武汉市中考数学22题专题

合集下载

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。

答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。

答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。

答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。

答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。

解:首先,将方程因式分解为(x - 6)(x + 2) = 0。

然后,解得x = 6或x = -2。

答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。

若长方体的体积为V,求V的表达式。

解:由题意可知,a + c = 2b,所以c = 2b - a。

长方体的体积V = abc = ab(2b - a)。

答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。

2020年中考数学第22题应用题复习专题(有答案)

2020年中考数学第22题应用题复习专题(有答案)

武汉市中考数学第22 题复习专题1. 我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B 两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元•用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元•写出y 与m之间的函数关系式,并写出商店能获得最大利润的进货方案;(3)由于市场浮动,A型电动自行车的进货价格下调 a (100 v a v 300)元,此时商店能获得最大利润为14400,求a值.2. 为迎接军运会,武汉市政府启动了梁子湖水质提升方案,其中治理所需的部分原料450吨由某公司存放于甲、乙两个仓库,如果运出甲仓库所存原料的30%,乙仓库所存原料的20%,那么乙仓库剩余的原料与甲仓库剩余的原料一样多.(1) 求甲、乙两仓库各存放原料多少吨?(2) 现公司将300 吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨•经协商,从甲仓库到工厂的运价可优惠a元/吨(10< a w 30),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,求出总运费w 关于m 的函数解析式(不要求写出m 的取值范围);⑶若在⑵的条件下,请根据函数的性质说明:随着m的增大,w的变化情况.3. 某年5 月,我国南方某省A、B 两市遭受严重洪涝灾害,1.5 万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B 两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.4. 某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x为正整数).(I)根据题意,填写下表:若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(川)当x>20时,小明选择哪种付费方式更合算?并说明理由.5、(10分)某企业拥有一条生产某品牌酸奶的生产线,已知该酸奶销售额为4800元时的销量比相售额为800元时的销量要多500瓶。

专题22全等三角形(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项

专题22全等三角形(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分项

三年(2021-2023)中考数学真题分项汇编【全国通用】专题22全等三角形(优选真题60道)一.选择题(共14小题)1.(2023•凉山州)如图,点E、点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是()A.∠A=∠D B.∠AFB=∠DEC C.AB=DC D.AF=DE2.(2023•长春)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA'、BB'的中点,只要量出A'B'的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两条直线被一组平行线所截,所得的对应线段成比例D.两点之间线段最短3.(2022•成都)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D4.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F 与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE 5.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO 的依据是()A.SSS B.SAS C.AAS D.HL6.(2022•扬州)如图,小明家仿古家具的一块三角形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC 7.(2022•湘西州)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG ∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()A.24B.22C.20D.188.(2021•攀枝花)如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.①B.②C.③D.①③9.(2021•重庆)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB 全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D10.(2021•重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD11.(2021•盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M 的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS12.(2021•青海)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.8B.7.5C.15D.无法确定13.(2021•哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°14.(2021•台湾)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?()A.EF=EC,AE=FC B.EF=EC,AE≠FCC.EF≠EC,AE=FC D.EF≠EC,AE≠FC二.填空题(共16小题)15.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.16.(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.17.(2022•株洲)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON ⊥BC于点N,若OM=ON,则∠ABO=度.18.(2022•牡丹江)如图,CA=CD,∠ACD=∠BCE,请添加一个条件,使△ABC ≌△DEC.19.(2022•南通)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,要使△ABC≌△DEF,只需添加一个条件,则这个条件可以是.20.(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=.21.(2022•宁夏)如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是.(只写一个)22.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.23.(2022•湖北)如图,已知AB∥DE,AB=DE,请你添加一个条件,使△ABC≌△DEF.24.(2021•福建)如图,AD是△ABC的角平分线.若∠B=90°,BD=√3,则点D到AC的距离是.25.(2021•齐齐哈尔)如图,AC =AD ,∠1=∠2,要使△ABC ≌△AED ,应添加的条件是 .(只需写出一个条件即可)26.(2021•长沙)如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,若BC =4,DE =1.6,则BD 的长为 .27.(2021•成都)如图,在Rt △ABC 中,∠C =90°,AC =BC ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AC ,AB 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在∠BAC 内交于点O ;③作射线AO ,交BC 于点D .若点D 到AB 的距离为1,则BC 的长为 .28.(2021•德州)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D .请添加一个条件 ,使△ABF ≌△DCE .29.(2021•常德)如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若CD=3,BD=5,则BE的长为.30.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.三.解答题(共30小题)31.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.32.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.33.(2023•大连)如图,在△ABC和△ADE中,延长BC交DE于F.BC=DE,AC=AE,∠ACF+∠AED =180°.求证:AB=AD.34.(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.35.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED=∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.36.(2023•陕西)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.37.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.38.(2023•苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.39.(2023•宜宾)已知:如图,AB∥DE,AB=DE,AF=DC.求证:∠B=∠E.40.(2023•云南)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.41.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.42.(2022•益阳)如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.43.(2022•长沙)如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.44.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.45.(2022•衡阳)如图,在△ABC中,AB=AC,D、E是BC边上的点,且BD=CE.求证:AD=AE.46.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.47.(2022•衢州)已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.48.(2022•福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.49.(2022•乐山)如图,B是线段AC的中点,AD∥BE,BD∥CE.求证:△ABD≌△BCE.50.(2022•陕西)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.51.(2022•宜宾)已知:如图,点A、D、C、F在同一直线上,AB∥DE,∠B=∠E,BC=EF.求证:AD =CF.52.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.53.(2022•百色)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中AB=CD=2米,AD=BC=3米,∠B=30°.(1)求证:△ABC≌△CDA;(2)求草坪造型的面积.54.(2022•牡丹江)如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE=BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=12√3,则BC=,BF=.55.(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.56.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.57.(2022•资阳)如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2√5,求△BCD的面积.58.(2022•铜仁市)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB=CD.求证:△ABC≌△CDE.59.(2021•大连)如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.60.如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.。

2020年中考数学第22题应用题复习专题(有答案)

2020年中考数学第22题应用题复习专题(有答案)

