a=1或a=3,当a=-1时,无意义,∴不成立.当a=1时,A={3,1},满足条件.当a=3时,A={2+,3},不满足条件,故答案为:1.根据集合A⊆B,确定元素之间的关系即可求解a的值.本题主要考查集合关系的应用,根据集合关系确定元素关系是解决本题的关键,注意要进行检验.3.某林场有树苗3000棵,其中松树苗400棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的棵数为______ .【答案】20【解析】解:设样本中松树苗的棵数为x,则由题意知,解得x=20,故答案为:20.根据分层抽样的定义进行求解即可.本题主要考查分层抽样的定义和应用,比较基础.4.在△ABC的边AB上随机取一点P,记△CAP和△CBP的面积分别为S1和S2,则S1>2S2的概率是______ .【答案】【解析】解:由题意,设AB边上的高为h,则S1=,S2=,∵S1>2S2,∴AP>2BP,∴S1>2S2的概率是.故答案为:.由S1>2S2,可得AP>2BP,以长度为测度,即可求得概率.本题考查概率的计算,考查三角形面积的计算,确定AP>2BP,以长度为测度是解题的关键.5.已知双曲线的一条渐近线方程为y=2x,则其离心率为______ .【答案】【解析】解:∵双曲线的一条渐近线方程为y=2x,∴=2,即b=2a,∴c=,∴e===.故答案为:.由双曲线的一条渐近线方程为y=2x,知b=2a,由此能求出该双曲线的离心率.本题考查双曲线的离心率的求法,解题时要认真审题,注意等价转化思想的合理运用.6.如图是一个算法流程图,则输出S的值是______ .【答案】25【解析】解:S的初值为0,n的初值为1,满足进行循环的条件,经过第一次循环得到的结果为S=1,n=3,满足进行循环的条件,经过第二次循环得到的结果为S=4,n=5,满足进行循环的条件,经过第三次循环得到的结果为S=9,n=7,满足进行循环的条件,经过第四次循环得到的结果为S=16,n=9,满足进行循环的条件,经过第五次循环得到的结果为S=25,n=11,不满足进行循环的条件,退出循环,故输出的S值为25故答案为:25按照程序框图的流程,写出前几次循环的结果,并判断每个结果是否满足判断框中的条件,直到不满足条件,输出结论.本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找出规律.7.函数f(x)=lg(2x-3x)的定义域为______ .【答案】(-∞,0)【解析】解:要使函数有意义,则2x-3x>0,即2x>3x>0,∴>,解得x<0,∴函数的定义域为(-∞,0),故答案为:(-∞,0).根据对数函数的性质,以及指数函数和幂函数的性质求函数的定义域即可.本题主要考查函数定义域的求法,利用指数函数和幂函数的性质是解决本题的关键.8.若正三棱锥的底面边长为,侧棱长为1,则此三棱锥的体积为______ .【答案】【解析】解:正三棱锥的底面边长为,侧棱长为1如图:过S作SO⊥平面ABC,∴OC为底面正三角形的高,且OC=××=,∴棱锥的高SO==,∴三棱锥的体积V=×××××=.故答案是.过S作SO⊥平面ABC,根据正三棱锥的性质求的高SO,代入体积公式计算.本题考查了正三棱锥的性质及体积计算,解题的关键是利用正三棱锥的性质求高.9.在△ABC中,已知AB=3,A=120°,且△ABC的面积为,则BC边长为______ .【答案】7【解析】解:∵AB=c=3,A=120°,△ABC的面积为,∴S△ABC=bcsin A=b=,即b=5,由余弦定理得:a2=b2+c2-2bccos A=25+9+15=49,则BC=a=7.故答案为:7利用三角形面积公式列出关系式,将c,sin A及已知面积代入求出b的值,再利用余弦定理列出关系式,把b,c,cos A的值代入计算即可求出a的值.此题考查了余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.10.已知函数f(x)=x|x-2|,则不等式的解集为______ .【答案】[-1,+∞)【解析】解:当x≤2时,f(x)=x|x-2|=-x(x-2)=-x2+2x=-(x-1)2+1≤1,当x>2时,f(x)=x|x-2|=x(x-2)=x2-2x=(x-1)2-1,此时函数单调递增.由f(x)=(x-1)2-1=1,解得x=1+.由图象可以要使不等式成立,则,即x≥-1,∴不等式的解集为[-1,+∞).故答案为:[-1,+∞).化简函数f(x),根据函数f(x)的单调性,解不等式即可.本题主要考查不等式的解法,利用二次函数的图象和性质是解决本题的关键,使用数形结合是解决本题的基本思想.11.已知函数>的最大值与最小正周期相同,则函数f(x)在[-1,1]上的单调增区间为______ .【答案】,【解析】解:函数>的最大值为2,最小正周期,∴,∴ω=,函数,由,k∈Z,解得:,k∈Z,∴当k=0时,函数f(x)在[-1,1]上的单调增区间:,.故答案为:,.求出函数的最大值以及函数最小正周期,即可求出ω,然后利用正弦函数的单调性,求出函数的单调增区间.本题考查三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,熟练掌握正弦函数的图象与性质是解本题的关键.12.设等比数列{a n}的前n项和为S n,若a4,a3,a5成等差数列,且S k=33,S k+1=-63,其中k∈N*,则S k+2的值为______ .【答案】129【解析】解:设数列{a n}的首项为a1,公比为q,由已知得2a3=a4+a5,∴2a1q2=a1q3+a1q4∵a1≠0,q≠0,∴q2+q-2=0,解得q=1或q=-2,当q=1时,与S k=33,S k+1=-63矛盾,故舍去,∴q=-2,∴,解之得q k=-32,a1,=3,∴S k+2==129,故答案为:129.首先根据a4,a3,a5成等差数列,求出公比q,代入S k=33,S k+1=-63,求出q k-1代入S k+2即可求出结果.本题主要考查等比数列的性质,解本题的关键是运用等差数列的重要性质a n-1+a n+1=2a n,要准确把握等差数列和等比数列的性质.属于中档题.13.在平面四边形ABCD中,已知AB=3,DC=2,点E,F分别在边AD,BC上,且=3,=3.若向量与的夹角为60°,则•的值为______ .【答案】7【解析】解:如图所示:设直线AB和DC相交于点H,则由题意可得∠AHD=60°.∵=++①,又=++②,①×2+②可得3=2+,∴=+.∴=+=×32+||•||•cos∠AHD=6+•3•2•=7.故答案为:7.设直线AB和DC相交于点H,则由题意可得∠AHD=60°,利用两个向量加减法及其几何意义,用两种方法求得,进而求得=+,从而求得的值.本题主要考查两个向量的数量积的定义,两个向量的加减法的法则,以及其几何意义,余弦定理的应用,体现了数形结合的数学思想,属于中档题.14.在平面直角坐标系x O y中,若动点P(a,b)到两直线l1:y=x和l2:y=-x+2的距离之和为,则a2+b2的最大值为______ .【答案】18【解析】解:∵动点P(a,b)到两直线l1:y=x和l2:y=-x+2的距离之和为,∴,化为|a-b|+|a+b-2|=4.分为以下4种情况:或<或>或<.可知点(a,b)是如图所示的正方形的4条边.可知:当取点A时,取得最大值=.∴a2+b2的最大值为18.故答案为:18.利用点到直线的距离公式可得:|a-b|+|a+b-2|=4.通过分类讨论可知:点(a,b)是如图所示的正方形的4条边.即可得到最大值.本题考查了点到直线的距离公式、含绝对值的等式、分类讨论等基础知识与基本技能方法,属于中档题.二、解答题(本大题共12小题,共162.0分)15.已知向量=(cosθ,sinθ),=(2,-1).(1)若⊥,求的值;(2)若|-|=2,,,求的值.【答案】解:(1)若⊥,则=2cosθ-sinθ=0,tanθ==2,∴===.(2)∵||=1,||=,若|-|=2,,,则有-2+=4,即1-2+5=4,解得=1,即2cosθ-sinθ=1,平方可得4cos2θ-4sinθcosθ+sin2θ=1,化简可得3cos2θ-4sinθcosθ=0,即tanθ=.再利用同角三角函数的基本关系sin2θ+cos2θ=1,求得cosθ=,sinθ=,∴=sinθ+cosθ=.【解析】(1)由⊥,可得=2cosθ-sinθ=0,求得tanθ=2,从而求得=的值.(2)把已知等式平方求得=1,即2cosθ-sinθ=1,平方可得4cos2θ-4sinθcosθ+sin2θ=1,求得tanθ=.再利用同角三角函数的基本关系求得cosθ和sinθ的值,从而求得=sinθ+cosθ的值.本题主要考查两个向量的数量积的运算,同角三角函数的基本关系,两角和的正弦公式,属于中档题.16.如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:PA∥平面BEF;(2)若平面PAB⊥平面ABC,PB⊥BC,求证:BC⊥PA.【答案】证明:(1)∵点E,F分别是棱PC,AC的中点,∴EF∥PA,∵PA⊄平面BEF,EF⊂平面BEF,∴PA∥平面BEF;(2)作PO⊥AB,垂足为O,则∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,∴PO⊥平面ABC,∴PO⊥BC,∵PB⊥BC,PO∩PB=P,∴BC⊥平面PAB,∵PA⊂平面PAB,∴BC⊥PA.【解析】(1)根据三角形中位线的性质,可得EF∥PA,再利用线面平行的判定定理,可证PA∥平面BEF;(2)作PO⊥AB,垂足为O,根据平面PAB⊥平面ABC,可得PO⊥平面ABC,所以PO⊥BC,利用PB⊥BC,可得BC⊥平面PAB,从而可得结论.本题考查线面平行,线面垂直,考查面面垂直的性质,考查学生推理论证的能力,正确运用线面平行,线面垂直的判定定理是关键.17.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).(1)求θ关于x的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y,求y关于x的函数关系式,并求出x为何值时,y取得最大值?【答案】解:(1)由题意,30=xθ+10θ+2(10-x),∴θ=(0<x<10);(2)花坛的面积为-==(10-x)(5+x);装饰总费用为xθ•9+10θ•9+2(10-x)•4=9xθ+90θ+8(10-x)=170+10x,∴花坛的面积与装饰总费用的比为y=.令17+x=t,则y=,当且仅当t=18时取等号,此时x=1,θ=,∴当x=1时,y取得最大值.【解析】(1)利用扇形的弧长公式,结合环面的周长为30米,可求θ关于x的函数关系式;(2)分别求出花坛的面积、装饰总费用,可求y关于x的函数关系式,换元,利用基本不等式,可求最大值.本题考查利用数学知识解决实际问题,考查扇形的弧长公式,考查基本不等式的运用,确定函数模型是关键.18.已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为⊙H.(1)若直线l过点C,且被⊙H截得的弦长为2,求直线l的方程;(2)对于线段BH上的任意一点P,若在以C为圆心的圆上都存在不同的两点M,N,使得点M是线段PN的中点,求⊙C的半径r的取值范围.【答案】解:(1)由题意,A(-1,0),B(1,0),C(3,2),∴AB的垂直平分线是x=0∵BC:y=x-1,BC中点是(2,1)∴BC的垂直平分线是y=-x+3由,得到圆心是(0,3),∴r=∵弦长为2,∴圆心到l的距离d=3.设l:y=k(x-3)+2,则d==3,∴k=,∴l的方程y=x-2;当直线的斜率不存在时,x=3,也满足题意.综上,直线l的方程是x=3或y=x-2;(2)直线BH的方程为3x+y-3=0,设P(m,n)(0≤m≤1),N(x,y).因为点M是点P,N的中点,所以M(,),又M,N都在半径为r的圆C上,所以,即因为该关于x,y的方程组有解,即以(3,2)为圆心,r为半径的圆与以(6-m,4-n)为圆心,2r为半径的圆有公共点,所以(2r-r)2<(3-6+m)2+(2-4+n)2<(r+2r)2,又3m+n-3=0,所以r2<10m2-12m+10<9r2对任意m∈[0,1]成立.而f(m)=10m2-12m+10在[0,1]上的值域为[,10],又线段BH与圆C无公共点,所以(m-3)2+(3-3m-2)2>r2对任意m∈[0,1]成立,即<.故圆C的半径r的取值范围为[,).【解析】(1)先求出圆H的方程,再根据直线l过点C,且被⊙H截得的弦长为2,设出直线方程,利用勾股定理,即可求直线l的方程;(2)设P的坐标,可得M的坐标,代入圆的方程,可得以(3,2)为圆心,r为半径的圆与以(6-m,4-n)为圆心,2r为半径的圆有公共点,由此求得⊙C的半径r的取值范围.本题考查圆的方程,考查直线与圆的位置关系,考查解不等式,考查学生分析解决问题的能力,有难度.19.已知函数f(x)=x3+x2+ax+b(a,b为常数),其图象是曲线C.(1)当a=-2时,求函数f(x)的单调减区间;(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.【答案】解:(1)当a=-2时,函数f(x)=x3+x2-2x+b则f′(x)=3x2+5x-2=(3x-1)(x+2)令f′(x)<0,解得-2<x<,所以f(x)的单调递减区间为(-2,);(2)函数f(x)的导函数为由于存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,则即x3+x2+(-3x2-5x-1)x+b=0存在唯一的实数根x0,故b=2x3+x2+x存在唯一的实数根x0,令y=2x3+x2+x,则y′=6x2+5x+1=(2x+1)(3x+1)=0,故x=-或x=-,则函数y=2x3+x2+x在(-∞,),(-,+∞)上是增函数,在(,-)上是减函数,由于x=-时,y=-;x=-时,y=-;故实数b的取值范围为:(-∞,-)∪(-,+∞);(3)设点A(x0,f(x0)),则在点A处的切线l1的切线方程为y-f(x0)=f′(x0)(x-x0),与曲线C联立得到f(x)-f(x0)=f′(x0)(x-x0),即(x3+x2+ax+b)-(x03+x02+ax0+b)=(3x02+5x0+a)(x-x0),整理得到(x-x0)2[x+(2x0+)]=0,故点B的横坐标为x B=-(2x0+)由题意知,切线l1的斜率为k1=f′(x0)=3x02+5x0+a,l2的斜率为k2=f′(-(2x0+))=12x02+20x0++a,若存在常数λ,使得k2=λk1,则12x02+20x0++a=λ(3x02+5x0+a),即存在常数λ,使得(4-λ)(3x02+5x0)=(λ-1)a-,故,解得λ=4,a=,故a=时,存在常数λ=4,使得k2=4k1;a≠时,不存在常数,使得k2=4k1.【解析】(1)先求原函数的导数,根据f′(x)<0求得的区间是单调减区间,即可;(2)由于存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,则存在唯一的实数根x0,即b=2x3+x2+x存在唯一的实数根x0,就把问题转化为求函数最值问题;(3)假设存在常数λ,依据曲线C在点A处的切线l1与曲线C交于另一点B,曲线C 在点B处的切线l2,得到关于λ的方程,有解则存在,无解则不存在.本题以函数为载体,考查导数知识的运用,考查函数的单调性,考查曲线的切线,同时还考查了方程根的问题,一般要转化为函数的最值来解决.20.已知数列{a n}满足a1=x,a2=3x,,,S n 是数列{a n}的前n项和.(1)若数列{a n}为等差数列.(ⅰ)求数列的通项a n;(ⅱ)若数列{b n}满足,数列{c n}满足,试比较数列{b n}前n项和B n与{c n}前n项和C n的大小;(2)若对任意n∈N*,a n<a n+1恒成立,求实数x的取值范围.【答案】解:(1)(ⅰ)∵,,①∴=3n2-6n+5(n≥3,n∈N*).②①-②,得=6n-3.∵数列{a n}为等差数列,∴a n+1+a n-1=2a n.∴3a n=6n-3.∴a n=2n-1(n≥3)③当n=1时,a1=1,a2=3符合③式.∴数列{a n}的通项公式为a n=2n-1.(ⅱ)∵a n=2n-1.∴=22n-1,∴=(16t2-4t-1)b n.∴B n=b1+b2+…+b n,C n=c1+c2+…+c n=(16t2-4t-1)(b1+b2+…+b n).当16t2-4t-1=1,即t=或t=时,B n=C n.当16t2-4t-1>1,即t>或t<时,B n<C n.当16t2-4t-1<1,即<<时,B n>C n.(2)∵,,④∴(n∈N*)⑤④-⑤,得,.⑥∴⑦⑥-⑦,得a n+3-a n=6(n≥2,n∈N*).∴当n=1时,a n=a1=x.当n=3k-1时,a n=a3k-1=a2+(k-1)×6=3x+6k-6=2n+3x-4.当n=3k时,a n=a3k=a3+(k-1)×6=14-9x+6k-6=2n-9x+8.当n=3k+1时,a n=a3k+1=a4+(k-1)×6=1+6x+6k-6=2n+6x-7,∵对任意n∈N*,a n<a n+1恒成立,∴a1<a2且a3k-1<a3k<a3k+1<a3k+2.∴<<<<解得,<<.∴实数x的取值范围为,.【解析】(1)(ⅰ)由已知可得,=6n-3.再结合等差中项的性质即可求出数列的通项公式a n;(ⅱ)根据(ⅰ)可知=22n-1,=(16t2-4t-1)b n.从而B n=b1+b2+…+b n,C n=c1+c2+…+c n=(16t2-4t-1)(b1+b2+…+b n).只需比较16t2-4t-1与1的大小即可得出B n与C n的大小关系;(2)利用已知条件得出a n+3-a n=6(n≥2,n∈N*).然后分n=3k-1,n=3k,n=3k+1三种情况讨论,列出不等式组解答即可.本题考查等差数列,等比数列的性质,数列与不等式的综合问题的解答等知识,属于难题.21.如图,锐角△ABC的内心为D,过点A作直线BD的垂线,垂足为F,点E为内切圆D与边AC的切点.若∠C=50°,求∠DEF的度数.【答案】解:∵⊙D切AC于点E,∴DE⊥AC,得∠AED=90°,又∵AF⊥DF,可得∠AFD=90°,∴∠AED=∠AFD=90°,因此,A、D、F、E四点共圆,在此圆中∠DEF与∠DAF对同弧,∴∠DEF=∠DAF.∵锐角△ABC的内心为D,∴AD、BD分别是∠BAC、∠ABC的平分线,可得∠DAB=∠BAC,∠DBA=∠ABC,因此,∠DAB+∠DBA=(∠BAC+∠ABC)=(180°-∠C)=(180°-50°)=65°.∵∠ADF为△ABD的外角,∴∠ADF=∠DAB+∠DBA=65°,R t△ADF中,∠DAF=90°-∠ADF=25°,可得∠DEF=∠DAF=25°.【解析】根据切线的性质,结合题意证出∠AED=∠AFD=90°,因此A、D、F、E四点共圆,得到∠DEF=∠DAF.由点D是△ABC的内心,可得∠DAB=∠BAC且∠DBA=∠ABC,结合三角形内角和定理证出∠DAB+∠DBA=(180°-∠C)=65°,进而得到∠ADF=65°.最后在R t△ADF中算出∠DAF=90°-∠ADF=25°,可得∠DEF=25°.本题给出△ABC的内切圆,求∠DEF的度数.着重考查了三角形内角和定理、切线的性质定理、四点共圆的判定和三角形的内切圆的性质等知识,属于中档题.22.设矩阵(其中a>0,b>0),若曲线C:x2+y2=1在矩阵M所对应的变换作用下得到曲线′:,求a+b的值.【答案】解:设P(x,y)是曲线C:x2+y2=1上的任意一点,P′(x′,y′)为曲线′:上与P对应的点,则=′′,即′′,代入得(′+(by′)2=1,这与x2+y2=1是同一方程,∴a=2,b=1,则a+b=3.【解析】设P(x,y)是曲线C:x2+y2=1上的任意一点,P′(x′,y′)为曲线′:上与P对应的点,根据题意建立(x,y)于(x′,y′)的等量关系,由此能够求出a和b 的值,即可求出所求.本题主要考查了矩阵的变换,解题时要认真审题,注意矩阵变换性质的灵活运用.属于基础题.23.在平面直角坐标系x O y中,已知直线l的参数方程是,(t为参数);以O为极点,x轴正半轴为极轴的极坐标系中,圆C的极坐标方程为.由直线l上的点向圆C引切线,求切线长的最小值.【答案】解:把直线l的参数方程,(t为参数)化为普通方程为x-y+4=0.圆C的极坐标方程为,即ρ2=2ρ•cosθ-2ρ•sinθ,即x2+y2=x-y,即+=1,表示以C(,-)为圆心,半径等于1的圆.由于圆心C到直线x-y+4=0的距离为d==5,故圆和直线相离.要使切线长最小,只有直线l上的点到圆C的距离最小,此时,直线l上的点到圆心C的距离的最小值为d=5,故切线的最小值为==2.【解析】把参数方程和极坐标方程化为直角坐标方程,可得圆和直线相离.由于直线l上的点到圆C的距离最小值为圆心到直线的距离d=5,可得切线的最小值为,计算求得结果.本题主要考查把参数方程和极坐标方程化为直角坐标方程,直线和圆的位置关系,点到直线的距离公式,属于中档题.24.已知a,b,c均为正数,证明:.【答案】证明:∵a,b,c均为正数,∴左边≥≥2=2=6,当且仅当a=b=c时取等号,∴.【解析】两次运用基本不等式即可证明结论.本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.25.某品牌汽车4S店经销A,B,C三种排量的汽车,其中A,B,C三种排量的汽车依次有5,4,3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1)求该单位购买的3辆汽车均为B种排量汽车的概率;(2)记该单位购买的3辆汽车的排量种数为X,求X的分布列及数学期望.【答案】解:(1)∵A,B,C三种排量的汽车依次有5,4,3款不同车型,∴该单位购买的3辆汽车均为B种排量汽车的概率为=;(2)由题意,X的取值为1,2,3,则P(X=1)==,P(X=3)==,P(X=2)=1-P(X=1)-P(X=3)=,∴X的分布列为∴EX==.【解析】(1)利用古典概型概率公式,可求该单位购买的3辆汽车均为B种排量汽车的概率;(2)确定该单位购买的3辆汽车的排量种数X的取值,求出相应的概率,即可求X的分布列及数学期望.本题考查概率的计算,考查随机变量的分布列及数学期望,考查学生的计算能力,正确求概率是关键.26.已知点A(-1,0),F(1,0),动点P满足•=2||.(1)求动点P的轨迹C的方程;(2)在直线l:y=2x+2上取一点Q,过点Q作轨迹C的两条切线,切点分别为M,N.问:是否存在点Q,使得直线MN∥l?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】解:(1)设P(x,y),则∵点A(-1,0),F(1,0),动点P满足,∴(x+1,y)•(2,0)=2,∴2(x+1)=2,∴y2=4x;(2)直线l方程为y=2(x+1),设Q(x0,y0),M(x1,y1),N(x2,y2).过点M的切线方程设为x-x1=m(y-y1),代入y2=4x,得=0,由△=,得,所以过点M的切线方程为y1y=2(x+x1),同理过点N的切线方程为y2y=2(x+x2).所以直线MN的方程为y0y=2(x0+x),又MN∥l,所以,得y0=1,而y0=2(x0+1),故点Q的坐标为(,1).【解析】(1)设出P的坐标,利用动点P满足,建立方程,化简可得结论;(2)求出过点M、N的切线方程,可得直线MN的方程,利用MN∥l,可求点Q的坐标.本题考查轨迹方程,考查抛物线的切线,考查学生分析解决问题的能力,求出直线MN 的方程是关键.。

