高中数学焦半径公式
焦半径公式记忆口诀
焦半径公式记忆口诀全文共四篇示例,供读者参考第一篇示例:焦半径公式是物理学中非常重要的一个公式,用来描述光学器件(如透镜、凸透镜等)的焦距与曲率半径之间的关系。
学生们在学习这一公式时,经常会遇到记忆不牢固的问题。
制作一份关于焦半径公式的口诀是非常必要的。
下面我将为大家介绍一份简单易记的焦半径公式口诀。
我们来回顾一下焦半径公式的原理。
焦半径公式是根据透镜成像规律推导出来的,其表达形式为:\frac{1}{f} = (n-1)(\frac{1}{R_1}-\frac{1}{R_2})f为透镜的焦距,n为透镜的折射率,R_1和R_2分别为透镜的两个曲率半径。
这个公式是非常重要的,因为通过这个公式我们可以计算出透镜的焦距,从而确定成像位置。
接下来,让我们来看看如何记忆这个公式。
我给大家编写了一个口诀,希望能够帮助大家记忆焦半径公式:焦半径关系公式是焦中心求半径就对了透镜焦距除同负,焦半径之和定反之则焦半径之差焦半径关系公式牢记心中光学器件真不易,理解需付出心机勤动脑更重要,公式口诀记牢听这个口诀是根据焦半径公式的表达形式进行了简化和提炼,方便大家记忆。
通过这个口诀,我们可以轻松记住焦半径公式的公式形式和推导思路。
总结一下,通过以上的介绍,我们不仅了解了焦半径公式的原理和重要性,还学会了如何通过口诀来记忆这一重要的公式。
希望这份口诀可以帮助大家更好地掌握焦半径公式,提高物理学习的效率和成绩。
【2000字已达】。
第二篇示例:焦半径公式是物理学中一个非常重要的概念,它用来描述光学系统中的聚焦能力。
焦半径公式是由光学学家发现的,它是用来计算透镜或镜片的焦距以及聚焦能力的关键参数。
在实际工程应用中,我们经常需要使用焦半径公式来设计光学系统,确保系统具有良好的聚焦性能。
焦半径公式的记忆口诀有很多种,下面我给大家介绍一种简单易记的口诀:“焦半径公式记忆要点,求焦距用透镜厚心远;水接气常乘焦半径,透镜实快值边参照。
”这句口诀包含了焦半径公式的要点,下面我们来逐步解读:1. “焦半径公式记忆要点”:首先要强调重要性,记忆焦半径公式是非常关键的。
圆锥曲线焦半径公式及其应用(解析版)
圆锥曲线焦半径公式及其应用一、坐标形式的焦半径公式1.椭圆的坐标形式的焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF 0ex a +,=2PF 0ex a -,记忆方式:长加短减(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF 0ey a +,=2PF 0ey a -,记忆方式:长加短减2.双曲线的坐标形式的焦半径公式(1)设点),(00y x P 是双曲线)0,0(12222>>=-b a by a x 上任意一点,21,F F 是其左、右焦点,则①当点P 在右支上时,=1PF a ex +0,=2PF a ex -0,②当点P 在左支上时,=1PF a ex --0,=2PF a ex +-0,记忆方式:长加短减(2)设点),(00y x P 是双曲线)0,0(12222>>=-b a bx a y 上任意一点,21,F F 是其下、上焦点,则①当点P 在上支上时,=1PF a ey +0,=2PF a ey -0,②当点P 在下支上时,=1PF a ey --0,=2PF a ey +-0,记忆方式:长加短减(3)若弦AB 过左焦点,则=AB a x x e 2)(21-+-;若弦AB 过右焦点,则=AB ax x e 2)(21-+3.抛物线的坐标形式的焦半径公式(1)设),(00y x P 是抛物线)0(22>=p px y 上任意一点,F 为其焦点,则=PF 20p x +(2)设),(00y x P 是抛物线)0(22>-=p px y 上任意一点,F 为其焦点,则=PF 20p x +-(3)设),(00y x P 是抛物线)0(22>=p py x 上任意一点,F 为其焦点,则=PF 20p y +(4)设),(00y x P 是抛物线)0(22>-=p py x 上任意一点,F 为其焦点,则=PF 20p y +-例1.(2021年新高考Ⅰ卷)已知21,F F 是椭圆C :14922=+y x 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.6解法1:(基本不等式)由题意知621=+MF MF ,所以21MF MF ⋅9)2(221=+≤MF MF 当且仅当321==MF MF 时等号成立,所以21MF MF ⋅的最大值为9,故选C 解法2:(焦半径公式)设点),(00y x M ,则由题意知355,2,3=====a c e c b a ,所以9959)353)(353(200021≤-=-+=⋅x x x MF MF ,当且仅当00=x 时等号成立所以21MF MF ⋅的最大值为9,故选C例2.(2019年全国Ⅲ卷理)设21,F F 为椭圆C :1203622=+y x 的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则点M 的坐标为解析:设点),(00y x M ,则由题意知211F F MF =,所以⇒=+c ex a 203832600=⇒=+x x 所以点M 的坐标为)15,3(例3.点),(00y x P 为双曲线C :132422=-y x 的右支上一点,若点P 到右焦点的距离等于02x ,则=0x 解析:由题意知3,6,24,2====e c b a ,222300002=⇒=-=-=x x x a ex PF 例4.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为解法1:51651645tan 0221=⇒⨯===∆P P F PF y y b S ,即点P 到x 轴的距离为516解法2:设点),(00y x P ,不妨设点P 在右支上,则由21PF PF ⊥得2212221F F PF PF =+25269100)335()335(202020=⇒=-++⇒x x x ,所以25256)14(322020=-=x y 5160=⇒y 即点P 到x 轴的距离为516例5.(2011年辽宁卷)已知F 是抛物线x y =2的焦点,B A ,是该抛物线上两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为A.43 B.1C.45 D.47解析:设点),(),,(2211y x B y x A ,线段AB 的中点),(00y x M ,则25341412121=+⇒=+++=+x x x x BF AF ,从而452210=+=x x x ,故选C 例8.