武汉市中考数学第22题复习专题1.我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y 元.写出y与m之间的函数关系式,并写出商店能获得最大利润的进货方案;(3)由于市场浮动,A型电动自行车的进货价格下调a(100<a<300)元,此时商店能获得最大利润为14400,求a值.2.为迎接军运会,武汉市政府启动了梁子湖水质提升方案,其中治理所需的部分原料450吨由某公司存放于甲、乙两个仓库,如果运出甲仓库所存原料的30%,乙仓库所存原料的20%,那么乙仓库剩余的原料与甲仓库剩余的原料一样多.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变.设从甲仓库运m吨原料到工厂,求出总运费w关于m的函数解析式(不要求写出m的取值范围);(3)若在(2)的条件下,请根据函数的性质说明:随着m的增大,w的变化情况.3.某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B 两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表CD总计(吨)A(吨)200B(吨)x300合计(吨)240260500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.4.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:游泳次数方式一的总费用(元)101501517520……x方式二的总费用(元)90135…(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.5、(10分)某企业拥有一条生产某品牌酸奶的生产线,已知该酸奶销售额为4800元时的销量比相售额为800元时的销量要多500瓶。

2024年湖北武汉市中考数学试题+答案详解

2024年湖北武汉市中考数学试题+答案详解

2024年湖北武汉市中考数学试题+答案详解(试题部分)亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.2. 小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件3. 如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A. B. C. D.4. 国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A. 50.310⨯B. 60.310⨯C. 5310⨯D. 6310⨯5. 下列计算正确的是( )A. 236a a a ⋅=B. ()1432a a =C. ()2236a a =D. ()2211a a +=+ 6. 如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是( )A. B. C. D. 7. 小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A. 64︒B. 66︒C. 68︒D. 70︒8. 经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( ) A. 19 B. 13 C. 49 D. 599. 如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O的半径是( )A. 3B. 3C. 2D. 210. 如图,小好同学用计算机软件绘制函数32331y x x x =−+−的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++的值是( )A. 1−B. 0.729−C. 0D. 1二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11. 中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃.12. 某反比例函数k y x =具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是__________.13. 分式方程131x x x x +=−−的解是______. 14. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是__________m .(参考数据:tan632︒≈)15. 如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是___________.16. 抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤. 其中正确的是__________(填写序号). 三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17. 求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 18. 如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由) 19. 为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表根据以上信息,解答下列问题:(1)直接写出m ,n 的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20. 如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.21. 如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;(2)在(1)的基础上,在射线AD 上画点E ,使ECB ACB ∠=∠;(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转90︒到点C ,再画射线AF 交BC 于点G ; (4)在(3)的基础上,将线段AB 绕点G 旋转180︒,画对应线段MN (点A 与点M 对应,点B 与点N 对应).22. 16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23. 问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF 的值.24. 抛物线215222y x x =+−交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.2024年湖北武汉市中考数学试题+答案详解(答案详解)亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2. 小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件【答案】A【解析】 【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A .3. 如图是由两个宽度相同的长方体组成的几何体,它的主视图是( )A. B. C. D.【答案】B【解析】【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4. 国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A. 50.310⨯B. 60.310⨯C. 5310⨯D. 6310⨯【答案】C【解析】 【分析】本题考查了科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值大于1与小数点移动的位数相同.【详解】解:5300000310=⨯,故选:C .5. 下列计算正确的是( )A. 236a a a ⋅=B. ()1432a a =C. ()2236a a =D. ()2211a a +=+ 【答案】B【解析】 【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A. 235a a a ⋅=,故该选项不正确,不符合题意;B. ()4312a a =,故该选项正确,符合题意;C. ()2239a a =,故该选项不正确,不符合题意;D. ()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6. 如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是( )A. B. C. D.【答案】D【解析】【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D .7. 小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是( )A. 64︒B. 66︒C. 68︒D. 70︒【答案】C 【解析】【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD 是菱形,进而根据菱形的性质,即可求解.【详解】解:作图可得AB AD BC DC === ∴四边形ABCD 是菱形, ∴,AD BC ABD CBD ∠=∠ ∵44A ∠=︒,∴44MBC A ∠=∠=︒, ∴()()11180180446822CBD MBC ∠=︒−∠=︒−︒=︒, 故选:C .8. 经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( ) A.19B.13C.49D.59【答案】D 【解析】【分析】本题考查的是运用树状图求概率,运用树状图法确定所有情况数和符合题意情况数是解答本题的关键.运用树状图法确定所有情况数和符合题意情况数,然后用概率公式解答即可. 【详解】解:列树状图如图所示,共有9种情况,至少一辆车向右转有5种, ∴至少一辆车向右转的概率是59, 故选:D .9. 如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O的半径是( )A.B.C.2D.2【答案】A 【解析】【分析】延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF ,即可证得()SAS ADC EBC ≌,进而可求得cos 45AC AE =︒⋅=,再利用圆周角定理得到60AFC ∠=︒,结合三角函数即可求解.【详解】解:延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF ,∵四边形ABCD 内接于O ,∴180ADC ABC ABC CBE ∠+∠=∠+∠=︒ ∴ADC CBE ∠=∠ ∵45BAC CAD ∠=∠=︒∴45CBD CDB ∠=∠=︒,90DAB ∠=︒ ∴BD 是O 的直径,∴90DCB ∠=︒∴DCB △是等腰直角三角形, ∴DC BC = ∵BE AD =∴()SAS ADC EBC ≌ ∴ACD ECB ∠=∠,AC CE =, ∵2AB AD += ∴2AB BE AE +== 又∵90DCB ∠=︒ ∴90ACE ∠=︒∴ACE △是等腰直角三角形∴cos 45AC AE =︒⋅=∵60ABC ∠=︒ ∴60AFC ∠=︒ ∵90FAC ∠=︒∴sin 603AC CF ==︒∴123OF OC CF ===故选:A .【点睛】本题考查了全等三角形的性质与判定,圆周角定理,锐角三角函数、等腰三角形的性质与判定等知识点,熟练掌握圆周角定理以及全等三角形的性质与判定是解题的关键.10. 如图,小好同学用计算机软件绘制函数32331y x x x =−+−的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++的值是( )A. 1−B. 0.729−C. 0D. 1【答案】D 【解析】【分析】本题坐标规律,求函数值,中心对称的性质,根据题意得出123911190y y y y y y +++++=,进而转化为求1020y y +,根据题意可得100y =,201y =,即可求解. 【详解】解:∵这20个点的横坐标从0.1开始依次增加0.1, ∴0.1 1.90.2 1.80.9 1.11222+++==⋅⋅⋅=, ∴123911190y y y y y y +++++=,∴12319201020y y y y y y y +++++=+,而()101,0A 即100y =,∵32331y x x x =−+−, 当0x =时,1y =−,即()0,1−,∵()0,1−关于点()1,0中心对称的点为()2,1, 即当2x =时,201y =, ∴12319201020011y y y y y y y +++++=+=+=,故选:D .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11. 中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃. 【答案】2− 【解析】【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2−℃., 故答案为:2−. 12. 某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是__________.【答案】1(答案不唯一) 【解析】【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可. 【详解】解:∵当0x >时,y 随x 的增大而减小, ∴0k >故答案为:1(答案不唯一). 13. 分式方程131x x x x +=−−的解是______. 【答案】3x =− 【解析】【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x −−完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案. 