自动控制原理第五章频域分析
精品文档-自动控制原理(第二版)(千博)-第5章
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图
长安大学:自动控制原理第五章 线性系统的频域分析
A () 1 0 T
() 0
() 90
V() A() sin ()
长安大学信息工程学院
自动控制理论
第五章
二、研究频率特性的意义 1、频率特性是控制系统在频域中的一种数学模型,是研究自 动控制系统的另一种工程方法。 2、根据系统的频率性能间接地揭示系统的动态特性和稳态特 性,可以简单迅速地判断某些环节或参数对系统性能的影响, 指出系统改进的方向。 3、频率特性可以由实验确定,这对于难以建立动态模型的系 统来说,很有用处。 三、频率特性的求取方法 1、已知系统的系统方程,输入正弦函数求其稳态解,取输 出稳态分量和输入正弦的复数比; 2、根椐传递函数来求取; 3、通过实验测得。
设
x c (t) ae jt ae jt b1es1t b2es2t ... b1esn t
A AG( j) ( s j ) | s j s 2 2 2j
( t 0)
对于稳定的系统, -s1,s2,…,sn 其有负实部
x c (t) ae jt ae jt
a G(s)
a G (s)
CHANG’AN UNIVERSITY
A AG( j) ( s j ) | s j s 2 2 2j
长安大学信息工程学院
自动控制理论
第五章
a
AG( j) 2j
AG( j) a 2j
G( j) | G( j) | e jG( j) | G( j) | e jG( j)
幅频特性 相频特性 实频特性 虚频特性
CHANG’AN UNIVERSITY
A() | G ( j) | U 2 () V 2 () 1 V() () G( j) tg U () U() A() cos()
自动控制原理第5章频域分析法
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
自动控制原理第五章频域分析法
谐振峰值
Am(m) 2
1
12
振荡环节的对数频率特性
L ()2l0 oG g (j) 2l0 o(g 1 n 2 2)24 2 n 2 2
n L()0低频渐近线是零分贝线。
n L ( ) 4 0lo g (/ n) 4 0lo g (T ) n 1 /T
高频段是一条斜率为- 40/dB的直线,和零分
幅频特性的谐振峰值和谐振角频率:
G(ju)
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
r n12 2 ( 1/ 20 .7) 0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2
谐振频率
1 / T , L () 2l0 o1 g2 T 2 2l0 o 1 0 g ( d)B
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L ( ) 2l0 o1 g 2 T 2 2l0 o T g
当频率很高时,对数幅频曲线可用一条直线近似,直
线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
( )
0 0.1 1 10
0 o 0.1 1 10
45o
20
90o
对数坐标刻度图
注意:
➢纵坐标是以幅值对数分贝数刻度的,是均匀的;横 ➢ 坐标按频率对数标尺刻度,但标出的是实际的值, ➢ 是不均匀的。 ——这种坐标系称为半对数坐标系。 ➢在横轴上,对应于频率每增大10倍的范围,称为十 ➢ 倍频程(dec),如1-10,5-50,而轴上所有十倍频 程 ➢ 的长度都是相等的。 ➢为了说明对数幅频特性的特点,引进斜率的概念, ➢ 即横坐标每变化十倍频程〔即变化〕所对应的纵 坐
自动控制原理第5章-频域分析
第5章 控制系统的频域分析
§5.1 频 率 特 性
一、频率特性概述
1、 RC网络的频率特性
T
du0 (t) dt
u0 (t)
ui (t)
其传递函数为:
G(s) U0(s) 1 Ui (s) Ts 1
在复数域内讨论RC网络,并求输出电压
(T)2 1
——RC网络的频率特性
G( j)
1
(T)2 1 —幅频特性
() arctan T —相频特性
第5章 控制系统的频域分析
比较
G( j)
1
jT 1
和