2014年高考江苏数学试题与答案(word解析版)

2014年高考江苏数学试题与答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh,其中s为圆柱的表面积,h为高.圆柱的侧面积公式:S圆柱=cl,其中c是圆柱底面的周长,l为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014年江苏,1,5分】已知集合A{2,1,3,4},B{1,2,3},则AB_______.【答案】{1,3}【解析】由题意得AB{1,3}.(2)【2014年江苏,2,5分】已知复数【答案】21 z(52i)(i为虚数单位),则z的实部为_______.2 2【解析】由题意22z(52i)25252i(2i)2120i,其实部为21.(3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n的值是_______.【答案】5n的最小整数解.2n20整数解为n5,因此输出的n5.【解析】本题实质上就是求不等式220(4)【2014年江苏,4,5分】从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______.【答案】13【解析】从1,2,3,6这4个数中任取2个数共有 2C46种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为21P.63(5)【2014年江苏,5,5分】已知函数ycosx与ysin(2x)(0≤),它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cossin(2)33 ,即21sin()32,2kk(1),(kZ),因为0,所36以.6(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.【答案】241【解析】由题意在抽测的60株树木中,底部周长小于100cm的株数为(0.0150.025)106024.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}a中,若na8a62a4,则a21,a的值是________.6【答案】4【解析】设公比为q,因为a21,则由a8a62a4得64224220qqa,qq,解得22q,所以4a6a2q4.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为S,S,体积分别为12 V,V,若它们的侧面积相12等,且S1S294,则V1V2的值是_______.【答案】32【解析】设甲、乙两个圆柱的底面和高分别为r、h,r2、h2,则2r1h12r2h2,11 h r12hr21,又2Sr112Sr2294,所以r1r232,则222Vrhrhrrr11111121222Vrhrhrrr2222221232.(9)【2014年江苏,9,5分】在平面直角坐标系xOy中,直线x2y30被圆长为________.22(x2)(y1)4截得的弦【答案】2555 【解析】圆22(x2)(y1)4的圆心为C(2,1),半径为r2,点C到直线x2y30的距离为22(1)33d,所求弦长为22512 229255 l2rd24.55(10)【2014年江苏,10,5分】已知函数f(x)xmx1,若对任意x[m,m1],都有f(x)0成立,则实2数m的取值范围是________.【答案】20,2【解析】据题意22f(m)mm102f(m1)(m1)m(m1)10,解得22m0.(11)【2014年江苏,11,5分】在平面直角坐标系xOy中,若曲线2byaxx(a,b为常数)过点P(2,5),且该曲线在点P处的切线与直线7x2y30平行,则ab的值是________.【答案】3【解析】曲线yax 2bxb b过点P(2,5),则4a5①,又y'2ax22x,所以b74a②,由①②解得42ab11,所以ab2.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD中,已知,AB8,AD5,CP3PD,APBP2,则ABAD的值是________.【答案】22【解析】由题意,1APADDPADAB,433BPBCCPBCCDADAB,44所以13APBP(ADAB)(ADAB)442132ADADABAB,216即1322564ADAB,解得ADAB22.216(13)【2014年江苏,13,5分】已知f(x)是定义在R上且周期为3的函数,当x[0,3)时,21f(x)x2x.2 若函数yf(x)a在区间[3,4]上有10个零点(互不相同),则实数a的取值范围是________.【答案】01,22【解析】作出函数 21 f(x)x2x,x[0,3)的图象,可见21 f(0),当x1时,21 f(x)极大, 27f ,方程f(x)a0在x[3,4]上有10个零点,即函数yf(x)和图象与直线 (3) 2ya 在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线ya 与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21 a(0,). 2(14)【2014年江苏,14,5分】若ABC 的内角满足sinA2sinB2sinC ,则cosC 的最小值是_______.【答案】624【解析】由已知sinA2sinB2sinC 及正弦定理可得a2b2c , cosC a2b 222 ab() 2 222abc 2ab2ab223a2b22ab26ab22ab628ab8ab4,当且仅当 22 3a2b ,即a b 2 3时等号成立,所以cosC的最小值为 62 4. 二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤. (15)【2014年江苏,15,14分】已知2,,sin5 5 .(1)求sin的值;4(2)求cos2 6的值. 解:(1)∵sin5,,,∴ 25225cos1sin5, 210sinsincoscossin(cossin).444210(2)∵43 sin22sincoscos2cossin,,sin22sincoscos2cossin2255∴3314334 cos2coscos2sinsin2666252510. (16)【2014年江苏,16,14分】如图,在三棱锥PABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知 PAAC ,PA6,BC8,DF5.(1)求证:直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC . 解:(1)∵D ,E 为PC ,AC 中点∴DE ∥PA ∵PA 平面DEF ,DE 平面DEF ∴PA ∥平面DEF .(2)∵D ,E 为PC ,AC 中点,∴DE1PA3∵E ,F 为AC ,AB 中点,∴14 EFBC ,22∴DE 2EF 2DF 2,∴DEF90°,∴DE ⊥EF ,∵DE//PA ,PAAC ,∴DEAC , ∵ACEFE ,∴DE ⊥平面ABC ,∵DE 平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中, F ,F 分别是椭圆 12 22yxab的左、221(0)ab右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1B F22,求椭圆的方程;(1)若点C的坐标为41,,且33(2)若F CAB,求椭圆离心率e的值.13161解:(1)∵41C,,∴33 999ab22,∵2222BFbca,∴22(2)22a,∴b,21∴椭圆方程为2xy.21 2(2)设焦点F1(c,0),F2(c,0),C(x,y),∵A,C关于x轴对称,∴A(x,y),∵B,F,A三点共线,∴2bybcx,即bxcybc0①∵yb FCAB,∴11xcc ,即20xcbyc②①②联立方程组,解得xyca2bc222bc2bc22∴Cac2bc22,2222bcbcC在椭圆上,∴22ac2bc22bcbc2222ab221,化简得5ca,∴c522a5,故离心率为55.(18)【2014年江苏,18,16分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段O A上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O 正东方向170m处(OC为河岸),tan4BCO.3(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系x Oy.由条件知A(0,60),C(170,0),直线BC的斜率4k-tanBCO.BC3又因为AB⊥BC,所以直线AB的斜率3k.设点B的坐标为(a,b),AB4则k BC=b04a1703 ,k AB=603ba04,解得a=80,b=120.所以BC= 22(17080)(0120)150.因此新桥BC的长是150m.(2)设保护区的边界圆M的半径为rm,OM=dm,(0≤d≤60.) 由条件知,直线BC的方程为4(170)yx,即4x3y6800,3由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即因为O和A到圆M上任意一点的距离均不少于80m,|3d680|6803d r.55所以rd≥ 80r(60d)≥80,即6803d 5 6803d5d80 ≥ (60d)80≥,解得10≤d ≤35.故当d=10时, 6803d r 最大,即圆面积最大.所以当OM=10m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA,CB 交于点F .因为tan ∠BCO=43 .所以sin ∠FCO=45 ,cos ∠FCO=3 5 .因为OA=60,OC=170,所以OF=OCtan ∠FCO=680 3.CF= OC 850cosFCO3 , 4从而500AFOFOA.因为O A⊥OC,所以cos∠AFB=sin∠FCO=3 45,又因为A B⊥BC,所以BF=AFcos∠AFB== 4003,从而BC=CF-BF=150.因此新桥B C的长是150m.(2)设保护区的边界圆M与BC的切点为D,连接M D,则MD⊥BC,且MD是圆M的半径,并设MD=rm,OM=dm(0≤d≤60.)因为O A⊥OC,所以sin∠CFO=cos∠FCO,故由(1)知,sin∠CFO= M DMDr3MFOFOM 6805d3所以6803dr.5因为O和A到圆M上任意一点的距离均不少于80m,所以rd≥80r(60d)≥80,即6803d56803d5d80≥(60d)≥80,解得10≤d≤35,故当d=10时,6803dr最大,即圆面积最大.所以当OM=10m时,圆形保护区的面积最大.5(19)【2014年江苏,19,16分】已知函数()eexxfx其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤em1在(0,)上恒成立,求实数m的取值范围;x(3)已知正数a满足:存在你的结论.x0[1,),使得3ea1与f(x)a(x3x)成立.试比较000a e1的大小,并证明解:(1)x R,f(x)eef(x),∴f(x)是R上的偶函数.xx(2)由题意,(ee)e1xxxm≤,∵x(0,),∴exex10,xxxm≤m,即(ee1)e1即e1xm≤对x(0,)恒成立.令e(1)tt,则xee1xx m1t≤对任意t(1,)恒成立.tt12∵1111tt≥,当且仅当t2时等号成立,∴1m≤.223tt1(t1)(t1)113t11t1(3)f'(x)ee,当x1时f'(x)0∴f(x)在(1,)上单调增,令xx h(x)a(x3x),h'(x)3ax(x1),33∵a0,x1,∴h'(x)0,即h(x)在x(1,)上单调减,∵存在x0[1,),使得f xaxx,∴f(1)e12a,即1e1()(3)a.3000e2e∵aaaa,设m(a)(e1)lnaa1,则m'(a)e11e1a e-1lnlnlne(e1)ln1e1a1eaaa1 ,11 ae.当2e 11eae1时,m'(a)0,m(a)单调增;当ae1时,m'(a)0,m(a)单调2e减,因此m(a)至多有两个零点,而m(1)m(e)0,∴当ae时,m(a)0,a e1ea1;当1e1ea 时,m(a)0,2ea e1e1;当ae 时,m(a)0, aae1ea1.(20)【2014年江苏,20,16分】设数列{}a 的前n 项和为S .若对任意的正整数n ,总存在正整数m ,使得 nnS a , nm则称{}a 是“H 数列”. nn(1)若数列{a}的前n 项和S2(n N ),证明:{a}是“H 数列”;nnn(2)设{a}是等差数列,其首项 na 11,公差d0.若{a }是“H 数列”,求d 的值; n (3)证明:对任意的等差数列{}a ,总存在两个“H 数列”{b}和{c},使得abc(n N )成立. nnnnnn 解:(1)当n ≥2时,nn1n1 aSS1222,当n1时,nnn a 1S 12, ∴n1时, S a ,当n ≥2时, 11 S a ,∴{a }是“H 数列”. nn1n(2) n(n1)n(n1) Snadnd ,对n N ,m N 使 n122Sa ,即 nm n(n1) nd1(m1)d , 2 5取n2得1d(m 1)d ,m21d,∵d0,∴m2,又m N ,∴m1,∴d1. (3)设{} a 的公差为d ,令 n b a1(n1)a1(2n)a1,对n N , nbba , n1n1 c (n1)(ad), n1 对n N , c cad ,则 n1n1b ca1(n1)da ,且{b},{c }为等差数列. nnnnn{b}的前n 项和 n n(n1) Tna(a),令 n112T(2m)a ,则 n1 n(n3) m2. 2 当n1时m1;当n2时m1;当n ≥3时,由于n 与n3奇偶性不同,即n(n3)非负偶数,m N . 因此对n ,都可找到m N ,使T b 成立,即{b}为“H 数列”. nmn{c }的前n项和 n n(n1) R(ad),令 n12c(m1)(ad)R ,则 n1m m n (n1) 2 1∵对n N ,n(n1)是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立, nm即{}c 为“H 数列”,因此命题得证. n数学Ⅱ 注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必 答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定 位置. 3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚. 4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A 、B 、C 、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、D是圆O 上位于AB 异侧的两点.证明:∠OCB=∠D .解:因为B ,C 是圆O 上的两点,所以OB=OC .故∠OCB=∠B .又因为C,D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B=∠D .因此∠OCB=∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵 1211 A ,B ,向量1x212 y , x ,y 为实数,若A α=B α,求x ,y 的值.解: 2y2 A ,2xy2y B α,由A α=B α得4y2y22y , 解得14x ,y .2xy4y ,2(21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2 x1t ,2(t 为参数),直线l 与抛物线2y2t2y 24x 交于A ,B 两点,求线段A B 的长. 解:直线l :xy3代入抛物线方程24 yx 并整理得x 210x90,∴交点A(1,2),B(9,6),故|AB|82. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知x0,y0,证明: 22 1xy1xy9xy .解:因为x>0,y>0,所以1+x+y 2≥33xy 20,1+x 2+y ≥ 2≥33xy 20,1+x 2+y ≥ 22222 333 3xy0,所以(1+x+y)(1+x+y)≥3xy3xy=9xy .【必做】第22、23题,每小题10分,计20分.请把答案写在.答.题.卡.的.指.定.区.域.内...完(22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外全相同.6(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x,x,x,随机变量X表示123 x,x,x 123中的最大数,求X的概率分布和数学期望E(X).解:(1)一次取2个球共有 2C36种可能情况,2个球颜色相同共有9222CCC10种可能情况,432∴取出的2个球颜色相同的概率105P.3618(2)X的所有可能取值为4,3,2,则C14PX;(4)4C12649CCCC133131P(X3)4536;C6339 11P(X2)1P(X3)P(X4).∴X的概率分布列为:14X234P11 14 13631126故X的数学期望()2113134120EX.14631269(23)【2014年江苏,23,10分】已知函数sinxf(x)(x0)x ,设f(x)为nf x的导数,n N.n1()(1)求2f f的值;12222(2)证明:对任意的n N,等式 2nff成立.n1n4442解:(1)由已知,得sinxcosxsinxf(x)f(x)102xxx,于是cosxsinxsinx2cosx2sinx f(x)f(x)21223xxxxx ,所以4216f(),f(),122322故2f()f()1.12222(2)由已知,得xf0(x)sinx,等式两边分别对x求导,得f0(x)xf0(x)cosx,即f0(x)xf1(x)cosxsin(x),类似可得2 2f(x)xf(x)sinxsin(x),123 3f(x)xf(x)cosxsin(x),232 4f(x)xf(x)sinxsin(x2).34下面用数学归纳法证明等式nnfxxfxx对所有的nnn1()()sin()2N*都成立.(i)当n=1时,由上可知等式成立.(ii)假设当n=k时等式成立,即kkf1(x)xf(x)sin(x).kk2因为[kf(x)xf(x)]kf(x)f(x)xf(x)(k1)f(x)f(x),k1kk1kkkk1(k1) kkk[sin(x)]cos(x)(x)sin[x],所以2222 (k1)f(x)f(x)kk1(k1)sin[x].2所以当n=k+1时,等式也成立.综合(i),(ii)可知等式nnf1(x)xf(x)sin(x)对所有的nnnN都成立.*2令x,可得4nnf1()f()sin()(nnn44442N).所以*2nff(nn1n()()4442N).*7。