(2013年全国Ⅱ卷)设抛物线C :)0(22>=p px y 的焦点为F ,点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程为()A.x y 42=或x y 82= B.x y 22=或x y 82=C.x y 42=或xy 162= D.x y 22=或xy 162=解法1:设点),(00y x M ,则255200p x p x MF -=⇒=+=,即),25(0y pM -,MF 的中点为)2,25(0y B ,以MF 为直径的圆过点)2,0(,所以MF AB 21=,所以4425)22(425020=⇒=-+y y ,又点M 在抛物线上,所以2)25(216=⇒-=p p p 或8所以抛物线的方程是x y 42=或x y 162=,故选C解法2:设点),(00y x M ,因为以焦半径为直径的圆与y 轴相切,所以MF 的中点的纵坐标为2,所以40=y ,所以p p x 82160==,所以2528=⇒=+=p pp MF 或8所以抛物线的方程是x y 42=或x y 162=,故选C 注:以抛物线的焦半径为直径的圆与y 轴相切二、角度形式的焦半径公式1.椭圆的角度形式的焦半径公式(1)设过椭圆)0(12222>>=+b a b y a x 的焦点F 的弦AB 的倾斜角为θ,则=AF θcos 2c a b -;=BF θcos 2c a b +;焦点弦长=AB θ2222cos 2c a ab -;(2)设过椭圆)0(12222>>=+b a b x a y 的焦点F 的弦AB 的倾斜角为θ,则=AF θsin 2c a b -;=BF θsin 2c a b +;焦点弦长=AB θ2222sin 2c a ab -;2.双曲线的角度形式的焦半径公式设过双曲线)0,0(12222>>=-b a by a x 右焦点)0,(c F 的弦AB 的倾斜角为α,渐近线xa b y ±=的倾斜角为θ,则(1)当θπαθ-<<时,焦点弦AB 在右支上,=AF θcos 2c a b -;=BF θcos 2c a b +;=AB α2222cos 2c a ab -,弦AB 在双曲线一支上时,焦点弦最短为通径(2)当θα<≤0或παθπ<<-焦点弦AB 在两支上,=AF a c b -θcos 2;=BF ac b +θcos 2;=AB 2222cos 2a c ab -α,弦AB 交双曲线两支上时,焦点弦最短为实轴长a23.抛物线的角度形式的焦半径公式(1)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p px y 于B A ,两点,则=AF θcos 1-p ;=BF θcos 1+p;=AB θ2sin 2p (2)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p py x 于B A ,两点,则=AF θsin 1-p ;=BF θsin 1+p ;=AB θ2cos 2p例1.如图,设过椭圆13422=+y x 的右焦点F 的直线l 交椭圆于B A ,两点,线段AB 的垂直平分线交x 轴于点M ,则=ABMF 解法1:(设线韦达定理)略解法2:(点差法)略解法3:(角度形式的焦半径公式)设AB 的倾斜角为θ,则θθcos 23cos 2-=-=c a b AF ,θθcos 23cos 2+=+=c a b BF 所以θθθ2cos 412cos 23cos 23-=++-=+=BF AF AB θθθθ2cos 43cos 2cos 2cos -=-=+-==BF AF BFAF AF NF MF ,所以=AB MF 41例2.如图,过椭圆13422=+y x 的左焦点F 任作一直线交椭圆于B A ,两点,若=+BF AF BF AF λ,则=λ解析:设AB 的倾斜角为θ,则θθcos 23cos 2-=-=c a b AF ,θθcos 23cos 2+=+=c a b BF 所以=λ3411=+BF AF例2.已知椭圆12322=+y x 的左右焦点分别为21,F F ,过1F 的直线交椭圆于D B ,两点,过2F 的直线交椭圆于C A ,两点,且BD AC ⊥,则四边形ABCD 的面积的最小值为解析:设直线AC 的倾斜角为θ,则θθθ222222cos 334cos 3232cos 2-=-⨯⨯=-=c a ab AC θθ202sin 334)90(cos 334-=+-=BD 所以)sin 3)(cos 3(242122θθ--=⋅=BD AC S ABCD 2596)2sin 3cos 3(24222=-+-≥θθ,所以四边形ABCD 的面积的最小值为2596例3.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 作平行于渐近线的两直线,与双曲线分别交于B A ,两点,若a AB 2=,双曲线的离心率为e ,则[]=e 解析:设θ=∠AFO ,则a b a c a c b a c b AF 2cos 222=+⋅=+=θ所以222sin b a AF a ==θ,又c b=θsin ,所以c b b a =22⇒=-⇒=⇒232234)1(2e e c a b 例4.已知双曲线191622=-y x 的左焦点弦交双曲线左支于B A ,两点,且772=AB ,求直线AB 的方程解析:设AB 的倾斜角为θ,则77216cos 25942cos 222222=-⨯⨯=-=θθa c ab AB 53cos ±=⇒θ所以34tan ±=θ,所以直线AB :)5(34+±=x y 即02034=+-y x 或02034=++y x例5.已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为解析:设AB 的倾斜角为θ,则θθ22sin 4sin 2==p AB ,所以θθ202cos 4)90(sin 2=+=p DE 所以16)11(4)cos )(sin cos 1sin 1(4)cos 1sin 1(42222222=+⨯≥++=+=+θθθθθθDE AB 当且仅当4πθ=时等号成立,所以16)(min =+DE AB 三、焦半径定比模型(1)设AB 为焦点在x 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θcos e 11+-λλ;=e 21k+11+-λλ(2)设AB 为焦点在y 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则11sin +-=λλθe ;=e 211k +11+-λλ例1.