G(s) 1 Ts 1
可见,只要用jω代替该网络的传递函数G(s)中的复变 量S,便可得其频率特性G(jω)。结论具有一般性。
2、线性定常系统的频率特性
设 ui (t) Um sin t
U U e •
j00 复阻抗 Z R 1 jRC 1
i
m
第5章 控制系统的频域分析
jC
jC
•
•
•
U0
1
•
I
jC
1 Ui
jC Z
1
jC
jCUi jCR 1
1
jT
•
U 1
i
于是有:
•
U0
•
Ui
1
jT 1
•
(T RC)
G( j)
U0
•
Ui
1
e j () G( j) e j ()
第5章 控制系统的频域分析
5.2.2 典型环节的频率特性
1、积分环节
传递函数: G(s) 1
自动控制原理第五章
•表5-1 RC网络的幅频特性和相频特性数据
A( )
( )
0 1 0
1 0.707
45
2 0.45
5 0.196
0
63.4 78.69 90
图5-2 RC网络的幅频和相频特性
图5-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包 括对数幅频特性和对数相频特性两条曲线, 其中,幅频特性曲线可以表示一个线性系 统或环节对不同频率正弦输入信号的稳态 增益;而相频特性曲线则可以表示一个线 性系统或环节对不同频率正弦输入信号的 相位差。对数频率特性图通常绘制在半对 数坐标纸上,也称单对数坐标纸。
图5-20控制系统结构图
将系统的开环频率特性函数按典型环节划分, 可以分解为: ( j 1) ( ( j ) 2 ( j ) 1) k
m1 m2
G ( j ) H ( j )
k
2 l
2
l l
( j )
0
k 1 n1
( i s 1) ( 2 ( j ) 2 2 j j ( j ) 1) j
图5-19 Ⅱ型三阶系统幅相频率特性图
讨论更一般的情况,对于如图5-20所示的闭 环控制系统结构图,其开环传递函数为 G( s) H ( s) ,可以把系统的开环频率特性写作如 下的极坐标形式或直角坐标形式:
G( j)H ( j) G( j)H ( j) e j () P() jQ()
•图5-6积分环节频率特性的极坐标图
在伯德图上,积分环节的对数频率特性为
L( ) lg A( ) lg G( j ) lg ( ) 2
图5-7积分环节的伯德图
自动控制原理-胡寿松-第五章-线性系统的频域分析法
第四象限
第三象限
Mr
注意: (特殊点与趋势) 1. A(0) 1, (0) 0; A() 0, () 180 2. 与虚轴的交点 (转折点,是阻尼比的减函数) 2 (0 ) 3.有谐振时, 2 r , M r 为 的减函数 。当 2 0.707 时,谐振峰值 M r 1 。 2
7.延迟环节和延迟系统
1.典型环节
2.最小相位环节的频率特性
(考试、考研重点,nyquist图与bode图必须会画,概率图)
考试的标准画法
L(dB)
20
10
20 lg k
0
10
1
10
100
1000
o
( )
10
0
1
10
100
1000
10
比例环节的nyquist图与bode图
本节目录 1.典型环节 2.最小相位环节的频率特性(Nyquist图与bode图) 3.非最小相位环节的频率特性(Nyquist图与bode图) 4.系统的开环幅相曲线(Nyquist图) 5.系统的开环对数频率特性曲线(bode图)
重点掌握最小相位情况的各个知识点,非最小相位情况的考试不考,考研可能考。 6.传递函数的频域实验确定
考试的标准画法
o
注意考察几个特殊点: A(0), (0);
积分环节的nyquist图与bode 图
A(), ()
与横轴的交点。 注意横竖坐标交点处的的横坐标值(如果交点处没标横坐标值,则斜线不到头)
比较交点不标记的情况
0
0
纯微分环节的Bode图
半对数坐标系中的直线方程(重要,bode图解计算时经常用到)
自动控制原理第五章频域分析
G(s) s, G( j) j
L( ) 20 lg A ( ) ( ) ( ) 2 2
对 数 坐 标 系
40 20
0 .1
1
10
100
横轴没有零点
45
45 90
优势: •由于对 取了对数,所以大范围的频率变化可 以以在横轴上体现出来,且可以以根据需要对 横轴进行移动。 •对幅频特性 的计算可以简化。(对数后乘法 化加法,便于工程绘图)
典型环节的频率特性(奈氏曲线)
i 1 n N N j 1
m
( jT
j
