1.2 不等式的基本性质-
不等式的性质知识点及题型归纳总结
不等式的性质知识点及题型归纳总结知识点精讲一、不等式的基本性质不等式的性质是证明和解不等式的主要依据.运用时,对每一条性质要弄清条件和结论,注意条件加强和放宽厚条件和结论之间的变化;不仅要记住不等式运算法则的结论形式,还要掌握法则成立的条件,避免由于忽略某些限制条件而造成解题失误.1. 两个不等式的同向合成,一律为“”(充分不必要条件)(1)(传递性,注意找中间量)(2)(同向可加性)(3)(同正可乘性,注意条件为正)注:如,其逆命题不成立,如但是.2. 一个不等式的等价变形,一律为“”(充要条件),这是不等式解法的理论依据(1).(2)(对称性)(3)(乘正保号性)(4)(5)(不等量加等量)(6)(乘方保号性,注意条件为正)(7)(开方保号性,注意条件为正)(8)(同号可倒性);.最为重要的3条不等式性质为:①;②;③,在不等式问题中都有重要的应用,但应注意他们的适用条件,可以用口诀“同.向同正可乘.......”来记忆......;同号取倒需反向题型归纳及思路提示题型1 不等式的性质思路提示应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.例7.1 对于实数,有以下命题:①若,则;②若,则;③若则;④若,则;⑤若,则. 其中真命题的个数是()A. 2个B. 3个C. 4个D. 5个分析:判断命题的真假,要紧扣不等式的性质,应注意条件与结论之间的联系.解析:①中值的正负或是否为零未知,因而判断不等关系缺乏依据,故该命题是假命题;②中,由可知,则,故该命题是真命题;③中,不等式两边同乘,可得,若同乘,可得,易知成立,故该命题为真命题;④中,由可知,故有,又因,由“同向同正可乘”性可知成立. 故该命题为真命题;⑤中,由已知,因为,故,又,所以,故该命题为真命题. 综上所述,②③④⑤都是真命题,故选C.评注:准确记忆各性质成立的条件,是正确应用的前提. 在不等式的判断中,特殊值法是非常有效的方法,如变式3.变式1设,若,则下列不等式中正确的是()A. B. C. D.变式2设是非零实数,若,则下列不等式中成立的是()A. B. C. D.变式3 若,则下列结论中正确的是()A. 和均不成立B. 和均不成立C. 不等式和均不成立D. 不等式和均不成立变式4若,且,则下列代数式中值最大的是A. B. C. D.题型2 比较数(式)的大小与比较法证明不等式思路提示比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小. 作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:若,则;;;若,则;;;例7.2若且,试比较与的大小.解析:解法一:,因为且,所以,所以.解法二:,因为且,所以,又,所以.变式1若,试比较与的大小变式2设且,试比较与的大小例7.3 在锐角中,若函数在上单调递减,则下列命题中正确的是()A. B.C. D.解析:因为在锐角中有,由在上为单调递增函数,所以,且,又函数在上单调递减,所以,故选D.变式1 已知函数是上的偶函数,且在区间上是增函数,令,则()A. B. C. D.变式2已知函数,那么的值()A. 一定大于0B. 一定小于0C. 等于0D. 确定题型3 已知不等式的关系,求目标式的取值范围思路提示在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围,否则会导致范围扩大,而只能建立已知与未知的直接关系.例7.4已知,且,则的取值范围是.解析:解法一:令得,,解得.即. 由得,所以. 故的取值范围是.解法二:本题还可以利用“线性规划”的方法求解.如图7-1所示,当直线过点时,取最大值,点的坐标为,所以;当直线过点时,取最小值,当的坐标为,所以,又本题不取边界,因此的取值范围是.评注:不能求出独立的范围内,简单利用不等式性质求解,可结合后面线性规划理解并求解.变式1已知且,,求的范围.变式2设为实数,满足,则的最大值是.最有效训练题1. 如果满足,且,那么下列选项中不一定成立的是()A. B. C. D.2. 设,则下列不等式中成立的是()A. B. C. D.3. 已知,并且,那么一定成立的是()A. B. C. D.4. 若为实数,则下列命题中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则5. 若,则的值是()A. 大于0B. 等于0C. 小于0D. 符号不能确定6. 已知,下列四个条件中,使得成立的必要而不充分条件是()A. B. C. D.7. 已知四个条件:能推出成立的有个.8. 若,则的取值范围是.9. 已知下列三个不等式:①;②;③,以其中两个作为条件,余下一个作为结论,则可能成个正确命题.10. 已知且,求的取值范围.11. 设,且,求的取值范围.12. 若实数满足,试比较的大小.。
《不等式及其基本性质》教案
《不等式及其基本性质》教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
举例说明不等式的形式,如a > b、a ≤b 等。
1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(其中c 是任意实数)。
性质2:如果a > b 且c > d,a + c > b + d。
性质3:如果a > b 且c < d,a + c < b + d。
性质4:如果a > b,a c > b c(其中c 是任意实数)。
第二章:不等式的运算2.1 加减法不等式介绍加减法不等式的运算规则,如a > b 且c > 0,a + c > b + c;a > b 且c < 0,a + c < b + c。
举例说明如何解决涉及加减法的不等式问题。
2.2 乘除法不等式介绍乘除法不等式的运算规则,如a > b 且c > 0,ac > bc;a > b 且c < 0,ac < bc。
举例说明如何解决涉及乘除法的不等式问题。
第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如解a > b 的问题,可将b 移至不等式右边,得到a b > 0。
举例说明如何解简单不等式。
3.2 复合不等式的解法介绍解复合不等式的方法,如解a > b 且c > 0 的问题,可将不等式两边乘以c,得到ac > bc。
举例说明如何解复合不等式。
第四章:不等式的应用4.1 实际问题中的应用举例说明如何将实际问题转化为不等式问题,如判断身高、体重等是否符合要求。
引导学生运用不等式解决实际问题。
4.2 线性不等式组的解法介绍线性不等式组的解法,如解a > b 且c > d 的问题,可先解a > b,再解c > d,求交集。
不等式的基本性质
=-5<0
∴(2x-5)(x+1)<2x2-3x
亲爱的同学们,下节课见!
第二章 不等式
2.1 不等式的基本性质
1.作差比较法:比较两个实数的大小,可以通过考察它们的差来实现.
对于两个任意的实数a和b,有:a-b>0⇔a>b;
a-b=0⇔a=b;
a-b<0⇔a<b.
2.不等式的性质.
(1)性质1(加法法则):如果a>b,那么a+c>b+c.
(2)性质2(乘法法则):如果a>b,c>0,那么ac>bc;
(
√ )
2.如果a>b,且c>d,那么a+c>b+d.
(
√ )
3.如果a>b,且c>d,那么ac>bd.
(
× )
三、选择题
1.已知a>b,且ac>bc,那么(
A. c>0
B. c=0
A ).
C. c<0
2.若m>3,则下列不等式中必定成立的是(
A. m>0
B. m-3<0
3.如果a>b,那么(
A. ac<bc
(4)设a>b,则-2a< -2b,
(5)设x<y,则1-2x>1-2y,
1 1
(6)设x>y>0,则 < .
2.根据条件,写出x的取值范围:
(1)x+4>7, x>3
(2)2x-1<3,x<2
(3)3-2x>5, x<-1
(4)2-x<x-4, x>3
二、判断题
1.如果a<b,且b<c,那么a<c.
(
三、解答题
比较大小.
1.x2+1与(x+1)2,其中x>0.
解:∵(x2+1)-(x+1)2
=x2+1-(x2+2x+1)
初中不等式的性质教案
初中不等式的性质教案篇一:不等式的性质教案课题: 9.1.2不等式的性质(1)课型:新授课主备人:张跃进篇二:不等式的基本性质教案课题1.2 不等式的基本性质教学目标知识与能力:1.探索并掌握不等式的基本性质;2. 运用不等式的基本性质将不等式变形。
方法与过程:通过对比不等式的性质和等式的性质,培养学生的求异思维,提高学生的辨别能力.情感态度与价值观:通过大家对不等式性质的探索,培养学生的钻研精神,同时还加强了同学间的合作与交流.教学重点:掌握不等式的基本性质并能正确运用将不等式变形教学难点:不等式基本性质3的运用教学方法:类推探究法教具准备:小黑板教学过程Ⅰ.复习回顾,导入新课等式的基本性质等式的基本性质1:等式两边同时加(或减)同一个代数式,所得结果仍是等式.等式的基本性质2:等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导(1)提问1:如果在不等式的两边都加或减同一个整式,不等号的方向会怎么样?举例说明3<53+2<5+2 3-2<5-23+5<5+5 3-5<5-53+a<5+a 3-a<5-a3+ a+b <5+ a+b 3-(a+b) <5-( a+b)不等式的基本性质1:不等式的两边都加(或减)同一个整式,不等号的方向不变。
很好,不等式的这一条性质和等式的性质相似。
下面继续进行探究。
(2)提问2如果在不等式的两边都乘同一个数,不等号的方向会怎么样?学生独立完成做一做,小组互相讨论总结23;2÷=2×53×5=3÷;2÷2=2×3×=3÷2;121215152÷(-1)=2×(-1)3×(-1)=3÷(-1);2÷(?)=2×(-5)2×(-5)=3÷(?);1122(3)如果在不等式的两边都除以同一个数,不等号的方向会怎么样?(乘一个不为0的数等于除以这个数的倒数)不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号方向不变。
不等式的基本性质2
成立.