高三数学集合的运算试题答案及解析

高三数学集合的运算试题答案及解析

高三数学集合的运算试题答案及解析1. [2014·苏北五市模拟]已知集合A={x||x-a|≤1},B={x|x2-5x+4≥0},若A∩B=∅,则实数a 的取值范围是________.【答案】(2,3)【解析】∵集合B中,x2-5x+4≥0,∴x≥4或x≤1.又∵集合A中,|x-a|≤1,∴a-1≤x≤1+a.∵A∩B=∅,∴a+1<4且a-1>1.∴2<a<3.2.已知集合,,则 ( )A.{x|0<x<}B.{x|<x<1}C.{x|0<x<1}D.{x|1<x<2}【答案】B【解析】=,=,所以{x|<x<1},故选B.【考点】1.集合的运算.2.指数函数的性质.3. (2014·天门模拟)设P和Q是两个集合,定义集合P+Q={x|x∈P或x∈Q且x∉P∩Q}.若P={x|x2-(x2-2x-15)},那么P+Q等于()3x-4≤0},Q={x|y=log2A.[-1,4]B.(-∞,-1]∪[4,+∞)C.(-3,5)D.(-∞,-3)∪[-1,4]∪(5,+∞)【答案】D【解析】由题意可知P={x|-1≤x≤4},Q={x|x<-3或x>5}.所以P+Q={x|x<-3或-1≤x≤4或x>5}.4.已知集合A={x|},B={x|},则集合=()A.{x| 0<x<4}B.{x| 0<x<5}C.{x| 1<x ≤ 4}D.{x| 4≤x<5}【答案】C【解析】,.选C.【考点】集合的基本运算.5.已知集合,,则.【答案】【解析】求两集合的交集,就是求它们共同元素的集合.集合A为无限集,集合B为有限集,所以将集合B中元素逐一代入集合A验证,得.【考点】集合基本运算.6.已知a≤1时,集合[a,2-a]中有且只有3个整数,则a的取值范围是________.【答案】-1<a≤0【解析】因为a≤1,所以2-a≥1,所以1必在集合中.若区间端点均为整数,则a=0,集合中有0,1,2三个整数,所以a=0适合题意;若区间端点不为整数,则区间长度2<2-2a<4,解得-1<a<0,此时,集合中有0,1,2三个整数,-1<a<0适合题意.综上,a的取值范围是-1<a≤0.7.已知非空集合和,规定,那么等于()A.B.C.D.【答案】B【解析】解法一:设集合,,根据定义,则,因此,故选B.解法二:根据定义,则对任意,且,则,因此,所以,故选B.【考点】1.新定义;2.集合的运算8.设集合则( )A.{x|x<-2或x>2}B.{x|x>2}C.{x|x>1}D.{x|x<1}【答案】B【解析】由,即可得或.又因为.所以.【考点】1.绝对值不等式的解法.2.集合的交集的运算.9.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围.【答案】a=1或a≤-1【解析】由A∩B=B得B⊆A,而A={-4,0},Δ=4(a+1)2-4(a2-1)=8a+8,当Δ=8a+8<0,即a<-1时,B=⌀,符合B⊆A;当Δ=8a+8=0,即a=-1时,B={0},符合B⊆A;当Δ=8a+8>0,即a>-1时,B中有两个元素,而B⊆A={-4,0};∴B={-4,0}得a=1.∴a=1或a≤-1.10.设集合若,则的范围是( )A.B.C.D.【答案】B【解析】因为,根据题意,,而,在数轴上表示可得,必有,故选B.【考点】集合与集合之间关系.11.已知全集U={y|y=log2x,x>1},集合P=,则∁UP=().A.B.C.(0,+∞)D.(-∞,0)∪【答案】AP=.【解析】集合U={y|y>0},P={y|0<y<},∴∁U12.己知全集,集合,,则 .【答案】【解析】本题首先求出集合A,B,再求它们的运算,这两个集合都是不等式的解集,故解得,,因此.【考点】集合的运算.13.已知全集U,A,B,那么 __.【答案】【解析】这是基本题型,考查集合的运算,,即B的补集由全集U中不属于B的元素所组成.两个集合的并集简单地讲就是把两个集合的元素合在一起,相同的只写一个即可.【考点】集合的运算.14.已知全集=N,集合Q=则( )A.B.C.D.【答案】C【解析】由于P中含1、2、3、4、6,Q中含有1、2、3,而没有4、6,所以求就应将P中的1、2、3排除,而只留4和6,即.【考点】集合的基本运算.A)∩B=()15.已知集合A={x|lg(x-2)≥0},B={x|x≥2},全集U=R,则(CUA. {x|-1<x≤3}B. {x|2≤x﹤3}C. {x|x=3}D.【答案】B【解析】∵,,∴.【考点】1.对数不等式的解法;2.集合的交、补运算.16.设全集是实数集,,N={x|},则图中阴影部分表示的集合是( )A.{x|-2≤x<1B.{x|-2≤x≤2}C.{x|1<x≤2D.{x|x<2}【答案】C.【解析】从韦恩图可知阴影部分是扣除了集合M与N的公共部分的那部分.由,所以,所阴影部分的集合为{x|1<x≤2故填C.【考点】1.二次不等式的解法.2.补集的概念.3.韦恩图的应用.17.设函数.(1)在区间上画出函数的图象;(2)设集合. 试判断集合和之间的关系,并给出证明.【答案】(1)详见解析; (2).【解析】(1)根据函数的具体特点采用列表描点的基本方法,区间的端点要单独考虑,另外还要考虑到函数的零点,含有绝对值函数的图象的规律:轴上方的不变,轴下方的翻到轴上方,这样就可画出函数在区间上的图象; (2)由不等式可转化为求出方程的根,再结合(1)中所作函数的图象,利用函数图象的单调性,即可确定出不等式的解集,借助于数轴可分析出的关系.试题解析:(1)函数在区间上画出的图象如下图所示:5分(2)方程的解分别是和,由于在和上单调递减,在和上单调递增,因此. 8分由于. 10分【考点】1.函数的图象和性质;2.集合的运算18.已知全集,集合,则()A.B.C.D.【答案】C【解析】,,则.【考点】集合的运算19.已知全集,集合,,那么()A.B.C.D.【答案】D【解析】,,,,故选D.【考点】1.集合的基本运算;2.一元二次不等式的解法20.已知集合,集合,则 ( )A.(-)B.(-]C.[-)D.[-]【答案】B.【解析】解:,故选B.【考点】1.简单不等式的解;2.集合的运算(交集、补集).21.设,则()A.B.C.D.【答案】C【解析】,所以.【考点】集合的运算.22.设集合,,则 ( )A.B.C.D.【答案】A【解析】因为,由图知:.【考点】1.集合的运算;2.一元二次不等式的解法.23.已知集合,,则.【答案】【解析】分别在数轴上表示集合A和B,取并集.【考点】集合的运算24.已知集合则集合=________.【答案】[4,6]【解析】根据题意,由于集合可知,B={x| },A=[-5,6],那么根据交集的定义可知=[4,6],故答案为[4,6]。

2014年高考江苏数学试题及答案(word解析版)

2014年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一测试(江苏卷)数学Ⅰ参考公式:圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =I _______. 【答案】{13}-,【分析】由题意得{1,3}A B =-I .(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【分析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21. (3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【分析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【分析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =和sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【分析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24【分析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题 - 第20题).本卷满分160分,测试时间为120分钟.测试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【分析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【分析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.(9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.【答案】255【分析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)3512d +⨯--==+,所求弦长为2292552245l r d =-=-=. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】20⎛⎫- ⎪⎝⎭, 【分析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得20m -<<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线和直线7230x y ++=平行,则a b +的值是________. 【答案】3-【分析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=u u u r u u u r u u u r u u u r ,,则AB AD ⋅u u u r u u u r 的值是________. 【答案】22【分析】由题意,14AP AD DP AD AB =+=+u u u r u u u r u u u r u u u r u u u r ,3344BP BC CP BC CD AD AB =+=+=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r,所以13()()44AP BP AD AB AD AB ⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r 2213216AD AD AB AB =-⋅-u u u r u u u r u u u r u u u r ,即1322564216AD AB =-⋅-⨯u u u r u u u r ,解得22AD AB ⋅=u u u r u u u r .(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________.【答案】()102,【分析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象和直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =和函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 22sin A B C =,则cos C 的最小值是_______.62-【分析】由已知sin 22sin A B C =及正弦定理可得22a b c =,2222222()2cos 22a b a b a b c C ab ab ++-+-==2232222622628a b ab ab ab ab +---=,当且仅当2232a b =,即23a b =所以cos C 62- 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,5sin α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()5sin 2ααπ∈π,,,∴225cos 1sin αα=--=, ()210sin sin cos cos sin sin )444αααααπππ+=+=+=.(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =I ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =(2)若1FC AB ⊥,求椭圆离心率e 的值. 解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴22(2)2a ==,∴21b =,∴椭圆方程为2212x y +=. (2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴5c a = 5. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 和河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并和BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC 22(17080)(0120)150-+-=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 和直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠, 从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AFcos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m .(2)设保护区的边界圆M 和BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD MD r MF OF OM d ===--所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -和e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a aa a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-, 取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+.当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 和3n -奇偶性不同,即(3)n n -非负偶数,m *∈N . 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵和变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值.解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系和参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2122x t y t ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 和抛物线24y x =交于A B ,两点,求线段AB 的长. 解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||82AB =. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.测试时间30分钟.测试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:X 2 3 4P11141363 1126 故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()12444n n nf f -πππ+=成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===-⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.(i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以12()()444n n nf f πππ-+n ∈*N ).。

2014年江苏省高考数学试题)答案解析

2014年江苏省高考数学试题)答案解析

3 5
5 ,弦长= 2
r
2
d
2
2
=2 4
9 5
25 5
【点评】本题主要考查直线和圆相交求弦长,直线和圆的位置关系向来都是热点和重点问 题,本题考查的也是一个相对简单的问题,主要侧重计算。
10、已知函数 f (x) x2 mx 1,若对于任意 x [m, m 1] ,都有 f (x) 0 成立,则实 数 m 的取值范围是 ▲ .
的频率为 0.025 10 0.25,样本容量为 60 株, (0.15 0.25) 60 24株是满足题意
的。
【点评】本题考查统计部分的内容,重点考查频
频率/组距
率分布直方图。频率分布直方图的纵轴表示
频率 ,图中读出的数据 0.015并非是频率,需要
组距 乘以组距 10 以后才为频率。频率分布直方图近
15.(1)∵α∈( ,π), =
∴=

=
+
=
(2)
=1 2 = ,
=2
=
=
+
=
+( ) =
16.如图,在三棱锥 P ABC 中,D,E,F 分别为棱 PC,AC,AB 的中点。已
P
知 PA⊥AC,PA=6,BC=8,DF=5.
D
求证:(1)直线 PA∥平面 DEF;
(2)平面 BDE⊥平面 ABC.
13.已知 f (x) 是定义在 R 上且周期为 3 的函数,当 x[0,3) 时, f (x) | x2
2x
1| 2
y f (x) a 在 区 间 [ 3,4]上 有 10 个零点(互不相同),则实数 a 的 取 值 范 围 是
▲.
【答案】 (0, 1 ) 2

2014年江苏省高考数学试题及答案

2014年江苏省高考数学试题及答案

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={},,则 ▲ .2. 已知复数(i 为虚数单位),则的实部为 ▲ .3. 右图是一个算法流程图,则输出的的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲ .5. 已知函数与(0≤),zxxk 它们的图象有一个横坐标为的交点,则的值是 ▲ . 6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列中,,则的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为,,体积分别为,,若它们的侧面积相等,且,则的值是 ▲ .9. 在平面直角坐标系中,直线被圆截得的弦长为 ▲ .10. 已知函数若对于任意,都有成立,则实数的取值范围是 ▲ .11. 在平面直角坐标系中,若曲线(a ,b 为常数) zxxk 过点,且该曲线在点P 处的切线与直线平行,则的值是 ▲ .12. 如图,在平行四边形中,已知,,4,3,1,2--}3,2,1{-=B =B A I 2)i 25(+=z z n x y cos =)2sin(ϕ+=x y πϕ<3πϕ}{n a ,12=a 4682a a a +=6a 1S 2S 1V 2V 4921=S S 21V V xOy 032=-+y x 4)1()2(22=++-y x ,1)(2-+=mx x x f ]1,[+∈m m x 0)(<x f m xOy xbax y +=2)5,2(-P 0327=++y x b a +ABCD 8=AB 5=AD(第3题)100 80 90 110 120 底部周长/cm(第6题)(第12题),,则的值是 ▲ .13. 已知是定义在R 上且周期为3的函数,当时,.若函数在区间上有10个零点(互不相同),则实数的取值范围是 ▲ .14. 若△的内角满足,则的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知,.(1)求的值;(2)求的值.16.(本小题满分14分)如图,在三棱锥中,,E ,F 分zxxk 别为棱的中点.已知,求证: (1)直线平面;(2)平面平面.3=2=⋅BP AP ⋅)(x f )3,0[∈x |212|)(2+-=x x x f a x f y -=)(]4,3[-a ABC C B A sin 2sin 2sin =+C cos ),2(ππα∈55sin =α)4sin(απ+)265cos(απ-ABC P -D AB AC PC ,,AC PA ⊥,6=PA .5,8==DF BC //PA DEF ⊥BDE ABC (第16题)PD CEF B A17.(本小题满分14分)如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点A ,过点A 作轴的垂线交椭圆于另一点C ,连结.(1)若点C 的坐标为,且,求椭圆的方程;(2)若求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),.(1)求新桥BC 的长;(2)当OM 多长时,19.(本小题满分16分)xOy 21,F F )0(12322>>=+b a by a x B ),0(b 2BF x C F 1)31,34(22=BF ,1AB C F ⊥OA 34tan =∠BCO已知函数,其中e 是自然对数的底数. (1)证明:是R 上的偶函数;(2)若关于的不等式≤在上恒成立,学科网求实数的取值范围;(3)已知正数满足:存在,使得成立.试比较与的大小,并证明你的结论.20.(本小题满分16分)设数列的前项和为.若对任意正整数,学科网总存在正整数,使得,则称是“H 数列”. (1)若数列的前n 项和(N ),证明: 是“H 数列”;(2)设 是等差数列,其首项,公差.若 是“H 数列”,求的值;(3)证明:对任意的等差数列,总存在两个“H 数列”和,使得 (N )成立.x x x f -+=e e )()(x f x )(x mf 1e -+-m x ),0(+∞m a ),1[0+∞∈x )3()(030x x a x f +-<1e -a 1e -a }{n a n n S n m m n a S =}{n a }{n a n n S 2=∈n *}{n a }{n a 11=a 0<d }{n a d }{n a }{n b }{n c n n n c b a +=∈n *答案:12346791314二、解答题16171920【解析】(1)首先,当时,,所以,所112a S ==2n ≥111222n n n n n n a S S ---=-=-=12,1,2,2,n n n a n -=⎧=⎨≥⎩。