1)
KK A( ) ( j ) N
KK ( ) ( j ) N
0
N 0, A( ) K K N 0, A( )
N 0, ( ) 0 N 0, ( ) N 2
s
1 1 G( s) , G ( j ) Ts 1 1 jT
A( )
1 1 2T 2
L( ) 20lg A( ) 20lg 1 T 2 2
( ) arctanT
3dB
-20dB/dec
L( ) 1 20lg 2 3dB
L( ) 20 lg (1 T 2 2 ) 2 (2 T ) 2
2 T ( ) arctan 1 T 2 2
系统开环频率特性的绘制(Bode图)
开环频率特性的通式:
GK ( j ) K k ( jTi 1) ( j )
自动控制原理第五章频域分析法
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89
自动控制原理 第五章(第一次课)
autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )
自动控制原理第五章线性系统的频域分析法
自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。
(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。
非最小相位环节的频率特性。
(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。
单环系统开环对数频率持性的求取与绘制。
最小相位系统开环对数幅频特性与相频特性间的对应关系。
(4)奈奎斯特稳定判据幅角定理。
S平面与F平面的映射关系。
根据开环频率特性判别闭环系统稳定性的奈氏判据。
奈氏判据在多环系统中的应用和推广。
系统的相对稳定性。
相角与增益稳定裕量。
(5)二阶和高阶系统的频率域性能指标与时域性指标。
系统频率域性能指标。
二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。
(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。
用等M圆线从开环频率特性求取闭环频率特性。
用尼氏图线从开环对数频率特性求取闭环频率特性。
2、重点(l)系统稳态频率响应和暂态时域响应的关系。
(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。
(3)奈奎斯特稳定判据和稳定裕量。
5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。
频域分析是控制理论的一个重要分析方法。
5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。
自动控制原理第5章
jY (ω )
ω =∞
X (ω )
ω
积分环节的Nyquist图 积分环节的Bode图
幅频特性与角频率ω成反比,相频特性恒为-90° 成反比, 90° 对数幅频特性为一条斜率为 - 20dB/dec的直线,此 线通过L(ω)=0,ω=1的点
三、微分环节 微分环节的频率特性为
G ( jω ) = jω = ωe
奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 了反馈系统稳定性。 极坐标图(Polar 极坐标图(Polar plot) =幅相频率特性曲线=幅相曲线 幅相频率特性曲线=
G ( jω )
可用幅值 G( jω ) 和相角ϕ (ω ) 的向量表示。
当输入信号的频率 ω → 0 ~ ∞ 变化时,向量 G ( jω ) 的幅值和相位也随之作相应的变化,其端点在复平面 上移动的轨迹称为极坐标图。
jY (ω )
ω →∞
ϕ (ω ) A(ω )
ω = 0 X (ω )
ω
RC网络对数频率特性 RC网络频率特性
5.2 典型环节的频率特性
用频域分析法研究控制系统的稳定性和动态 响应时,是根据系统的开环频率特性进行的, 响应时,是根据系统的开环频率特性进行的, 而控制系统的开环频率特性通常是由若干典 型环节的频率特性组成的。 型环节的频率特性组成的。 本节介绍八种常用的典型环节。 本节介绍八种常用的典型环节。