(2010年辽宁理科)设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,过点F 的直线与椭圆C 相交于B A ,两点,直线l 的倾斜角为060,FB AF 2=,则椭圆的离心率为解析:32121260cos 0=⇒+-=e e 例2.(2010年全国Ⅰ卷)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D ,FD BF 2=,则C 的离心率为解析:设BD 的倾斜角为θ,则311212cos =+-=θe ,又e a c ==θcos ,所以33312=⇒=e e 例3.(2010年全国Ⅱ卷)已知椭圆)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于B A ,两点,若FB AF 3=,则=k ()A.1B.2C.3D.2解析:33cos 211313cos 2311cos =⇒=+-=⇒+-=θθλλθe ,所以2tan ==θk例4.(2014年全国Ⅱ卷理)设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N ,若直线MN 在y 轴上的截距为2,且N F MN 15=,则椭圆C 的方程为解析:由题意知a b ab MF 44222=⇒==--------------------------------------①由N F MF N F MN 11145=⇒=,所以531414cos =+-=θe ,又2422cos 121-=-==a c a c MF F F θ,所以532=-⋅a c a c -------------------------------------------------------------------------②联立①②得72,7==b a ,所以椭圆的方程为1284922=+y x。
抛物线焦半径公式推导
抛物线焦半径公式推导
当抛物线方程为 y^2=2px(p\ue0) (开口向右) 时,焦半径r=x+p/2 (其中x为在抛物线上的横坐标,p为焦准距),利用抛物线第二定义求。
至于抛物线开口方向为其他三个方向时,利用抛物线第二定义求同理可求。
如果焦点不在坐标轴上,只需要将x进行相应平移即可,p不变。
圆锥曲线上任意一点m与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。
圆锥曲线上一点到焦点的距离,不是定值。
焦半径:曲线上任意一点与焦点的连线段焦点弦,过一个焦点的弦通径。
过焦点并垂直于轴的弦圆锥曲线(除圆外)中,过焦点并垂直于轴的弦。
有关结论
a(x1,y1),b(x2,y2),a,b在抛物线y1=2px上,则有:
② 焦点弦长:|ab| = x1+x2+p = 2p/[(sinθ)1]=(x1+x2)/2+p。
③ (1/|fa|)+(1/|fb|)= 2/p;(其中长的一条长度为p/(1-cosθ),短的一条长度为p/(1+cosθ))。
④若oa横向ob则ab过定点m(2p,0)。
椭圆的焦半径公式
椭圆的焦半径公式椭圆是一种常见的几何形状,它有两个焦点和一个不变的总长度。
在数学中,椭圆可以通过其焦点到弦的距离比的平方等于1的定义来描述。
焦半径是一个用来描述椭圆形状的参数,它是从焦点到椭圆上的一点的距离。
下面将介绍椭圆的焦半径公式以及其推导过程。
在椭圆上任意取一点P,并设其距离左焦点F1的距离为r1,距离右焦点F2的距离为r2、根据椭圆的定义,可以得到以下的等式:(r1+r2)^2=(2a)^2其中,2a表示椭圆的长轴长度。
接下来,我们将推导出焦半径公式。
将焦点F1处的坐标设为(-c,0),焦点F2处的坐标设为(c,0)。
椭圆的离心率定义为c/a。
根据离心率的定义,我们可以得到以下等式:c^2=a^2-b^2其中,a表示椭圆的长轴长度,b表示椭圆的短轴长度。
将上述等式代入到等式(r1+r2)^2=(2a)^2中,可以得到:(r1+r2)^2=(2a)^2[(r1+r2)^2]/(4a^2)=1[(r1^2+2r1r2+r2^2)]/(4a^2)=1[(r1^2+2r1r2+r2^2)]/(4a^2)=[(r1^2+r2^2-b^2)]/(a^2)(将c^2=a^2-b^2代入)r1^2+2r1r2+r2^2=4a^2-4b^2接下来,我们对等式进行处理,得到焦半径公式。
注意到等式左边可以写为一个完全平方的形式,可表示为(r1+r2)^2,因此我们将等式进行如下变形:r1^2+2r1r2+r2^2=(r1+r2)^2=4a^2-4b^2r1^2+r2^2+2r1r2=4a^2-4b^2(r1-r2)^2=4a^2-4b^2r1-r2=±2√(a^2-b^2)r1+r2=2a将上述两个等式相加,可以得到:2r1=2a±2√(a^2-b^2)r1=a±√(a^2-b^2)类似地,对焦点F2处的坐标进行处理,可以得到:r2=a∓√(a^2-b^2)因此,我们得到了椭圆的焦半径公式,即:r1=a±√(a^2-b^2)r2=a∓√(a^2-b^2)需要注意的是,焦半径的计算需要知道椭圆的长轴长度a和短轴长度b。
焦半径公式
焦半径公式焦半径公式是光学中一个重要的公式,用于描述透镜的焦距与曲率半径之间的关系。
它是光学理论中的基本公式之一,对于研究透镜的特性和性能具有重要意义。
在光学中,透镜是一种光学元件,它能够将光线聚焦或发散。
焦距是透镜的一个重要参数,它表示平行光线通过透镜后所聚焦的距离。
而曲率半径则表示透镜表面的曲率程度,它描述了透镜的曲率大小。
焦半径公式提供了焦距和曲率半径之间的定量关系。
焦半径公式的表达式如下:1/f = (n-1) * (1/R1 - 1/R2)其中,f表示透镜的焦距,n表示透镜的折射率,R1和R2分别表示透镜两侧的曲率半径。
在这个公式中,焦距的倒数与曲率半径之间存在线性关系。
从焦半径公式可以看出,当透镜两侧的曲率半径R1和R2相等时,透镜为球面透镜,并且该公式也可以简化为:1/f = (n-1) * (2/R)其中,R表示透镜的曲率半径。
对于球面透镜而言,曲率半径相同,焦半径公式简化为这个形式可以更加方便地计算焦距。
焦半径公式的推导涉及到几何光学的一些基本原理,包括球面反射定律、斯涅尔定律等。
透镜的焦距与曲率半径之间的关系是由这些基本原理推导出来的。
这个公式为光学工程师和设计人员提供了计算透镜焦距的方法,帮助他们设计出满足特定要求的透镜系统。