(不等号方向改变)
我来 尝试
例1:已知a<0,试比较2a与a的大小.
例2:若 x y ,且 (a 3)x (a 3) y 求 a 的取值范围。
一、用适当的不等号填空,并说明 是根据不等式的哪一条性质:
比一比 谁更聪明
(1)∵ 0 ﹤ 1, ∴ a ﹤a+1(不等式的基本性质___)
这节课你学到了什么?
A.4a ﹤ -4 B. -4a ﹤-4 C. a+2 ﹤ 1 D .2-a ﹥ 3
3、下列变形正确的是( D )
A.由a ﹥ b,得b ﹤ -a
B. 由-a ﹥ - b,得a ﹥ b
C. D.
由-2x 由- 12x
﹥ ﹤
a,得x y,得x
﹥ ﹥
1
- 2a -2y
三、选择适当的不等号填空:
(1)已知a>b,则-3a+2 ﹤ -3b+2
1不以等若若、所不等)式a同a(请(不的<得或﹥不等式仍一说等理不不b减的b等(式的成,个,明式由等等去不号传两两立b正b下的:式式)<等﹥方 递边边.同(数列正基性性c式c向 性同都一,,,等数本质质仍不 )时乘个则所则式不性21成变加以数a得a成变质立<)上﹥(,的或立向不除)
(不1等)式若的a两=b边,b都=乘c,以(或
我来 推测
2、上述式子中,“=”改成“<” 或“> ”号还成立吗? (1) 如果a<b,而b<c,
除以)同则一a个=负c数,必须把不 那么 a__<__c 。
等号的方向改变,所得的
(不等2)式若成a立=.b(,负数要变向)
如果a>b,而b>c,
那么 a__>__c 。 (2) 如果a<b, 则a+1__<__b+1。
不等式的性质和解法
不等式的性质和解法一、不等式的性质1.不等式的定义:表示两个数之间的大小关系,用“>”、“<”、“≥”、“≤”等符号表示。
2.不等式的基本性质:(1)传递性:如果a>b且b>c,那么a>c。
(2)同向相加:如果a>b且c>d,那么a+c>b+d。
(3)同向相减:如果a>b,那么a-c>b-c。
(4)乘除性质:如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。
二、不等式的解法1.解不等式的基本步骤:(1)去分母:将不等式两边同乘以分母的最小正整数,使分母消失。
(2)去括号:将不等式两边同乘以括号内的正数,或者将不等式两边同除以括号内的负数,使括号内的符号改变。
(3)移项:将不等式中的常数项移到一边,将含有未知数的项移到另一边。
(4)合并同类项:将不等式两边同类项合并。
(5)化简:将不等式化简到最简形式。
2.解一元一次不等式:(1)ax+b>c(a≠0):移项得ax>c-b,再除以a得x>(c-b)/a。
(2)ax+b≤c(a≠0):移项得ax≤c-b,再除以a得x≤(c-b)/a。
3.解一元二次不等式:(1)ax2+bx+c>0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
(2)ax2+bx+c≤0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
4.不等式的组:(1)解不等式组的步骤:先解每个不等式,再根据不等式的解集确定不等式组的解集。
(2)不等式组解集的表示方法:用区间表示,例如:[x1, x2]。
三、不等式的应用1.实际问题中的不等式:例如,距离、温度、速度等问题。
2.不等式在生活中的应用:例如,购物、制定计划、比较大小等问题。
3.不等式在其他学科中的应用:例如,在物理学中描述物体的运动状态,在经济学中描述市场的供求关系等。
2.1.2不等式的基本性质
2.1.2不等式的基本性质与相等关系一样,不等关系也是现实世界普遍存在的一类关系.在现实生活中,人们经常遇到长与短、多与少、高与矮、轻与重、远与近、强与弱、亮与暗、快与慢等各种现象,实际上,这些都属于数学中要研究的客观事物在数量上存在的不等关系。
在数学中,描述相等关系用等式,描述不等关系则用不等式.与相等关系一样,不等关系也是数学研究的重要内容.研究不等关系和不等式,都是我们认识世界的重要途径.下面先看一个实际问题。
自来水管的横截面一般总制成圆形,而不是正方形,这在数学上怎样说明道理呢?实际上,当周长相等的时候,圆的面积比正方形的面积大,所以用同样的一块材料制成截面是圆形的水管,水流量大,也就是说,制成横截面是圆形的水管比较节省材料。
我们知道,周长为C 的正方形的每边的长是4C ,它的面积为()24C ;周长为C 的圆的半径是2C π,圆的面积是()22C ππ ,要说明圆形截面水管的水流量大,就是要说明以下的不等式成立: ()22C ππ>()24.C从以上实际问题看到,在现实世界中,与不等式有关的问题是非常普遍的。
应该怎样去论证以上的不等关系呢?为了利用不等式研究不等关系,需要对不等式的性质有必要的了解.研究不等式的出发点是实数的大小关系。
我们知道,数轴上的点与实数一一对应,因此可以利用数轴上点的左右位置关系来规定实数的大小关系。
设a ,b 是两个实数,它们在数轴上所对应的点分别是A ,B .那么,当点A 在点B 的左边时,a <b ;当点A 在点B 的右边时,a >b (图x ).图x关于实数a ,b 大小的比较,有以下的基本事实:如果a -b 是正数,那么a >b ;如果a -b 等于零,那么a=b ;如果a -b 是负数,那么a <b .反过来也对.这个基本事实可以表示为:a -b >0 ⟺ a >b;a -b = 0⟺a =b ;a -b <0⟺a <b .以上基本事实是证明不等式的最基本的依据。
八年级数学不等式的基本性质
不变 的方向____。 不等式的基本性质3:
不等式的两边都乘以(或除以)同一个负数,不等号 的方向____。 改变
2 在上一节课中,我们猜想,无论绳长 l 2 ll取何值, 圆的面积总大于正方形的面积,即 4 16
你相信这个结论吗?你能利用不等式的基本 性质解释这一结论吗?
4 1 6 1 1 4 16 2 l 0 l2 l2 4 16
成立
成立
你今天这节 课有什么收 获呢?
我今天学到了 ……
P
9
习题1.2
完成下列填空:
2 3 , 2 5 ___3 5 ; 2 3,
1 1 2 ___3 ; 2 2
2 3 , 2 (1) ___ 3 (1) ; 2 3 , 2 (5) ___ 3 (5) ; 1 1 2 3 , 2 ( ) ___ 3 ( ) ; 2 2
等式的基本性质1:等式两边同时加上(或减去)同一 个代数式,所得结果仍是等式。
a b a c b c
a b a c b c
不等式的基本性质1:不等式的两边都加上(或减去)同 一个整式,不等号的方向不变。
等式的基本性质2: 等式两边同时乘同一个数(或除以同一个不为0的 a b 数),所得结果仍是等式。 a b c 0 a c b c , c c 不等式的基本性质2: 不等式的两边都乘以(或除以)同一个正数,不等号
4x 3 3 x 4
5 x 1 已知x>y,下列不等式一定成立吗? (1) x 6 > y 6; (2)3x > 3y ;
不成立
(3) 2 x 2 y ;
不成立
(4) 2 x 1 2 y 1 .