频率响应: 正弦输入信号作用下, 系统输出的稳态分量。 频率响应 : 正弦输入信号作用下,系统输出的稳态分量。 (控制系统中的信号可以表示为不同频率正弦信号的合成) 控制系统中的信号可以表示为不同频率正弦信号的合成) 频率特性: 系统频率响应和正弦输入信号之间的关系, 频率特性 : 系统频率响应和正弦输入信号之间的关系,它 和传递函数一样表示了系统或环节的动态特性。 和传递函数一样表示了系统或环节的动态特性。 数学基础:控制系统的频率特性反映正弦输入下系统响应 数学基础:控制系统的频率特性反映正弦输入下系统响应 的性能。研究其的数学基础是Fourier变换。 的性能。研究其的数学基础是Fourier变换。 频域分析法:应用频率特性研究线性系统的经典方法。 频域分析法:应用频率特性研究线性系统的经典方法。
自动控制原理第五章
第五章 频域分析法目的:①直观,对高频干扰的抑制能力。
对快(高频)、慢(低频)信号的跟踪能力。
②便于系统的分析与设计。
③易于用实验法定传函。
§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。
其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。
自动控制原理 第五章 控制系统的频域分析法
则
uos (t) = A ⋅ A(ω)sin[ω t + ϕ(ω)]
(5.2)
结论:
(1) 稳态解与输入信号为同一频率的正弦量;
(2) 当ω 从 0 向∞变化时,其幅值之比 A(ω) 和相位差ϕ(ω) 也将随之变化,其变化规
律由系统的固有参数 RC 决定; (3) 系统稳态解的幅值之比 A(ω) 是ω 的函数,其比值为
三角函数形式: G( jω) = A(ω)[cosϕ(ω) + jsinϕ(ω)] 。
式中 A(ω) = G( jω) 是幅值比,为ω 的函数,称为幅频特性;
ϕ(ω) = ∠G( jω) 是相位差,为ω 的函数,称为相频特性; U (ω) 是 G( jω) 的实部,为ω 的函数,称为实频特性; V (ω) 是 G( jω) 的虚部,为ω 的函数,称为虚频特性。
s + p1 s + p2
s + pn s + jω s − jω
∑n
=
Ci
+
B
+
D
i=1 s + pi s + jω s − jω
(5.4)
式中 Ci , B , D 均为待定系数。
将(5.4)式进行拉氏反变换,得系统的输出响应为
n
∑ c(t) = Cie− pi t + (Be− jω t + Dejω t ) = ct (t) + cs (t) i =1
C( jω) = G( jω)R( jω)
因而,得
G( jω) = C( jω) R( jω)
(5.11)
事实上,当ω 从 0 向∞变化时, G( jω) 将对不同的ω 作出反映,这种反映是由系统自
第五章1 控制系统的频域分析(频率特性与BODE图)
自动控制原理
幅相频率特性画法举例
画出二阶系统 G ( s ) = 112
的幅相频率特性
s (1 + 0 .02 s )
自动控制原理
2. 伯德图(Bode图)
如将系统频率特性G(jω ) 的幅值和相角分别绘在半对数坐
标图上,分别得到对数幅频特性曲线(纵轴:对幅值取分贝数
自动控制原理
极坐标图(Polar plot),幅相频率特性曲线,幅相曲线 当ω在0~∞变化时,相量G(jω) 的幅值和相角随ω而变化,与 此对应的相量G(jω) 的端点在复平面 G(jω) 上的运动轨迹 就称为幅相频率特性曲线或 Nyqusit曲线。画有 Nyqusit曲 线的坐标图称为极坐标图或Nyqusit图。( ω在0~-∞变化 对称于实轴) 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述了反馈系统 稳定性
这些幅频特性曲线将通过点
自动控制原理
0dB,ω = 1
L(ω ) = 20 lg 1 = −20 lg ω (dB ) jω
ϕ (ω ) = −90°
Magnitude (dB)
Phas e (deg)
20 10
0 -10 -20 -30 -40 -89
-89.5
-90
-90.5
-91
-1
10
Bode Diagram of G(jw )=1/(jw )
(a) 幅频特性
自动控制原理
ϕ(ω) = −arctgTω
自动控制原理
输出与输入的相位之差
(b)相频特性
Uo (s) = G(s) = 1
Uo ( jω) = G( jω) = 1 = 1
自动控制原理 第5章
⇒