2014年高考江苏数学试题及答案(word解析版)

2014年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题—第14 题)、解答题(第15 题第20 题).本卷满分160 分,考试时间为120 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh ,其中s为圆柱的表面积,h 为高.圆柱的侧面积公式:S圆柱=cl ,其中 c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014 年江苏,1,5 分】已知集合 A { 2 ,1,3,4} ,B { 1,2,3} ,则 A B _______ .【答案】{ 1,3}【解析】由题意得 A B { 1,3} .(2)【2014 年江苏,2,5 分】已知复数【答案】21 z(5 2i) (i 为虚数单位),则z的实部为_______. 22【解析】由题意 2 2z (5 2i) 25 2 5 2i (2i) 21 20i ,其实部为21.(3)【2014 年江苏,3,5 分】右图是一个算法流程图,则输出的n 的值是_______.【答案】 5n 的最小整数解.2n 20 整数解为n 5,因此输出的n 5 .【解析】本题实质上就是求不等式 2 20(4)【2014 年江苏,4,5 分】从1,2 ,3,6这4个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是_______.【答案】 13【解析】从1,2,3,6这4个数中任取 2 个数共有 2C4 6 种取法,其中乘积为 6 的有1,6 和2,3 两种取法,因此所求概率为 2 1P .6 3(5)【2014 年江苏,5,5 分】已知函数y cos x与y sin(2 x )(0 ≤) ,它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cos sin(2 )3 3 ,即2 1sin( )3 2,2kk ( 1) ,(k Z ) ,因为0 ,所3 6以.6(6)【2014 年江苏,6,5 分】为了了解一片经济林的生长情况,随机抽测了其中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频率分布直方图如图所示,则在抽测的60 株树木中,有株树木的底部周长小于100 cm.【答案】241【解析】由题意在抽测的60 株树木中,底部周长小于100 cm 的株数为(0.015 0.025) 10 60 24 .(7)【2014 年江苏,7,5 分】在各项均为正数的等比数列{ }a 中,若na8 a6 2a4 ,则a2 1 ,a的值是________.6【答案】 4【解析】设公比为q ,因为a2 1,则由a8 a6 2a4 得 6 4 2 2 4 2 2 0q q a ,q q ,解得2 2q ,所以4a6 a2q 4 .(8)【2014 年江苏,8,5 分】设甲、乙两个圆柱的底面积分别为S,S ,体积分别为1 2 V ,V ,若它们的侧面积相1 2等,且S1S294,则V1V2的值是_______.【答案】 32【解析】设甲、乙两个圆柱的底面和高分别为r 、h ,r2、h2 ,则2 r1h1 2 r2 h2 ,1 1 h r1 2h r2 1,又2S r1 12S r2 294,所以r1r232,则2 2 2V r h r h r r r1 1 1 1 1 12 12 2 2V r h r h r r r2 2 2 2 2 2 1 232.(9)【2014 年江苏,9,5 分】在平面直角坐标系xOy 中,直线x 2 y 3 0 被圆长为________.2 2(x2) (y1) 4 截得的弦【答案】 2 555【解析】圆 2 2(x 2) (y1) 4 的圆心为 C (2, 1) ,半径为r 2 ,点C 到直线x 2y 3 0 的距离为2 2 ( 1)3 3d ,所求弦长为2 251 22 2 9 2 55l 2 r d 2 4 .5 5(10)【2014 年江苏,10,5 分】已知函数f (x) x mx 1,若对任意x [m,m 1],都有 f (x) 0 成立,则实2数m 的取值范围是________.【答案】 2 0,2【解析】据题意2 2f (m) m m 1 02f (m 1) (m 1) m(m 1) 1 0,解得22m 0 .(11)【2014 年江苏,11,5 分】在平面直角坐标系xOy 中,若曲线 2 by axx( a,b 为常数)过点P(2 ,5) ,且该曲线在点P 处的切线与直线7x 2 y 3 0 平行,则 a b 的值是________.【答案】 3【解析】曲线y ax 2 bxb b过点P(2, 5) ,则4a 5 ①,又y'2ax 22 x,所以b 74a ②,由①②解得4 2ab11,所以 a b 2 .(12)【2014 年江苏,12,5 分】如图,在平行四边形ABCD 中,已知,AB 8 ,AD 5 ,CP 3PD ,AP BP 2 ,则AB AD 的值是________.【答案】22【解析】由题意,1AP AD DP AD AB ,43 3BP BC CP BC CD AD AB ,4 4所以1 3AP BP (AD AB) (AD AB)4 42 13 2AD AD AB AB ,2 16即 1 32 25 64AD AB ,解得AD AB 22 .2 16(13)【2014 年江苏,13,5 分】已知 f (x) 是定义在R上且周期为 3 的函数,当x [0 ,3) 时, 2 1f (x) x 2x .2 若函数y f ( x) a 在区间[ 3,4] 上有10 个零点(互不相同),则实数 a 的取值范围是________.【答案】0 1,22【解析】作出函数21f(x)x2x,x[0,3)的图象,可见21f(0),当x1时,21f(x)极大,27f,方程f(x)a0在x[3,4]上有10个零点,即函数y f(x)和图象与直线(3)2y a在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线y a与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21a(0,).2(14)【2014年江苏,14,5分】若ABC的内角满足sin A2sin B2sin C,则cos C的最小值是_______.【答案】624【解析】由已知sin A2sin B2sin C及正弦定理可得a2b2c,cosC222a b c2ab2ab223a2b22ab26ab22ab62 8ab8ab4,当且仅当223a2b,即ab23时等号成立,所以cos C的最小值为624.二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知2,,sin55.(1)求sin的值;4(2)求cos26的值.解:(1)∵sin5,,,∴25225cos1sin5,210s i n s i n c o s c o s s i n(c o s s i n).444210(2)∵43sin22sin cos cos2cos sin,,sin22sin cos cos2cos sin2255∴3314334 cos2cos cos2sin sin2666252510.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA AC,PA6,BC8,DF5.(1)求证:直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解:(1)∵D,E为PC,AC中点∴DE∥PA∵PA平面DEF,DE平面DEF∴PA∥平面DEF.(2)∵D,E为PC,AC中点,∴DE1PA3∵E,F为AC,AB中点,∴1 4EF BC,22∴DE2EF2DF2,∴DEF90°,∴DE⊥EF,∵DE//PA,PA AC,∴DE AC,∵AC EF E,∴DE⊥平面ABC,∵DE平面BDE,∴平面BDE⊥平面ABC.(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy中,F,F分别是椭圆1222yx a b221(0)a b的左、右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1(1)若点C的坐标为41,,且33B F22,求椭圆的方程;(2)若F C AB,求椭圆离心率e的值.1316 1解:(1)∵ 4 1C ,,∴3 3 9 9 9a b2 2,∵ 2 2 2 2BF b c a ,∴22 ( 2) 2 2a ,∴b,2 1∴椭圆方程为 2 x y .2 12(2)设焦点F1( c,0) ,F2 (c,0) ,C(x,y) ,∵A,C 关于x 轴对称,∴A(x ,y) ,∵B,F ,A三点共线,∴2b ybc x,即bx cy bc 0①∵y b FC AB ,∴ 1 1x c c ,即 2 0xc by c ②①②联立方程组,解得xyca2b c2 22bc2b c2 2∴Ca c 2bc2 2,2 2 2 2b c b cC 在椭圆上,∴2 2a c 2bc2 2b c b c2 2 2 2a b2 21,化简得5c a ,∴c 52 2a 5, 故离心率为55.(18)【2014 年江苏,18,16 分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段O A 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m.经测量,点 A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),tan 4BCO .3(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系x Oy.由条件知A(0, 60),C(170, 0),直线BC 的斜率 4k -tan BCO .BC3又因为AB⊥BC,所以直线AB 的斜率 3k .设点 B 的坐标为(a,b),AB4则k BC= b 0 4a 170 3 ,k AB= 60 3ba 0 4,解得a=80,b=120.所以BC= 2 2(170 80) (0 120) 150 .因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d≤60.)由条件知,直线BC 的方程为 4 ( 170)y x ,即4x 3y 680 0 ,3由于圆M 与直线BC 相切,故点M (0,d)到直线BC 的距离是r,即因为O 和A 到圆M 上任意一点的距离均不少于80 m,| 3d 680 | 680 3d r .5 5所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d ) 80≥,解得10 ≤ d ≤35 .故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA, CB 交于点F.因为tan∠BCO = 43 .所以sin∠FCO = 45,cos∠FCO = 35.因为OA =60,OC=170,所以OF= O C tan∠FCO =6803 .CF=OC850cos FCO 3,4从而500AF OF OA .因为O A⊥OC,所以cos∠AFB =sin∠FCO =3 45,又因为A B⊥BC,所以BF =AFcos∠AFB == 4003,从而BC= C F-BF=150.因此新桥B C 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D,连接M D ,则MD ⊥BC,且MD 是圆M 的半径,并设MD =r m,OM =d m(0 ≤d≤60.) 因为O A⊥OC,所以sin∠CFO =cos∠FCO,故由(1)知,sin∠CFO = MD MD r 3MF OF OM 680 5d3所以680 3dr .5因为O和A 到圆M 上任意一点的距离均不少于80 m,所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d )≥80,解得10 ≤ d ≤35 ,故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5(19)【2014 年江苏,19,16 分】已知函数( ) e ex xf x 其中e 是自然对数的底数.(1)证明: f (x) 是R上的偶函数;(2)若关于x的不等式mf (x) ≤ e m 1在(0 ,) 上恒成立,求实数m 的取值范围;x(3)已知正数 a 满足:存在你的结论.x0 [1,) ,使得 3 ea 1 与f (x ) a( x 3x ) 成立.试比较0 0 0a e 1 的大小,并证明解:(1)x R, f ( x) e e f (x) ,∴ f (x) 是R上的偶函数.x x(2)由题意,(e e ) e 1x x x m ≤,∵x (0 ,) ,∴e x e x 1 0 ,x x xm ≤m ,即(e e 1) e 1即 e 1xm ≤对x (0 ,) 恒成立.令 e ( 1)t t ,则xe e 1x x m1 t≤对任意t (1,) 恒成立.t t 12∵ 1 1 1 1t t ≥,当且仅当t 2 时等号成立,∴ 1m ≤.2 2 3t t 1 (t 1) (t 1) 1 1 3t 1 1t 1(3)f '( x) e e ,当x 1 时 f '( x) 0 ∴ f (x) 在(1,) 上单调增,令x xh(x) a( x 3x) ,h '( x) 3ax( x 1) ,33∵a 0 ,x 1,∴h '(x) 0 ,即h( x) 在x (1,) 上单调减,∵存在x0 [1,) ,使得f x a x x ,∴ f (1) e 1 2a ,即 1 e 1 ( ) ( 3 ) a .30 0 0e 2 e∵ a a a a ,设m(a) (e 1)ln a a 1 ,则m '(a ) e 1 1 e 1 a e-1ln ln ln e (e 1)ln 1e 1 a 1e a aa 1,1 1a e .当2 e 1 1e a e 1时,m '(a) 0 ,m(a) 单调增;当 a e 1 时,m '(a) 0 ,m(a ) 单调2 e减,因此m( a) 至多有两个零点,而m(1) m(e) 0 ,∴当 a e 时,m(a) 0 ,a e 1 e a 1 ;当1 e 1 ea 时,m(a) 0 ,2 e a e 1 e 1 ;当a e 时,m(a) 0 ,aa e 1 e a 1 .(20)【2014 年江苏,20,16 分】设数列{ }a 的前n 项和为S.若对任意的正整数n,总存在正整数m,使得n n S a ,n m则称{}a 是“H 数列”.nn(1)若数列{ a } 的前n 项和S 2 (n N) ,证明:{ a } 是“H 数列”;n n n(2)设{ a } 是等差数列,其首项n a1 1,公差 d 0 .若{a } 是“H 数列”,求d 的值;n(3)证明:对任意的等差数列{ }a ,总存在两个“H数列”{b } 和{c } ,使得 a b c (n N) 成立.n n n n n n解:(1)当n ≥ 2 时,n n 1 n 1a S S 1 2 2 2 ,当n 1时,n n n a1 S1 2 ,∴n 1时,S a ,当n≥2时,1 1 S a ,∴{a } 是“H 数列”.n n 1 n(2)n(n 1) n(n 1)S na d n d ,对n N,m N使n 12 2S a ,即n mn(n 1)n d 1 (m 1)d ,25取n 2 得1 d (m1)d ,m 2 1d,∵d 0 ,∴m 2 ,又m N ,∴m 1,∴d 1.(3)设{}a 的公差为d,令n b a1 (n 1)a1 (2 n) a1 ,对n N ,nb b a ,n 1 n 1c (n 1)(a d) ,n 1对n N ,c c a d ,则n 1 n 1 b c a1 (n 1)d a ,且{ b } ,{c } 为等差数列.n n n n n{ b } 的前n 项和nn(n 1)T na ( a ) ,令n 1 12T (2 m)a ,则n 1n(n 3)m 2 .2当n 1时m 1;当n 2 时m 1;当n≥3时,由于n 与n 3 奇偶性不同,即n(n 3) 非负偶数,m N .因此对n ,都可找到m N ,使T b 成立,即{b } 为“H 数列”.n m n{c } 的前n项和nn(n 1)R (a d ) ,令n 12c (m 1)(ad ) R ,则n 1 mmn(n 1)21∵对n N ,n(n 1) 是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立,n m 即{ }c 为“H 数列”,因此命题得证.n数学Ⅱ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21 题有A、B、C、D 4 个小题供选做,每位考生在4 个选做题中选答 2 题.若考生选做了3题或4题,则按选做题中的前 2 题计分.第22、23 题为必答题.每小题10 分,共40 分.考试时间30 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A、B、C、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.(21-A )【2014 年江苏,21-A,10 分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C、 D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D.解:因为B,C 是圆O 上的两点,所以OB=OC.故∠OCB =∠B.又因为C, D 是圆O 上位于AB 异侧的两点,故∠B,∠D 为同弧所对的两个圆周角,所以∠B=∠D.因此∠OCB =∠D.(21-B )【2014 年江苏,21-B,10 分】(选修4-2:矩阵与变换)已知矩阵1 2 1 1A ,B ,向量1 x2 12y,x,y为实数,若Aα= Bα,求x,y的值.解:2 y 2A ,2 xy2 yBα,由Aα= Bα得4 y2y 2 2 y,解得 1 4x ,y .2 xy 4 y, 2(21-C)【2014 年江苏,21-C,10 分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2x 1 t ,2(t 为参数),直线l 与抛物线2y 2 t2y2 4x交于A,B 两点,求线段A B 的长.解:直线l:x y 3 代入抛物线方程 2 4y x 并整理得x2 10x 9 0 ,∴交点 A (1,2) ,B(9 ,6) ,故| AB| 8 2 .(21-D )【2014 年江苏,21-D,10 分】(选修4-5:不等式选讲)已知x 0 ,y 0 ,证明: 2 21 x y 1 x y 9xy .解:因为x>0, y>0, 所以1+ x+y 2≥33 xy2 0 ,1+x2+y≥2 2 2 2 23 3 33 x y 0 ,所以(1+ x+y )( 1+x +y) ≥3 xy 3 x y =9 xy.2≥33 xy2 0 ,1+x2+y≥【必做】第22、23 题,每小题10 分,计20 分.请把答案写在.答.题.卡.的.指.定.区.域.内...(22)【2014 年江苏,22,10 分】盒中共有9 个球,其中有 4 个红球, 3 个黄球和 2 个绿球,这些球除颜色外完全相同.6(1)从盒中一次随机取出 2 个球,求取出的 2 个球颜色相同的概率P;(2)从盒中一次随机取出 4 个球,其中红球、黄球、绿球的个数分别记为x,x ,x ,随机变量X 表示1 2 3 x ,x ,x 1 2 3中的最大数,求X 的概率分布和数学期望E(X ) .解:(1)一次取 2 个球共有 2C 36 种可能情况, 2 个球颜色相同共有92 2 2C C C 10 种可能情况,4 3 2∴取出的 2 个球颜色相同的概率10 5P .36 18(2)X 的所有可能取值为4,3,2 ,则C 14P X ;( 4) 4C 12649C C C C 133 1 3 1P( X 3) 4 5 3 6 ;C 633911P( X 2) 1 P(X 3) P(X 4) .∴X 的概率分布列为:14X 2 3 4P 1114 13631126故X 的数学期望( ) 2 11 3 13 4 1 20E X .14 63 126 9(23)【2014 年江苏,23,10 分】已知函数sin xf (x) (x 0)x ,设 f (x) 为nf x 的导数,n N.n1 ( )(1)求2f f 的值;1 22 2 2(2)证明:对任意的n N,等式 2nf f 成立.n 1 n4 4 4 2解:(1)由已知,得sin x cosx sin xf (x) f (x)1 0 2x x x,于是cosx sin x sin x 2cos x 2sin xf (x) f (x)2 1 2 2 3x x x x x ,所以 4 2 16f ( ) , f ( ) ,1 2 2 32 2故2 f ( ) f ( ) 1 .1 22 2 2(2)由已知,得xf0 (x) sin x, 等式两边分别对x 求导,得 f 0 (x) xf0 (x) cos x ,即f0 ( x) xf1 (x) cos x sin(x ) ,类似可得2 2 f (x) xf (x) sin x sin( x ) ,1 233 f (x) xf (x) cos x sin( x ) ,2 32 4 f (x) xf (x) sin x sin( x 2 ) .3 4下面用数学归纳法证明等式nnf x xf x x 对所有的nn n1 ( ) ( ) sin( )2N*都成立.(i)当n=1 时,由上可知等式成立.(ii)假设当n=k 时等式成立, 即kkf 1 (x) xf (x) sin( x ) .k k2因为[kf ( x) xf (x )] kf (x) f (x) xf (x) (k 1) f (x) f ( x),k 1 k k 1 k k k k 1(k1)k k k[sin( x )] cos(x ) (x) sin[ x ] ,所以2 2 2 2 (k 1) f ( x) f (x)k k 1(k 1)sin[ x ] .2所以当n=k +1 时,等式也成立.综合(i),(ii) 可知等式nnf 1 ( x) xf (x) sin( x ) 对所有的nn n2 N都成立.*令x ,可得4nnf 1 ( ) f ( ) sin( ) ( nn n4 4 4 4 2N).所以*2nf f ( nn 1 n( ) ( )4 4 4 2N).*7。