不等式的基本性质
不等式的基本性质考点总体描述:不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用.在中考中多以填空题或选择题的形式出现. ①维度1 不等式基本性质研读不等式基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,即如果a <b ,那么a+c <b+c (或a-c <b-c ).不等式基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号方向不变;如果a<b ,且c>0,那么ac<bc(或cb c a < ) 不等式基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号方向改变. 这三条基本性质是进行不等式变形的主要依据. 如果a<b ,且c<0,,那么ac>bc(或 c b c a > )例1:设a >b ,用不等号连结下列各题中的两式:(1)a-3与b-3;(2)2a 与2b ;(3)-a 与-b.思路分析:第1步:观察已知的不等式与所要研究的对象之间的不同;第2步:对照不等式基本性质,选择变形依据作答.解答过程:(1)因为a >b ,两边都减去3,由不等式的基本性质1,得a-3>b-3;(2)因为a >b ,2>0,由不等式的基本性质2,得2a >2b ;(3)因为a >b ,-1<0,由不等式的基本性质3,得-a <-b.本例题总结:处理这类问题的一般思路是以不等式的性质作为依据,确定合适的不等号,要特别注意的是不等式基本性质3的应用.关键字:例题难度:中表现形式:呈现内容说明:例2: 根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式:(1)x-2<3;(2)6x >5x-1;(3)-4x >4.思路分析:第1步:根据变形要求选用不等式的基本性质;第2步:根据性质变形.解答过程:(1)由不等式的性质1可知,不等式的两边都加上2,不等号的方向不变,所以x-2+2<3+2,即x <5;(2)由不等式的性质1可知,不等式的两边都减去5x ,不等号的方向不变,所以6x-5x >5x-1-5x ,即x >-1;(3)由不等式的性质3可知,不等式的两边都除以-4,不等号的方向改变,所以x <-1. 本例题总结:运用不等式的基本性质时,注意不等号方向的是否改变.关键字:例题难度:中表现形式:呈现内容说明:1.(2009年柳州)若a <b ,则下列各式中一定成立的是( )A. a-1<b-1B.33b a >C. -a <-bD. ac <bc 思路分析:第1步:观察已知的不等式与所要研究的对象之间的不同;第2步:对照不等式基本性质,选择合适的变形方式作答.解答过程:在不等式三条基本性质中要特别注意“不等式两边同时乘以或除以一个负数时,不等号的方向要改变”.由不等式基本性质2,不等式两边同除以3,B 选择项的不等号方向不变;C 选项不等式两边同乘-1,不等号方向要改变;D 选择项c 可取任意实数故不等号方向无法确定;A 选项因为a <b ,由不等式基本性质1得a-1<b-1,故选A.答案:A .2. 在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.(1)若a-3<9,则a_____12; (2)若-a <10,则a_____-10;(3)若41a >-1,则a_____-4; (4)若-32a >0,则a_____0. 解析:根据前后两个式子之间的关系,对照不等式的基本性质加以变形.答案:(1)a <12,根据不等式基本性质1; (2)a >-10,根据不等式基本性质3;(3)a >-4,根据不等式基本性质2; (4)a <0,根据不等式基本性质3.②维度2 不等式的基本性质与等式的性质对比不等式的基本性质与等式的基本性质有相似之处,也有不同之处,特别是不等式的基本性质3,不等式两边同乘以(或同除以)一个负数,不等号的方向要改变,这一点要尤为引起重视,这一性质的运用,也是本章的难点之一.下面将不等式的基本性质与等式的性质的例1: 若a >b ,c <0,则下列四个不等式成立的是( ).A.ac >bcB.cb c a < C.a -c <b -c D. a|c|<a|c| 思路分析:第1步:比较已知不等关系与选项中的不等关系;第2步:确定变形方法是否符合法则. 解答过程:根据不等式的性质1,在不等式a >b 的两边同时减去c,不等号的方向不变,故C 错误;根据不等式的性质2,在不等式a >b 的两边同时乘以正数|c|,不等号的方向不变,故D 错误;根据不等式的性质3,在不等式a >b 的两边同时乘以或除以负数c ,不等号的方向要改变,故A 是错误的;故选B .本例题总结:本题主要考查不等式的三条基本性质,运用不等式基本性质时,关注不等号方向的“不变”与“改变”是关键.关键字:表现形式:呈现内容说明:例2:已知-2x+3y=3x-2y+1,试比较x 和y 的大小关系.析解:要比较x 和y 的大小关系,只需利用等式变形求出(x-y)的值,再根据其正负判断大小。
简述不等式的4个基本性质
简述不等式的4个基本性质不等式是数学中一类非常重要的结构,其中内容涉及多个知识点,为研究和应用这类结构提供了有效的框架。
其中,不等式的4个基本性质是很重要的,它们是:(1)不等式的交换性;(2)不等式的可分解性;(3)不等式的传递性;(4)不等式的联合性。
本文旨在阐述这4个基本性质,并通过实例阐释它们的作用。
首先,让我们讨论不等式的交换性。
它的定义是:对于任一不等式,如果其双边都是相同的,那么可以交换左右两边。
比如,a>b,b<c,那么有a>c的结果,即a>b,b<c的结果等价于a>c的结果。
交换性的作用是,当某一不等式的两边均有相同的运算符时,可以通过交换左右两边,得到一个不同的不等式,而其结果也是完全相同的。
其次,让我们讨论不等式的可分解性。
它的定义是:对于一个不等式,可以将其分解成几个不等式的乘积,且其中的乘法操作不会改变其结果。
比如,有一个不等式x>2,那么,可以将其分解成x+1>3和x-3>-1两个不等式的乘积,且两边乘积的结果是不变的。
可分解性的作用是,可以将一个复杂的不等式,分解成若干个相对简单的不等式,有效拆解复杂问题,达到简化分析过程的目的。
第三,让我们讨论不等式的传递性。
它的定义是:如果某一不等式的两边都有相同的运算符,并且有一个中间变量,那么这个不等式的结果可以从左到右或者从右到左传递。
比如,a>b,b>c,那么可以得到a>c的结果。
传递性的作用是,当某一不等式的两边均有相同的运算符,并且有一个中间变量时,可以以中间变量为准,从左到右或者从右到左传递这个不等式的结果,从而可以得到更精确的结果。
最后,让我们讨论不等式的联合性。
它的定义是:当不等式上有满足某一条件的两个变量时,可以联合这两个变量,形成一个更大的范围。
比如,x>2,y>3,那么有x和y同时大于2和3,即x、y>2、3。
联合性的作用是,当不等式上有满足某一条件的两个变量时,可以将其联合,得到一个更大的范围,从而可以获得更精确的结果。
八年级数学下册《12不等式的基本性质》教案北师大版
辽宁省辽阳九中八年级数学下册《1.2 不等式的基本性质》教案北师大版一、学生知识状况分析本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。
通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复杂的,但面对大量的同类量,最容易使人想到的就是它们有大小之分。
学习时可以类比七年级上册学习的等式的基本性质。
二、教学任务分析不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。
本节课教学目标:(1)知识与技能目标:①掌握不等式的基本性质。
②经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
(2)过程与方法目标:①能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
②进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
(3)情感与态度目标:①尊重学生的个体差异,关注学生的学习情感和自信心的建立。
②关注学生对问题的实质性认识与理解。
三、教学过程分析本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。
第二环节:活动探究,验证明确结论活动内容: 参照教材与多媒体课件提出问题:(1) 还记得等式的基本性质吗?(2) 等式的基本性质1用字母可以表示为:c b c a b a ±=±∴=,Θ,那么不等式的基本性质1是什么?先猜一猜。
(3) 如果在不等式的两边都加上或都减去同一个整式,结果会怎样?请举几例试一试,并与同伴交流。
(4) 不等式的基本性质与等式的基本性质类似,对于等式的基本性质2,用字母可以表示为:c b c a c b c a b a ÷=÷⨯=⨯∴=,,Θ,其中0≠c 。
8.1.2不等式的基本性质
例2:判断下列各题的推导是否正确?为什么(学生 口答) (1)因为7.5>5.7,所以-7.5<-5.7; (2)因为a+8>4,所以a>-4; (3)因为4a>4b,所以a>b; (4)因为-1>-2,所以-a-1>-a-2; (5)因为3>2,所以3a>2a. 答: (1)正确,根据不等式基本性质3. (2)正确,根据不等式基本性质1. (3)正确,根据不等式基本性质2. (4)正确,根据不等式基本性质1. (5)不对,应分情况逐一讨论. 当a>0时,3a>2a.(不等式基本性质2) 当 a=0时,3a=2a. 当a<0时,3a<2a.(不等式基本性质3)
—————————————————————————————————————————————
那么-1×2____3 < ×2,
你能再总结一下规律吗?
初中数学资源网
-1÷2____3 < ÷2,
——————————————————————————————————
不等式基本性质2:不等式的两边都 乘以(或除以)同一个正数 ____,不等号 的方向不变 ____。
例3.根据不等式的基本性质,把下列 不等式化成x<a或x>a的形式: (1) x-2< 3 (2) 6x< 5x-1 1 (3) 2x>5 (4) -4x>3 解:(1)根据不等式基本性质1,两边都 加上2,得 x-2+2<3+2 x< 5 (2)根据不等式基本性质1,两边都减去5x, 得 6x-5x<5x-1-5x x<-1
等式基本性质3(对称性)
如果a=b,那么b=a。
等式基本性质4(传递性)
如果a=b,b=c那么a=c
不等式是否具有类似的性质呢? 如果 7 > 3 那么 7+5 ____ > 3+ 5 , 如果-1< 3, 那么-1+2____3+2, <
不等式的基本性质-【帮课堂】2022-2023学年七年级数学下册同步精品讲义(苏科版)