X 2 − X +Y 2 = 0
(下半圆) 下半圆)
Y = −ω T X
§5.2 典型环节与开环系统的频率特性
1 G( s) = 不稳定惯性环节 Ts − 1 1 G ( jω ) = − 1 + jω T 1 G = 1 + ω 2T 2 ωT ∠ G = − arctan = − ( 180° − arctan ω T ) = −180° + arctan ω T -1
ω ω ⑹ G ( jω ) = 1 1 − 2 + j 2ξ ωn 2 ωn ω ω ⑺ G ( jω ) = 1 − 2 + j 2ξ ωn ωn ω2 ω 1 − 2 − j 2ξ ωn ωn ⑻ G ( jω ) = e − jτ ω
2
jω
ω ω2 1 − 2 + j 2ξ ωn ωn
建 模
§5.1
频率特性
cs (t ) = A
2
r ( t ) = A sin ω t
1+ω T
2
§5.1.2 频率特性 G(jω) 的定义 ω 定义一: 定义一: G ( jω ) = G ( jω ) ∠G ( jω )
G ( jω ) = cs (t ) 1 = r (t ) 1 + ω 2T 2
∠ c s (t ) = − 63.4° + 30° = − 33.4°
ω =2
cs (t ) =
3 sin( 2t − 33.4° ) 5
s Φ e ( s) = s+1
ω =2 2 es (t ) ω jω Φ e ( jω ) = = = = 2 1 + jω 3 5 1+ω
自动控制原理 第五章-2
Determine the stability of the system for two cases (1)K is small(2) K is large
G ( j ) H ( j )
K (1 jT1 )(1 jT2 )( j ) (1 T12 2 )(1 T22 2 ) K ((T1 T2 ) j (1 T 1T2 2 ) (1 T12 2 )(1 T22 2 )
0 ~ 90
K ( j 3) G ( j ) H ( j ) j ( j 1) K [4 j (3 2 )] (1 2 )
Im[G( j ) H ( j )] 0
c 3
G ( j ) H ( j )
K ( j 3) j ( j 1)
越(-∞,-1)区间一次。 开环频率特性曲线逆时针穿越(-∞,-1)区间时,随ω增加,频 率特性的相角值增大,称为一次正穿越N’+。 反之,开环频率特性曲线顺时针穿越(-∞,-1)区间时,随ω增 加,频率特性的相角值减小,则称为一次负穿越N’-。 频率特性曲线包围(-1,j0)点的情况,就可以利用频率特性曲线 在负实轴(-∞,-1)区间的正、负穿越来表达。
除劳斯判据外,分析系统稳定性的另一种常用判据 为奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,是频率法的重要内容,简称奈氏判 据。奈氏判据的主要特点有
1.根据系统的开环频率特性,来研究闭环系统稳定性,而 不必求闭环特征根;
2.能够确定系统的稳定程度(相对稳定性)。 3.可分析系统的瞬态性能,利于对系统的分析与设计; 4.基于系统的开环奈氏图,是一种图解法。
N(s)=0 的根为开环传递函数的极点。
自动控制原理第五章 线性系统的频域分析法-5-6
5.6 控制系统的频域校正方法
控
结合校正装置,简要介绍串联校正的设计方法。常
制 原
用校正装置分为无源和有源两大类。
理 1. 串联无源校正 包括无源超前、无源滞后和无源滞
后-超前校正三种。无源校正网络由电阻、电容构成。
⑴ 串联无源超前校正
超前校正网络实现形式
Gc
(s)
U U
c r
( (
s s
) )
a4
制 校验相角裕度
原 理
m
arctan
a 21 a=源自arctan3 4
=36.9
=180 +(c)+m 180 167.2 36.9 49.7
达到相角裕度的要求。由于选择超前校正,校正后开
环幅相曲线与负实轴仍无交点,故幅值裕度无穷大,
自然满足要求。
再由
m
T
1 a
=4.4
T 0.114 s
串联超前校正设计步骤
R(s)
K C(s)
例5.6-1 图示反馈系统
-
s(s 1)
要求系统在 r(t)=t 1(t) 时,
稳态误差 e ss 0 .1 ra d ,截止频率 c 4 .4 ra d / s 相角
裕度 4 5 幅值裕度 h d B 1 0 d B ,试设计串联无
源超前网络。
5
Page: 5