【详解】解:131x x x x +=−−, 等号两边同时乘以()()31x x −−,得 ()()()131x x x x −=−+, 去括号,得 2223x x x x −=−−, 移项、合并同类项,得 3x =−, 经检验,3x =−是该分式方程的解, 所以,该分式方程的解为3x =−. 故答案为:3x =−.14. 黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是__________m .(参考数据:tan632︒≈)【答案】51 【解析】【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D ,如图,由题可知,102m BD =, 设AD x =, ∵45DCA ∠=︒ ∴DC AD x == ∴102tan632BD DC x︒==≈ ∴51m DC AD =≈∴1025151m AB BD AD =−=−≈ 故答案为:51.15. 如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是___________.【答案】221(1)k k +− 【解析】【分析】作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG =,通过四边形MNPQ 是正方形,推出45EMG PMN ∠=∠=︒,得到1EG MG ==,然后证明AEG ABN ∽,利用相似三角形对应边成比例,得到111AE AG AB BN AN k ===+,从而表示出AG ,MN 的长度,最后利用2122AB BN AN S ==+和222S MN a ==表示出正方形ABCD 和MNPQ 的面积,从而得到12S S . 【详解】解:作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG =四边形MNPQ 是正方形45PMN ∴∠=︒45EMG PMN ∴∠=∠=︒1EG MG ∴==在AEG △和ABN 中,EAG BAN ∠=∠,90AGE ANB ∠=∠=︒AEG ABN ∴∽AE EG AGAB BN AN∴== (1)BE kAE k =>(1)AB AE BE AE k ∴=+=+ 111AE AG AB BN AN k ∴===+ 1BN k ∴=+由题意可知,ABN DAM △≌△1BN AM k ∴==+11AG AM GM k k ∴=−=+−=111AG AG k AN AM MN k a k ∴===++++ 21a k ∴=−2211AN AG GM MN k k k k ∴=++=++−=+∴正方形ABCD 的面积222221222(1)()(1)(1)S AB BN AN k k k k k ==+=+++=++,正方形MNPQ 的面积2222222(1)(1)(1)S MN a k k k ===−=+−222221(1)(1)(1)(1)k k k k S S +++−∴= 1k >2(1)0k ∴+≠ 22121(1)k S S k +−∴= 【点睛】本题考查了弦图,正方形的性质,等角三角形的性质,相似三角形的判定与性质,正方形的面积,勾股定理,熟练掌握以上知识点并能画出合适的辅助线构造相似三角形是解题的关键.16. 抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论: ①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解; ④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤. 其中正确的是__________(填写序号). 【答案】②③④ 【解析】【分析】本题考查了二次函数的性质,根据题意可得抛物线对称轴11022m−+−<<,即可判断①,根据()1,1−,(),1m 两点之间的距离大于1,即可判断②,根据抛物线经过()1,1−得出2c b =+,代入顶点纵坐标,求得纵坐标的最大值即可判断③,根据④可得抛物线的对称轴111224m −+−<≤−,解不等式,即可求解.【详解】解:∵2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.∴对称轴为直线122b mx a −+=−=, 11022m −+−<<, ∵02bx a=−<,a<0 ∴0b <,故①错误, ∵01m <<∴()11m −−>,即()1,1−,(),1m 两点之间的距离大于1 又∵a<0∴1x m =−时,1y >∴若01x <<,则()()2111a x b x c −+−+>,故②正确; ③由①可得11022m −+−<<, ∴1022b−<<,即10b −<<, 当1a =−时,抛物线解析式为2y x bx c =−++设顶点纵坐标为224444ac b c b t a −−−==− ∵抛物线2y x bx c =−++(a ,b ,c 是常数,0a <)经过()1,1−,∴11b c −−+= ∴2c b =+∴()222224411122144444c b b c t b c b b b −−+===+=++=++−∵10b −<<,104−>,对称轴为直线2b =−,∴当0b =时,t 取得最大值为2,而0b <,∴关于x 的一元二次方程 22ax bx c ++=无解,故③正确;④∵a<0,抛物线开口向下,点()11,A x y ,()22,B x y 在抛物线上, 1212x x +>−,12x x >,总有12y y <,又12124x x x +=>−, ∴点()11,A x y 离14x =−较远,∴对称轴111224m −+−<≤− 解得:102m <≤,故④正确. 故答案为:②③④.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17. 求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.【答案】整数解为:1,0,1− 【解析】【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解. 【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >− 解不等式②得:1x ≤∴不等式组的解集为:21x −<≤, ∴整数解为:1,0,1−18. 如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析 (2)添加AF BE =(答案不唯一)【解析】【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE −=−即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;【小问2详解】添加AF BE =(答案不唯一)如图所示,连接EF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE =时,四边形ABEF 是平行四边形.19. 为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表根据以上信息,解答下列问题:(1)直接写出m ,n 的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.【答案】(1)60m =,15n =,众数为3分(2)该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人【解析】【分析】本题考查了样本估计总体,求众数,频数分布表与扇形统计图;(1)根据成绩为2分的人数除以占比,求得m 的值,根据成绩为3分的人数的占比,求得18a =,进而求得9b =,即可得出n 的值;(2)根据得分超过2分的学生的占比乘以900,即可求解.【小问1详解】解:依题意,156025%m ==(人),6030%18a =⨯=(人),6012181569b =−−−−=(人),∴9%100%15%60n =⨯=, ∴15n =,∵3分的人数为18个,出现次数最多,∴众数为3分,【小问2详解】 解:181290045060+⨯=(人) 答:该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人.20. 如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.【答案】(1)见解析 (2)45 【解析】【分析】本题考查了等腰三角形三线合一,角平分线的判定与性质,解直角三角形,熟练掌握以上知识点是解题的关键.(1)连接OA 、OD ,作ON AB ⊥交AB 于N ,根据等腰三角形三线合一可知,AO BC ⊥,AO 平分BAC ∠,结合AC 与半圆O 相切于点D ,可推出ON OD =,得证;(2)由题意可得出OAC COD ∠=∠,根据OF OD =,在Rt ODC △中利用勾股定理可求得OD 的长度,从而得到OC 的长度,最后根据CD sin OAC sin COD OC∠=∠=即可求得答案. 【小问1详解】证明:连接OA 、OD ,作ON AB ⊥交AB 于N ,如图ABC 为等腰三角形,O 是底边BC 的中点AO BC ∴⊥,AO 平分BAC ∠ AC 与半圆O 相切于点DOD AC ∴⊥由ON AB ⊥ON OD ∴=AC ∴是半圆O 的切线【小问2详解】解:由(1)可知AO BC ⊥,OD AC ⊥90AOC ∴∠=︒,90ODC ∠=︒18090OAC OCA AOC ∴∠+∠=︒−∠=︒,18090COD OCA ODC ∠+∠=︒−∠=︒OAC COD ∴∠=∠sin sin CD OAC COD OC ∴∠=∠=又OF OD =,2CF =∴在Rt ODC △中,4CD =,2OC OF FC OD =+=+222OC CD OD =+,∴222(2)4OD OD +=+解得:3OD =442325CD CD sin OAC sin COD OC OD ∴∠=∠====++ 21. 如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;(2)在(1)的基础上,在射线AD 上画点E ,使ECB ACB ∠=∠;(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转90︒到点C ,再画射线AF 交BC 于点G ; (4)在(3)的基础上,将线段AB 绕点G 旋转180︒,画对应线段MN (点A 与点M 对应,点B 与点N 对应).【答案】(1)作图见解析(2)作图见解析 (3)作图见解析(4)作图见解析【解析】【分析】本题考查了网格作图.熟练掌握全等三角形性质,平行四边形性质,等腰三角形性质,等腰直角三角形性质,是解题的关键.(1)作矩形HBIC ,对角线HI 交BC 于点D ,做射线AD ,即可;(2)作OP BC ∥,射线AR OP ⊥于点Q ,连接CQ 交AD 于点E ,即可;(3)在AC 下方取点F ,使AF CF ==ACF △是等腰直角三角形,连接CF , AF ,AF 交BC于点G ,即可;(4)作OP BC ∥,交AG 于点M ,作ST AG ∥,交BC 于点N ,连接MN ,即可.【小问1详解】如图,作线段HI ,使四边形HBIC 是矩形,HI 交BC 于点D ,做射线AD ,点D 即为所求作; 【小问2详解】如图,作OP BC ∥,作AR OP ⊥于点Q ,连接CQ 交AD 于点E ,点E 即为作求作;【小问3详解】如图,在AC 下方取点F ,使AF CF ==CF ,连接并延长AF ,AF 交BC 于点G ,点F ,G即为所求作;【小问4详解】如图,作OP BC ∥,交射线AG 于点M ,作ST AG ∥,交BC 于点N ,连接MN ,线段MN 即为所求作.22. 16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①115a =−,8.1b =;②8.4km (2)2027a −<< 【解析】【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将()9,3.6代入即可求解;②将2115y x x =−+变为2115151524y x ⎛⎫=−−+ ⎪⎝⎭,即可确定顶点坐标,得出 2.4km y =,进而求得当 2.4km y =时,对应的x 的值,然后进行比较再计算即可; (2)若火箭落地点与发射点的水平距离为15km ,求得227a =−,即可求解. 【小问1详解】解:①∵火箭第二级的引发点的高度为3.6km∴抛物线2y ax x =+和直线12y x b =−+均经过点()9,3.6 ∴3.6819a =+,13.692b =−⨯+ 解得115a =−,8.1b =. ②由①知,18.12y x =−+,2115y x x =−+ ∴22111515151524y x x x ⎛⎫=−+=−−+ ⎪⎝⎭ ∴最大值15km 4y = 当15 1.35 2.4km 4y =−=时, 则21 2.415x x −+= 解得112x =,23x =又∵9x =时, 3.6 2.4y =>∴当 2.4km y =时, 则418. 2.12x +=− 解得11.4x =()11.438.4km −=∴这两个位置之间的距离8.4km .【小问2详解】解:当水平距离超过15km 时,火箭第二级的引发点为()9,819a +,将()9,819a +,()15,0代入12y x b =−+,得 181992a b +=−⨯+,10152b =−⨯+ 解得7.5b =,227a =− ∴2027a −<<. 23. 问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF的值.【答案】 【解析】 【分析】问题背景:根据矩形的性质可得90AB CD EBF C =∠=∠=︒,,根据点E ,F 分别是AB ,BC 的中点,可得12BE BF AB BC ==,即可得证;。

