化工原理课件 (1)
第一章化工原理流体流动课件
第一章流体流动液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小,无固定形状,随容器的形状而变化,在外力作用下其内部发生相对运动。
流体随压强的改变而改变自身体积的性质称为流体的压缩性。
压缩性的大小被看作是气体和液体的主要区别。
由于气体在压强增大时体积缩小,而液体则变化不明显,故气体属于可压缩性流体,液体属于不可压缩性流体。
气体在输送过程中若压强和温度变化不大,因而体积和密度变化也不大时,也可按不可压缩流体来处理。
一般气体在常温常压下仍可按理想气体考虑,以简化计算。
在化工生产中,涉及流体流动的规律,主要有以下几个方面:(1)流体阻力及流量、压强的计算(2)流动对传热与传质及化学反应的影响(3)流体的混合第一节流体静力学基本方程流体静力学是研究流体在外力作用下达到平衡的规律。
也即流体在静止状态下流体内部压力的变化规律。
1-1-1 流体的密度单位体积流体所具有的质量称为流体的密度,其表达式为:(1—1)式中:ρ——流体的密度,kg / m3;m——流体的质量,kg;V——流体的体积,m3。
不同流体的密度是不同的,对一定的流体,密度ρ是压力p和温度T的函数,可用下式表达:ρ = f ( p,T )液体的密度随压力的变化甚小,可忽略不计,故常称液体为不可压缩的流体。
温度对液体的密度有一定影响,但改变不大(极高压力下除外),液体的密度ρ一般可从物理化学手册或有关资料中查到。
气体具有压缩性及膨胀性,其密度随压强,温度的变化很大。
当压强不太高,温度不太低时,其密度可近似地按理想气体状态方程式来计算:ρ= m / V = pM / RT (1—2)式中:p——气体的绝对压强,kN / m2或kPa;T——气体的绝对温度,K;M——气体分子的分子量;R——气体常数,8.314 kJ / kmol·K。
若以知标准状态下气体的密度ρ0、温度T0和压力P0,则某状态下(T、P)理想气体的密度ρ也可按下式计算:ρ = ρ0T 0P / TP0(1—3)式中:ρ0——标准状态下(T0=273K P0=101.33 kPa)气体的密度,kg / m3ρ0 = M / 22.4 kg / m3在化工生产中所遇到的流体,往往是含有几个组分的混合物。
《化工原理》课件
学习资源
1 教材推荐
2 参考书目
除了《化工原理》教材外, 我们还推荐以下参考教材, 有助于更深入地理解化工 原理。
在课程中提供的参考书目 中,您可以找络资源
我们提供一些网络资源, 供学生进一步学习化工原 理和实际应用。
推荐使用《化工原理》教材, 该教材详细解释了化工原理 的基本概念和实际应用。
重要概念
1 反应原理
了解不同类型的化学反应和它们的原理,如 合成反应、分解反应和酸碱反应。
2 质量守恒与能量守恒
理解质量守恒定律和能量守恒定律,并学会 在化工过程中应用。
3 化学平衡
4 反应动力学
学习如何计算和控制化学反应中的平衡常数, 以及如何进行反应平衡的优化。
《化工原理》PPT课件
欢迎来到《化工原理》PPT课件!本课程将介绍化工基本原理和实际应用,帮 助您理解化工流程和反应动力学。
课程介绍
课程目标
掌握化工基本原理,理解反 应动力学,培养化工工艺设 计的能力。
课程概述
介绍化工原理相关的重要概 念和实际应用,涵盖质量守 恒、能量守恒和化学平衡等 方面。
教材介绍
掌握反应速率和化学动力学的概念,了解如 何改变反应速率和提高反应效率。
实际应用
化工工艺流程
了解化工工艺流程的基本原理,包括物料流动、反 应控制和产品分离等关键步骤。
催化剂的应用
探索催化剂在化工过程中的重要作用,了解如何选 择和使用催化剂以提高反应效率。
课程评估
课堂作业 期中考试 期末考试
通过完成课堂作业,巩固对课程知识的理解和应 用能力。 进行期中考试,评估学生对化工原理的掌握程度。
《化工原理》课件—01流体流动(层流时机械能损失)
Wf
l
d
u2 2