2014年江苏数学试题及答案word版

2014年江苏数学试题及答案word版

绝密★启用前2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的侧面积公式:clS=圆柱侧,其中c是圆柱底面的周长,l为母线长.圆柱的体积公式:ShV=圆柱, 其中S是圆柱的底面积,h为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1. 已知集合A={4,3,1,2--},}3,2,1{-=B,则=BA ▲.2. 已知复数2)i25(+=z(i为虚数单位),则z的实部为▲.(第3题)3. 右图是一个算法流程图,则输出的n 的值是 ▲.4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 ▲.5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲.100 80 90 110 120 底部周长/cm6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.【考点】频率分布直方图.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是▲.11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,3=,2=⋅BP AP ,则AD AB ⋅的值是 ▲ .(第12题)13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA.5,8==DFBC求证: (1)直线//PA平面DEF;(2)平面⊥BDE平面ABC.17.(本小题满分14分)如图,在平面直角坐标系xOy中,21,FF分别是椭圆)0(12322>>=+babyax的左、右焦点,顶点B的坐标为),0(b,连结2BF并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结CF1.(1)若点C的坐标为)31,34(,且22=BF,求椭圆的方程;(2)若,1ABCF⊥求椭圆离心率e的值.(第16题)PDCEFBAF1 F2O xyBCA18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.【解析】(1)首先112a S ==,当2n ≥时,111222n n n n n n a S S ---=-=-=,所以12,1,2,2,n n n a n -=⎧=⎨≥⎩, 所。

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相....应位置上..... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A I▲ .2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ .3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取乘积为6的概率是 ▲ .5.已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ .6.设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ . 8. 设甲、乙两个圆柱的底面分别为1S ,2S为1V ,2V ,若它们的侧面积相等,且4921=S S 的值是 ▲ .底部周9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x , 都有0)(<x f 成立,则实数m 的取值范围是 ▲ .11. 在平面直角坐标系xOy 中,若曲线xb ax y +=2(a ,b为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .12. 如图,在平行四边形ABCD中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则ADAB ⋅的值是 ▲ .当13. 已知)(x f 是定义在R 上且周期为3的函数,)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知),2(ππα∈,55sin =α.AB(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABCP -中,D,E ,F 分别为棱ABAC PC ,,的中点.已知AC PA ⊥,,6=PA求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by ax 的左、右焦点,于点顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.程;(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向 170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (1)若数列}{n a 的前n 项和n nS 2=(∈n N *),证明: }{n a 是“H数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.参考答案15.(1)∵α∈(,π),=∴=∴=+=(2)=12=,=2==+=+()=16. (1)∵D,E,分别为PC,AC,的中点∴DE ∥PA又∵DE ⊂平面PAC ,PA ⊄平面PAC∴直线PA ∥平面DEF(2)∵E,F 分别为棱AC,AB 的中点,且BC=8,由中位线知EF=4∵D,E,分别为PC,AC,的中点,且PA=6,由中位线知DE=3,又∵DF=5∴DF2=EF2+DE2=25,∴DE ⊥EF ,又∵DE ∥PA ,∴PA ⊥EF ,又∵PA ⊥AC ,又∵AC ⋂ EF=E ,AC ⊂平面ABC ,EF ⊂平面ABC ,∴PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC17.(1)∵BF 2 =,将点C (,)代入椭圆22221(0)x y a b a b+=>>,∴221611(0)99a b a b +=>>,且c2+b2=a2∴a=,b=1, ∴椭圆方程为2212x y +=(2)直线BA 方程为y=x+b,与椭圆22221(0)x y a b a b+=>>联立得x2x=0. ∴点A (,),∴点C (,),F 1()直线CF 1 斜率k= ,又∵F 1C ⊥AB ,∴·=∴=1,∴e=18. (1)过点B 作BE ⊥OC 于点E ,过点A 作AD ⊥BE 于点F 。

2014年高考江苏数学试题及答案(word解析版)

2014年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =_______.【答案】{13}-,【解析】由题意得{1,3}A B =-.(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【解析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21. (3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【解析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题 - 第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.(9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.255【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)3512d +⨯--==+,所求弦长为2292552245l r d =--. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】20⎛⎫ ⎪⎝⎭【解析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得202m <<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是________. 【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是________.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-,即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=.(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________. 【答案】()102,【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大, 7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是_______.【答案】624-【解析】由已知sin 2sin 2sin A B C +=及正弦定理可得22a b c +=,2222222()2cos 22a b a b a b c C ab ab ++-+-==223222262262884a b ab ab ab ab ab +---=≥=,当且仅当2232a b =,即23a b =时等号成立,所以cos C 的最小值为624-. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,5sin 5α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()5sin 25ααπ∈π=,,,∴225cos 1sin 5αα=--=-, ()210sin sin cos cos sin (cos sin )444210αααααπππ+=+=+=-.(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()3314334cos 2cos cos2sin sin 2666252510ααα5π5π5π+-=+=-⨯+⨯-=-.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =,求椭圆的方程; (2)若1FC AB ⊥,求椭圆离心率e 的值.解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴22(2)2a ==,∴21b =,∴椭圆方程为2212x y +=. (2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩ ∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴5c a = 5. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC 22(17080)(0120)150-+-=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD MD r MF OF OM d ===--所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a a a a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-,取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+. 当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N .因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α, x y ,为实数,若A α=B α,求x y ,的值.解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为212222x t y t⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长.解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||82AB =. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x xf x f x x x x x x ''⎛⎫⎛⎫'==-=--+⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+n ∈*N ).。

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则B A I2. 已知复数2)i 25(+=z (i 为虚数单位),则z 3. 右图是一个算法流程图,则输出的n 4. 从1,2,3,6这4个数中一次随机地取2个数的 乘积为6的概率是 ▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ . 6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{na 中,,12=a4682a a a +=,则6a 的值是 ▲ .8. 为1V ,2V 的值是 ▲ .(第39. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx xx f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 ▲ . 11. 在平面直角坐标系xOy 中,若曲线xb axy +=2(a ,b为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线327=++y x 平行,则b a +的值是 ▲ .12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,3=,2=⋅,则⋅的值是 ▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x xx f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是▲ .14. 若△ABC 的内角满足CB A sin 2sin 2sin =+,则C cos 的最小值是▲ .二、解答题:本大题共6小题,共计90分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知),2(ππα∈,55sin =α. B(第12(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且(第16题)PDCEF BA22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA上 并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位 于点O 正北方向60m 处, 点C 位于点O 正东方向 170m 处(OC 为河岸),34tan =∠BCO . (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?(第18题)19.(本小题满分16分)已知函数xxx f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{na 的前n 项和为nS .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{na 是“H 数列”. (1)若数列}{n a 的前n 项和n nS 2=(∈n N *),证明: }{na 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{na 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{na ,总存在两个“H 数列”}{nb 和}{nc ,使得nn n c b a +=(∈n N *)成立.参考答案15.(1)∵α∈(,π),=∴=∴=+= (2)=12=,=2==+=+()=16. (1)∵D,E,分别为PC,AC,的中点 ∴DE ∥PA又∵DE ⊂平面PAC ,PA ⊄平面PAC ∴直线PA ∥平面DEF(2)∵E,F 分别为棱AC,AB 的中点,且 BC=8,由中位线知EF=4∵D,E,分别为PC,AC,的中点,且PA=6,由中位线知DE=3,又∵DF=5∴DF ²=EF ²+DE ²=25,∴DE ⊥EF ,又∵DE ∥PA ,∴PA ⊥EF ,又∵PA ⊥AC ,又∵AC ⋂ EF=E ,AC ⊂平面ABC ,EF ⊂平面ABC ,∴PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC17.(1)∵BF 2 = ,将点C (,)代入椭圆22221(0)x y a b a b+=>>, ∴221611(0)99a b a b+=>>,且c ²+b ²=a ²∴a= ,b=1, ∴椭圆方程为2212x y +=(2)直线BA 方程为y=x+b,与椭圆22221(0)x y a b ab+=>>联立得x ²x=0. ∴点A (,),∴点C (,),F 1()直线CF 1 斜率k= ,又∵F 1C ⊥AB ,∴·= ∴=1,∴e=18. (1)过点B 作BE ⊥OC 于点E ,过点A 作AD ⊥BE 于点F 。

2014江苏省数学卷文档版(有答案)-2014年普通高等学校招生统一考试

2014江苏省数学卷文档版(有答案)-2014年普通高等学校招生统一考试

2014年江苏高考数学试题数学Ⅰ试题参考公式:圆柱的侧面积公式:S 圆柱=cl , 其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{2134}A =--,,,,{123}B =-,,,则A B = .【答案】{13}-,2.已知复数2(52)z i =+(i 为虚数单位),则z 的实部为 . 【答案】213.右图是一个算法流程图,则输出的n 的值是 . 【答案】54.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的 概率是 . 【答案】135.已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为 3π的交点,则ϕ的值是 .【答案】6π6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】247.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+, 则6a 的值是 . 【答案】48.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12V V 的值是 . 【答案】329.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 . 【答案】255510.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 . 【答案】202⎛⎫- ⎪⎝⎭,11.在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是 . 【答案】3-12.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是 . 【答案】2213.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a=-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是 . 【答案】()102, 14.若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是 . 【答案】624-二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14 分)已知()2απ∈π,,5sin 5α=.(1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能 力. 满分14分.(1)∵()5sin 25ααπ∈π=,,,∴225cos 1sin 5αα=--=-()210sin sin cos cos sin (cos sin )444210αααααπππ+=+=+=-;(2)∵2243sin 22sin cos cos2cos sin 55αααααα==-=-=,∴()()3314334cos 2cos cos2sin sin 2666252510ααα5π5π5π+-=+=-⨯+⨯-=-.16.(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA == ∵E F ,为AC AB ,中点 ∴142EF BC == ∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵AC EF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(本小题满分14 分)如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b+=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =,求椭圆的方程; (2)若1FC AB ⊥,求椭圆离心率e 的值.【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运 算求解能力. 满分14分.(1)∵()4133C ,,∴22161999a b += ∵22222BF b c a =+=,∴22(2)2a ==,∴21b =∴椭圆方程为2212x y += (2)设焦点12(0)(0)()F c F c C x y -,,,,,∵A C ,关于x 轴对称,∴()A x y -, ∵2B F A ,,三点共线,∴b y b c x +=--,即0bx cy bc --=① ∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, ∵C 在椭圆上,∴()()222222222221a cbc b c b c a b --+=,化简得225c a =,∴55c a =, 故离心率为5518.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分. 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=--k AB =603,04b a -=- 解得a =80,b=120. 所以BC =22(17080)(0120)150-+-=.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.19.(本小题满分16分)已知函数()e e x x f x -=+其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.【答案】本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力.满分16分.(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤ ∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x x m ---+-≤对(0)x ∈+∞,恒成立令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立 ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立 ∴13m -≤(3)'()e e x x f x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增 令3()(3)h x a x x =-+,'()3(1)h x ax x =--∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减 ∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即()11e 2ea >+ ∵e-1e 111ln ln ln e (e 1)ln 1ea a a a a a ---=-=--+ 设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2e a m a a a a ---=-=>+,当()11e e 12e a +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2e a +<<时,()0m a <,e 11e a a -->; 当e a =时,()0m a =,e 11e a a --=.20.(本小题满分16分)设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立.【答案】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分.(1)当2n ≥时,111222n n n n n n a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}n a 是“H 数列” (2)1(1)(1)22n n n n n S na d n d --=+=+ 对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d=+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =- (3)设{}n a 的公差为d令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=- 1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+ 则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列 {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”. {}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立,即{}n c 为“H 数列” 因此命题得证.数学Ⅱ(附加题)21.【选做题】本题包括A, B,C,D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,C 、 D 是圆O 上位于AB 异侧的两点 证明:∠OCB =∠D .本小题主要考查圆的基本性质,考查推理论证能力.满分10分. 证明:因为B , C 是圆O 上的两点,所以OB =OC . 故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D . 因此∠OCB =∠D .B.【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值. 【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分. 222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为212222x t y t ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长. 【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.满分10分.直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+= ∴交点(12)A ,,(96)B -,,故||82AB = D.【选修4-5:不等式选讲】(本小题满分10分) 已知x >0, y >0,证明:(1+x +y 2)( 1+x 2+y )≥9xy.本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分.证明:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,,中的最大数,求X 的概率分布和数学期望()E X .22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况∴取出的2个球颜色相同的概率1053618P ==(2)X 的所有可能取值为432,,,则 4449C 1(4)C 126P X === 3131453639C C C C 13(3)C 63P X +=== 11(2)1(3)(4)14P X P X P X ==-=-==∴X 的概率分布列为X 2 3 4 P111413631126故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=23.(本小题满分10分)已知函数0sin ()(0)x f x x x =>,设()n f x 为1()n f x -的导数,n *∈N . (1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()124442n n nf f -πππ+=成立.23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.(1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+, 所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以12()()4442n n nf f πππ-+=(n ∈*N ).新课标第一网系列资料 。

江苏省苏北四市高三数学上册期末联考试题(有答案)

江苏省苏北四市高三数学上册期末联考试题(有答案)