除了焦半径公式,光学中还有一些关于透镜的重要公式,比如物距与像距的关系公式和薄透镜公式等。
这些公式在解决光学问题时都发挥着重要作用。
焦半径公式和其他透镜相关的公式共同构成了光学理论的基础。
总结起来,焦半径公式是描述透镜焦距和曲率半径之间关系的基本公式。
它在光学工程和设计中具有重要作用,为光学工程师提供了一个计算透镜焦距的方法。
了解和掌握焦半径公式对于理解和应用光学知识具有重要意义。
焦半径公式的三角形式及其应用
焦半径公式的三角形式及其应用重庆清华中学 张 忠焦半径是圆锥曲线中很重要的几何量,与它相关的问题是各类考试的热点,常考常新,故值得我们进一步总结与研究。
焦半径公式的代数形式:设21,F F 是曲线的左、右焦点,点),(00y x P 在曲线上,记11PF r =、22PF r =为左、右焦半径。
则在椭圆中:0201,ex a r ex a r -=+=;在双曲线中:a ex r a ex r -=+=0201,;在抛物线)0(22>=p px y 中:20p x r +=。
若焦点在y 轴上时,则把相应的0x 改为0y 即可。
因应用情形比较常见,不再叙述。
,本文介绍它的三角形式及其应用。
定理1:若椭圆的离心角为θ,则 (1)|PF 1|=a +ccosθ; (2)|PF 2|=a -ccosθ. 证明:∵ 椭圆的离心角为θ,由椭圆参数方程知点P 的横坐标为acosθ,依焦半径的代数形式知:|PF 1|=a +ex p =a +ea·cosθ=a +c·cosθ,|PF 2|=a -ex p =a -c·cosθ.例1. F 1、F 2是椭圆+y 2=1的左右焦点,点P 在椭圆上运动,则|PF 1|·|PF 2|的最大值 是______, 最小值是_________. (1996年第七届“希望杯”赛)解:设椭圆的离心角为θ,又知a =2,c 2=3,由定理1得 |PF 1|c·|PF 2|=a 2-c 2cos 2θ=4-3cos 2θ∵ 0≤cos 2θ≤1 故知 |PF 1|c·|PF 2|max =4-3·0=4 |PF 1|·|PF 2|min =4-3·1=1例2. 椭圆的左右焦点为F 1、F 2,试问此椭圆的离心率e 在什么值范围内,椭圆上恒存在点P,使得PF1⊥PF2。
解:设椭圆方程为b2x2+a2y2=a2b2(a>b>0),离心角为θ,依题设、定理1及勾股定理得(2c)2=(a-ccosθ)2+(a+ccosθ)2化简得cos2θ=.∵0≤cos2θ≤1,∴0≤2-≤1,结合0<e<1得≤e<1为所求。
圆锥曲线焦半径公式
圆锥曲线焦半径公式
圆锥曲线焦半径公式是用来计算圆锥曲线的焦半径的公式。
它是圆锥曲线的重要参数,其长度反映了圆锥曲线的大小。
也就是说,焦半径越大,圆锥曲线越大。
圆锥曲线焦半径公式是一个复杂的数学公式,它是由三个参数组成,分别是离心率e、曲率半径R和弦长S。
e表示圆锥曲线的离心率,R表示圆锥曲线的曲率半径,S表示圆锥曲线的弦长。
圆锥曲线焦半径公式可以用来计算圆锥曲线的焦半径,公式如下: F=R[1-(1-e^2)^(3/2)]/[e(1-e^2)^(1/2)]
其中,F表示圆锥曲线的焦半径,e表示圆锥曲线的离心率,R表示圆锥曲线的曲率半径。
由于圆锥曲线焦半径公式包含三个参数,因此计算出圆锥曲线的焦半径需要计算三个参数的值,即e、R和S的值。
可以根据圆锥曲线的特性来求解这三个参数的值。
当焦半径的值计算出来之后,就可以知道圆锥曲线的大小了。
焦半径的值可以用来衡量圆锥曲线的大小,它可以帮助我们更好的了解圆锥曲线的特性,并用来分析圆锥曲线的性能。
总之,圆锥曲线焦半径公式是一个有用的公式,它可以帮助我们计
算出圆锥曲线的焦半径,从而了解圆锥曲线的大小,并用来分析圆锥曲线的性能。
高中数学:焦半径公式及其应用
高中数学:焦半径公式及其应用从圆锥曲线(特指椭圆、双曲线、抛物线)的定义与标准方程出发,如何去推导与焦点相关的焦半径公式、焦点弦长公式及其相关的结论,进而加以应用.本文不作特别说明,椭圆、双曲线、抛物线都是针对焦点在轴上标准方程(其中抛物线考虑标准方程),分别为椭圆或双曲线的左、右焦点,是抛物线的焦点,是相应圆锥曲线上的一点.所有的公式推导均以椭圆方程为例,且优先考虑左焦点对应的相关公式.双曲线可以完全类比椭圆的推导过程得到,特殊情况会另外说明.焦半径是指圆锥曲线上任意一点与焦点的连线段.对于椭圆与双曲线上的任意一点,都对应两条焦半径;对于抛物线上的任意一点,焦半径唯一存在.设是椭圆上任意一点,则有从而焦半径而,所以其中为椭圆的离心率.事实上,在由椭圆的定义推导椭圆方程的过程中,就已经产生了这个式子,设满足即分子有理化得于是有(1)(2)两式相加得即为椭圆上一点到椭圆左焦点的距离.于是我们得到椭圆的焦半径公式(I):同理有双曲线的焦半径公式(I):当点在双曲线上的不同支上时,绝对值里面式子的正负大家可以自行讨论.抛物线的焦半径公式可以直接由抛物线的定义得到,即例1椭圆的右焦点为,直线与轴的交点为,在椭圆上存在点满足线段的垂直平分线过点,则椭圆离心率的取值范围是____.正确答案是.解设,则有,即解得又因为,所以有两边同除可解得由椭圆的焦半径公式(I)知,已知椭圆上一点的横坐标,就很容易求出椭圆的焦半径长,但有时,我们知道的不是横坐标的值,而是焦半径与轴形成的角度,我们可以从上面的焦半径公式(I)出发去推导由焦半径与轴正半轴所成的角对应的焦半径公式.设与轴正半轴形成的角度为,则有整理得,于是有解得同理可以推得右焦点对应的焦半径公式其中,是焦半径与轴正半轴所成的角,注意,同一个点与左焦点与右焦点连线形成的焦半径与轴正半轴所成的角不是同一个角,这是与焦半径公式(I)很不相同的地方,如图:于是我们得到椭圆的焦半径公式(II):其中为焦半径与轴正半轴所成的角.对于双曲线来说,与椭圆类似可以得到双曲线的焦半径公式(II),需要注意的是,当双曲线上的点在双曲线的不同支上时,焦半径公式(I)中绝对值的正负不同,所以需要分别讨论.双曲线的焦半径公式(II):当在双曲线的左支时,有当在双曲线的右支时,有其中为焦半径与轴正半轴所成的角.抛物线的焦半径公式为:其中为焦半径与轴正半轴所成的角.椭圆的焦半径公式(II)有两个常用的推论:推论1 椭圆的焦点弦长公式:其中为椭圆的焦点弦,的倾斜角为.圆锥曲线的焦点弦是指过某一焦点的直线与该圆锥曲线相交得到的两个交点之间的线段.当该弦与轴(椭圆的长轴,双曲线的实轴)垂直时,得到的弦我们称为通径.因为焦半径公式(II)是与角度相关的公式,所以我们很容易从它得到椭圆的焦点弦长公式.证明设是过椭圆左焦点的焦点弦,的倾斜角为,不妨设点在轴上方,如图:由焦半径公式(II)知于是这就是椭圆的焦点弦长公式,容易知道,对于经过椭圆右焦点的弦,此公式同样适用.