或:
p f
Wf
l
d
u 2
2
范宁(Fanning)公式,λ为摩擦系数。
4、阻力能量损失的各种表示法
W f,12 -单位质量流体流动阻力能量损失,J/kg
H f ,12
W f,12 g
-单位重量流体流动阻力能量损失, J/N= m,也称阻力压头。
Pf W f,12 -单位体积流体流动阻力能量损失,
)2
流体在圆管内作稳定层流流动时,管内(半径区域 内)各点的速度分布图
3、平均流速与最大流速的关系
平均流速:
u
qv
R 2
R
积分体积流量: qv 2ur rdr 0
ur
p f
4 l
(R2 r2)
推出:
qv
p f 2l
R
(R2 r2)rdr
0
qv
p f 2l
R
(R2 r2)rdr
0
qv
基准
解:
解题要求规范化
z1g
p1
u12 2
W
z2 g
p2
u22 2
hf
式中,z1=0,z2 =7;p1=0(表压), p2=0.2kgf/cm2×9.8×104=19600Pa,u10, u2=u1(d2/d1)2=1.5( (89-2×3.5) /(76-2×2.5))2=2.0m/s
hf 40J / kg
(4)外加能量
外加能量W在上游截面一侧,能量损失在下游截面一侧。 外加能量W是对每kg流体而言的,若要计算的轴功率,需将W 乘以质量流量,再除以效率。
例 用泵将贮槽(通大气)中的稀碱液送到蒸发器中进行 浓缩,如附图 所示。泵的进口管为φ89×3.5mm的钢 管,碱液在进口管的流速为1.5m/s,泵的出口管为 φ76 × 2.5mm的钢管。贮槽中碱液的液面距蒸发器入 口处的垂直距离为7m,碱液经管路系统的能量损失 为40J/kg,蒸发器内碱液蒸发压力保持在 0.2kgf/cm2 (表压),碱液的密度为1100kg/m3。试计算所需的 外加能量。
化工原理完整教材课件
深入理解实验的基本原理,为实验操作和结果分析提供理论依据。
实验数据处理与分析方法
数据记录与整理
掌握实验数据的记录方法,以及如何整理和筛选有效数据 。
误差分析
了解误差的来源和其对实验结果的影响,掌握误差分析和 减小误差的方法。
数据分析与处理
掌握常用的数据处理和分析方法,如平均值、中位数、标 准差等。
物质从高浓度区域向低浓度区域 的转移过程。
传质速率
表示物质转移快慢的物理量,与 扩散系数、浓度差和传质面积成
正比。
扩散系数
表示物质在介质中扩散快慢的物 理量,与物质的性质、温度和压
力有关。
吸收
吸收过程
利用混合气体中各组分在液体溶剂中的溶解度差异,使气体混合 物中的有害组分或杂质组分被吸收除去的过程。
在制药工业和食品工业中,化工原理 涉及药物的合成、分离和提纯,以及 食品的加工和保藏等环节。
02
流体流动
流体静力学
总结词
描述流体在静止状态下的压力、密度和重力等特性。
详细描述
流体静力学主要研究流体在静止状态下的压力分布、流体对容器壁的压力以及 流体与固体之间的作用力。它涉及到流体的平衡性质和流体静压力的基本规律 。
利用气体在液体中的溶解度差异,通过鼓入空气或通入其他气体 产生泡沫而实现分离的方法。
05
化学反应工程
化学反应动力学基础
1 2 3
反应速率与反应机理
介绍反应速率的定义、计算方法以及反应机理的 基本概念,阐述反应速率的测定和影响因素。
反应动力学方程
介绍反应动力学方程的建立、求解及其在化学反 应工程中的应用,包括速率常数、活化能等参数 的确定方法。
对流传热速率方程
化工原理课件
Mm=30.875
m0
Mm 22 .4
T0 P TP0
m0 1 y1 2 y2
m m0
青岛科技大学本科生课程 化工原理
1.14 kg/m3
第一章 流体流动
11/
2、比容( ) 定义:单位质量流体的体积 3、比重 (d) 定义:相对密度
以单位体积混合气为基准:
m i yi 1 y1 2 y2 n yn
y i -各组分的体积分数
混合前后气体的质量相等 前提是:
ni Vi Pi yi ni Vi Pi