江苏省苏北四市(徐州、淮安、连云港、宿迁)高三数学上学期期末联考试题一、填空题(本大题共14小题,每小题5分,共70分)1、已知集合{}{}2,0,2,3A B =-=-,则A B =U .2、已知复数z 满足(1)2i z i -=,其中i 为虚数单位,则z 的模为 .3、某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个 分数的方差为 .4、根据如图所示的伪代码,则输出S 的值为 .5、从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率 为 .6、若抛物线28y x =的焦点恰好是双曲线2221(0)3x y a a -=>的右焦点,则实数a 的值为 .7、已知圆锥的底面直径与高都是2,则该圆锥的侧面积为 . 8、若函数()sin()(0)6f x x πωπω=->的最小正周期为15,则1()3f 的值为 .9、已知等比数列{}n a 的前n 项和为n S ,若223323,23S a S a =+=+,则公比q 的值为 .10、已知函数()f x 是定义R 在上的奇函数,当0x >时,()23xf x =-,则不等式()5f x -≤ 的解集为 .11、若实数,x y 满足133(0)2xy x x +=<<,则313x y +-的最小值为 . 12、已知非零向量,a b r r满足a b a b ==+r r r r ,则a r 与2a b -r r 夹角的余弦值为 .13、已知,A B 是圆221:1C x y +=上的动点,AB =,P 是圆222:(3)(4)1C x y -+-=上的动点,则PA PB +u u u r u u u r的取值范围为 .14、已知函数32sin ,1()925,1x x f x x x x a x <⎧=⎨-++⎩≥,若函数()f x 的图象与直线y x =有三个不同的公共点,则实数a 的取值集合为 .二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明 或演算步骤)15、在ABC ∆中,角,,A B C 的对边分别为,,a b c .已知2cos (cos cos )A b C c B a +=. (1)求角A 的值; (2)若3cos 5B =,求sin()BC -的值.16、如图,在四棱锥E ABCD -中,平面EAB ⊥平面ABCD ,四边形ABCD 为矩形,EA EB ⊥,点,M N 分别是,AE CD 的中点.求证:(1)直线MN ∥平面EBC ;(2)直线EA ⊥平面EBC .17、如图,已知,A B 两镇分别位于东西湖岸MN 的A 处和湖中小岛的B 处,点C 在A 的 正西方向1km 处,3tan ,44BAN BCN π∠=∠=.现计划铺设一条电缆联通,A B 两镇,有两种铺设方案:①沿线段AB 在水下铺设;②在湖岸MN 上选一点P ,先沿线段AP 在地下铺设,再沿线段PB 在水下铺设,预算地下、水下的电缆铺设费用分别为2万元∕km 、4万元∕km .(1)求,A B 两镇间的距离;(2)应该如何铺设,使总铺设费用最低?18、如图,在平面直角坐标系xOy中,已知椭圆2222:1(0)x yC a ba b+=>>的离心率为22,且右焦点F到左准线的距离为62.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.(ⅰ)当直线的PA斜率为12时,求FMN∆的外接圆的方程;(ⅱ)设直线AN交椭圆C于另一点Q,求APQ∆的面积的最大值.19、已知函数2(),()ln ,2R x f x ax g x x ax a e=-=-∈. (1)解关于()R x x ∈的不等式()0f x ≤; (2)证明:()()f x g x ≥;(3)是否存在常数,a b ,使得()()f x ax b g x +≥≥对任意的0x >恒成立?若存在,求 出,a b 的值;若不存在,请说明理由.20、已知正项数列{}n a 的前n 项和为n S ,且11,(1)(1)6()n n n a a a a S n +=++=+,*∈N n .(1)求数列{}n a 的通项公式;(2)若对于N n *∀∈ ,都有(31)n S n n +≤成立,求实数a 取值范围;(3)当2a =时,将数列{}n a 中的部分项按原的顺序构成数列{}n b ,且12b a =,证明: 存在无数个满足条件的无穷等比数列{}n b .苏北四市高三年级第二次调研测试数学II(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A.【选修4-1几何证明选讲】(本小题满分10分)如图,AB 为半圆O 的直径,D 为弧BC 的中点,E 为BC 的中点, 求证:AB ·BC=2AD ·BD .B .【选修4-2矩阵与变换】(本小题满分10分)已知矩阵A= 的一个特征值为2,其对应的一个特征向量为a = ,求实数a ,b 的值.C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系Oy 中,以O 为极点,轴的正半轴为极轴建立极坐标系.直线 l :2ρsin (θ一4π)=m (m ∈R ),圆C 的参数方程为(t 为参数).当圆心C 到直线l 的距离为2时,求m 的值。

苏北四市2013-2014第一学期期末数学试卷

苏北四市2013-2014第一学期期末数学试卷

苏北四市2013-2014第一学期期末数学试卷2012届高三调研测试试卷(三)数学(满分160分,考试时间120分钟) 2012.1一、填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A={1,2,3},B={0,2,3},则A∩B =____________.2. 若(x+i)2是实数(其中i为虚数单位),则实数x的值为____________.3. 一个社会调查机构就某地居民的月收入情况调查了1 000人,并根据所得数据绘制了样本频率分布直方图(如图所示),则月收入在[2 000,3 500)范围内人数为____________.(第3题)4. 根据如图所示的伪代码,可知输出S的值为______________.i ←1While i <8i ←i +2 S ←2i +3End WhilePrint S(第4题)5. 已知a ,b ∈{1,2,3,4,5,6},直线l 1:x -2y -1=0,l 2:ax +by -1=0,则直线l 1⊥l 2的概率为______________.6. 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1y ≥x 3x +2y ≤15,则w =log 3(2x +y)的最大值为______________.7. 已知抛物线y 2=2px 的准线与双曲线x 2-y 2=2的左准线重合,则p 的值为____________.8. 在等比数列{a n }中,已知a 1+a 2=12,a 3+a 4=1,则a 7+a 8+a 9+a 10的值为____________.9. 在△ABC中,已知BC=1,B=π3,△ABC的面积为3,则AC的长为________.10. 已知p:x2-4x-5>0,q:x2-2x+1-m2>0(m>0),若p是q的充分不必要条件,则m的最大值为____________.11. 已知椭圆的方程为x2a2+y2b2=1(a>b>0),过椭圆右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线与x轴交于点M,若△PQM为正三角形,则椭圆的离心率等于____________.12. 函数f(x)=acos(ax+θ)(a>0)图象上两相邻的最低点与最高点之间距离的最小值是______________.13. 定义在R上的函数f(x),满足f(m+n2)=f(m)+2[f(n)]2,m,n∈R,且f(1)≠0,则f(2 012)的值为______________.14. 已知函数f(x)=⎩⎪⎨⎪⎧ x +12,x ∈⎣⎢⎢⎡⎭⎪⎪⎫0,122x -1,x ∈⎣⎢⎢⎡⎭⎪⎪⎫12,2.若存在x 1,x 2,当0≤x 1<x 2<2时,f(x 1)=f(x 2),则x 1f(x 2)的取值范围是____________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)已知向量a =(4,5cosα),b =(3,-4tanα),α∈⎝⎛⎭⎪⎪⎫0,π2,若a ⊥b ,求: (1) |a +b|;(2) cos ⎝⎛⎭⎪⎪⎫α+π4的值.如图,在直三棱柱ABCA1B1C1中,AB=AC =5,BB1=BC=6,D、E分别是AA1和B1C的中点.(1) 求证:DE∥平面ABC;(2) 求三棱锥EBCD的体积.现有一张长80 cm、宽60 cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若从长方形ABCD的一个角上剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面.设长方体的底面边长为x(cm),高为y(cm),体积为V(cm3).求:(1) x与y的关系式;(2) 该铁皮盒体积V的最大值.在平面直角坐标系xOy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为 6.(1) 求圆O的方程;(2) 若直线l与圆O切于第一象限,且与坐标轴交于点D、E,当DE长最小时,求直线l 的方程;(3) 设M、P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交x 轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.已知函数f(x)=(ax2+x)e x,其中e是自然对数的底数,a∈R.(1) 当a<0时,解不等式f(x)>0;(2) 若f(x)在[-1,1]上是单调函数,求a的取值范围;(3) 当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.设数列{a n }的前n 项和为S n ,已知S n +1=pS n +q(p ,q 为常数,n ∈N *),且a 1=2,a 2=1,a 3=q -3p.(1) 求p 、q 的值;(2) 求数列{a n }的通项公式;(3) 是否存在正整数m 、n ,使S n -mS n +1-m<2m2m +1成立?若存在,求出所有符合条件的有序数对(m ,n);若不存在,说明理由.2012届高三调研测试试卷(三) 数学附加题(满分40分,考试时间30分钟) 21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题给分.解答时应写出必要的文字说明、证明过程或演算步骤.A. 选修41:几何证明选讲如图,∠PAQ 是直角,圆O 与AP 相切于点T ,与AQ 相交于两点B 、C.求证:BT 平分∠OBA.B. 选修42:矩阵与变换若点A(2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cosα -sinαsinα cosα对应变换的作用下得到的点为B(-2,2),求矩阵M 的逆矩阵.C. 选修44:坐标系与参数方程在极坐标系中,A为曲线ρ2+2ρcosθ-3=0上的动点,B为直线ρcosθ+ρsinθ-7=0上的动点,求AB的最小值.D. 选修45:不等式选讲已知a 1,a 2,…,a n 都是正数,且a 1·a 2…·a n=1,求证:(2+a 1)(2+a 2)…(2+a n )≥3n .【必做题】 第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,已知面积为1的正三角形ABC 三边中点分别为D 、E 、F ,从A 、B 、C 、D 、E 、F 六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X =0).求:(1) P ⎝⎛⎭⎪⎪⎫X ≥12; (2) E(X).23.如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x1,y1),B(x2,y2).(1) 求y1+y2的值;(2) 若y1≥0,y2≥0,求△PAB面积的最大值.2012届高三调研测试试卷(三)(徐州)数学参考答案及评分标准1. {2,3}2. 03. 6504. 215. 112 6. 27. 2 8. 12 9. 13 10. 2 11. 3312. 2π 13. 1 006 14. ⎣⎢⎡⎭⎪⎫2-24,1215. 解:(1) 因为a ⊥b ,所以4×3+5cosα×(-4tanα)=0,(2分)解得sinα=35,又因为α∈⎝⎛⎭⎪⎪⎫0,π2,(4分) 所以cosα=45,tanα=sinαcosα=34,(6分)所以a +b =(7,1),因此|a +b|=72+12=5 2.(8分)(2) cos ⎝⎛⎭⎪⎪⎫α+π4=cosαcos π4-sinαsin π4(12分)=45×22-35×22=210.(14分) 16. (1) 证明:取BC 中点G ,连结AG 、EG ,因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1,而D 是AA 1的中点,所以EG AD ,(4分)所以四边形EGAD 是平行四边形, 所以ED ∥AG ,又平面ABC ,AG 平面ABC所以DE ∥平面ABC.(7分)(2) 解:因为AD ∥BB 1,所以AD ∥平面BCE ,所以V E BCD =V D BCE =V A BCE =V E ABC ,(10分)由(1)知,DE ∥平面ABC ,所以V E ABC =V D ABC =13AD·12BC·AG =16×3×6×4=12.(14分)17. 解:(1) 由题意得x 2+4xy =4 800, 即y =4 800-x 24x,0<x <60.(6分)(2) 铁皮盒体积V(x)=x 2y =x 24 800-x24x=-14x 3+1 200x ,(10分) V ′(x)=-34x 2+1 200,令V ′(x)=0,得x=40,(12分)因为x ∈(0,40),V ′(x)>0,V(x)是增函数; x ∈(40,60),V ′(x)<0,V(x)是减函数, 所以V(x)=-14x 3+1 200x ,在x =40时取得极大值,也是最大值,其值为32 000 cm 3.答:该铁皮盒体积V 的最大值是32 000 cm 3.(14分)18. 解:(1) 因为O 点到直线x -y +1=0的距离为12,(2分)所以圆O 的半径为⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫622=2,故圆O 的方程为x 2+y 2=2.(4分)(2) 设直线l 的方程为x a +yb =1(a >0,b >0),即bx +ay -ab =0,由直线l 与圆O 相切,得|ab|a 2+b 2=2,即1a 2+1b 2=12,(6分) DE 2=a 2+b 2=2(a 2+b 2)⎝⎛⎭⎪⎪⎫1a 2+1b 2≥8,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.(10分)(3) 设M(x 1,y 1),P(x 2,y 2),则N(x 1,-y 1),x 21+y 21=2,x 22+y 22=2,直线MP 与x 轴交点⎝⎛⎭⎪⎫x 1y 2-x 2y 1y 2-y 1,0,m =x 1y 2-x 2y 1y 2-y 1,直线NP 与x 轴交点⎝⎛⎭⎪⎫x 1y 2+x 2y 1y 2+y 1,0,n =x 1y 2+x 2y 1y 2+y 1,(14分)mn =x 1y 2-x 2y 1y 2-y 1·x 1y 2+x 2y 1y 2+y 1=x 21y 22-x 22y 21y 22-y 21=(2-y 21)y 22-(2-y 22)y 21y 22-y 21=2, 故mn 为定值2.(16分)19. 解:(1) 因为e x>0,所以不等式f(x)>0即为ax 2+x >0,又因为a <0,所以不等式可化为x ⎝⎛⎭⎪⎪⎫x +1a <0, 所以不等式f(x)>0的解集为⎝⎛⎭⎪⎪⎫0,-1a .(4分)(2) f ′(x)=(2ax +1)e x +(ax 2+x)e x =[ax 2+(2a +1)x +1]e x ,① 当a =0时,f ′(x)=(x +1)e x ,f ′(x)≥0在[-1,1]上恒成立,当且仅当x =-1时取等号,故a =0符合要求;(6分)② 当a ≠0时,令g(x)=ax 2+(2a +1)x +1,因为Δ=(2a +1)2-4a =4a 2+1>0,所以g(x)=0有两个不相等的实数根x 1,x 2,不妨设x 1>x 2,因此f(x)有极大值又有极小值.若a >0,因为g(-1)·g(0)=-a <0,所以f(x)在(-1,1)内有极值点,故f(x)在[-1,1]上不单调.(8分) 若a <0,可知x 1>0>x 2,因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调,因为g(0)=1>0,必须满足⎩⎨⎧ g (1)≥0g (-1)≥0,即⎩⎨⎧3a +2≥0-a ≥0,所以-23≤a <0.综上可知,a 的取值范围是⎣⎢⎢⎡⎦⎥⎥⎤-23,0.(10分)(3) 当a =0时,方程即为xe x=x +2,由于e x >0,所以x =0不是方程的解,所以原方程等价于e x-2x-1=0,令h(x)=ex-2x-1, 因为h ′(x)=e x+2x2>0对于x ∈(-∞,0)∪(0,+∞)恒成立,所以h(x)在(-∞,0)和(0,+∞)内是单调增函数,(13分)又h(1)=e -3<0,h(2)=e 2-2>0,h(-3)=e -3-13<0,h(-2)=e -2>0,所以方程f(x)=x +2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上,所以整数k 的所有值为{-3,1}.(16分)20. 解:(1) 由题意,知⎩⎨⎧S 2=pa 1+qS 3=pS 2+q,即⎩⎨⎧3=2p +q 3+q -3p =3p +q ,解之得⎩⎨⎧p =12q =2.(4分) (2) 由(1)知,S n +1=12S n +2, ①当n ≥2时,S n =12S n -1+2, ②①-②得,a n +1=12a n (n ≥2),(6分)又a 2=12a 1,所以a n +1=12a n (n ∈N *),所以{a n }是首项为2,公比为12的等比数列,所以a n =12n -2.(8分)(3) 由(2)得,S n =2⎝⎛⎭⎪⎪⎫1-12n 1-12=4⎝ ⎛⎭⎪⎪⎫1-12n ,由S n -m S n +1-m <2m2m +1,得4⎝⎛⎭⎪⎪⎫1-12n -m 4⎝ ⎛⎭⎪⎫1-12n +1-m <2m2m +1,即2n (4-m )-42n (4-m )-2<2m2m+1,(10分) 即22n (4-m )-2>12m +1,因为2m +1>0,所以2n(4-m)>2,所以m <4,且2<2n (4-m)<2m +1+4,(*) 因为m ∈N *,所以m =1或2或3.(12分) 当m =1时,由(*)得,2<2n×3<8,所以n =1;当m =2时,由(*)得,2<2n ×2<12,所以n =1或2;当m=3时,由(*)得,2<2n<20,所以n=2或3或4,综上可知,存在符合条件的所有有序实数对(m,n)为(1,1),(2,1),(2,2),(3,2),(3,3),(3,4).(16分)高三数学附加题试卷(三)参考答案 第页(共2页)2012届高三调研测试试卷(三)(徐州)数学附加题参考答案及评分标准21. A. 证明:连结OT ,因为AT 是切线,所以OT ⊥AP.又因为∠PAQ 是直角,即AQ ⊥AP ,所以AB ∥OT ,所以∠TBA =∠BTO.(5分)又OT =OB ,所以∠OTB =∠OBT ,所以∠OBT =∠TBA , 即BT 平分∠OBA.(10分)B. 解:由题意知,M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cosα-2sinα2sinα+2cosα=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎨⎧ cosα-sinα=-1sinα+cosα=1,解得⎩⎨⎧cosα=0s inα=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.(5分)由M -1M =⎣⎢⎡⎦⎥⎤1 00 1,解得M -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0.(10分)另解:矩阵M 的行列式|M|=⎪⎪⎪⎪⎪⎪0 1-1 0=1≠0,所以M -1=⎣⎢⎡⎦⎥⎤0 1-1 0. C. 解:圆方程为(x +1)2+y 2=4,圆心(-1,0),直线方程为x +y -7=0,(5分)圆心到直线的距离d =|-1-7|2=42,所以(AB)min =42-2.(10分)D. 证明:因为a 1是正数,所以2+a 1=1+1+a 1≥33a 1,(5分)同理2+a j =1+1+a j ≥33a j (j =2,3,…n), 将上述不等式两边相乘,得(2+a 1)(2+a 2)…(2+a n )≥3n·3a 1·a 2·…·a n ,因为a 1·a 2·…·a n =1,所以(2+a 1)(2+a 2)…(2+a n )≥3n .(10分)22. 解:(1) 从六点中任取三个不同的点共有C 36=20个基本事件,事件“X ≥12”所含基本事件有2×3+1=7,从而P ⎝⎛⎭⎪⎪⎫X ≥12=720.(5分)(2) X 的分布列为X 014121P 320 1020 620 120则E(X)=0×320+14×1020+12×620+1×120=1340. 答:P ⎝⎛⎭⎪⎪⎫X ≥12=720,E(X)=1340.(10分)23. 解:(1) 因为A(x 1,y 1),B(x 2,y 2)在抛物线C :y 2=4x 上,所以A ⎝⎛⎭⎪⎪⎫y 214,y 1,B ⎝ ⎛⎭⎪⎪⎫y 224,y 2,k PA =y 1+2y 214-1=4(y 1+2)y 21-4=4y 1-2, 同理k PB =4y 2-2,依题有k PA =-k PB ,因为4y 1-2=-4y 2-2,所以y 1+y 2=4.(4分)(2) 由(1)知k AB =y 2-y 1y 224-y 214=1,设AB 的方程为y -y 1=x -y 214,即x -y +y 1-y 214=0,P 到AB 的距离为d =⎪⎪⎪⎪⎪⎪⎪⎪3+y 1-y 2142,AB =2⎪⎪⎪⎪⎪⎪⎪⎪y214-y 224=2|y 1-y 2|=22|2-y 1|, 所以S △PAB =12×⎪⎪⎪⎪⎪⎪⎪⎪3+y 1-y 2142×22|2-y 1|=14|y 21-4y 1-12||y 1-2|=14|(y 1-2)2-16||y 1-2|,(8分) 令y 1-2=t ,由y 1+y 2=4,y 1≥0,y 2≥0,可知-2≤t ≤2.S △PAB =14|t 3-16t|,因为S △PAB =14|t 3-16t|为偶函数,只考虑0≤t ≤2的情况,记f(t)=|t 3-16t|=16t -t 3,f ′(t)=16-3t 2>0,故f(t)在[0,2]上是单调增函数,故f(t)的最大值为f(2)=24,故S △PAB 的最大值为6.(10分)。