武汉市中考数学第22题分析

武汉市中考数学第22题分析

中考第22题分析
一、失分原因:
1.基础知识理解不透;
2.缺乏灵活性,能力不足;
3.没有掌握常规的解题方法。

二、解法介绍:
1. 结合考点,利用解直角三角形、相似性、全等形分析;
2. 善于设未知数、列方程求解;
3.善于寻找和构造基本图形,这是解题的突破口。

三、复习建议:
1.注重基础,使学生正确理解如下知识点:
(1)圆中五大定理:垂径定理,圆周角定理和推论,切线的判定和性质,切线长定理,圆周角、圆心角、弧、弦、弦心距间关系;
(2)特别的三角形,特别的四边形;
(3)平行线的判定和性质,中位线,角平分线,内心、外心等。

2.强化训练,使学生掌握常规的解题方法:
(1)结合考点,利用解直角三角形、相似性、全等形分析;
(2)善于设未知数、列方程求解;
(3)善于寻找和构造基本图形,这是解题的突破口。

特别注意训练利用圆的基础知识进行边角的转换。

武汉中考22题

武汉中考22题

中考22题知识点:1、切线证明的两种方法: ①作半径证垂直(知道切点在圆上) ②作垂直证半径(不知道切点在圆上)2、上述①中切线的证明一般通过证明角度为直角,上述②中的切线证明一般证明全等。