事实上,对于双曲线,同样有推论1,即双曲线的焦点弦长公式:其中为双曲线的焦点弦,的倾斜角为.不论两点在双曲线的同支还是异支上,都有这个公式成立,只是绝对值中的式子正负有所不同.抛物线的焦点弦长公式更为简单,即其中是抛物线的焦点弦,的倾斜角为.例2椭圆,为椭圆上四个不同的点,都不和轴垂直,且分别过,,求证:为定值.解设的倾斜角为,则的倾斜角为,则由焦点弦长公式知所以为定值.推论2 椭圆的焦点弦被焦点所分成的两段线段长的调和平均数为定值(即焦半径的倒数和为定值).证明由焦半径公式(I)知于是我们知道与的调和平均数为定值,即这个定值就是半通径长,由均值不等式易知椭圆的所有焦点弦中,通径长最短.几道练习:练习1椭圆的焦点为和,点在椭圆上,如果线段的中点在轴上,求的值.练习2椭圆的左右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,,求四边形面积的取值范围.答案练习1 .提示设,则,于是于是.练习2 .提示设的倾斜角为,则的倾斜角为,于是四边形的面积练习3备注1椭圆的焦半径公式(I)是从椭圆的第一定义向第二定义过渡的重要桥梁,可以通过椭圆的焦半径公式(I)去发掘椭圆的第二定义.由焦半径公式(I)知设直线:,称为椭圆的左准线,记点到的距离为,则有即椭圆上任一点到椭圆左焦点的距离与到左准线的距离的比为定值,这个值为椭圆的离心率.同样地有椭圆的右准线于是有,椭圆上的任意点到椭圆的焦点与对应准线的距离的比值为定值.对于双曲线也有类似的结论,双曲线的准线方程为双曲线上任意点到焦点的距离与到对应准线的距离的比也为定值,即为双曲线的离心率.同时,平面上到定点与到定直线(其中)的距离比为定值(其中)的轨迹为椭圆、双曲线或抛物线,取决于的大小.当时为椭圆,当时为抛物线,当时为双曲线.从而有圆锥曲线的统一定义:平面上到一个定点的距离与到一条定直线(其中定点不在直线上)的距离的比为定值的点的轨迹为圆锥曲线,时这个定义就是抛物线的定义,当的范围在与上时,对应的定义被称为椭圆与双曲线的第二定义.备注2由椭圆的焦半径公式(II)很容易得到椭圆的极坐标方程:以椭圆的一个焦点为极点,以轴正半轴方向为极轴方向建立极坐标系,则椭圆上任意一点的坐标满足:这就是椭圆的极坐标方程,注意如果以椭圆的右焦点为极点,轴正方向为极轴建立极坐标系,得到的极坐标方程为▍▍ ▍▍。
圆锥曲线焦半径公式及其应用(学生版)
圆锥曲线焦半径公式及其应用一、坐标形式的焦半径公式1.椭圆的坐标形式的焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF ,=2PF ,记忆方式:(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF ,=2PF ,记忆方式:2.双曲线的坐标形式的焦半径公式(1)设点),(00y x P 是双曲线)0,0(12222>>=-b a by a x 上任意一点,21,F F 是其左、右焦点,则①当点P 在右支上时,=1PF ,=2PF ,②当点P 在左支上时,=1PF ,=2PF ,记忆方式:(2)设点),(00y x P 是双曲线)0,0(12222>>=-b a bx a y 上任意一点,21,F F 是其下、上焦点,则①当点P 在上支上时,=1PF ,=2PF ,②当点P 在下支上时,=1PF ,=2PF ,记忆方式:(3)若弦AB 过左焦点,则=AB ;若弦AB 过右焦点,则=AB 3.抛物线的坐标形式的焦半径公式(1)设),(00y x P 是抛物线)0(22>=p px y 上任意一点,F 为其焦点,则=PF (2)设),(00y x P 是抛物线)0(22>-=p px y 上任意一点,F 为其焦点,则=PF (3)设),(00y x P 是抛物线)0(22>=p py x 上任意一点,F 为其焦点,则=PF (4)设),(00y x P 是抛物线)0(22>-=p py x 上任意一点,F 为其焦点,则=PF 例1.(2021年新高考Ⅰ卷)已知21,F F 是椭圆C :14922=+y x 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.6例2.(2019年全国Ⅲ卷理)设21,F F 为椭圆C :1203622=+y x 的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则点M 的坐标为例3.点),(00y x P 为双曲线C :132422=-y x 的右支上一点,若点P 到右焦点的距离等于02x ,则=0x例4.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为例5.(2011年辽宁卷)已知F 是抛物线x y =2的焦点,B A ,是该抛物线上两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为A.43 B.1C.45 D.47例8.(2013年全国Ⅱ卷)设抛物线C :)0(22>=p px y 的焦点为F ,点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程为()A.x y 42=或x y 82= B.x y 22=或x y 82=C.x y 42=或xy 162= D.x y 22=或xy 162=注:以抛物线的焦半径为直径的圆与y 轴相切二、角度形式的焦半径公式1.椭圆的角度形式的焦半径公式(1)设过椭圆)0(12222>>=+b a b y a x 的焦点F 的弦AB 的倾斜角为θ,则=AF ;=BF ;焦点弦长=AB ;(2)设过椭圆)0(12222>>=+b a bx a y 的焦点F 的弦AB 的倾斜角为θ,则=AF ;=BF ;焦点弦长=AB ;2.双曲线的角度形式的焦半径公式设过双曲线)0,0(12222>>=-b a by a x 右焦点)0,(c F 的弦AB 的倾斜角为α,渐近线xa b y ±=的倾斜角为θ,则(1)当θπαθ-<<时,焦点弦AB 在右支上,=AF ;=BF ;=AB ,弦AB 在双曲线一支上时,焦点弦最短为(2)当θα<≤0或παθπ<<-焦点弦AB 在两支上,=AF ;=BF ;=AB ,弦AB 交双曲线两支上时,焦点弦最短为3.抛物线的角度形式的焦半径公式(1)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p px y 于B A ,两点,则=AF ;=BF ;=AB (2)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p py x 于B A ,两点,则=AF ;=BF ;=AB 例1.