苏北四市2013-2014第一学期期末数学试卷

苏北四市2013-2014第一学期期末数学试卷

2012届高三调研测试试卷(三)数 学(满分160分,考试时间120分钟)2012.1一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={1,2,3},B ={0,2,3},则A ∩B =____________.2. 若(x +i)2是实数(其中i 为虚数单位),则实数x 的值为____________.3. 一个社会调查机构就某地居民的月收入情况调查了1 000人,并根据所得数据绘制了样本频率分布直方图(如图所示),则月收入在[2 000,3 500)范围内人数为____________.(第3题)4. 根据如图所示的伪代码,可知输出S 的值为______________.i ←1While i <8i ←i +2 S ←2i +3End WhilePrint S(第4题)5. 已知a ,b ∈{1,2,3,4,5,6},直线l 1:x -2y -1=0,l 2:ax +by -1=0,则直线l 1⊥l 2的概率为______________.6. 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x ≥1y ≥x3x +2y ≤15,则w =log 3(2x +y)的最大值为______________.7. 已知抛物线y 2=2px 的准线与双曲线x 2-y 2=2的左准线重合,则p 的值为____________.8. 在等比数列{a n }中,已知a 1+a 2=12,a 3+a 4=1,则a 7+a 8+a 9+a 10的值为____________.9. 在△ABC 中,已知BC =1,B =π3,△ABC 的面积为3,则AC 的长为________. 10. 已知p :x 2-4x -5>0,q :x 2-2x +1-m 2>0(m >0),若p 是q 的充分不必要条件,则m 的最大值为____________.11. 已知椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),过椭圆右焦点且与x 轴垂直的直线与椭圆交于P 、Q 两点,椭圆的右准线与x 轴交于点M ,若△PQM 为正三角形,则椭圆的离心率等于____________.12. 函数f(x)=acos(ax +θ)(a >0)图象上两相邻的最低点与最高点之间距离的最小值是______________.13. 定义在R 上的函数f(x),满足f(m +n 2)=f(m)+2[f(n)]2,m ,n ∈R ,且f(1)≠0,则f(2 012)的值为______________.14. 已知函数f(x)=⎩⎨⎧ x +12,x ∈⎣⎡⎭⎫0,122x -1,x ∈⎣⎡⎭⎫12,2.若存在x 1,x 2,当0≤x 1<x 2<2时,f(x 1)=f(x 2),则x 1f(x 2)的取值范围是____________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)已知向量a =(4,5cosα),b =(3,-4tanα),α∈⎝⎛⎭⎫0,π2,若a ⊥b ,求: (1) |a +b|;(2) cos ⎝⎛⎭⎫α+π4的值.16. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,AB =AC =5,BB 1=BC =6,D 、E 分别是AA 1和B 1C 的中点.(1) 求证:DE∥平面ABC;(2) 求三棱锥EBCD的体积.现有一张长80 cm、宽60 cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,若从长方形ABCD的一个角上剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面.设长方体的底面边长为x(cm),高为y(cm),体积为V(cm3).求:(1) x与y的关系式;(2) 该铁皮盒体积V的最大值.在平面直角坐标系xOy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为 6.(1) 求圆O的方程;(2) 若直线l与圆O切于第一象限,且与坐标轴交于点D、E,当DE长最小时,求直线l的方程;(3) 设M、P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.已知函数f(x)=(ax2+x)e x,其中e是自然对数的底数,a∈R.(1) 当a<0时,解不等式f(x)>0;(2) 若f(x)在[-1,1]上是单调函数,求a的取值范围;(3) 当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.设数列{a n}的前n项和为S n,已知S n+1=pS n+q(p,q为常数,n∈N*),且a1=2,a2=1,a3=q-3p.(1) 求p、q的值;(2) 求数列{a n}的通项公式;(3) 是否存在正整数m、n,使S n-mS n+1-m <2m2m+1成立?若存在,求出所有符合条件的有序数对(m,n);若不存在,说明理由.2012届高三调研测试试卷(三)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题给分.解答时应写出必要的文字说明、证明过程或演算步骤.A. 选修41:几何证明选讲如图,∠PAQ 是直角,圆O 与AP 相切于点T ,与AQ 相交于两点B 、C.求证:BT 平分∠OBA.B. 选修42:矩阵与变换若点A(2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cosα -sinαsinα cosα对应变换的作用下得到的点为B(-2,2),求矩阵M 的逆矩阵.C. 选修44:坐标系与参数方程在极坐标系中,A 为曲线ρ2+2ρcosθ-3=0上的动点,B 为直线ρcosθ+ρsinθ-7=0上的动点,求AB 的最小值.D. 选修45:不等式选讲已知a 1,a 2,…,a n 都是正数,且a 1·a 2…·a n =1,求证:(2+a 1)(2+a 2)…(2+a n )≥3n .【必做题】 第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,已知面积为1的正三角形ABC 三边中点分别为D 、E 、F ,从A 、B 、C 、D 、E 、F 六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X =0).求:(1) P ⎝⎛⎭⎫X ≥12; (2) E(X).23.如图,过抛物线C :y 2=4x 上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x 1,y 1),B(x 2,y 2).(1) 求y 1+y 2的值;(2) 若y1≥0,y2≥0,求△PAB面积的最大值.2012届高三调研测试试卷(三)(徐州)数学参考答案及评分标准1. {2,3}2. 03. 6504. 215. 1126. 27. 28. 129. 13 10. 2 11. 3312. 2π 13. 1 006 14. ⎣⎢⎡⎭⎪⎫2-24,12 15. 解:(1) 因为a ⊥b ,所以4×3+5cosα×(-4tanα)=0,(2分) 解得sinα=35,又因为α∈⎝⎛⎭⎫0,π2,(4分) 所以cosα=45,tanα=sinαcosα=34,(6分)所以a +b =(7,1),因此|a +b|=72+12=5 2.(8分) (2) cos ⎝⎛⎭⎫α+π4=cosαcos π4-sinαsin π4(12分) =45×22-35×22=210.(14分) 16. (1) 证明:取BC 中点G ,连结AG 、EG , 因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1,而D 是AA 1的中点,所以EGAD ,(4分)所以四边形EGAD 是平行四边形, 所以ED ∥AG ,又DE 平面ABC ,AG 平面ABC所以DE ∥平面ABC.(7分)(2) 解:因为AD ∥BB 1,所以AD ∥平面BCE ,所以V E BCD =V D BCE =V A BCE =V E ABC ,(10分) 由(1)知,DE ∥平面ABC ,所以V E ABC =V D ABC =13AD·12BC·AG =16×3×6×4=12.(14分)17. 解:(1) 由题意得x 2+4xy =4 800, 即y =4 800-x 24x ,0<x <60.(6分)(2) 铁皮盒体积V(x)=x 2y =x 24 800-x 24x =-14x 3+1 200x ,(10分) V ′(x)=-34x 2+1 200,令V ′(x)=0,得x =40,(12分)因为x ∈(0,40),V ′(x)>0,V(x)是增函数; x ∈(40,60),V ′(x)<0,V(x)是减函数,所以V(x)=-14x 3+1 200x ,在x =40时取得极大值,也是最大值,其值为32 000 cm 3.答:该铁皮盒体积V 的最大值是32 000 cm 3.(14分) 18. 解:(1) 因为O 点到直线x -y +1=0的距离为12,(2分) 所以圆O 的半径为⎝⎛⎭⎫122+⎝⎛⎭⎫622=2, 故圆O 的方程为x 2+y 2=2.(4分)(2) 设直线l 的方程为x a +yb =1(a >0,b >0),即bx +ay -ab =0,由直线l 与圆O 相切,得|ab|a 2+b 2=2,即1a 2+1b 2=12,(6分)DE 2=a 2+b 2=2(a 2+b 2)⎝⎛⎭⎫1a 2+1b 2≥8,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.(10分)(3) 设M(x 1,y 1),P(x 2,y 2),则N(x 1,-y 1),x 21+y 21=2,x 22+y 22=2,直线MP 与x 轴交点⎝ ⎛⎭⎪⎫x 1y 2-x 2y 1y 2-y 1,0,m =x 1y 2-x 2y 1y 2-y 1,直线NP 与x 轴交点⎝⎛⎭⎪⎫x 1y 2+x 2y 1y 2+y 1,0,n =x 1y 2+x 2y 1y 2+y 1,(14分)mn =x 1y 2-x 2y 1y 2-y 1·x 1y 2+x 2y 1y 2+y 1=x 21y 22-x 22y 21y 22-y 21=(2-y 21)y 22-(2-y 22)y 21y 22-y 21=2, 故mn 为定值2.(16分)19. 解:(1) 因为e x >0,所以不等式f(x)>0即为ax 2+x >0, 又因为a <0,所以不等式可化为x ⎝⎛⎭⎫x +1a <0, 所以不等式f(x)>0的解集为⎝⎛⎭⎫0,-1a .(4分) (2) f ′(x)=(2ax +1)e x +(ax 2+x)e x =[ax 2+(2a +1)x +1]e x ,① 当a =0时,f ′(x)=(x +1)e x ,f ′(x)≥0在[-1,1]上恒成立,当且仅当x =-1时取等号,故a =0符合要求;(6分)② 当a ≠0时,令g(x)=ax 2+(2a +1)x +1,因为Δ=(2a +1)2-4a =4a 2+1>0, 所以g(x)=0有两个不相等的实数根x 1,x 2,不妨设x 1>x 2, 因此f(x)有极大值又有极小值. 若a >0,因为g(-1)·g(0)=-a <0,所以f(x)在(-1,1)内有极值点, 故f(x)在[-1,1]上不单调.(8分) 若a <0,可知x 1>0>x 2,因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调,因为g(0)=1>0,必须满足⎩⎪⎨⎪⎧ g (1)≥0g (-1)≥0,即⎩⎪⎨⎪⎧3a +2≥0-a ≥0,所以-23≤a <0.综上可知,a 的取值范围是⎣⎡⎦⎤-23,0.(10分) (3) 当a =0时,方程即为xe x =x +2,由于e x >0,所以x =0不是方程的解, 所以原方程等价于e x -2x -1=0,令h(x)=e x -2x-1,因为h ′(x)=e x +2x 2>0对于x ∈(-∞,0)∪(0,+∞)恒成立,所以h(x)在(-∞,0)和(0,+∞)内是单调增函数,(13分)又h(1)=e -3<0,h(2)=e 2-2>0,h(-3)=e -3-13<0,h(-2)=e -2>0,所以方程f(x)=x +2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上, 所以整数k 的所有值为{-3,1}.(16分)20. 解:(1) 由题意,知⎩⎪⎨⎪⎧ S 2=pa 1+q S 3=pS 2+q ,即⎩⎪⎨⎪⎧3=2p +q3+q -3p =3p +q ,解之得⎩⎪⎨⎪⎧p =12q =2.(4分)(2) 由(1)知,S n +1=12S n +2, ①当n ≥2时,S n =12S n -1+2, ②①-②得,a n +1=12a n (n ≥2),(6分)又a 2=12a 1,所以a n +1=12a n (n ∈N *),所以{a n }是首项为2,公比为12的等比数列,所以a n =12n -2.(8分)(3) 由(2)得,S n =2⎝⎛⎭⎫1-12n 1-12=4⎝⎛⎭⎫1-12n ,由S n -m S n +1-m <2m2m +1,得4⎝⎛⎭⎫1-12n -m 4⎝⎛⎭⎫1-12n +1-m <2m 2m +1,即2n (4-m )-42n (4-m )-2<2m2m +1,(10分)即22n(4-m)-2>12m+1,因为2m+1>0,所以2n(4-m)>2,所以m<4,且2<2n(4-m)<2m+1+4,(*)因为m∈N*,所以m=1或2或3.(12分)当m=1时,由(*)得,2<2n×3<8,所以n=1;当m=2时,由(*)得,2<2n×2<12,所以n=1或2;当m=3时,由(*)得,2<2n<20,所以n=2或3或4,综上可知,存在符合条件的所有有序实数对(m,n)为(1,1),(2,1),(2,2),(3,2),(3,3),(3,4).(16分)高三数学附加题试卷(三)参考答案 第页(共2页)2012届高三调研测试试卷(三)(徐州)数学附加题参考答案及评分标准21. A. 证明:连结OT ,因为AT 是切线,所以OT ⊥AP.又因为∠PAQ 是直角,即AQ ⊥AP ,所以AB ∥OT ,所以∠TBA =∠BTO.(5分)又OT =OB ,所以∠OTB =∠OBT ,所以∠OBT =∠TBA , 即BT 平分∠OBA.(10分)B. 解:由题意知,M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cosα-2sinα2sinα+2cosα=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧ cosα-sinα=-1sinα+cosα=1,解得⎩⎪⎨⎪⎧cosα=0sinα=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.(5分)由M -1M =⎣⎢⎡⎦⎥⎤1001,解得M -1=⎣⎢⎡⎦⎥⎤ 01-10.(10分)另解:矩阵M 的行列式|M|=⎪⎪⎪⎪⎪⎪1-10=1≠0,所以M -1=⎣⎢⎡⎦⎥⎤1-10. C. 解:圆方程为(x +1)2+y 2=4,圆心(-1,0),直线方程为x +y -7=0,(5分)圆心到直线的距离d =|-1-7|2=42,所以(AB)min =42-2.(10分)D. 证明:因为a 1是正数,所以2+a 1=1+1+a 1≥33a 1,(5分) 同理2+a j =1+1+a j ≥33a j (j =2,3,…n),将上述不等式两边相乘,得(2+a 1)(2+a 2)…(2+a n )≥3n ·3a 1·a 2·…·a n , 因为a 1·a 2·…·a n =1,所以(2+a 1)(2+a 2)…(2+a n )≥3n .(10分) 22. 解:(1) 从六点中任取三个不同的点共有C 36=20个基本事件,事件“X ≥12”所含基本事件有2×3+1=7,从而P ⎝⎛⎭⎫X ≥12=720.(5分) (2) X 的分布列为则E(X)=0×320+14×1020+12×620+1×120=1340.答:P ⎝⎛⎭⎫X ≥12=720,E(X)=1340.(10分) 23. 解:(1) 因为A(x 1,y 1),B(x 2,y 2)在抛物线C :y 2=4x 上, 所以A ⎝⎛⎭⎫y 214,y 1,B ⎝⎛⎭⎫y 224,y 2,k PA =y 1+2y 214-1=4(y 1+2)y 21-4=4y 1-2, 同理k PB =4y 2-2,依题有k PA =-k PB , 因为4y 1-2=-4y 2-2,所以y 1+y 2=4.(4分)(2) 由(1)知k AB =y 2-y 1y 224-y 214=1,设AB 的方程为y -y 1=x -y 214,即x -y +y 1-y 214=0,P 到AB 的距离为d =⎪⎪⎪⎪3+y 1-y 2142,AB =2⎪⎪⎪⎪y 214-y 224=2|y 1-y 2|=22|2-y 1|,所以S △PAB =12×⎪⎪⎪⎪3+y 1-y 2142×22|2-y 1|=14|y 21-4y 1-12||y 1-2|=14|(y 1-2)2-16||y 1-2|,(8分) 令y 1-2=t ,由y 1+y 2=4,y 1≥0,y 2≥0,可知-2≤t ≤2.S △PAB =14|t 3-16t|,因为S △PAB =14|t 3-16t|为偶函数,只考虑0≤t ≤2的情况,记f(t)=|t 3-16t|=16t -t 3,f ′(t)=16-3t 2>0,故f(t)在[0,2]上是单调增函数,故f(t)的最大值为f(2)=24,故S △PAB 的最大值为6.(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏 北 四 市 数 学 试 题数学Ⅰ 必做题部分(本部分满分160分,时间120分钟)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面面积,h 是高.一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题卡上..... 1.设复数122i ,i z z m =-=+(m ∈R ,i 为虚数单位),若12z z ⋅为实数,则m 的值为 ▲ . 2.已知集合{2,}A a a =+,{1,1,3}B =-,且A B ⊆,则实数a 的值是 ▲ . 3.某林场有树苗3000棵,其中松树苗400棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的棵数为 ▲ .4.在ABC ∆的边AB 上随机取一点P , 记CAP ∆和CBP ∆的面积分别为1S 和2S ,则122S S >的概率是 ▲ .5.已知双曲线22221x y a b-=的一条渐近线方程为20x y -=,则该双曲线的离心率为 ▲ .6.右图是一个算法流程图,则输出S 的值是 ▲ . 7.函数()lg(23)x x f x =-的定义域为 ▲ .8.若正三棱锥的底面边长为2,侧棱长为1,则此三棱锥 的体积为 ▲ .9.在△ABC 中,已知3AB =,o 120A =,且ABC ∆的面积为1534,则BC 边长为 ▲ . 10.已知函数()2f x x x =-,则不等式(2)(1)f x f -≤的解集为 ▲ .11.已知函数()2sin(2)(0)4f x x ωωπ=->的最大值与最小正周期相同,则函数()f x 在[11]-,上的单调增区间为 ▲ . 12.设等比数列{}n a 的前n 项和为n S ,若435a a a ,,成等差数列,且33k S =,163k S +=-,其中k *∈N ,则2k S +的值为 ▲ .13.