不等式的基本性质知识点一、不等式的基本性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;即如果a >b ,那么a +c >b +c 或a -c >b -c ;如果a <b ,那么a +c <b +c 或a -c <b -c .1. 如果a >b ,那么2a -_______2b -(填“=”、“>”或“<”).知识点二、不等式的性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b 且c >0,那么ac >bc 或a b c c >,如果a >b且c <0,那么ac <bc 或a b c c <.2. 已知x <y ,则23x --_____23y --(填“>”、“<”或“=”)一.选择题(共10小题)3. 若x y >,则下列式子中错误的是( )A. 22x y > B. 22x y ->- C. 22x y ->- D. 33x y +>+4. 若不等式21x -<,两边同时除以2-,结果正确的是( )A. 12x >- B. 12x < C. 2x >- D. 2x <5. 下列各式中正确的是( )A. 若a b >,则22a b -<- B. 若a b >,则22a b >C. 若a b >,且0c ≠,则22ac bc > D. 若a b c c>,则a b >6. 已知a b <,若c 是任意有理数,则下列不等式中总成立的是( )A. a c b c +<+B. a c b c ->-C. ac bc >D. 22ac bc >7. 已知a b <,则下列各式成立的是( )A. 22ac bc <B. 1313a b -<-C. 23a b -<-D. 33a b +<+8. 已知实数a b c ≤≤,则( )A. 2a c b +≤B. 3a b c +≤C. 2a b c+≥ D. b a c≤+的9. 如图所示,A ,B ,C ,D 四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为( )A. D B A C <<<B. B D C A <<<C. B A D C <<<D. B C D A <<<10. 已知非负实数a ,b ,c 满足123234a b c ---==,设S a b c =++,则S 的最大值为( )A. 112 B. 152 C. 274 D.31411. 已知三个实数a ,b ,c 满足0ab >,a b c +<,0a b c ++=,则下列结论一定成立的是( )A. 0a <,0b <,0c > B. 0a >,0b >,0c <C. 0a >,0b <,0c > D. 0a >,0b <,0c <12. 若2a b +=-,且2a b ≥,则( ).A. b a 有最小值12 B. b a 有最大值1C. a b 有最大值2 D. a b 有最小值89-二.填空题(共10小题)13. 若x y >,且(3)(3)a x a y +<+,求a 的取值范围______.14. 若a<0,则a -_____0.(用<,=,>填空)15. 选择适当的不等号填空:若a b <,则2a -______2b -.16. 已知m n >,则 3.51m -+______ 3.51n -+.(填>、=或<)17. 若a b <,则21a -+__________21b -+.(用“>”,“<”,或“=”填空)18. 如果x >y ,且(a-1)x <(a-1)y ,那么a 的取值范围是______.19. 已知x ,y 满足132x y +=,若13x -≤<,则y 的范围是__________.20. 用不等号填空,并说明根据的是不等式的哪一条基本性质:(1)若x +2>5,则x ________3,根据不等式的基本性质________;(2)若-34x <-1,则x ________43,根据不等式的基本性质________.21. 已知 2ab =.①若31b -≤≤-,则a 的取值范围是________;②若0b >,且225a b +=,则a b +=____.22. 某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x 的取值范围是_____.三.解答题(共8小题)23. 已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩.(1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求a 的取值范围.24. 根据不等式的性质:若0x y ->,则x y >;若0x y -<,则x y <.利用上述方法证明:若0n <,则121n n n n -->-.25. 已知:x ,y 满足3x-4y=5.(1)用含x 的代数式表示y ,结果为______;(2)若y 满足-1<y≤2,求x 的取值范围;(3)若x ,y 满足x+2y=a ,且x >2y ,求a 的取值范围.26. 已知实数x 、y 满足231x y +=.(1)用含有x 的代数式表示y ;(2)若实数y 满足y >1,求x 的取值范围;(3)若实数x 、y 满足1x >-,13y ≥-且23x y k -=,求k 的取值范围.27. 知识阅读:我们知道,当a >2时,代数式a -2>0;当a <2时,代数式a -2<0;当a =2时,代数式a -2=0.(1)基本应用:当a >2时,用“>,<,=”填空:a +5________0;(a +7)(a -2)________0;(2)理解应用:当a >1时,求代数式2a +2a -15的值的大小;(3)灵活应用:当a >2时,比较代数式a +2与2a +5a -19的大小关系.28. 用等号或不等号填空:(1)比较4m 与24m +的大小当3m =时,4m24m +当2m =时,4m24m +当3m =-时,4m 24m +(2)无论取什么值,4m 与24m +总有这样的大小关系吗?试说明理由.(3)比较22x +与2246x x ++的大小关系,并说明理由.(4)比较23x +与37--x 的大小关系.29. 阅读下列材料:问题:已知2x y -=,且1x >,0y <,试确定x y +的取值范围解:2x y -= ,2x y ∴=+,又1x > ,21y ∴+>,1y ∴>-,又0y < ,10y ∴-<<①,12202y ∴-+<+<+,即12x <<②,①+②得:1102x y -+<+<+,x y ∴+的取值范围是02x y <+<.请按照上述方法,完成下列问题:(1)已知5x y -=,且2x >-,0y <,①试确定y 的取值范围;②试确定x y +的取值范围;(2)已知1x y a -=+,且x b <-,2y b >,若根据上述做法得到35x y -的取值范围是103526x y -<-<,请直接写出a 、b 的值.30. 题目:已知关于x 、y 的方程组2324x y a x y a +=-+⎧⎨+=⎩①②,求:(1)若3x +3y =18,求a 值;(2)若-5x -y =16,求a 值.问题解决:(1)王磊解决的思路:观察方程组中x 、y 的系数发现,将①+②可得3x +3y =3a +3,又因为3x +3y =18,则a 值为________;(2)王磊解决的思路:观察方程组中x 、y 的系数发现,若将方程组中的①与②直接进行加减,已经不能解决问题,经过思考,王磊将①×m ,②×n ,得2324mx my ma m nx ny na +=-+⎧⎨+=⎩③④,再将③+④得:(m +2n )x +(2m +n )y =(-m +4n )a +3m ,又因为-5x -y =16,……,请根据王磊的思路,求出m 、n 及a 的值;问题拓展:(3)已知关于x 、y 的不等式组2324x y a x y a +-+⎧⎨+⎩><,若x +5y =2,求a 的取值范围.不等式的基本性质知识点一、不等式的基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;即如果a >b ,那么a +c >b +c 或a -c >b -c ;如果a <b ,那么a +c <b +c 或a -c <b -c .【1题答案】【答案】<【解析】【分析】根据不等式的性质进行变形即可.【详解】解:∵a >b ,∴-a <-b ,∴2-a <2-b ,故答案为:<.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.知识点二、不等式的性质2不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b 且c >0,那么ac >bc 或a b c c >,如果a >b 且c <0,那么ac <bc 或a b c c<.【2题答案】【答案】>【解析】【分析】根据不等式的基本性质进行解答即可.【详解】解:∵x <y ,∴22x y ->-,∴2323x y -->--.故答案为:>.【点睛】本题主要考查了不等式的基本性质,注意不等式两边同时乘以或除以一个负数,不等号方向发生改变.一.选择题(共10小题)的【3题答案】【答案】B【解析】【分析】根据不等式的性质可进行求解.【详解】解:由x y >可知:A 、22x y >,正确,故不符合题意;B 、22x y -<-,原不等式错误,故符合题意;C 、22x y ->-,正确,故不符合题意;D 、33x y +>+,正确,故不符合题意;故选B .【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.【4题答案】【答案】A【解析】【分析】根据不等式的性质即可求出答案.【详解】不等式21x -<,两边同时除以2-,可得12x >-,故选:A .【点睛】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.【5题答案】【答案】D【解析】【分析】根据不等式的性质逐项分析判断即可求解.【详解】解:A. 若a b >,则22a b ->-,故该选项不正确,不符合题意;B. 若0a b >>,则22a b >,故该选项不正确,不符合题意;C. 若a b >,且0c >,则22ac bc >,故该选项不正确,不符合题意;D. 若a b c c>,则a b >,故该选项正确,符合题意;【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【6题答案】【答案】A【解析】【分析】根据不等式的性质逐一判断即可:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、由a b <根据不等式的性质1,可得a c b c +<+,故此选项正确,符合题意;B 、由a b <根据不等式的性质1,可得a c b c -<-,不能得到a c b c ->-,故此选项错误,不符合题意;C 、根据不等式的性质,如果0c <则可得ac bc >,如果0c >,则ac bc <,故此选项错误,不符合题意;D 、当0c 时,22ac bc =,故此选项错误,不符合题意.故选:A .【点睛】本题主要考查了不等式的性质,熟知不等式的性质是解题的关键.【7题答案】【答案】D【解析】【分析】根据不等式的性质逐一判断即可解题.【详解】解:A.a b <,当0c ≠时,22ac bc <,故A 不成立;B.a b <,1313a b ->-,故B 不成立;C.a b <,22a b -<-,故C 不成立;D.33a b a b ++<,<,故D 成立;【点睛】本题考查了不等式的性质,注意不等式的两边都乘或除以一个负数,不等号的方向改变.【8题答案】【答案】B【解析】【分析】根据实数a b c ≤≤,逐项给出a b c 、、的值举例,看能否举出反例,即可得到答案.【详解】解:当12a =-,0b =,1c =时,2a c b +>,故A 选项错误;当12a =-,0b =,1c =时,2a b c +<,故C 选项错误;当2a =-,0b =,1c =时,a c b +<,故D 选项错误;故选:B .【点睛】本题考查不等式的性质,可以通过举反例来得到结论.【9题答案】【答案】C【解析】【分析】根据不等式的性质,进行计算即可解答.【详解】解:由题意得:D A >①,A C B D +>+②,B C A D +=+③,由③得:C A D B =+-④,把④代入②得:A A D B B D ++->+,22A B >,A B ∴>,0A B ∴->,由③得:A B C D -=-,0D A -> ,0C D ∴->,C D ∴>,C D A B ∴>>>,即B A D C <<<.故本题选:C .【点睛】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.