如图,设过椭圆13422=+y x 的右焦点F 的直线l 交椭圆于B A ,两点,线段AB 的垂直平分线交x 轴于点M ,则=ABMF例2.如图,过椭圆13422=+y x 的左焦点F 任作一直线交椭圆于B A ,两点,若=+BF AF BF AF λ,则=λ例2.已知椭圆12322=+y x 的左右焦点分别为21,F F ,过1F 的直线交椭圆于D B ,两点,过2F 的直线交椭圆于C A ,两点,且BD AC ⊥,则四边形ABCD 的面积的最小值为例3.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 作平行于渐近线的两直线,与双曲线分别交于B A ,两点,若a AB 2=,双曲线的离心率为e ,则[]=e 例4.已知双曲线191622=-y x 的左焦点弦交双曲线左支于B A ,两点,且772=AB ,求直线AB 的方程例5.已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为三、焦半径定比模型(1)设AB 为焦点在x 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θcos e ;=e (2)设AB 为焦点在y 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θsin e ;=e 例1.(2010年辽宁理科)设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,过点F 的直线与椭圆C 相交于B A ,两点,直线l 的倾斜角为060,FB AF 2=,则椭圆的离心率为例2.(2010年全国Ⅰ卷)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D ,FD BF 2=,则C 的离心率为例3.(2010年全国Ⅱ卷)已知椭圆)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于B A ,两点,若FB AF 3=,则=k ()A.1B.2C.3D.2例4.(2014年全国Ⅱ卷理)设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N ,若直线MN 在y 轴上的截距为2,且N F MN 15=,则椭圆C 的方程为。
圆锥曲线的焦半径公式及其应用
圆锥曲线的焦半径公式及其应用圆锥曲线上任意一点到焦点的距离叫做圆锥曲线关于该点的焦半径。
利用圆锥曲线的第二定义很容易得到圆锥曲线的焦半径公式。
1.椭圆的焦半径公式(1)若P(x,y)为椭圆+=1(a>b>0)上任意一点,F、F分别为椭圆的左、右焦点,则=a+e x,=a-e x.(2) 若P(x,y)为椭圆+=1(a>b>0)上任意一点,F、F分别为椭圆的上、下焦点,则=a+e y,=a-e y.2.双曲线的焦半径公式(1)若P(x,y)为双曲线-=1(a>0,b>0)上任意一点,F、F分别为双曲线的左、右焦点,则①当点P在双曲线的左支上时,=-e x-a,= -e x+a.②当点P在双曲线的右支上时,=e x+a,= e x-a.(2)若P(x,y)为双曲线-=1(a>0,b>0)上任意一点, F、 F分别为双曲线的上、下焦点,则①当点P在双曲线的下支上时,=-e y-a,= -ey+a.②当点P在双曲线的上支上时,=ey+a,= ey-a.3.抛物线的焦半径公式(1)若P(x,y)为抛物线y=2px(p>0)上任意一点,则= x+(2) 若P(x,y)为抛物线y=-2px(p>0)上任意一点,则= -x+(3) 若P(x,y)为抛物线x=2py(p>0)上任意一点,则= y+(4)若P(x,y)为抛物线x=-2py(p>0)上任意一点,则= -y+下面举例说明上述各公式的应用例1.求椭圆+=1上一点M(2.4,4)与焦点F、F的距离.解:易知a=5,e=且椭圆的焦点在轴上,∴=a+ey=5+×4=,= a-e y=5-×4=。
例2.试在椭圆+=1上求一点P,使它到左焦点的距离是它到右焦点的距离的两倍.解:由,得。
设P(x, y),则=a+ex,即5+x=,解之得x=,所以P(, ).例3.在双曲线-=1上求一点M,使它到左、右两焦点的距离的比为3:2,并求M点到两准线的距离。
焦半径公式及其应用
焦半径公式及其应用
焦半径公式及其应用
焦半径是电学光学领域中一个非常重要的理论和方法,它可以表达光在物体中
的行为规律,也可以将电脉冲与光的传播关联起来,从而为微及宏观尺度的内部光学响应,提供一种框架。
它的应用涉及到很多行业,如医学成像、光电子器件的制造、半导体的研究、太阳能发电等。
它的定义式即:焦半径=π*λ/2*NA,λ表示光在媒质中的波长,NA表示孔径比,是系统中光学元件出口和入口处视场角的比值(其中视场角即光在媒质中传播的范围),说明了光的传播的效率量比。
焦半径的计算公式,可以应用于特定医学成像系统,如特定类型的X射线系统,根据NA的变化来控制X射线路径行走的范围,以期得到最好的图像分辨率效果。
此外,焦半径公式还可以应用于制造光电子器件,例如在激光刻蚀中,通过改
变NA值来控制激光集中焦点的大小和位置,从而使激光能够准确刻蚀硅片内外表面,使电子元器件具有更好的性能。
此外,焦半径公式还可以应用于半导体的研究,例如,在激光二极管的制造过
程中,改变NA的值可以改变激光处理半导体的大小和位置,从而使半导体表面光
学表面响应能力更强,同时使用户能够得到更快、更准确的调节结果。
焦半径公式在太阳能发电中也有广泛的应用,在太阳能发电系统中,改变焦半
径的值可以改变受光元件的能量效率,使元件能够更有效地吸收太阳能,使发电效率提高。
总之,焦半径公式在描述光的传播规律、广泛的行业领域都有广泛的应用,故
电学、光学领域的研究者都应该牢记它的定义式及其应用,以尽可能地有效得利用它以达到技术上的突破。
焦半径公式二级结论
焦半径公式二级结论
椭圆:
焦半径公式:对于椭圆上的任意一点P(x, y),其到左焦点的距离|PF ₁| = a + ex,到右焦点的距离|PF₂| = a - ex,其中a是椭圆的长半轴,e是离心率,x是点P的横坐标。
二级结论:椭圆的通径长度|AB| = 2b²/a,其中b是椭圆的短半轴。
双曲线:
焦半径公式:对于双曲线上的任意一点P(x, y),其到左焦点的距离|PF ₁| = |a + ex|,到右焦点的距离|PF₂| = |a - ex|,其中a是双曲线的实半轴,e是离心率,x是点P的横坐标。