另外: M m M i yi M 1 y2 M 2 y2 M n yn
p2 z2
自身重力:
gAdz
p1
给定边界条件: p1 dp z1 gdz
青岛科技大学本科生课程 化工原理
gz1
p2
第一章 流体流动
gz2
16/
流体静力学基本方程:
p1
gz1
p2
gz2
【J/kg】
p1 p2
g ( z 2 z1 ) gz
(1)U形压差计
p1 g z1 R
z1
2 1 z2
p2 gz2 0 gR
p1 gz 1 p2 gz 2 0 gR
R
P1 P2 gz 0 gR
3
3 0
若被测管段水平放置
P1 P2 0 gR
1、压力计(Manometers)
pa R A 1• .. 单管压力计
化工原理完整教材课件 PPT
基本原理及其流动规律解决关问题。以
图1-1为煤气洗涤装置为例来说明: 流体动力学问题:流体(水和煤气)
在泵(或鼓风机)、流量计以及管道中 流动等;
流体静力学问题:压差计中流体、 水封箱中的水
图1-1 煤气洗涤装置
1.1 概述
确定流体输送管路的直径, 计算流动过程产生的阻力和 输送流体所需的动力。
根据阻力与流量等参数 选择输送设备的类型和型号, 以及测定流体的流量和压强 等。
流体流动将影响过程系 统中的传热、传质过程等, 是其他单元操作的主要基础。
图1-1 煤气洗涤装置
1.1.1 流体的分类和特性
气体和流体统称流体。流体有多种分类方法: (1)按状态分为气体、液体和超临界流体等; (2)按可压缩性分为不可压流体和可压缩流体; (3)按是否可忽略分子之间作用力分为理想流体与粘
化工原理完整教材课件
第一章 流体流动
Fluid Flow
--内容提要--
流体的基本概念 静力学方程及其应用 机械能衡算式及柏努 利方程 流体流动的现象 流动阻力的计算、管路计算
1. 本章学习目的
通过本章学习,重点掌握流体流动的基本原理、管 内流动的规律,并运用这些原理和规律去分析和解决流 体流动过程的有关问题,诸如:
气体的密度必须标明其状态。 纯气体的密度一般可从手册中查取或计算得到。当压
强不太高、温度不太低时,可按理想气体来换算:
(1-3)
式中
p ── 气体的绝对压强, Pa(或采用其它单位); M ── 气体的摩尔质量, kg/kmol;
性流体(或实际流体); (4)按流变特性可分为牛顿型和非牛倾型流体;
流体区别于固体的主要特征是具有流动性,其形状随容器形状 而变化;受外力作用时内部产生相对运动。流动时产生内摩擦从而 构成了流体力学原理研究的复杂内容之一
《化工原理》课件—01流体流动(连续性方程+能量衡算)
1 2
u12
p1
Ws
gz2
1 2
u22
p2
W f ,12
gz1
1 2
u12
p1
gz2
1 2
u22
p2
1、计算输送流体所需的功Ws或功率P; 2、计算流体流速、压强、所处位置高度; 3、分析机械能之间相互转化的规律等。
应用举例
1、确定输送设备的功率 P
用泵将碱液池的碱液输送至吸收塔顶,经喷 咀喷出,泵的进口管为108×4.5mm的钢管, 流速为1.5m/s, 出口管为76×2.5mm,储 液池碱液深度1.5m,池底至喷咀的垂直距 离20m,流动阻力损失30J/kg,喷咀处表压 0的.3效k率gf为/c6m52%,。碱液密度ρ=1100kg/m3,泵
p2v2
p2
p2
pdv d( pv) vdp ( pv) vdp
v1
p1v1
p1
p1
即:
Q
Ws
U
gZ
1 2
u2
( pv)
U Q W
p2
Q (( pv) vdp W f 12 )
p1
两式合并,有:
Q Ws Q (( pv)
p2
vdp
p1
W
f
12 )
gZ
1 2
u2
(
pv)
gz1
1 2
u12
p1
gz2
1 2
u22
p2
gz为单位质量流体所具有的位能; p/ρ为单位质量流体所具有的静压能;
u2/2为单位质量流体所具有的动能。
gz1
1 2
u12
p1
gz2
1 2
化工原理总结(第一章)ppt课件
)hf
u2
.