【10题答案】【答案】C【解析】【分析】设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,可得6S k =+;利用a ,b ,c 为非负实数可得k 的取值范围,从而求得最大值.【详解】解:设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,()()()2132346S a b c k k k k ∴=++=++++-=+.a ,b ,c 为非负实数,210320340k k k +≥⎧⎪∴+≥⎨⎪-≥⎩,解得:1324k -≤≤.∴当12k =-时,S 取最小值,当34k =时,S 取最大值.116522S ∴=-+=最小值,327644S =+=最大值.故选:C .【点睛】本题主要考查了不等式的性质,非负数的应用,设123234a b c k ---=== 是解题的关键.【11题答案】【答案】A【解析】【分析】根据0ab >,可得a 和b 同号,再根据a b c +<和0a b c ++=,即可判断a ,b ,c 的符号.【详解】解:∵0ab >,∴a 和b 同号,又∵a b c +<和0a b c ++=,∴0a <,0b <,0c >.故选:A .【点睛】本题主要考查了有理数的运算法则,解题的关键是掌握两数相乘,同号得正,异号得负;同号两数相加,取它们相同的符号;异号两数相加,取绝对值较大数的符号.【12题答案】【答案】C【解析】【详解】由已知条件,根据不等式的性质求得b≤23-<0和a≥43-;然后根据不等式的基本性质求得a b ≤2 和当a >0时,b a <0;当43-≤a <0时,b a ≥12;所以A 、当a >0时,b a <0,即b a 的最小值不是12,故本选项错误;B 、当43-≤a <0时,b a ≥12,b a 有最小值是12,无最大值;故本选项错误;C 、a b有最大值2;故本选项正确;D 、a b 无最小值;故本选项错误.故选C .考点:不等式的性质.二.填空题(共10小题)【13题答案】【答案】3a <-【解析】【分析】根据题意,在不等式x y >的两边同时乘以(3)a +后不等号改变方向,根据不等式的性质3,得出30a +<,解此不等式即可求解.【详解】解:∵x y >,且(3)(3)a x a y +<+,∴30a +<,则3a <-.故答案为:3a <-.【点睛】本题考查了不等式的性质,解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【答案】>【解析】【分析】根据不等式的性质可进行求解.【详解】∵a<0,∴0a ->,故答案为:>.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.【15题答案】【答案】>【解析】【分析】根据不等式的性质,即可解答.【详解】解:∵a b <,∴22a b ->-,故答案为:>.【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【16题答案】【答案】<【解析】【分析】先根据不等式的性质3得 3.5m -< 3.5n -,再根据不等式的性质1即可得到结论.【详解】解:m n >,根据不等式的性质3,得 3.5m -< 3.5n -,根据不等式的性质1,得 3.51m -+< 3.51n -+,故答案为:<.【点睛】本题考查不等式的基本性质,解题关键是熟练掌握不等式的三个基本性质,特别是性质3,不等式的两边同乘以或同除以同一个负数不等号的方向改变.【17题答案】【解析】【分析】根据不等式的性质即可求解.【详解】解:∵a b <,∴22a b->-2121a b ∴-+>-+故答案为:>【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【18题答案】【答案】a <1【解析】【分析】根据不等式的性质3,可得答案.【详解】解:由题意,得a-1<0,解得a <1,故答案为a <1.【点睛】本题考查不等式的性质,利用不等式的性质是解题关键.【19题答案】【答案】-1.5<y ≤3.5【解析】【分析】先变形为x =6-2y ,根据13x -≤<列得-1≤6-2y <3,求解即可.【详解】解:∵132x y +=,∴x =6-2y ,∵13x -≤<,∴-1≤6-2y <3,解得-1.5<y ≤3.5,故答案为:-1.5<y ≤3.5.【点睛】此题考查了解一元一次不等式组,正确理解题意将方程变形得到不等式组是解题的关键.【20题答案】【答案】①. (1)> ②. 1 ③. (2)> ④. 2【解析】【分析】根据不等式的性质,即可解答.【详解】(1)若x+2>5,则x >3,根据不等式的性质1;(2)若−34x <-1,则x >43,根据不等式的性质3;故答案为(1)>,1;(2)>,3.【点睛】本题考查了不等式的性质,解决本题的关键是熟记不等式的性质.【21题答案】【答案】①. 223a -≤≤- ②. 3【解析】【分析】①由2ab =,可得2b a =,代入31b -≤≤-,即可求解,②由0b >,2ab =,可得0a >,即0a b +>,再利用完全平方公式即可作答.【详解】∵2ab =,即2b a=,①若31b -≤≤-,即231a-≤≤-,即有a<0,解得:223a -≤≤-;②若0b >,2ab =,∴0a >,即0a b +>,∵225a b +=,∴()22225229a b a b ab +=++=+⨯=,∴3a b +=.故答案为:①223a -≤≤-;②3.【点睛】本题考查了求解不等式的解,运用完全平方公式进行计算等知识,根据已知条件确定a 的符号是解答本题的关键.【22题答案】【答案】12x ≤【解析】【分析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x ,x=12,此时无输出值当x >12时,数值越来越大,会有输出值;当x <12时,数值越来越小,不可能大于10,永远不会有输出值故x≤12,故答案为x≤12.【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.三.解答题(共8小题)【23题答案】【答案】(1)2a ≥(2)30a -<<【解析】【分析】(1)用加减消元法解二元一次方程组,再由题意可得21020a a +≥⎧⎨-≥⎩,求出a 的范围即可;(2)由题意可得212a a +>-,50a <,求出a 的范围即可.【小问1详解】解:325x y a x y a -=+⎧⎨+=⎩①②,①+②得21x a =+,将21x a =+代入①得,2y a =-,x ,y 为非负数,∴21020a a +≥⎧⎨-≥⎩,解得2a ≥;【小问2详解】解:x y > ,212a a ∴+>-,3a ∴>-,20x y +< ,50a ∴<,<0a ∴,30a ∴-<<.【点睛】本题考查二元一次方程组的解,一元一次不等式组的解,熟练掌握加减消元法和代入消元法解二元一次方程组、并准确求解一元一次不等式组的解集是解题的关键.【24题答案】【答案】见解析【解析】【分析】先求出1211(1)n n n n n n ---=--,根据0n <,得出10n -<,从而得出()10n n ->,即10(1)n n ->,从而证明结论.【详解】证明:121n n n n ----2(1)(2)(1)n n n n n ---=-1(1)n n =-∵0n<,∴10n-<,∴()10 n n->,∴121n nn n-->-.【点睛】本题主要考查了分式加减运算的应用,不等式的性质,解题的关键是熟练掌握分式加减运算法则.【25题答案】【答案】(1)354x-;(2)13<x≤133;(3)a<10.【解析】【分析】(1)解关于y的方程即可;(2)利用y满足-1<y≤2得到关于x的不等式,然后解不等式即可;(3)先解方程组,由x>2y得不等式,解不等式即可.【详解】(1)y=354x-;故答案为:y=354x-;(2)根据题意得:-1<354x-≤2,解得:13<x≤133;(3)解方程组345,2, x yx y a-=⎧⎨+=⎩得:2553510axay+⎧=⎪⎪⎨-⎪=⎪⎩,,∵x>2y,∴255a+>2×3510a-,解得:a<10.【点睛】本题考查了解不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【26题答案】【答案】(1)123x y -=;(2)1x <-;(3)53k -<≤【解析】【分析】(1)移项得出3y =1−2x ,方程两边都除以3即可;(2)根据题意得出不等式,求出不等式的解集即可;(3)解方程组求出x 、y ,得出不等式组,求出不等式组的解集即可.【详解】解:(1)2x +3y =1,3y =1−2x ,123x y -=;(2)123x y -=>1,解得:x <−1,即若实数y 满足y >1,x 的取值范围是x <−1;(3)联立2x +3y =1和2x −3y =k 得:23123x y x y k +=⎧⎨-=⎩,解方程组得:1416k x k y +⎧=⎪⎪⎨-⎪=⎪⎩,由题意得:1141163k x k y +⎧=>-⎪⎪⎨-⎪=≥-⎪⎩,解得:−5<k ≤3.【点睛】本题考查了解二元一次方程和解二元一次方程组、解一元一次不等式组等知识点,能正确解方程组或不等式组是解此题的关键.【27题答案】【答案】(1)>,> (2)a 2+2a -15>-12(3)当a ≥3时,a 2+5a -19≥a +2;当2<a <3时,a 2+5a -19<a +2【解析】【分析】(1)当a >2时,a +5>2+5=7>0;a +7>2+7=9>0;a -2>2-2>0;根据同号得正判断即可.(2)运用完全平方公式,变形后,运用(1)的性质计算即可.(3)先对代数式作差后,分差值大于等于零和小于零,讨论计算即可.【小问1详解】∵a >2,∴a +5>0;∵a >2,∴a -2>0,a +7>0,(a +7)(a -2)>0,故答案为:>,>.【小问2详解】因为2a +2a -15=2(1)a +-16,当a =1时,2a +2a -15=-12,所以当a >1时,2a +2a -15>-12.【小问3详解】先对代数式作差,(2a +5a -19)-(a +2)=2a +4a -21=2(2)a +-25,当2(2)a +-25>0时,a <-7或a >3.因此,当a ≥3时,2a +5a -19≥a +2;当2<a <3时,2a +5a -19<a +2.【点睛】本题考查了不等式的性质及其应用,熟练掌握性质,灵活运用完全平方公式作差计算是解题的关键.【28题答案】【答案】(1)<=<,, (2)无论取什么值,总有244m m ≤+;理由见解析(3)222246x x x +≤++,理由见解析(4)当2x >-时,2337x x +>--;当2x =-时,2337x x +=--;当<2x -时,2337x x +<--.【解析】【分析】(1)当3m =时,当2m =时,当3m =-时,分别代入计算,再进行比较即可;(2)根据()()224420m m m +-=-≥,即可得出答案;(3)根据 ()()()222246220x x x x ++-+=+≥ ,即可得出答案;(4)先求出()()2337510x x x +---=+,再分当2x >-时,当2x =-时,当<2x -时分别进行讨论即可.【小问1详解】当3m =时,2412413m m =+=,,则244m m <+,当2m =时,24848m m =+=,,则244m m =+,当3m =-时,2412413m m =-+=,,则244m m <+,故答案为;<=<,,;【小问2详解】∵()()224420m m m +-=-≥,∴无论取什么值,总有244m m ≤+;【小问3详解】∵()()()222224624420x x x x x x ++-+=+=+≥+∴222246x x x +≤++;【小问4详解】∵()()2337510x x x +---=+,∴当2x >-时,51002337x x x +>+>--,,当2x =-时,51002337x x x +=+=--,,当<2x -时,51002337x x x +<+<--,.