注意:由于双曲线有两支,因此焦半径可能是正值或负值,这取决于点P位于哪一支上。
抛物线:
焦半径公式:对于抛物线y²= 2px上的任意一点P(x, y),其到焦点的距离|PF| = x + p/2,其中p是抛物线的焦距,x是点P的横坐标。
二级结论:抛物线的准线方程为x = -p/2。
证明焦半径公式
证明焦半径公式一、椭圆焦半径公式的证明。
(一)椭圆的标准方程。
设椭圆方程为frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),其左、右焦点分别为F_1(-c,0),F_2(c,0)(其中c^2=a^2-b^2)。
(二)设点P(x_0,y_0)在椭圆上。
1. 求PF_1(左焦半径)- 根据两点间距离公式,PF_1=√((x_0)+c)^2+y_{0^2}。
- 因为点P(x_0,y_0)在椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1上,所以y_0^2=b^2(1-frac{x_0^2}{a^2})。
- 将y_0^2=b^2(1 - frac{x_0^2}{a^2})代入PF_1=√((x_0)+c)^2+y_{0^2}中,得到:PF_1=√((x_0)+c)^2+b^2(1-frac{x_{0^2}{a^2})} =√(x_0)^2+2cx_{0+c^2+b^2-frac{b^2x_0^2}{a^2}} =√(frac{a^2)x_0^2+2a^2cx_{0+a^2c^2+a^2b^2-b^2x_0^2}{a^2}} =√(frac{(a^2)-b^{2)x_0^2+2a^2cx_0+a^2(b^2+c^2)}{a^2}}- 又因为c^2=a^2-b^2,所以:PF_1=√(frac{c^2)x_0^2+2a^2cx_{0+a^4}{a^2}} =√(frac{(cx_0)+a^2)^2{a^2}} =<=ft frac{cx_0+a^2}{a}right- 因为-a≤slant x_0≤slant a且a > 0,c>0,所以cx_0+a^2>0,则PF_1 = a +ex_0(其中e=(c)/(a)为椭圆的离心率)。
2. 求PF_2(右焦半径)- 同样根据两点间距离公式,PF_2=√((x_0)-c)^2+y_{0^2}。
智爱高中数学 椭圆焦半径公式及应用
智愛高中數學椭圆焦半径公式及应用在椭圆曲线中,焦半径是一个非常重要的几何量,与其有关的问题是各类考试的热点,故值得我们深入研究。
思路1:,问题就可迎刃而解。
联立<1>、<2>思路2:<2>÷<1><1>、<3>点评:把<1>、<3>两式左边的两个根式看成两个未知数,构建方程组得解。
思路3:应从消除差异做起,根2由点M点评:平方式的思想。
由a 、e时取得)思路4:MHH 点点评:成平行于x 轴的直线上点M 、H 请你独立探求焦点在y分享智慧泉源 智愛學習 传扬爱心喜乐W isdom&Love 第 3 页 (共 19 页) 2019年2月15日星期五一、椭圆焦半径公式Pe 是椭圆的离心率,则(P 是上、下焦点,e 是椭圆的离心率,则(以上结论由椭圆的第二定义及第一定义和椭圆的方程易得。
(一)用椭圆方程求椭圆的焦点半径公式例1 已知点P (x ,y )是椭圆12222=+b y a x 上任意一点,F 1(-c,0)和F 2(c,0)是椭圆的两个焦点.求证:|PF 1|=a+x a c ;|PF 2|=a -x ac.【分析】 可用距离公式先将|PF 1|和|PF 2|分别表示出来.然后利用椭圆的方程“消y ”即可.【解答】 由两点间距离公式,可知|PF 1|=22)(y c x ++ (1)从椭圆方程12222=+by ax 解出)(22222x a ab y -=(2)代(2)于(1)并化简,得 |PF 1|=x aca +(-a ≤x ≤a) 同理有 |PF 2|=x aca -(-a ≤x ≤a) 【说明】 通过例1,得出了椭圆的焦半径公式r 1=a+ex r 2=a-ex (e=ac ) 从公式看到,椭圆的焦半径的长度是点P (x,y )横坐标的一次函数. r 1是x 的增函数,r 2是x 的减函数,它们都有最大值a+c,最小值a-c.从焦半径公式,还可得椭圆的对称性质(关于x,y 轴,关于原点). (二)、用椭圆的定义求椭圆的焦点半径用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公4式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来.椭圆的焦半径公式,是椭圆“坐标化”后的产物,按椭圆定义,对焦半径直接用距离公式即可.例2. P (x,y)是平面上的一点,P 到两定点F 1(-c ,0),F 2(c ,0)的距离的和为2a (a>c>0).试用x ,y 的解析式来表示r 1=|PF 1|和r 2=|PF 2|.【分析】 问题是求r 1=f (x )和r 2=g (x ).先可视x 为参数列出关于r 1和r 2的方程组,然后从中得出r 1和r 2.【解答】 依题意,有方程组⎪⎪⎩⎪⎪⎨⎧+-=++==+③)(②)(① 22222222121 y c x r y c x r a r r ②-③得④ 42221cx r r =-代①于④并整理得r 1-r 2=x ac2 ⑤ 联立①,⑤得 ⎪⎪⎩⎪⎪⎨⎧-=+=xa c a r x ac a r 21【说明】 椭圆的焦半径公式可由椭圆的定义直接导出,对椭圆的方程有自己的独立性.由于公式中含c 而无b ,其基础性显然. 二、 焦半径公式与准线的关系用椭圆的第二定义,也很容易推出椭圆的焦半径公式. 如图右,点P (x ,y )是以F 1(-c,0)为焦点,以l 1: x=-ca 2为准线的椭圆上任意一点.PD ⊥l 1于D.按椭圆的第二定义, 则有ex a c a x e PD e PF e PD PF +=+==⇒=)(||||||||2即r 1=a+ex,同理有r 2=a-ex.椭圆的这个第二定义有很大的“人为性”.准线ca x 2±=缺乏定义的“客观性”.因此,把椭圆的第二定义视作椭圆的一条性质定理更符合逻辑性. 例3. P (x ,y )是以F 1(-c ,0),F 2(c ,0)为焦点,以距离之和为2a的椭分享智慧泉源 智愛學習 传扬爱心喜乐W isdom&Love 第 5 页 (共 19 页) 2019年2月15日星期五圆上任意一点.直线l 为x=-c a 2,PD 1⊥l 交l 于D 1. 求证:e PD PF =||||11. 