(3)de4 润 流 湿 通 周 截 边 面 长 积、uqAv A A: 真 4 1实 d面 e2 积
圆形套管的环隙:de d2d1
.
l le)u2
d
2
le d
( 1 ) 管 管 进 出 口 口 : : 外 外 侧 侧 1 0 .5 u 2 u 1 0 、 0 、 内 内 侧 侧 0 0 u u 1 2 u u
Re2000层流=6R4ehf u
(2)Re
du
Re4000湍流一 完般 全湍 湍流 流 =fRd(ed
③有效功率: Pe、 轴功率: P
pf hf gHf
WgH、Pe
qmW、
.
Pe P
④应用要点: •确定上、下游截面及截面的选取; •位能基准面的选取; •单位的选取:即压力应同为绝压或表压; •外加能量(泵):W(J/kg)、Pe=qmW、η=Pe/P;
.
6、阻力损失
h fhf h , f (
第一章 流体流动
1、流体定义: 由无数流体质点所组成的连续介质
2、流体参数
① 流体的静压强
p P A
单位:N/m2或Pa、atm、mmHg、mH2O或
以流体柱高度表示 p gh
基准:P表 = P绝 -P大、P真=P大-P绝 = - P表
.
② 密度
(1)流体的密度: m f (p,T)
V
(2)气体的密度:
A A1 2 dd1 22
.
5、流体的机械能衡算式:
z1g12u12
p1
Wz2g12u22
p2
hf
(J/kg)
z121gu12 pg1 Hz221gu22pg2 Hf (J/N=m)
化工原理-精选版课件.ppt
2、层流内层与边界层,边界层的分离。
化工原理
本章 内容
2019/12/17
1.1 流体静力学基本方程 1.2 流体流动的基本方程 1.3 流体流动现象 1.4 流体在管内的流动阻力 1.5 管路计算 1.6 流速和流量测量
化工原理
第一节 流体静力学基本方程
1 流体的密度
化工原理
3、液体密度的计算 通常液体可视为不可压缩流体,其密度仅随温度略有变化 (极高压强除外)。 (1)纯组分液体的密度其变化关系可从手册中查得。
(2)混合液体的密度
取1kg液体,令液体混合物中各组分的质量分率分别为:
xwA、xwB、、xwn ,
当m总 1kg时,xwi
其中xwi
mi
2019/12/17
化工原理
流体流动是最普遍的化工单元操作之一,研究流体流动问 题也是研究其它化工单元操作的重要基础。
掌握 内容
1、流体的密度和粘度的定义、单位、影响因 素及数据的求取;
2、压强的定义、表示法及单位换算; 3、流体静力学基本方程、连续性方程、柏努
利方程及应用; 4、流动型态及其判断,雷诺准数的物理意义
2019/12/17
化工原理
5、 与密度相关的几个物理量
(1)比容:单位质量的流体所具有的体积,用υ表示,单
位为m3/kg。
mi m总
假设混合后总体积不变:
2019/12/17
V总
xwA
A
xwB
B
xwn m总
n m
化工原理
1 xwA xwB xwn
m A B
n
——液体混合物密度计算式
南京理工化工原理课件1--流体流动
衡算基准: 单位重量流体为基准(m):
We hf H 压头损失 H e 有效压头; f g g
2 u12 p1 We u2 p2 We h f Z1 Z2 2g g g 2g g g g
z1:位压头 u12/2g:动压头 p/ρ g:静压头 单位体积流体为计算基准(Pa)
三. 静压强的表示方法