在平面四边形ABCD 中,已知3AB =,2DC =,点,E F 分别在边,AD BC 上,且3AD AE =,3BC BF =.若向量AB 与DC 的夹角为60,则AB EF ⋅的值为 ▲ . 14.在平面直角坐标系xOy 中,若动点(,)P a b 到两直线1l :y x =和2l :2y x =-+的距离之和为22,则22a b +的最大值为 ▲ .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)开始结束输出S10n <2n n ←+ YN 0,1S n ←←(第6题图)S S n ←+已知向量(cos ,sin )θθ=a ,(2,1)=-b .(1)若⊥a b ,求sin cos sin cos θθθθ-+的值;(2)若2-=a b ,(0,)2θπ∈,求sin()4θπ+的值.16.(本小题满分14分)如图,在三棱锥P ABC -中,点,E F 分别是棱,PC AC 的中点. (1)求证:PA //平面BEF ;(2)若平面PAB ⊥平面ABC ,PB BC ⊥,求证:BC PA ⊥.17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度). (1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?P A B CFE (第16题图)18.(本小题满分16分)已知ABC ∆的三个顶点(1,0)A -,(1,0)B ,(3,2)C ,其外接圆为H .(1)若直线l 过点C ,且被H 截得的弦长为2,求直线l 的方程;(2)对于线段BH 上的任意一点P ,若在以C 为圆心的圆上都存在不同的两点,M N ,使得点M 是线段PN 的中点,求C 的半径r 的取值范围.19.(本小题满分16分)已知函数325()2f x x x ax b =+++(,a b 为常数),其图象是曲线C .(1)当2a =-时,求函数()f x 的单调减区间; (2)设函数()f x 的导函数为()f x ',若存在唯一的实数0x ,使得00()f x x =与0()0f x ='同时成立,求实数b 的取值范围;(3)已知点A 为曲线C 上的动点,在点A 处作曲线C 的切线1l 与曲线C 交于另一点B ,在点B 处作曲线C 的切线2l ,设切线12,l l 的斜率分别为12,k k .问:是否存在常数λ,使得21k k λ=?若存在,求出λ的值;若不存在,请说明理由.F EDCB A (第21(A)图)20.(本小题满分16分)已知数列{}n a 满足1a x =,23a x =,2*1132(2,)n n n S S S n n n +-++=+∈N ≥,n S 是数列{}n a 的前n 项和.(1)若数列{}n a 为等差数列.(ⅰ)求数列的通项n a ;(ⅱ)若数列{}n b 满足2n a n b =,数列{}n c 满足221n n n n c t b tb b ++=--,试比较数列{}n b前n 项和n B 与{}n c 前n 项和n C 的大小;(2)若对任意*n ∈N ,1n n a a +<恒成立,求实数x 的取值范围.A .(选修4—1:几何证明选讲)(本小题满分10分)如图,点D 为锐角ABC ∆的内切圆圆心,过点A 作直线BD的垂线,垂足为F ,圆D 与边AC 相切于点E .若50C ∠=,求DEF ∠的度数.B .(选修4—2:矩阵与变换)(本小题满分10分)设矩阵00a b ⎡⎤=⎢⎥⎣⎦M (其中00a b >,>),若曲线C :221x y +=在矩阵M 所对应的变换作用下得到曲线2214x C y '+=:,求a b +的值.C .(选修4—4:坐标系与参数方程)(本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程是222422x t y t ⎧=⎪⎪⎨⎪=+⎪⎩,(t 为参数);以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为2cos()4ρθπ=+.由直线l 上的点向圆C 引切线,求切线长的最小值.D .(选修4—5:不等式证明选讲)(本小题满分10分)已知,,a b c 均为正数,证明:2222111()63a b c a b c+++++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)某品牌汽车4S 店经销,,A B C 三种排量的汽车,其中,,A B C 三种排量的汽车依次有5,4,3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能. (1)求该单位购买的3辆汽车均为B 种排量汽车的概率;(2)记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望. 23.(本小题满分10分) 已知点(1,0)A -,(1,0)F ,动点P 满足2||AP AF FP ⋅=. (1)求动点P 的轨迹C 的方程;(2)在直线l :22y x =+上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为,M N .问:是否存在点Q ,使得直线MN //l ?若存在,求出点Q 的坐标;若不存在,请说明理由.数学Ⅰ部分一、填空题:1.2 2.1 3.20 4.135.5 6.25 7.(,0)-∞ 8.16 9.7 10.[)1,-+∞ 11.13[,]44- 12.129 13.7 14.18二、解答题:15.(1)由⊥a b 可知,2cos sin 0θθ⋅=-=a b ,所以sin 2cos θθ=,……………………………2分所以s i s i θθθθ--==++. ……………………………………………………6分(2)由(cos 2,sin 1)θθ-=-+a b 可得,22(cos 2)(sin 1)θθ-=-++a b 64cos 2sin 2θθ=-+=,即12cos sin 0θθ-+=,① ……………………………………………………………10分又22cos sin 1θθ+=,且(0,)2θπ∈ ②,由①②可解得,3sin 54cos 5θθ⎧=⎪⎪⎨⎪=⎪⎩,…………………12分所以2s i 42θθπ+=. ……………………………14分 16.(1)在PAC ∆中,E 、F 分别是PC 、AC 的中点,所以//PA EF ,又PA ⊄平面BEF ,EF ⊂平面BEF ,所以//PA 平面BEF .……………………………………6分 (2)在平面PAB 内过点P 作PD AB ⊥,垂足为D .因为平面PAB ⊥平面ABC ,平面PAB平面ABC AB =,P ABCFEDPD ⊂平面PAB ,所以PD ⊥平面ABC ,………………8分又BC ⊂平面ABC ,所以PD BC ⊥,………………………………………………………10分又PB BC ⊥,PD PB P =,PD ⊂平面PAB ,PB ⊂平面PAB ,所以BC ⊥平面PAB ,…………………………………………………12分又PA ⊂平面PAB,所以BC PA ⊥.………………………………………………………14分 17.(1)设扇环的圆心角为θ,则()30102(10)x x θ=++-,所以1010x x θ+=+,………………………………………………………………………………4分 (2) 花坛的面积为2221(10)(5)(10)550,(010)2x x x x x x θ-=+-=-++<<.………………7分 装饰总费用为()9108(10)17010x x x θ++-=+, ………………………………………9分所以花坛的面积与装饰总费用的比22550550==1701010(17)x x x x y x x -++---++, …………………11分令17t x =+,则3913243()101010y t t =-+≤,当且仅当t =18时取等号,此时121,11x θ==. 答:当1x =时,花坛的面积与装饰总费用的比最大.…………………………………………14分(注:对y 也可以通过求导,研究单调性求最值,同样给分) 18.(1)线段AB 的垂直平分线方程为0x =,线段BC 的垂直平分线方程为30x y +-=,所以ABC ∆外接圆圆心(0,3)H ,半径221310+=, 圆H 的方程为22(3)10x y +-=. …………………………………………………………4分设圆心H 到直线l 的距离为d ,因为直线l 被圆H 截得的弦长为2,所以2(10)13d =-=. 当直线l 垂直于x 轴时,显然符合题意,即3x =为所求;…………………………………6分当直线l 不垂直于x 轴时,设直线方程为2(3)y k x -=-,则 23131k k +=+,解得43k =, 综上,直线l 的方程为3x =或4360x y --=. ……………………………………………8分(2)直线BH 的方程为330x y +-=,设(,)(01),(,)P m n m N x y ≤≤,因为点M 是线段PN 的中点,所以(,)22m x n yM ++,又,M N 都在半径为r 的圆C 上,所以222222(3)((3)(22x y r m x n yr ⎧-+-=⎪⎨++-+-=⎪⎩即222222(3)(2),(6)(4)4.x y r x m y n r ⎧-+-=⎪⎨+-++-=⎪⎩…………………10分 因为该关于,x y 的方程组有解,即以(3,2)为圆心,r 为半径的圆与以(6,4)m n --为圆心,2r 为半径的圆有公共点,所以2222(2)(36)(24)(2)r r m n r r --++-++≤≤,…………12分又330m n +=-,所以2221012109r m m r +-≤≤对[01]m ∀∈,]成立. 而()2101210f m m m =+-在[0,1]上的值域为[325,10],所以2325r ≤且2r 10≤9.……15分又线段BH 与圆C 无公共点,所以222(3)(332)m m r -+-->对[01]m ∀∈,成立,即2325r <. 故圆C 的半径r 的取值范围为10410[,)35. ……………………………………………16分 19.(1)当2a =-时,2()352(31)(2)f x x x x x '=+-=-+. ………………………………………2分令f '(x )<0,解得123x-<<,所以f (x )的单调减区间为1(2,)3-. …………………………4分(2) 2()35f x x x a '=++,由题意知20032000035052x x a x x ax b x ⎧++=⎪⎨+++=⎪⎩消去a ,得320005202x x x b ++-=有唯一解.……………………………………………………………6分令325()22g x x x x =++,则2()651(21)(31)g x x x x x '=++=++,所以()g x 在区间1(,)2-∞-,1(,)3-+∞上是增函数,在11(,)23--上是减函数,……………8分又11()28g -=-,17()354g -=-,故实数b 的取值范围是71(,)(,)548-∞--+∞. ……………………………………………10分(3)设00(,())A x f x ,则点A 处切线方程为000()()()y f x f x x x '-=-,与曲线C :()y f x =联立方程组,得000()()()()f x f x f x x x '-=-,即2005()[(2)]2x x x x -++,所以B点的横坐标05(2)2B x x =-+. …………………………………………………………12分由题意知,21000()35k f x x x a '==++,22000525(2)122024k f x x x a '=--=+++,若存在常数λ,使得21k k λ=,则220000251220(35)4x x a x x a λ+++=++, 即存在常数λ,使得20025(4)(35)(1)4x x a λλ-+=--,所以40,25(1)0.4a λλ-=⎧⎪⎨--=⎪⎩解得4λ=,2512a =. ………………………………………………15分 故2512a =时,存在常数4λ=,使214k k =;2512a ≠时,不存在常数λ,使21k k λ=.……16分 20.(1)(ⅰ)因为2*1132(2,)n n n S S S n n n +-++=+∈N ≥,所以32114S S S ++=,即3212314a a a ++=,又12,3a x a x==,所以3149a x =-, ………………………………2分 又因为数列{}n a 成等差数列,所以2132a a a =+,即()6149x x x =+-,解得1x =, 所以()()()*111n a a =+N ; ………………………………4分 (ⅱ)因为()*21n a n n =-∈N ,所以21220n a n n b -==>,其前n 项和0n B >,又因为()22211641n n n n n c t b tb b t t b ++=--=--,………………………………………………5分所以其前n 项和()21641n n C t t B =--,所以()22821n n n C B t t B-=--,…………………7分 当14t <-或12t >时,n n C B >;当14t =-或12t =时,n n C B =;当1142t -<<时,n n C B <.……………………………………………………………………9分(2)由2*1132(2,)n n n S S S n n n +-++=+∈N ≥知()2*21312()n n n S S S n n ++++=++∈N ,两式作差,得*2163(2,)n n n a a a n n n ++++=+∈N ≥,…………………………………………10分所以()*321613()n n n a a a n n +++++=++∈N ,作差得*36(2,)n n a a n n +-=∈N ≥, ……………11分 所以,当1n =时,1n a a x ==;当31n k =-时,()31216366234n k a a a k x k n x -==+-⨯=+-=+-; 当3n k =时,()331614966298n k a a a k x k n x ==+-⨯=-+-=-+; 当31n k =+时,()3141616n k a a a k x k n x +==+-⨯=++-=+-;………………14分 因为对任意*n ∈N ,1n n a a +<恒成立,所以12a a <且3133132k k k k a a a a -++<<<, 所以363669869866566563x xk x k x k x k x k x k x<⎧⎪+-<-+⎪⎨-+<+-⎪⎪+-<+⎩,解得,137156x <<,故实数x 的取值范围为137,156⎛⎫ ⎪⎝⎭.…16分数学Ⅱ部分21.【选做题】A .(选修4—1:几何证明选讲)由圆D 与边AC 相切于点E ,得90AED ∠=︒,因为DF AF ⊥,得90AFD ∠=︒,所以,,A D F E 四点共圆,所以DE F ∠=∠. ……………………………………5分 又111()(180)90222ADF ABD BAD ABC BAC C C ∠=∠+∠=∠+∠=︒-∠=︒-∠,所以1902DEF DAF ADF C ∠=∠=︒-∠=∠,由50C ∠=︒,得25DEF ∠=︒.……………10分 B .(选修4-2:矩阵与变换)设曲线C :221x y +=上任意一点(,)P x y ,在矩阵M 所对应的变换作用下得到点111(,)P x y ,则1100x a x b y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即11a x xb y y =⎧⎨=⎩. …………………………………………………………5分又点111(,)P x y 在曲线2214x C y '+=:上,所以221114x y +=,则2214ax by +=为曲线C 的方程.又曲线C 的方程为221x y +=,故24a =,21b =, 因为00a b >,>,所以3a b +=. …………………………………………………………10分 C .(选修4-4:坐标系与参数方程)因为圆C的极坐标方程为θθρsin 2cos 2-=,所以θρθρρs i n 2c o s 22-=,所以圆C 的直角坐标方程为02222=+-+y x y x ,圆心为⎪⎪⎭⎫⎝⎛-22,22,半径为1,…4分因为直线l 的参数方程为2,22422x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 所以直线l 上的点22,4222t t P ⎛⎫+ ⎪ ⎪⎝⎭向圆C 引切线长是 ()222222222421424262222t t PC R t ⎛⎫⎛⎫-=-+++-=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭≥,所以直线l 上的点向圆C 引的切线长的最小值是62. ……………………………………10分D .(选修4-5:不等式选讲)证法一:因为a b c ,,均为正数,由均值不等式得22223()a b c abc ++≥3,………………………2分因为13111()abc a b c-++≥3,所以223111(()abc a b c-++)≥9 .…………………………………5分故22222233111(()()a b c abc abc a b c-++++++)≥39.又32233()9()22763abc abc -+=≥,所以原不等式成立.…………………………………10分证法二:因为a b c ,,均为正数,由基本不等式得222a b ab +≥,222b c bc +≥,222c a ca +≥.所以2a b++++≥.……………………………………………………………………2分同理2211a b ++++≥,…………………………………………………………………5分所以2222111333(63a b c ab bc ca a b c ab bc ca++++++++++)≥≥.所以原不等式成立.………………………………………………………………………………10分22. (1)设该单位购买的3辆汽车均为B 种排量汽车为事件M ,则343121().55C P M C ==所以该单位购买的3辆汽车均为B 种排量汽车的概率为155. ………………………………4分 (2)随机变量X 的所有可能取值为1,2,3.则3335433123(1),44C C C P X C ++===1115433123(3)11C C C P X C ===, 29(2)1(1)(3)44P X P X P X ==-=-==. X 1 2 3所以X 的分布列为 ……………………………8分数学期望3293()124444E X =⨯+⨯+⨯=.………………………………………………10分 23.(1)设(,)P x y ,则(1,)AP x y =+,(1,)FP x y =-,(2,0)AF =, 由2||AP AF FP ⋅=,得222(1)2(1)x x y +=-+,化简得24y x =. 故动点P 的轨迹C 的方程24y x =. …………………………………………………………5分(2)直线l 方程为2(1)y x =+,设00(,)Q x y ,11(,)M x y ,22(,)N x y .过点M 的切线方程设为11()x x m y y -=-,代入24y x =,得2211440y my my y -+-=,由2211161640m my y ∆=-+=,得12ym =,所以过点M 的切线方程为112()y y x x =+,……7分同理过点N 的切线方程为222()y y x x =+.所以直线MN 的方程为002()y y x x =+,………9分又MN //l ,所以022y =,得01y =,而002(1)y x =+,故点Q的坐标为1(,1)2-. ……………………………………………………………………10分P344 2944 311。

相关文档
最新文档