【解答】 由椭圆的焦半径公式 |PF 1|=a+ex.对|PD 1|用距离公式 |PD 1|=x-)(2c a -=x+ca 2. 故有e cax c a x e c a x ex a PD PF =++=++=22211)(||||. 【说明】 此性质即是:该椭圆上任意一点,到定点F 1(-c,0)(F 2(c,0))与定直线l 1:x=-c a 2(l 2:x=ca 2)的距离之比为定值e (0<e<1). 三、用椭圆的焦半径公式证明椭圆的方程在椭圆部分,只完成了“从曲线到方程”的单向推导,实际上这只完成了任务的一半.而另一半,从“方程到曲线”,却留给了学生(关于这一点,被许多学生所忽略了可逆推导过程并不简单,特别是逆过程中的两次求平方根).其实,有了焦半径公式,“证明椭圆方程为所求”的过程显得很简明.例4. 设点P (x ,y )适合方程12222=+b y a x .求证:点P (x ,y )到两定点F 1(-c,0)和F 2(c ,0)的距离之和为2a (c 2=a 2-b 2).【分析】 这题目是为了完成“从方程到曲线”的这一逆向过程.利用例2导出的焦点半径公式,很快可推出结果.【解答】 P (x ,y )到F 1(-c,0)的距离设作r 1=|PF 1|. 由椭圆的焦点半径公式可知 r 1=a+ex ①同理还有 r 2=a-ex ②①+② 得 r 1+r 2=2a 即 |PF 1|+|PF 2|=2a.即P (x ,y )到两定点F 1(-c ,0)和F 2(c,0)的距离之和为2a.【说明】 椭圆方程是二元二次方程,而椭圆的焦半径公式是一元一次函数.因此,围绕着椭圆焦半径的问题,运用焦半径公式比运用椭圆方程要显得简便.四、椭圆焦半径公式的变式6PE 、F 是左、右焦点,PE 与x 轴所成是椭圆半焦距,则(1 (2PE 、F 是上、下焦点,PE 与x 轴所成是椭圆半焦距,则(3(4证明:(1)设P 在x 轴上的射影为Q90°时,在三角形PEQ 中,有由椭圆焦半径公式(1)得190°时,在三角形PEQ 中, 有以下与上述相同。
焦半径公式的三角形式及其应用
焦半径公式的三角形式及其应用重庆清华中学张忠焦半径是圆锥曲线中很重要的几何量,与它相关的问题是各类考试的热点,常考常新, 故值得我们进一步总结与研究。
焦半径公式的代数形式:设F I,F2是曲线的左、右焦点,点P(X o,y。
)在曲线上,记r1PF1、r2PF2为左、右焦半径。
则在椭圆中:r i a ex o, r2 a ex o ;在双曲2 p线中:r1ex0a, r2ex0a ;在抛物线y 2px(p 0)中:r x0专。
若焦点在y轴上时,则把相应的X。
改为y o即可。
因应用情形比较常见,不再叙述。
,本文介绍它的三角形式及其应用。
定理1:若椭圆的离心角为贝U (1)|PF i| = a + ccos 0; (2)|PF 2| = a —ccos 0.证明:•••椭圆的离心角为0,由椭圆参数方程知点P的横坐标为acos0,依焦半径的代数形式知:|PF i| = a+ex p= a + ea • cos 0= a + c • cos 0 ,|PF 2| = a—ex p= a —c • cos 0.例1. F i、F2是椭圆+ y2= 1的左右焦点,点P在椭圆上运动,则|PF1| • |PF2|的最大值是_______ ,最小值是__________ .(1996年第七届“希望杯”赛)解:设椭圆的离心角为0,又知a= 2, c2= 3,由定理1得2 2 2 2|PF 1|c • |PF 2| = a —c cos 0 = 4 —3cos 0•/0< cos 0W1 故知|PF1|c • |PF 2| max= 4—3 • 0= 4|PF1| • |PF2| min= 4 —3 • 1= 1例2.椭圆的左右焦点为F1、F2,试问此椭圆的离心率e在什么值范围内,椭圆上恒存在点P,使得PF i ± PR。
解:2 2 2 2 2 2设椭圆方程为b x + a y = a b (a > b> 0),离心角为B,依题设、定理1及勾股定理得(2 c) 2= (a —ccos 0) 2+ (a + ccos 0) 2化简得cos20 =2O w cos20<1 , ••• 0W2<1结合0 v e v 1PFeFH 1 ecos ep 1 ecos,这里p 为焦准距,在椭圆和双曲线中,b 2W e v 1为所求。
坐标表示的焦半径公式
一.坐标表示的焦半径公式1、椭圆(一类)由代入整理得,同理,可以假想点P在y轴右边,且x>0 帮助,显然总有符合椭圆定义。
公式常见应用:(1)椭圆上点到焦点最远距离a+c,最近距离a-c(2)椭圆上三点A,B,C,若成等差数列,则到同一个焦点的焦半径也成等差数列。
(3)定义直线为椭圆的左右准线。
由焦半径公式,椭圆上任意一点P(x,y) 到对应焦点和对应准线的距离之比总等于离心率e.2. 双曲线由代入整理得,由双曲线上点 ,若点P在右支上,同理, .总有 .若点P在左支上,同理, .总有 .公示的应用:(1)若双曲线上同一支上的三点A,B,C,有成等差数列,则它们到同一个焦点的焦半径也成等差数列。
(2)定义直线为双曲线的左右准线。
由焦半径公式,双曲线上任意一点 P(x,y) 到对应焦点和对应准线的距离之比总等于离心率e.3.抛物线公式的应用:抛物线上三点A,B,C,若,则。
二.圆锥曲线统一定义及方向角表示的焦半径公式1、统一定义:平面上到定点F与定直线l 距离之比等于常数e的点轨迹。
若0<e<1,轨迹为椭圆。
若e=1,则轨迹为抛物线。
若e>1,则轨迹为双曲线。
2.方向角焦半径公式(1)方向角定义如图:将Fx当始边,FM当终边所成角定义为点M的方向角。
方向角范围将焦准距离统一表示为P。
对于椭圆,双曲线 (要求记忆)(2)公式: e:离心率,对于椭圆,双曲线, .(3)公式的应用:焦点弦长公式说明:(1)焦点弦长公式中,方向角以平方形式出现,不影响计算,可将方向角改为焦点弦和对称轴夹角:.(2)有对称性改为夹角,公式对椭圆,双曲线的左右焦点弦都成立。
(3)对于双曲线当所决定的焦点弦与渐近线平行,在实际上不存在。
若较小,使时,此时公式应表为,此时焦点弦的两个端点分在两支上。
(4)对于抛物线,∵e=1 , .为焦点弦与对称轴夹角。
(5)通径:垂直对称轴的焦点弦称通径,在,令得通径的统一表示2eP.对于椭圆,双曲线: ;对于抛物线: 2eP=2P.(6)以上结论容易推广到二类圆锥曲线,比如焦点弦与对称轴夹角,则有 .三.相交弦长公式将直线y=Kx+d 代入椭圆存在相交弦在中,由求根公式,在具体问题,只要已知直线斜率和求得的代入后方程可直接写出相交弦长表达式,完全可以略去中间过程。