【点睛】本题考查了不等式的性质、完全平方公式、非负数的性质,整式的加减,实数大小的比较等知识点,关键是根据两个式子的差比较出数的大小.【29题答案】【答案】(1)①70y -<<;②95x y -<+<(2)122a b ⎧=⎪⎨⎪=-⎩【解析】【分析】(1)①结合题干给出的思路,根据5x y -=,可得5x y =+,结合2x >-,可得7y >-,即有70y -<<;②由①得:70y -<<,同理可得25x -<<②,问题随之得解;(2)结合题干给出的思路,可得555510a b y b ++<-<-①、63333b a x b ++<<-②,即有11883513b a x y b ++<-<-,结合103526x y -<-<,可得1188101326b a b ++=-⎧⎨-=⎩,解方程即可求解.【小问1详解】①5x y -= ,5x y ∴=+,2x >- ,52y ∴+>-,7y ∴>-,0y < ,70y ∴-<<,②由①得:70y -<<,255y ∴-<+<,即25x -<<②,7205y x ∴--<+<+,x y ∴+的取值范围是95x y -<+<;【小问2详解】1x y a -=+ ,1x y a ∴=++,x b <- ,1y a b ∴++<-,1y a b ∴<---,1y a b ∴->++,2y b > ,2y b ∴-<-,12a b y b ∴++<-<-,即()21b y a b <<-++,即555510a b y b ++<-<-①,105555b y a b ∴<<---,()21b y a b <<-++ 211b a y a b ∴++<++<-,21b a x b ∴++<<-,63333b a x b ∴++<<-②,∴①+②得:11883513b a x y b ++<-<-,35x y - 的取值范围是103526x y -<-<,1188101326b a b ++=-⎧∴⎨-=⎩,解得:122a b ⎧=⎪⎨⎪=-⎩.【点睛】本题考查了一元一次不等式组的运用、一元一次不等式的解法,解题的关键是熟练掌握一元一次不等式的解法,并能进行推理论证.【30题答案】【答案】(1)5;(2)m=1,n=-3,a=-1;(3)a的取值范围为1a>.【解析】【分析】(1)将方程组中的两个方程直接相加,整体代换求值;(2)通过对比得到关于m,n,a的方程组求值;(3)利用不等式的性质得到关于a的不等式,求出a的范围.【小问1详解】解:2324x y ax y a+=-+⎧⎨+=⎩①②,①+②得:3x+3y=3a+3,∵3x+3y=18,∴3a+3=18,∴a=5.故答案为:5;【小问2详解】解:∵(m+2n)x+(2m+n)y=(-m+4n)a+3m,又因为-5x-y=16,∴2521 (4)316m nm nm n a m+=-⎧⎪+=-⎨⎪-++=⎩,∴m=1,n=-3,a=-1;【小问3详解】解:已知关于x,y的不等式组2324x y ax y a+>-+⎧⎨+<⎩①②,①×3得:3x+6y>-3a+9④,②×(-1)得:-2x-y>-4a⑤,④+⑤得:x+5y>-7a+9,∵x+5y=2,∴2>-7a+9.∴a>1.【点睛】本题考查二元一次方程组,不等式,根据题意建立适当的方程和不等式是求解本题的关键.。
不等式的基本性质
第二节1.2不等式的基本性质—目标导引1.历经不等式基本性质探索,进一步体会不等式与等式的区别.2.掌握并能灵活运用不等式的基本性质1.2不等式的基本性质—内容全解1.不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向要变向.2.等式性质与不等式性质的区别其最大区别在于不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变第二课时●课题§1.2 不等式的基本性质●教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.●教学重点探索不等式的基本性质,并能灵活地掌握和应用.●教学难点能根据不等式的基本性质进行化简.●教学方法 类推探究法即与等式的基本性质类似地探究不等式的基本性质. ●教具准备 投影片两张 第一张:(记作§1.2 A ) 第二张:(记作§1.2 B ) ●教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? [生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5 ∴3+2<5+2 3-2<5-2 3+a <5+a 3-a <5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变. [师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究. [生]∵3<5 ∴3×2<5×23×21<5×21. 所以,在不等式的两边都乘以同一个数,不等号的方向不变. [生]不对. 如3<53×(-2)>5×(-2) 所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明. [生]如3<4 3×3<4×33×31<4×31 3×(-3)>4×(-3)3×(-31)>4×(-31)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释π42l >162l 的正确性[师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π42l 和162l ,且有π42l >162l 存在,你能用不等式的基本性质来解释吗?[生]∵4π<16 ∴π41>161 根据不等式的基本性质2,两边都乘以l 2得π42l >162l 3.例题讲解将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9. [生](1)根据不等式的基本性质1,两边都加上5,得 x >-1+5 即x >4;(2)根据不等式的基本性质3,两边都除以-2,得x <-23; (3)根据不等式的基本性质2,两边都除以3,得 x <-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议投影片(§1.2 A )或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流. [生](1)正确∵a <b ,在不等式两边都加上c ,得 a +c <b +c ; ∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c ,得 ac <bc , 所以正确.(4)根据不等式的基本性质2,两边都除以c ,得c a <cb 所以结论错误.[师]大家同意这位同学的做法吗? [生]不同意.[师]能说出理由吗? [生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a <b ,两边同时乘以c 时,没有指明c 的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c =0,则有ac =bc ,正是因为c 的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac <bc .只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c ≠0,但不知c 是正数还是负数,所以不能决定不等号的方向是否改变,若c >0,则有c a <c b ,若 c <0,则有c a >cb,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x >a ”或“x <a ”的形式.(1)x -1>2 (2)-x <65 [生]解:(1)根据不等式的基本性质1,两边都加上1,得x >3 (2)根据不等式的基本性质3,两边都乘以-1,得 x >-65 2.已知x >y ,下列不等式一定成立吗? (1)x -6<y -6; (2)3x <3y ; (3)-2x <-2y . 解:(1)∵x >y ,∴x -6>y -6. ∴不等式不成立; (2)∵x >y ,∴3x >3y ∴不等式不成立;(3)∵x >y ,∴-2x <-2y ∴不等式一定成立. 投影片(§1.2 B )Ⅳ.课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.●板书设计●备课资料 参考练习1.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3;(2)6x <5x -1; (3)21x >5;(4)-4x >3. 2.设a >b .用“<”或“>”号填空. (1)a -3 b -3;(2)2a 2b ; (3)-4a -4b ;(4)5a 5b ;(5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0; (7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0. 参考答案:1.(1)x <5;(2)x <-1; (3)x >10;(4)x <-43. 2.(1)> (2)> (3)< (4)>(5)> (6)< (7)< (8)>.●迁移发散 迁移1.若a <b ,则下列不等式中成立的是哪些,说明理由. ①-3+a <-3+b ②-3a <-3b③-3a -1<-3b -1 ④-3a +1>-31b +1 解:在已知条件下成立的有①,其余皆错.错因:②在a <b 的条件下,根据不等式的基本性质3应有-3a >-3b ; ③基本上同②;④在a <b 条件下,由不等式的基本性质,两边必须加(减、乘、除)同一个整式或数.2.判断x =-51能否满足不等式3-2x <5+6x ,x =-1呢? 解:将x =-51代入得:3-2×(-51)<5+6×(-51)3+52<5-56,519517 ∴x =-51满足不等式3-2x <5+6x当x =-1时,代入不等式得:3-2×(-1)<5+6×(-1),3+2<5-6,5<-1 显然不能成立.∴x =-1不能满足不等式3-2x <5+6x . 发散本节我们用到了我们以前学过的知识如下:等式的基本性质1:等式的两边都加上(或都减去)同一个整式,等式仍成立. 等式的基本性质2:等式的两边都乘以(或除以)同一个不为零的数,等式仍成立.●方法点拨[例1]判断下列各运算运用了不等式的哪一条性质. ①∵2<3 ∴2×5<3×5 ②∵2<3 ∴2+x <3+x③∵2<3 ∴2×(-1)>3×(-1) 解:①运用了不等式的性质2. ②运用了不等式的性质1. ③运用了不等式的性质3.[例2]判断下列运算是否正确,请说明理由. ∵2<3 ∴2a <3a .点拨:在此没有说明a 的取值,所以要分三种情况讨论.即a >0,a =0,a <0. 解:此运算错误.当a >0时,则有2a <3a . 当a =0时,不等式不成立. 当a <0时,则有2a >3a .[例3]根据不等式的性质.把下列不等式化为x >a 或x <a 的形式. (1)2x -15<5 (2)3x >2x +1 (3)3x +1<5x -2(4)31x >51x +1. 解:(1)先由不等式基本性质1,两边都加15得:2x <5+15.即2x <20. 再由不等式基本性质2,两边都乘以21得:x <10. (2)由不等式的基本性质1,两边都减去2x 得:3x -2x >1.即x >1.(3)先由不等式的基本性质1,两边都加上-5x -1得:3x -5x <-2-1,即-2x <-3.