3、弦切角定理:弦与切线所夹的角称为弦切角,弦切角等于该弦所对的圆周角。

切线的证明中可以先考虑证明弦切角与弦所对的圆周角相当,再进行转化。

4、常规辅助线的做法:①连接圆心和切点②有直径时,连接直径所对的圆周角(90度)③题中出现弧的中点时,连接中点与圆心,在运用垂径定理。

④若题中出现过圆外一点作圆的两条切线时,注意连接圆外一点和圆心,运用切线长定理(切线长相等;该点与圆心的连线平分切线的夹角)5、在解决此题第二问的时候,要注意运用第一问所证明的结论或性质。

6、第二问的一般解题思路为:①先根据题目的条件将已知量标注在图上②然后通过全等、相似、三角函数值等几何知识尽量多的表示出线段的长度。

(如果此时设有未知数x ,将x 看成已知条件去用)③最后运用相似、三角函数值,勾股定理求出x 、例1、如图, Rt △ACD 中,∠ACD =90°. 以AC 边为直径作⊙O , 交AD 于E . 过E 作⊙O 的切线EB , 交CD 于B . 连接EC 、AB , 交于F 点. ⑴求证:CD EB 21=; ⑵若31=FC EF ,求tan ∠ABC 的值EDBCAOF例2、如图在直角梯形ABCD 中,AB ,BC ,CD 分别与⊙O 相切于点E ,F ,G ,且AB ∥CD .OB 与EF 相交于点M ,OC 与FG 相交于点N ,连接MN .(1)求证:ONFM 为矩形(2)求证:MN 2=B F ·CF(3)若OB =6,OC =8,①求MN 的长②若AD 也与⊙O 相切,求四边形ABCD 的面积.例3、如图,AB 为⊙O 的直径,AM 和BN 是它的两条切线,E 为⊙O 的半圆弧上一动点(不与A 、B 重合),过点E 的直线分别交射线AM 、BN 于D 、C 两点,且CB =CE . (1)求证:CD 为⊙O 的切线; (2)若tan ∠BAC =22,求 AHCH 的值.(图1)(3)若AB=2√5 ,AD=2,求BC 和EN(图2)第22题图MN GFAB CO D H C D O A B E MN例4、如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A = PB ,延长BO 分别与⊙O 切线P A 相交于C 、Q 两点. (1)求证:PB 是⊙O 的切线;(2)D 为PB 的中点,QD 交AB 于点E ,若⊙O 的半径为3,CQ = 2,求AEBE的值.例5、如图,AB 是⊙O 的直径, E 是BC 上一点,OE 交弦BC 于D ,过C 作⊙O 的切线交OE 的延长线于点F ,连接BF ,已知2FC FD FO . (1)求证:直线BF 为⊙O 的切线;(2)连接AD 、AF ,若B C =8,DE=2。