绝对压强(ata):以绝对真空为基准量得的压强; 表压强(atg):以大气压强为基准量得的压强。
1-1-3 流体静力学基本方程
流体静力学基本方程是描述静止流体内部在压力和重力作用下, 流体的平衡规律,实质上是描述静止流体内部压强的变化规律。
对于dz微元:pA-(p + dp)A-ρ gAdZ= 0 对于同一流体,ρ 为常数,积分得: p1 p gz1 2 gz2
物理意义:促使流体流动产生单位速度梯度时剪应力
的大小。
粘度总是与速度梯度相联系,只有在运动时才显现出
来。
粘度是流体物理性质之一,其值由实验测定
1-3-2 流动类型与雷诺准数
雷诺实验
流动类型:层流和湍流
雷诺指出: (1)当Re≤2000时,出现层流区,层流是稳定的。
(2)当2000<Re<4000时,有时出现层流,有时出现 湍流,决定于外界的扰动,此为过渡区。
p/ρ —单位质量液体所具有的静压能
1-1-4
流体静力学基本方程式的应用
一、压强与压强差的测量 1.U 型压差计
(pA+ρ gzA)-(pB+ρ gzB)=Rg (ρ A-ρ ) 两测压口处于等高面
pA-pB=(ρ A-ρ )gR
2.微差压差计
(1)两种指示 液密度相 接近且不互溶。
化工原理流体流动与输送机械PPT课件
质点指的是一个含有大量分子的流体微团,其尺寸远小于 设备尺寸、但比分子自由程却大的多。
连续介质假定:假定流体是由无数内部紧密相连、彼此间 没有间隙的流体质点(或微团)所组成的连续介质。
工程意义:利用连续函数的数学工具,从宏观研究流体。
1.1.2.流体的压缩性
不可压缩性流体:流体的体积不随压力变化而变化,如液 体;
M m M 1 y 1 M 2 y 2 M n y n
y1, y2yn——气体混合物中各组分的摩尔(体积)分数。
11
1 流体流动与输送机Байду номын сангаас——1.1 流体基本性质
1.1.5.压力
流体的压力(p)是流体垂直作用于单位面积上的力,严格 地说应该称压强。称作用于整个面上的力为总压力。
压力(小写)
p
P
A
力(大写) 面积
N [p] m2 Pa
记:常见的压力单位及它们之间的换算关系
1atm =101300Pa=101.3kPa=0.1013MPa
=10330kgf/m2=1.033kgf/cm2
=10.33mH2O =760mmHg
12
1 流体流动与输送机械——1.1 流体基本性质
压力的大小常以两种不同的基准来表示:一是绝对真空, 所测得的压力称为绝对压力;二是大气压力,所测得的压强称 为表压或真空度。一般的测压表均是以大气压力为测量基准。
第1章 流体流动与输送机械
1.1 流体基本性质 1.2 流体静力学 1.3 流体动力学 1.4 流体流动的内部结构 1.5 流体流动阻力 1.6 1.7 流速与流量的测量 1.8 流体输送机械
1
∮计划学时:12学时
∮基本要求:
化工原理 传热 完整ppt课件
精选
18
3、热导率
QAddxtAQdt
dx
(1) 为单位温度梯度下的热通量大小(物理意义)
物质的越大,导热性能越好
(2) 是分子微观运动的宏观表现
= f(结构,组成,密度,温度,压力)
(3) 各种物质的导热系数
金属固体 > 非金属固体 > 液体 > 气体
传热
精选
1
第一节 概述
一、传热过程在化工生产中的应用
加热或冷却 换热/能量回用 保温
强化传热过程 削弱传热过程
精选
2
能量回收:节能减排、资源回用! 同时,是化工厂提高经济效益的一个重要措施!