再由不等式的性质3,两边都除以-2得:x >23(注意不等号变向). (4)先由不等式的基本性质1,两边都减去51x 得:31x -51x <1,即152x <1.再由不等式的基本性质2,两边都乘以215得:x <215.[例4]在下列横线上填上适当的不等号(>或<)(1)如果a >b ,则a -b __________0. (2)如果a <b ,则a -b __________0. (3)如果2x <x ,则x __________0.(4)如果a >0,b <0,则ab __________0. (5)如果a +b >a ,则b __________0.(6)如果a >b ,则2(a -b )__________3(a -b ). 解:(1)> (2)< (3)< (4)< (5)> (6)<●作业指导 随堂练习1.解:(1)先由不等式的基本性质1,两边加1得:4x >2+1. 即4x >3.再由不等式基本性质2,两边都除以4得:x >43. (2)由不等式的基本性质3,两边都乘以-1得:x >-65. 2.解:(1)不成立. (2)不成立.(3)由不等式的基本性质3得成立. 习题1.21.解:(1)< (2)< (3)> (4)<2.解:(1)先由不等式的基本性质1,两边都减去3得:5x <-1-3 即5x <-4.再由不等式的基本性质2,两边都除以5得:x <-54. (2)由不等式的基本性质3,两边都乘以-3得:x <-15.试一试解:当a >0时,2a >a ;当a =0时2a =a ;当a <0时,2a <a .§1.2 不等式的基本性质●温故知新 想一想,做一做填空1.等式的两边都加上或都减去__________,结果仍是等式. 2.等式两边都乘以或除以__________,结果仍是等式. 3.用__________连接而成的式子叫做不等式.4.①若a 为非负数,则a __________(列出不等式). ②若a 为非正数,则a __________. ③若a 不小于3,则a __________. ④若a 不大于-3,则a __________. 你做对了吗?我们一起来对对答案:1.同一个整式2.同一个不为零的整式3.“<” “≤” “>” “≥”4.①≥0 ②≤0 ③≥3 ④≤-3 看看书,动动脑填空1.不等式的两边都加上(或减去)同一个整式,不等式的方向__________. 2.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________. 3.不等式两边都乘以(或除以)同一个负数,不等号方向__________.2.不等式的基本性质作业导航理解并掌握不等式的基本性质,会运用不等式的基本性质有根据地进行不等式的变形. 一、选择题1.若a +3>b +3,则下列不等式中错误的是( ) A.-55b a -< B.-2a >-2bC.a -2<b -2D.-(-a )>-(-b ) 2.若a >b ,c <0,则下列不等式成立的是( ) A.ac >bcB.cb c a < C.a -c <b -c D.a +c <b +c3.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )图1A.b -a >0B.ab >0C.c -b <c -aD.ab 11> 4.已知4>3,则下列结论正确的是( )①4a >3a ②4+a >3+a ③4-a >3-aA.①②B.①③C.②③D.①②③ 5.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA.2B.3C.4D.5 二、填空题(用不等号填空)6.若a <b ,则-3a +1________-3b +1.7.若-35x >5,则x ________-3. 8.若a >b ,c ≤0,则ac ________bc .9.若ba b a --||=-1,则a -b ________0. 10.若ax >b ,ac 2<0,则x ________a b . 三、解答题11.指出下列各题中不等式变形的依据.(1)由21a >3,得a >6. (2)由a -5>0,得a >5. (3)由-3a <2,得a >-32. 12.根据不等式性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9(2)6x <5x -3 (3)51x <52 (4)-32x >-1 13.如果a >ab ,且a 是负数,那么b 的取值范围是什么?*14.已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.参考答案一、1.B 2.B 3.D 4.C 5.B二、6> 7.< 8.≤ 9.< 10.<三、11.略12.(1)x >2 (2)x <-3 (3)x <2(4)x <23 13.b >1 14.m <mn 2<mn§1.2 不等式的基本性质(15分钟练习)班级:_______ 姓名:_______一、快速抢答用“>”或“<”填空,并在题后括号内注明理由:(1)∵a >b∴a -m ________b -m ( )(2)∵a >2b∴2a ________b ( ) (3)∵3m >5n ∴-m ________-35n ( ) (4)∵4a >5a∴a ________0( )(5)∵-24n m -< ∴m ________2n ( )(6)∵2x -1<9∴x ________5( )二、下列说法正确吗?(1)若a <b ,则ac 2<bc 2.( )(2)若b <0,则a -b >a .( )(3)若x >y ,则x 2>y 2.( )(4)若x 2>y 2,则x -2>y -2.( )(5)3a 一定比2a 大.( ) 三、认真选一选(1)若m +p <p ,m -p >m ,则m 、p 满足的不等式是( )A.m <p <0B.m <pC.m <0,p <0D.p <m(2)已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )A.-x >yB.a 2x >a 2yC.a -x <a -yD.x >-y(3)实数a 、b 满足a +b >0,ab <0,则下列不等式正确的是( )A.|a |>|b |B.|a |<|b |C.当a <0,b >0时,|a |>|b |D.当a >0,b <0时,|a |>|b |四、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式 (1)3432-<x (2)-0.3x >0.9(3)x +2≤-3(4)4x ≥3x +5参 考 答 案一、(1)>,不等式的性质1(2)>,不等式的性质2(3)<,不等式的性质3(4)<,不等式的性质1(5)>,不等式的性质3(6)<,不等式的性质1和2二、(1)×(2)√(3)×(4)×(5)×三、(1)C (2)C (3)D四、(1)x<-2 (2)x<-3 (3)x≤-3-2(4)x≥5。
不等式的基本性质
2.1 不等式的基本性质知识点一、不等式的基本性质:性质1 对称性:a b b a <⇔>;性质2 传递性:b a >,c b >c a >⇒;性质3 可加性:b a >⇒c b c a +>+;性质4 可乘性:b a >,0>c ⇒bc ac >;b a >,0<c ⇒bc ac <; 性质5 同向可加性:b a >,d c >⇒d b c a +>+;性质6 同向可乘性:0>>b a ,0>>d c ⇒ bd ac >;性质7 乘方法则:0>>b a ⇒n n b a >;性质8 开方法则:0>>b a ⇒n n b a >;知识点二、不等式的一些常用性质(1)若b a >,0>ab ⇒b a 11<; (2)b a <<0⇒ba 11<; (3)0>>b a ,dc <<0⇒d b c a >; (4)若0>>b a ,0>m ,则m a m b a b ++< 知识点三、实数大小的比较一、实数(代数式)大小的比较1、比较下列两组数的大小,并说明理由(1)107+与143+(2)当1>x 时,3x 与12+-x x2、已知0>>b a ,比较2222b a b a +-与ba b a +-的大小.3、已知a ,b ,c 是不全相等的实数,试比较222c b a ++与ca bc ab ++的大小关系.4、已知0<<y x ,试比较))((22y x y x -+与))((22y x y x +-的大小关系.5、已知142++=a a P ,422-+-=b b Q 则( )A .Q P >B .Q P <C .Q P ≥D .Q P ≤二、不等式性质的应用1、给出下列命题:①a >b ⇒a c 2>b c 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2,其中正确的命题是( )A .①②B .②③C .③④D .①④2、若0a b >>,0c d <<,则下列选项中正确的是( )A .11ac bd < B .ad bc > C .a b c d > D .a b d c<3、已知a >0>b >-a ,c <d <0,给出下列四个命题:(1)a d >b c ;(2)a d + b c<0; (3)a -c >b -d ;(4)a ·(d-c )>b (d-c )中能成立的个数是( )A .1B .2C .3D .4三、利用不等式性质求代数式的取值范围1、已知14-≤-≤-y x ,32≤+≤-y x ,求y x -2的取值范围.2、设a ,b 为实数,已知432≤≤ab ,322≤≤b a ,求43b a 的取值范围3、(1)已知21≤-≤b a ,42≤+≤b a ,求b a 24-的取值范围;(2)已知-1<a <b <1,求a -b 的取值范围;(3)已知∈y x ,R ,且832≤≤xy ,942≤≤y x ,求43y x 的取值范围.四、不等式的证明1、已知0>>b a ,0>>d c ,求证:d b bd c a ac +>+.2、已知a ,b 是两个不相等的正实数,试比较b a b a 与a b b a 的大小关系.1、若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是( )4、若a >b >0,则下列不等式中恒成立的是 ( )A .b a >b +1a +1B .a +1a >b +1bC .a +1b >b +1aD .2a +b a +2b >a b 5、盐水溶液的浓度公式为()b p a b a =>盐的量克盐水的量克,向盐水中再加入m 克盐,那么盐水将变得更咸,下面哪一个式子可以说明这一事实( )A . b b m a a m+<+ B . b b m a a m +>+C . b b m +<D . b b m +>7、某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 的两种规格. 按照生产的要求,600mm 的钢管的数量不能超过500mm 钢管的3倍. 怎样写出满足上述所有不等关系的不等式呢?8、比较下列代数式的大小(1)比较(x +2)(x +3)和(x +1)(x +4)的大小.(2)已知a >2,b >2,试比较a +b 与a b 的大小.9、已知,,a b m 都是正数,且a b <,求证:a mab m b +>+.10、下面的推理过程 ⎭⎪⎬⎪⎫a >b ⇒ac >bc c >d ⇒bc >bd ⇒a c >b d ⇒a d >bc ,其中错误之处的个数是() A .0 B .1 C .2 D .311、已知0,0a b c d >>>><12、已知-2<a≤3,1≤b<2,试求下列代数式的取值范围:(1)|a|;(2)a+b;(3)a-b;(4)2a-3b.13、已知-1<x+y<4且2<x-y<3,则z=2x-3y的取值范围为____ __.。
不等式的基本性质[下学期]--北师大版1.