自 解:① 设计开环增益,满足稳态要求
动
控 未校正系统为Ⅰ型系统。在单位斜坡输入下,由
制
1
原 理
ess K 0.1
K 10
T 为a的减函数 m 为a的增函数
② 校验待校正系统频域指标 由 L(m) 为a的增函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
() 90
23
Bode图
dB
10 0
10 0.1
20
( )
0
45 0.1
90
1 10 TT
1 10
20dB / dec
1 10
极坐标图
G( j )
1
e jtg1T
2T 2 1
24
5. 一阶微分环节 G j 1 jT
l 幅频: 20lg A 20lg 1 2T 2
1 jT
a) <<1/T
20lg A 20lg1 0(dB)
b) >>1/T
20lg A 20lgT(dB)
c) =1/T —— 转折频率
21
误差(实际曲线与折线)
1) 最大误差在转折频率处( =1/T)
20lg A 1 20lg 2 3.01(dB) T
2)在 处0.1
T
入量之比(正弦传递函数)。
4
<引例>分析一阶RC网络的频率特性
输入 ui t Um sint
U o
U i
1/ jC R 1/ jC
1
U i
jRC
U i
1 (RC)2
tg1RC
U o U i
1
1
jRC
G( j )
A( )e j ( )
5
幅值比 相位差
U o U i
A( )
1
1 (RC )2
幅频特性误差修正曲线
20lg A 0.1 20lg 1 0.01 0.043(dB) 0(dB)
T
3)在 处10
T
20lg A 10 20lg 1 100 20.043(dB) 20(dB) T
22
l 相频: tg1T
相频特性的几个函数值
(0) 0
( 1 ) 45
斜率:-20dB/dec
20dB / dec
22 3
38
③作出其余部分曲线(从第一转折频率向右,每经过
一个转折频率,对数幅频曲线的斜率变更一次)
从第一转折频率开始,作 出二阶振荡环节的幅频曲 线至第二转折频率
先用折线近似, 再进行修正。
2
20dB / dec 60dB / dec
从第二转折频率开始,作 出一阶惯性环节的幅频曲 线至第三转折频率
3 3
转折斜率
40dB / dec 20dB / dec 20dB / dec
37
(3)作图
顺序: 低频 二阶振荡环节 一阶惯性环节 一阶微分环节
①确定频率范围,标
出转折频率
转折频率小于10,选 17.5
A
横坐标频率范围为
0.1~10rad/s。
②作出低频段曲线至第 一转折频率
1 20 lg A1( ) 17.5dB
8
正弦输入下的稳态响应(稳定系统)
ys
t
L1
s
a
j
s
a
j
ae jt
ae
jt
其中待定常数a和a*分别为:
a
Gs
Um s2 2
s
j
s j
Um 2j
G
j
a
Gs
U m s2 2
s
j
s j
Um 2j
G j
容易证明,a与a*为一对共轭复数。
9
a和a*代入上式,则有:
ys t ae jt ae jt
2
2 n
2
2
n
2
1)当<<n时(低频): 20lg A 20lg1 0(dB)
2)当>>n时(高频):
20lg A 20
渐近线斜率-40dB/dec。
l
g
2
2 n
40lg
n
(dB)
3)转折频率
n
1 T
26
相频:
tg 1
1
2T 2T
2
,
tg 1
2T 2T 2 1
3) 便于简化计算和作图——可用渐近线处理。 4) 将实验获得的频率特性数据画成对数频率特性曲 线,便于确定频率特性的函数表达式。
14
幅频特性的纵坐标为何采用对数分度 20lgA(), 而不是lgA() 坐标?
lgA()的单位为贝尔, 20lgA()的单位为分贝。 以分贝(dB)为单位符合人的习惯。
Us
s2
2
Um
s
j s
j Um
7
输出信号:
Y s
GsUs
ps qs
U m s2 2
a
a
b1 bn
s j s j s s1
s sn
y t ae jt ae jt b1es1t bnesnt
如果G(s)含有mi 重极点s = - pi, 则 y(t) 中含有
t hiesit (hi 0,1,2,, m 1)
纵坐标: 幅值A(),用对数20lgA()分度,单位[dB]
相角(),用() 分度,单位是(º)
幅频特性:20lgA()~lg 相频特性:()~ lg
13
Bode图为什么要采用对数坐标?