专题22 二次函数与实际问题:增长率问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题22 二次函数与实际问题:增长率问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题22 二次函数与实际问题:增长率问题一、单选题1.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( ) A .7.9(12)y x =+ B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++【答案】C【分析】 根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2. 故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.2.某工厂1月份的产值为500万元,平均每月产值的增长率为x ,则该工厂3月份的产值y 与x 之间的函数解析式为( )A .()5001y x =+B .()25001y x =+C .2500y x x =+D .2500y x x =+【答案】B【分析】月增长率是x ,3月份的产值等于1月份的产值乘()21x +.【详解】解:1月份产值是500万元,增长率是x ,则2月份产值是()5001x +万元,3月份产值是()25001x +万元, ∴()25001y x =+.故选:B .【点睛】本题考查二次函数的实际应用,解题的关键是掌握增长率问题的列式方法.3.共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,设该公司第二、三两个月投放单车数量的月平均增长率为x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y =a (1+x )2C .y =(1﹣x )2+aD .y =a (1﹣x )2 【答案】B【分析】用增长后的量=增长前的量×(1+增长率),如果设该公司第二、三两个月投放单车数量的月平均增长率为x ,然后根据已知条件可得出方程.【详解】解:设该公司第二、三两个月投放单车数量的月平均增长率为x ,依题意得第三个月第三个月投放单车a (1+x )2辆,则y=a (1+x )2.故选:B .【点睛】此题主要考查了根据实际问题列二次函数关系式,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .4.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x 倍,两年后产品年产量y 与x的函数关系是( )A .y=20(1﹣x )2B .y=20+2xC .y=20(1+x )2D .y=20+20x 2+20x 【答案】C【解析】由题意,得一年后该产品的年产量应为:20+20x =20(1+x )∴两年后该产品的年产量应为:[20(1+x )]+[20(1+x )]x =20(1+x )2∴故两年后该产品年产量应为∴y =20(1+x )2或y =20x 2+40x +20 (一般形式).故本题应选C.5.某城市2006年底已有绿化面积300公顷,经过两年的绿化,绿化面积逐年增加,如果设绿化面积平均每年的增长率为x ,关于代数式300(1+x )2下列说法正确的是( )A .2007年已有的绿化面积B .2008年增加的绿化面积C .2008年已有的绿化面积D .2007、2008年共增加的绿化面积 【答案】C【分析】利用“增长后的量=增长前的量⨯(1+增长率)”,如果设绿化面积平均每年的增长率为x ,写出代数式2300(1)x +的实际意义即可.【详解】2006年底已有绿化面积300公顷,经过两年的绿化,绿化面积逐年增加,如果设绿化面积平均每年的增长率为x ,代数式2300(1)x +表示增长两年后的绿化面积,即:2008年已有的绿化面积故选:C.本题考查了代数式的意义问题,根据题意正确列出代数式是解题关键.6.某工厂2017年产品的产量为a 吨,该产品产量的年平均增长率为x (0x >),设2019年该产品的产量为y 吨,则y 关于x 的函数关系式为( )A .2(1)y a x =-B .2(1)a y x =+ C .2(1)y a x =+D .2(1)(1)y a a x a x =++++【答案】C【分析】 经过两次增长,变化后的量=变化前的量×(1+增长率)2,代数题目数据即可得出关系式.【详解】解:根据题意得2(1)y a x =+,故选C.【点睛】本题考查了二次函数的应用——增长率问题,熟记增长率问题的关系式是解题的关键.7.一辆新汽车原价20万元,如果每年折旧率为x ,两年后这辆汽车的价钱为y 元,则y 关于x 的函数关系式为( ) A .220(1)y x =+B .220(1)y x =-C .()201y x =+D .220y x =+【解析】【分析】一年后的价格为20(1-x)∴两年后的价格为20(1-x) (1-x).【详解】解∴由题意可知两年后的价格为220(1)x -∴则列出方程为:220(1)y x =-【点睛】理解两年后的价格是以一年后的价格为基础是本题的关键.8.小红把班级勤工助学挣得的班费500元按一年期存入银行,已知年利率为x ,一年到期后银行将本金和利息自动按一年定期转存,设两年到期后,本、利和为y 元,则y 与x 之间的函数关系式为( ∴ A .y=500(x+1)2B .y=x 2+500C .y=x 2+500xD .y=x 2+5x【答案】A【详解】一年后的本息和为500(1+x )∴这也是第二年的本金,所以两年后的本息和y =500(1+x )2.故选A.【点睛】本题考查了二次函数的综合应用,关键在于找到本息和的等量关系,要注意的是第二年的本金为第一年的本息和.9.某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x (x >0),设2017年该产品的产量为y 吨,则y 关于x 的函数关系式为( )A .y =100(1﹣x )2B .y =100(1+x )2C .y =2100(1)x + D .y =100+100(1+x )+100(1+x )2【答案】B【解析】根据题意,由“2017年的产量=2015年的产量×(1+年平均增长率)2”得:y 关于x 的函数关系式为y=100(1+x )2.故选B .点睛: 本题主要考查列二次函数解析式,得到2017年产量的等量关系是解决本题的关键.10.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价,设平均每次降价的百分率为x ,降价后的价格为y 元,原价为a 元,则y 与x 的函数关系为( ∴A .2(1)y a x =-B .2(1)y a x =-C .22(1)y a x =-D .2(1)y a x =-【答案】D【解析】∴第一次降价后的价格是a×(1−x)∴第二次降价为a×(1−x)×(1−x)=a(1−x)2∴y=a(1−x)2.故选D.11.某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y =a(x -1)2C .y =a(1-x)2D .y =a(l+x)2【答案】D【分析】 本题是增长率的问题,基数是a 元,增长次数2次,结果为y ,根据增长率的公式表示函数关系式.【详解】解:依题意,得y=a (1+x )2.故选:D .【点睛】此题主要考查了根据实际问题列二次函数关系式,在表示增长率问题时,要明确基数,增长次数,最后的结果.12.你知道吗?股票每天的涨、跌幅均不超过10%∴即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A .∴1+x∴2=1110 B .x+2x=1110 C .∴1+x∴2=109 D .1+2x=109【答案】C【详解】解:设票股价的平均增长率x .则290%(1)1x +=, 即210(1)9x +=, 故选C二、解答题13.某公司的生产利润原来是(0)a a >万元,经过连续两年的增长达到了y 万元,如果每年增长率都是x ,写出利润y 与增长的百分率x 之间的函数解析式,它是什么函数?【答案】见解析.【分析】根据增长率的问题,基数是a 元,增长次数2次,结果为y ,根据增长率的公式表示函数关系式.【详解】依题意,得:22(1)2(0)y a x ax ax a a =+=++>,此函数是二次函数.【点睛】此题主要考查了根据实际问题列二次函数关系式,在表示增长率问题时,要明确基数,增长次数,最后的结果.14.为了打造“清洁能源示范城市”,东营市2016年投入资金2560万元用于充电桩的安装,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金3200万元.(1)从2016年到2018年,东营市用于充电桩安装的资金年平均增长率为多少?(2)2019年东营市计划再安装A 、B 两种型号的充电桩共200个.已知安装一个A 型充电桩需3.5万元,安装一个B 型充电桩需4万元,且A 型充电桩的数量不多于B 型充电桩的一半.