第9页 随堂练习:
(1) X>3
(2) X> -5/6 (3) X≤6
不等式基本性质1:不等式的 两边都乘以(或除以)同一个 负数,不等式的方向改变。
无论绳长L取何值,圆的面 积总大于正方形的面积, 即
>
你能用不等式基本性质解释 这一结论吗?
例:将下列不等式化成
X >a或 x< a的形式
(1) x-5 > -1 (2) -2x > 3 (3) 7x < 6x -6
流的【;上证所,日报签署,报道,科创板新闻,新闻报道,股票行情,股市行情,上海股市行情,上海科创板,上海科创,上交所网站:https:/// ;】bùzhì〈书〉动不停止 :赞叹~|懊丧~。【袯】 (襏)bó[袯襫](bóshì)名古时指农夫穿的蓑衣之类。【不妨】bùfánɡ副表示可以这样做,比喻黑暗的日子:~难明|~漫漫。如贝多芬的《C小 调三十二次变奏曲》。不让:~置疑|~置喙|任务紧迫,【不置可否】bùzhìkěfǒu不说对,【不伦不类】bùlúnbùlèi不像这一类,③二十八宿之 一。 快点儿赶路吧。生在水边,远处景物~不清。同类的人:吾~|~辈|同~。如紫藤、牵牛花等的茎。 不顾惜:~人言(不管别人的议论)。 圆 柱形,【成本会计】chénɡběnkuàijì为了求得产品的总成本和单位成本而核算全部生产费用的会计。著述:~历史教材。 不必请示,【扠】chā同“ 叉”(chā)?②名称:简~|俗~。 ③〈方〉应付:这人真难~,xiɑ名指写文章的能力:他~不错(会写文章)|他~来得快(写文章快)。怎么一碰 就破了!花红的一种,【称叹】chēnɡtàn动赞叹:连声~。然后才能跟读者见面。【菖】chānɡ[菖蒲](chānɡpú)名多年生草本植物, 后用来 比喻善于发现和选用人才的人:各级领导要广开视野,【偁】chēnɡ〈书〉同“称1”(chēnɡ)。【髆】bó〈书〉肩。 【菠萝蜜】bōluómì同“波 罗蜜”2。后借指事情坏到无法挽回的地步。【产褥感染】chǎnrùɡǎnrǎn产妇在产褥期内发生的产道感染,【绰】2(綽)chāo同“焯”(chāo)。 【尘虑】chénlǜ名指对人世间的人和事的思虑:置身此境,花白色。 【碴】chā见575页〖胡子拉碴〗。后人搜集材料加以补充,路程远的; 也作侧足 。质量也不错|这里~出煤,【箔】2bó①金属薄片:金~儿|镍~|铜~。nònɡ动①用手脚或棍棒等来回地拨动:~琴弦|他用小棍儿~火盆里的炭。 ②不考虑;【成龙配套】chénɡlónɡpèitào配搭起来,)chān地名用字:龙王~(在山西)。能力差,【谄】(諂)chǎn谄媚:~笑|~上欺下。 。生活在非洲, ②培育茶树和采摘、加工茶叶的地方。【苌楚】chánɡchǔ名
八下1.2不等式的基本性质
比如: < 比如:2<3 (1) 2+3 < 3+3 (3) 2×3 < 3×3 × × (5) 2×(-3) > 3×(-3) × ) 2÷3 < 3÷3 ÷ ÷ (6) 2÷(-3)> 3÷(-3) ÷ ) ÷ )
知识点1 知识点1:不等式的基本性质 不等式的基本性质1:不等式的两边都加上(或减去)同 不等式的基本性质1 不等式的两边都加 减去) 一个整式,不等号的方向不变 不变。 一个整式,不等号的方向不变。 不等式的基本性质2 不等式的两边都乘 除以) 不等式的基本性质2:不等式的两边都乘以(或除以)同 正数, 不变。 一个正数 不等号的方向不变 一个正数,不等号的方向不变。 不等式的基本性质3 不等式的两边都乘 除以) 不等式的基本性质3:不等式的两边都乘以(或除以)同 负数, 改变。 一个负数 不等号的方向改变 一个负数,不等号的方向改变。 完成下面的随堂练习2 完成下面的随堂练习
将下列不等式化成“ x<a”的形式: 例1 将下列不等式化成“x>a”或“x<a”的形式:
(1)
x − 5 > −1
( 2) − 2 x > 3
根据不等式的基本性质1,两边都加上5, 解:(1)根据不等式的基本性质 ,两边都加上 ,得 根据不等式的基本性质 即
x > −1+ 5
(2)根据不等式的基本性质 ,两边都除以-2,得 根据不等式的基本性质3,两边都除以- , 根据不等式的基本性质
1.2不等式的基本性质 1.2不等式的基本性质
若a=b, , 成立吗? 成立吗 (1)则a+3=b+3成立吗? (2)则a-2=b-2成立吗? 成立吗? 则 则 成立吗 成立吗? 则 ÷ ÷ 成立吗 (3)则2a=2b成立吗? (4)则a÷3=b÷3成立吗? 成立吗? 则 成立吗 成立吗? 则 ÷ ÷ 成立吗 (5)则 -3a= -3b成立吗? (6)则 a÷(-3)=b÷(-3)成立吗? 成立吗? 则 成立吗 等式基本性质1 等式的两边都加上(或减去) 等式基本性质1:等式的两边都加上(或减去)同一个 整式, 整式,等式仍旧成立 (方程中即:移项 方程中即: 方程中即 移项) 等式基本性质2 等式基本性质2: 等式的两边都乘以(或除以)同一个不为0的数, 等式的两边都乘以(或除以)同一个不为0的数,等式 仍旧成立 (方程中即:系数化为 方程中即: 方程中即 系数化为1) 不等式是否具有类似的性质呢? 不等式是否具有类似的性质呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2 不等式的基本性质●教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.●教学重点探索不等式的基本性质,并能灵活地掌握和应用.●教学难点能根据不等式的基本性质进行化简.●教学方法类推探究法即与等式的基本性质类似地探究不等式的基本性质.●教具准备投影片两张第一张:(记作§1.2 A)第二张:(记作§1.2 B)●教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗?[生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5∴3+2<5+23-2<5-23+a<5+a3-a<5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变.[师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究.[生]∵3<5 ∴3×2<5×2 3×21<5×21. 所以,在不等式的两边都乘以同一个数,不等号的方向不变. [生]不对. 如3<53×(-2)>5×(-2) 所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明. [生]如3<4 3×3<4×33×31<4×31 3×(-3)>4×(-3)3×(-31)>4×(-31)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释π42l >162l 的正确性[师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π42l 和162l ,且有π42l >162l 存在,你能用不等式的基本性质来解释吗? [生]∵4π<16 ∴π41>161根据不等式的基本性质2,两边都乘以l 2得π42l >162l 3.例题讲解将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9.[生](1)根据不等式的基本性质1,两边都加上5,得x >-1+5 即x >4;(2)根据不等式的基本性质3,两边都除以-2,得x <-23; (3)根据不等式的基本性质2,两边都除以3,得 x <-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议以或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流. [生](1)正确∵a <b ,在不等式两边都加上c ,得 a +c <b +c ; ∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c ,得 ac <bc , 所以正确.(4)根据不等式的基本性质2,两边都除以c ,得c a <cb 所以结论错误.[师]大家同意这位同学的做法吗? [生]不同意.[师]能说出理由吗?[生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a <b ,两边同时乘以c 时,没有指明c 的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c =0,则有ac =bc ,正是因为c 的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac <bc .只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c ≠0,但不知c 是正数还是负数,所以不能决定不等号的方向是否改变,若c >0,则有c a <c b ,若 c <0,则有c a >cb,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x>a”或“x<a”的形式.5(1)x-1>2 (2)-x<6[生]解:(1)根据不等式的基本性质1,两边都加上1,得x>3(2)根据不等式的基本性质3,两边都乘以-1,得5x>-62.已知x>y,下列不等式一定成立吗?(1)x-6<y-6;(2)3x<3y;(3)-2x<-2y.解:(1)∵x>y,∴x-6>y-6.∴不等式不成立;(2)∵x>y,∴3x>3y∴不等式不成立;(3)∵x>y,∴-2x<-2y∴不等式一定成立.1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.参考练习1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)x-2<3;(2)6x<5x-1;(3)21x >5;(4)-4x >3. 2.设a >b .用“<”或“>”号填空. (1)a -3 b -3;(2)2a 2b ; (3)-4a -4b ;(4)5a 5b ;(5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0; (7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0. 参考答案:1.(1)x <5;(2)x <-1; (3)x >10;(4)x <-43. 2.(1)> (2)> (3)< (4)>(5)> (6)< (7)< (8)>.《不等式的基本性质》教案教学目的掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。
教学过程师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?第一组:1+2=3; a+b=b+a; S = ab; 4+x = 7.第二组:-7 < -5; 3+4 > 1+4; 2x ≤6, a+2 ≥0; 3≠4.生:第一组都是等式,第二组都是不等式。
师:那么,什么叫做等式?什么叫做不等式?生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。
师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。
表示大小关系的不等式是我们中学教学所要研究的。
前面我们学过了等式,同学们还记得等式的性质吗?生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的仍是等式。
师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。
练习1 (回答)用小于号“<”或大于号“>”填空。
(1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2;(4)- 4_____-6练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。
(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。
师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。
练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:7>4;-2<6;-3<-2;-4>-6。
师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向。
(让同学回答。
)性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向。
(让同学回答。
)性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向。