1) 幅值的相乘转换为相加运算,可在图上直接相 加——便于系统综合; 2) 便于处理较宽的频带,且能突出最常用的低频带;
Um G j
1 e jt e jt 2j
Um A sint Ym sint
正弦稳态输出对正弦输入的幅值比
Ym A G j
Um
正弦稳态输出对正弦输入的相位移
G j
10
根据定义,频率特性(正弦传递函数)
G
j
Y U
j j
G( j ) A( )e j ( ) G( j ) e jG( j )
1 2 2 0
2 0.707 2
28
极坐标图
G( j )
1
jtg1 2T
e
1 2T 2
1 2T 2 2 4 2 2T 2
>1(过阻尼),类似于一阶环 节(近似为一半圆)。曲线随的 不同而变化,越小,曲线与负 虚轴的交点离坐标原点越远。
29
7. 二阶共轭零点(微分环节)
Bode图
22
33
法一 各环节频率特性代数相加
7.5 j 1
G j
3
j
j 2
11
2 2
j
2
34
4. 幅频特性:
转折渐进作图法: 找出所有环节的转折频率,从小到大排列,
从低频渐近线开始,沿频率增加的方向,碰到一 个转折频率,就改变渐近线的斜率。
35
(1)确定低频部分
7.5( j 1)
十倍频程
在Bode图的横坐标上,频率每变化10倍的 距离,就称为十倍频程,用符号dec来表示。
倍频程
在Bode图的横坐标上,频率每变化2倍的 距离,就称为倍频程,用符号oct来表示。
15
注意
在Bode图中,坐标原点处的ω值不得为零, 而是一个非零的正值。至于取何值,应视所 要表示的实际的频率范围而定。
tg1RC
都是的函数
频率特性:
增益
—
—
滞后增大
T=RC: —系统结构参数
, R, C: : —输入正弦信号的频率
6
系统频率特性表达式的推导
设线性定常系统传函G(s)
Gs
ps qs
s
s1 s
ps s2 s
sn
(对于含有重极点的情况,下面得到的结论同样适用)
输入为正弦信号:
ut Um sint
低频部分是过点(1,17.5dB)、斜率 为-20dB/dec的直线的一部分。
36
(2)将低频部分以外的环节按转折频率从小到 大的顺序列出转折渐进表。
7.5( j 1)
G( j )
3
j (
j
2
1)1
2
2
j
2
渐进顺序 转折频率
(1 2 j )1 ( j 1)1
22
2
2
2
j 1
2
1. 将开环传递函数化为时间常数的表示形式
10 3( s 1)
G(s)
s 2(
s
3 1) 2( s2
s
1)
比例
2
22
环节
7.5( s 1)
与根轨迹对比
s(
s
3 1)( s2
s
1)
2 22
32
2. 频率特性:
7.5 j 1
G j
3
j
j
2
11
2
2
j
2
3. 系统由五个典型环节组成:
相频: 90
G( j ) 1 e j90
极坐标图
19
3. 微分环节 G j j
幅频: 20lg A 20lg j 20lg(dB)
相频: 90
G( j ) e j90
Bode图
极坐标图
20
4. 一阶惯性环节 G j 1
1 jT
l 幅频:20lg A 20lg 1 20lg 1 2T 2
2
20 lg
1
2
20lg
2
1 2 3
2, 20lg A 16.61(dB) 2, 20lg A 7.06(dB) 3, 20lg A 5.76(dB)
5.相频特性
由频率特性得:
7.5( j 1)
G( j )
3
j (
j
2
1)1
2
2
j
2
2 : 90 tg1 tg1 tg1