余热资源被认为是继煤、石油、天然气和水力之后的又一常规能源。
例如:钢铁行业烟气余热回收对比
余热没有回收
热交换器进行余热回收
流 体
间壁
流体与壁面之间的热量传递以对流方式为主,并伴有
流体分子热运动引起的热传导,通常把这一传热过程
称为对流传热。
精选
12
精选
13
6、传热速率方程式
传热过程的推动力是两流体的温度差,因沿传热 管长度不同位置的温度差不同,通常在传热计算 时使用平均温度差,以 t m 表示。经验指出,在稳 态传热过程中,传热速率Q与传热面积A和两流体 的温度差 t m 成正比。即得传热速率方程式为:
QKAtm1/tKmA总总 传热 热阻 推动力
式中 K ── 总传热系数,W/(m2·℃)或W/(m2·K); Q ── 传热速率,W或J/s;
A ── 总传热面积,m2;
tm ── 两流体的平均精选温差,℃或K。
14
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子扩散通量可用费克定律描述
① 费克定律
双组份一维稳态
JA
DAB
dcA dz
表明:分子扩散速率正比于浓度梯度,与浓度梯度方向相反。
D分子扩散系数,与系统温度、压力及组份有关,物性常数
即:
JA
cAukA
DAB
dcA dz
牛顿粘性定律 傅立叶定律
du
dy
q dt
dx
费克定律
JA
DAB
dcA dz
p pBm 1.18 NA 1.095 106 kmol/(m 2s)
6.2.4 涡流扩散
涡流扩散通量表示方法,借助于费克定律。
J
A
De
dcA dz
De—涡流扩散系数,不仅和物性有关,而且与流动状况有关。
6.3 相际间质量传递
空气 监测乙醇浓度
乙醇
水 监测乙醇浓度
液相主体 → 相界面 → 气相主体 单相传质 — 界面挥发 — 单相传质
停滞膜模型
相界面
气 相 主 体
G
停滞膜模型
NA ky y yi
NA kx xi x
NA kG pA pAi
NA kL cAi cA
相际传质的双膜模型
y
p
气膜 液膜
液
或 c气
相
主
相
yi A xi
主 体
体
x
yi Kxi
O
距离 z
相际传质双膜模型
所以:
NA
y
1
yi
( xi
NA ky y yi
NA kx xi x
NA kG pA pAi
NA kL cAi cA
传质系数 k=f (D,η,ρ,u,d )
经验关联式很多,但普遍偏差较大 主要通过实验获得
JA
DAB
dcA dz
yi Ki xi
NA
D z
c0 cBm
cA1 cA2
NA
D RTz
从浓度高处向浓度低处传递
分子热运动
这种依靠质点脉动、混合的质量传递方式称为涡流扩散 大量质点的脉动和漩涡的扰动混合
湍流流动也伴随着分子扩散
对于固体、静止的流体和作层流流动的流体内部 分子扩散单独存在
对于湍流流动的流体内 分子扩散、涡流扩散同时存在 以涡流扩散为主
扩散存在的前提条件:存在浓度差
6.2.2 组分运动速度和传质通量
kL
DL
L
c0 cBm
NA kL cAi cA
kL:液膜传质系数
NA kG pA pAi kG p( y yi )
NA kL cAi cA kLc0 xi x
令 ky=pkG
kx=c0kL
则有: NA ky y yi
NA kx xi x
式中:ky —以气相mol分数差为推动力的气膜传质系数; kx —以液相mol分数差为推动力的液膜传质系数
监测乙醇浓度 空气
乙醇
监测乙醇浓度 水
液相主体 → 相界面 →气相主体 单相传质 — 界面挥发 — 单相传质
6.2 均相混合物内的质量传递
6.2.1 传质的基本方式
依靠分子热运动的质量传递方式称为分子扩散
从微观上看,分子作随机热运动, 从宏观上看,相内浓度均衡是自发的 在理论上,化学势表象为浓度 分子热运动的宏观表现为:
dz
c0
JB
N
cB c0
N
NA
NB
(D
dcA dz
N
cA c0
) (D
dcB dz
N
cB ) c0
D dcA D dcB N cA cB
dz dz
c0
D dcA D dcB N dz dz
于是: D dcA D dcB 0
dz dz
所以: J A J B 表明:对于有总体流动的稳态分子扩散过程,两组分的分子
扩散通量数值相等而方向相反。
N NA NB
NB 0
N NA
NA
JA
N
cA c0
D dcA dz
NA
cA c0
NA
D c0 c0 cA
dcA dz
NA
D z
c0 cBm