求A 、B 两种型号充电桩各安装多少个时,所需资金最少,最少为多少?【答案】(1)从2016年到2018年,东营市用于充电桩安装的资金年平均增长率为50%;(2)A 、B 两种型号充电桩分别安装66个,134个时所需资金最少,最少为767万元【分析】(1)设从2016年到2018年,东营市用于充电桩安装的资金年平均增长率为x ,根据等量关系,列出方程,即可求解;(2)设安装A 型充电桩a 个,则安装B 型充电桩()200a -个,所需资金为w 万元,列不等式,求出a 的范围,再求出w 的函数解析式,进而可求出答案.【详解】(1)设从2016年到2018年,东营市用于充电桩安装的资金年平均增长率为x ,根据题意得:22560(1)25603200x +=+, 解得:10.550%x ==,2 2.5x =-(舍去).答:从2016年到2018年,东营市用于充电桩安装的资金年平均增长率为50%;(2)设安装A 型充电桩a 个,则安装B 型充电桩()200a -个,所需资金为w 万元.根据题意,得:1(200)2a a -, 解得:2663a ≤, 3.54(200)0.5800w a a a =+-=-+,∴0.50-<,∴w 随a 的增大而减小.∴a 为整数,∴当66a =时,w 最小,最小值为0.566800767-⨯+=(万元).此时,200134a -=.答:A 、B 两种型号充电桩分别安装66个,134个时,所需资金最少,最少为767万元.【点睛】本题主要考查一次函数,二次函数以及一元一次不等式的实际应用,找到数量关系,列出函数解析式和一元一次不等式,是解题的关键.15.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y (袋)与销售单价x (元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x ≤5.5.另外每天还需支付其他各项费用80元.(1)请求出y 与x 之间的函数关系式;(2)设每天的利润为w 元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?【答案】(1)y 与x 之间的函数关系式为80560y x =-+;(2)当销售单价定为5元时,每天的利润最大,最大利润是240元.【分析】(1)根据每天的销售量y (袋)与销售单价x (元)之间满足一次函数关系,可设y kx b =+,再将 3.5x =,280y =; 5.5x =,120y =代入,利用待定系数法即可求解;(2)根据每天的利润=每天每袋的利润⨯销售量-每天还需支付的其他费用,列出w 关于x 的函数解析式,再根据二次函数的性质即可求解.【详解】解:(1)设y kx b =+.将 3.5x =,280y =; 5.5x =,120y =代入,得 3.52805.5120k b k b +=⎧⎨+=⎩,解得80560k b =-⎧⎨=⎩. 则y 与x 之间的函数关系式为80560y x =-+.(2)由题意得:(3)(80560)80w x x =--+-2808001760x x =-+-280(5)240x =--+.∴3.5≤x ≤5.5,∴当5x =时,w 有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元.【点睛】本题考查了二次函数的应用,待定系数法求一次函数的解析式,根据题意找出等量关系列出关系式是解题的关键.16.某工厂前年的生产总值为10万元,去年比前年的年增长率为x ,预计今年比去年的年增长率仍为x ,今年的总产值为y 万元.(1)求y 关于x 的函数关系式.(2)当x=20%时,今年的总产值为多少?(3)在(2)的条件下,前年、去年和今年三年的总产值为多少万元?【答案】(1)210(1)y x =+;(2)14.4万元;(3)36.4万元.【解析】【分析】(1)根据题意列式为y=10×(1+x)×(1+x)= 10(1+x)² ;(2)把x 的值代入(1)求解即可;(3)代入求解即可.【详解】(1)根据题意列式为y=10×(1+x)×(1+x)=10(1+x)² ;(2)当x=20%时,今年的总产值=10(1+20%)²=14.4万元;(3) 依题意,得前年,去年和今年三年的总产值为:10+10(1+20%)+10(1+x)²=36.4(万元).【点睛】本题考查了二次函数的应用,解题的关键是将实际问题转化为二次函数求解.17.科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度/∴植物每天高度增长量/mm这些数据说明:植物每天高度增长量关于温度的函数是反比例函数、一次函数和二次函数中的一种.(1)你认为是哪一种函数,并求出它的函数关系式;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度应该在哪个范围内选择?请直接写出结果.【答案】(1);(2)-1∴;(3).【解析】试题分析:(1)根据表中数据可知应选择二次函数,再根据待定系数法求解即可;(2)先把(1)中求得的函数关系式化为顶点式,再根据二次函数的性质求解即可;(3)根据“实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm”可得“植物每天高度增长量超过25mm”,再根据表中数据的特征即可作出判断.(1)选择二次函数,设,得,解得∴关于的函数关系式是.不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以不是的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以不是的一次函数;(2)由(1),得,∴,∴,∴当时,有最大值为50.即当温度为-1∴时,这种植物每天高度增长量最大.(3).考点:二次函数的应用点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大. 18.某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元.在销售过程中发现,月销售量y(件)与销售单价x (万元)之间存在着如图所示的一次函数关系(1)求y关于x的函数关系式(直接写出结果)(2)试写出该公司销售该种产品的月获利z(万元)关于销售单价x(万元)的函数关系式、当销售单价x为何值时,月获利最大?并求这个最大值(月获利一月销售额一月销售产品总进价一月总开支,)(3)若公司希望该产品一个月的销售获利不低于5万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少万元【答案】(1)182y x =-+;(2)2110432z x x =-+-,当10x =万元时,最大月获利为7万元.(3)销售单价应定为8万元.【解析】试题分析:∴1)设直线解析式为y=kx+b ,把已知坐标代入求出k∴b 的值后可求出函数解析式;∴2)根据题意可知z=411yx y --,把x=10代入解析式即可;∴3)令z=5,代入解析式求出x 的实际值.试题解析:(1)设y kx b =+,它过点56{48k b k b=+=+∴ 解得:1{28k b =-=∴ 182y x ∴=-+ ∴2∴()2114118411104322z yx y x x x x ⎛⎫=--=-+--=-+- ⎪⎝⎭∴当10x =万元时,最大月获利为7万元.∴3)令5z =∴ 得21510432x x =-+-∴ 整理得:220960x x -+=解得:18x =∴212x =由图象可知,要使月获利不低于5万元,销售单价应在8万元到12万元之间.又因为销售单价越低,销售量越大,所以要使销售量最大,又要使月获利不低于5万元,销售单价应定为8万元.19.某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表:设种植A 种树苗x 棵,承包商获得的利润为y 元.(1)求y与x之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?(3)在达到(2)中政府的要求并获得最大利润的前提下,承包商用绿化队的40人种植这两种树苗,已知每人每天可种植A种树苗6棵或B种树苗3棵,如何分配人数才能使种植A、B两种树苗同时完工.【答案】(1)y=150000﹣28x﹣40(3000﹣x)=12x+30000(0≤x≤3000).(2)购买A种树苗1200棵,B种树苗1800棵时,承包商应的利润最大,最大利润为44400元.(3)安排10人种植A种树苗,30人种植B种树苗,恰好同时完工.【解析】试题分析:(1)由购买A种树苗x棵,可得出购买B种树苗(3000﹣x)棵,根据“总利润=报价﹣购买A 种树苗钱数﹣购买B种树苗钱数”即可得出y关于x的函数关系式;(2)根据政府要求栽植这批树苗的成活率不低于93%,即可列出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题;(3)设安排m人种植A种树苗,则有(40﹣m)人种植B种树苗,根据每人每天可种植A种树苗6棵或B种树苗3棵且同时完工,可列出关于m的分式方程,解分式方程求出m的值,检验后即可得出结论.