cA1 cA2
cBm
cB2 cB1
ln
cB2 cB1
cB1 c0 cA1 cB2 c0 cA2
NA
当A浓度很低,漂流因子近似为1,总体流动影响可忽略不计
关于D
NA
D RTz
p pBm
pA1
pA2
p=101.3kPa,T=298K D=2.3×10-5m2/s
NH3+N2
半透膜
pBm
pB2 pB1
ln
pB2 pB1
pB1 p pA1 pB2 p pA2
1 0.2m 2
p1NH3=25kPa p2NH3=5kPa
此时: NA kG ( p pe ) NA kG ( p pi ) pi pe
说明: 气膜控制,增加气相流率,kG 提高,加快吸收过程。 增加液相流速,效果不明显。
② 液膜阻力控制过程
溶解度小(难溶)
1 1 kL HkG
KL kL 称为液膜控制过程;
此时: NA kL (ce c) ci ce
u
uki
静止平面 移动平面
Ji ciuki J i -扩散通量
Байду номын сангаас
Ni ci (uki u) Ji ciu
ciu
ciu
c0 c0
ci c0
uc0
ci c0
N
Ni
Ji
N
ci c0
6.2.3分子扩散的数学描述
分子在单相内随机热运动 分子热运动的宏观表现为:
从浓度高处向浓度低处传递
当浓度差消失时,宏观的传质通量为零,但微观的分子 热运动继续,系统处于动态平衡状态。
p pBm
pA1
pA2
Ki
i fi0 i p
6.3.4 总传质速率方程 (1) 相际传质的双膜模型
① 气液相间有稳定的相界面。
y
② 相界面两侧各有一停滞膜(虚拟膜或者
p
气膜 液膜
液
或
相 有效膜),膜内的传质以分子扩散方式进
c气
相 主
yi A xi
主 体
行。
体
x
③ 传质阻力全部集中在虚拟膜内,膜外相
在仅存在分子扩散的均相体系里,沿流体流动方向 上取某一静止平面,面积为A:
ui uki u
ui-第i组分的速度,m/s
ui
u-混合体系的平均速度,m/s
u
uki
uki-第i组分的分子扩散速度,m/s Ni- 单位时间单位面积i组分通过静止
平面的量,kmol/(m2s)
静止平面
ci- i组分的浓度,kmol/m3
通过静止平 面的量
Ni At =
通过静止平面 的体积
ui At
ci
单位体积的量
Ni ciui ci (uki u)
Ni ciui ci (uki u) 通常将单位时间内通过单位面积上的量称为传质通量
Ni- i 组分通过静止平面的传质通量
Ni ciuki ciu
ciu -以平均速度通过静止平面的量 ui ciuki -以扩散速度通过移动平面的量
说明: 液膜控制,增加液相流率,kL增加,加快传质,有利吸收。
③ 双膜阻力联合控制 两者阻力均不可忽略, 如中等溶解度气体的吸收。
6.3.8 传质单元法和平衡级法
传质设备
填料塔—微分接触式设备;
填料塔
y
x
逐
逐
渐
渐
减
增
少
加
y ye
ye mx
板式塔—逐级接触式设备。
板式塔
yn mxn
6.3.1 相际传质的应用
主体中高度湍流传质阻力为零,即无浓度
O
距离 z
相际传质双膜模型
梯度。 ④ 相界面上气液处于平衡状态,无传质阻
力存在。
(2)总传质速率方程
① 气膜和液膜传质速率方程 对气相:
NA kG pA pAi
NA ky y yi
双组份
对液相:
NA kL cAi cA NA kx xi x
D z
c0 cBm
cA1 cA2
对于理想气体
cBm
cB2 cB1
ln
cB2 cB1
cB1 c0 cA1 cB2 c0 cA2
NA
D RTz
p pBm
pA1
pA2
p pBm
pBm
pB2 pB1
ln
pB2 pB1
pB1 p pA1 pB2 p pA2
c cBm
称为漂流因子 反应总体流动对传质通量的影响
(1)气体吸收以及气体增湿、减湿过程 (2)精馏过程 (3)液液萃取过程 (4)干燥过程 (5)液固传质,浸取、结晶、吸附、离子交换
7.1 概述
7. 蒸馏
蒸馏:依据均相混合物中各组分挥发能力的差异,对 均相混合物进行分离的单元操作
7.1.1 蒸馏在工业中的应用
均相混合物分离
化工生产中处于重要位置
yi
i fi0 i p
xi
Ki
i fi0 i p
yi Ki xi
yi
xi
6.3.3 对流传质
气y 相
yi
A
液 相
主 体
xi x
主 体
气相主体 → 相界面 → 液相主体 单相传质 — 界面溶解 — 单相传质
气y 相