试题解析:(1)根据题意,得:购买B种树苗(3000﹣x)棵,∴y与x之间的函数关系式为y=150000﹣28x﹣40(3000﹣x)=12x+30000(0≤x≤3000).(2)根据题意,得:90%x+95%(3000﹣x)≥93%×3000,解得:x≤1200,∴y=12x+30000中k=12>0,∴当x=1200,3000﹣1200=1800时,y取最大值,最大值为44400.答:购买A种树苗1200棵,B种树苗1800棵时,承包商应的利润最大,最大利润为44400元.(3)设安排m 人种植A 种树苗,则有(40﹣m )人种植B 种树苗, 根据题意,得:12006m =18003(40)m -, 解得:m=10.经检验,m=10是分式方程的解,且符合实际,此时40﹣10=30(人).答:安排10人种植A 种树苗,30人种植B 种树苗,恰好同时完工.【考点】一次函数的应用.三、填空题20.某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y= .【答案】a (1+x )2【解析】试题分析:∴一月份新产品的研发资金为a 元,2月份起,每月新产品的研发资金与上月相比增长率都是x ,∴2月份研发资金为(1)a x +,∴三月份的研发资金为2(1)(1)(1)y a x x a x =++=+.故答案为2(1)a x +.考点:根据实际问题列二次函数关系式.21.农机厂第一个月水泵的产量为50(台),第三个月的产量y (台)与月平均增长率x 之间的关系表示为___________∴【答案】250(1)y x =+【分析】如果起始是a ,增长率是b ,第一个月以后是a+ab=a (1+b);第二个月是a (1+b)2.【详解】第二个月是50(1+x),第三个月是50(1+x)2所以答案为y=50(1+x)2【点睛】考查了增长率问题.22.我市2017年平均房价为6500元/m 2.若2018年和2019年房价平均增长率为x ,则预计2019年的平均房价y (元/m 2)与x 之间的函数关系式为_______________.【答案】()265001y x =+【分析】首先根据题意可得2018年的房价=2017年的房价×(1+增长率),2019年的房价=2018年的房价×(1+增长率),由此可得2019年的平均房价y 与x 之间的函数关系式.【详解】解:由题意得:26500(1)y x =+ 故答案为:26500(1)y x =+【点睛】本题考查了二次函数增长率问题,解决本题的关键是熟练掌握增量率模型.23.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为(0)x x >,六月份的营业额为y 万元,那么y 关于x 的函数解式是______.【答案】22001y x =+()或2200400200y x x =++ 【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x 表示出五月份的营业额,再根据题意表示出六月份的营业额,即可列出方程求解.【详解】解:设增长率为x ,则五月份的营业额为:200(1)y x =+,六月份的营业额为:22202004002(1)000x x y x +==++; 故答案为:2200(1)y x =+或2200400200y x x =++.【点睛】本题考查了一元二次方程的应用中增长率问题,若原来的数量为a ,平均每次增长或降低的百分率为x ,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a×(1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”.24.丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A 、B 两种商品的价格之和为27元,小明计划购买B 商品的数量比A 商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A 商品正打九折销售,而B 商品的价格提高了20%,小明决定将A 、B 产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为_____元.【答案】312.【分析】设A 商品的单价为x 元/件,则B 商品的单价为(27﹣x )元/件,计划购买A 商品a 件,则B 商品为(a +2)件,根据题中等量关系可列出关于x 的方程,用含a 的式子表示出x ,由“一共不超过25件,且每样不少于3件”“ 价格和购买数量均为整数”可知a 的值,易求x 的值.【详解】设A 商品的单价为x 元/件,则B 商品的单价为(27﹣x )元/件,计划购买A 商品a 件,则B 商品为(a +2)件,根据题意可得:0.9x ×(a +2)+1.2×(27﹣x )×a =xa +(27﹣x )(a +2)+8,∴x =62 5.40.3 3.8a a --+, ∴a ≥3,a +2≥3,a +a +2≤25,x ,a 均为整数,∴a =10,x =10∴小明购买两种商品实际花费=9×12+1.2×10×17=312元,故答案为:312.【点睛】本题考查了方程的应用,正确理解题意,找准题中的等量关系是解题的关键.25.某工厂第一年的利润是40万元,第三年的利润是y 万元,则y 与平均年增长率x 之间的函数关系式是___________.【答案】240(1)y x =+【分析】本题是关于增产率的问题,根据增产率可由第一年的利润得到第二年和第三年的利润.【详解】解:设增产率为x ,∴第一年的利润是40万元,∴第二年的利润是40(1+x ),∴第三年的利润是40(1+x )(1+x ),即40(1+x )2;∴240(1)y x =+(x >0).故答案为:240(1)y x =+.【点睛】根据增产率由第一年的利润可知第二年和第三年的利润,寻找等量关系准确列出函数关系式.26.某工厂第一年的利润是20万元,第三年的利润是y 万元,与平均年增长率x 之间的函数关系式是______________.【答案】)0(2040202>++=x x x y【解析】【分析】本题是关于增产率的问题,根据增产率可由第一年的利润得到第二年和第三年的利润.【详解】解:设增产率为x ,因为第一年的利润是20万元,所以第二年的利润是20(1+x ),第三年的利润是20(1+x )(1+x ),即20(1+x )2,依题意得函数关系式:y=20(1+x )2=20x 2+40x+20 (x >0)故答案为y=20x 2+40x+20 (x >0).【点睛】根据增产率由第一年的利润可知第二年和第三年的利润,寻找等量关系准确列出函数关系式.27.某产品年产量为30台,计划今后每年比前一年的产量增长率为x ,试写出两年后的产量y 台与x 的函数关系式:________∴【答案】230(1)y x =+【分析】根据题意表示出一年后的产量y 台与x 的函数关系式,进而得出两年后的产量y 台与x 的函数关系式.【详解】∴某产品年产量为30台,计划今后每年比前一年的产量增长率为x∴∴一年后的产量y 台与x 的函数关系式为:y=30∴1+x∴∴∴两年后的产量y 台与x 的函数关系式为:y=30∴1+x∴∴1+x∴=30∴1+x∴2∴故答案为y=30∴1+x∴2∴【点睛】此题主要考查了根据实际问题列二次函数解析式,根据已知得出一年后的产量y 台与x 的函数关系式是解题关键.28.已知某农机厂第一个月水泵的产量为100台,若平均每月的增长率为x ,则第三个月的产量y (台)与月平均增长率x 之间的函数关系式是________∴【答案】2y 100(1x)=+【分析】设每月增长率为x ,据题意可知第三个月的产量为100∴1+x∴2台∴由此即可解答∴【详解】∴第一个月水泵的产量为100台,平均每月的增长率为x∴∴第三个月的产量为100∴1+x∴2台,∴y=100∴1+x∴2∴故答案为y=100∴1+x∴2∴【点睛】本题主要考查了根据实际问题列二次函数关系式,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a∴1±x∴2=b∴29.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x >0),十二月份的快递件数为y 万件,那么y 关于x 的函数解析式是_____.【答案】y=10(x+1)2【解析】根据题意,把十月份的看作单位1,进而可得十二月邮件数为:y=10(x+1)2,所以y 关于x 的函数解析式是y=10(x+1)2.故答案为y=10(x+1)230.某纸箱厂第1年的利润为50万元,如果每一年比上一年的利润增长率相同,都是x ,则第3年的利润为____万元.【答案】50(1+x )2【解析】试题分析:根据题意可知:第2年的利润为:50(1+x)万元,第3年的利润为:50(1+x)(1+x)=()2501x +万元.。

中考数学专题复习22一元二次方程试题

中考数学专题复习22一元二次方程试题

22一元二次方程时间:2022.4.12 单位:……*** 创编者:十乙州专题总结及应用一、知识性专题专题1 一元二次方程的定义【专题解读】涉及一元二次方程定义的问题,应注意强调二次项系数不为0,不要忽略某些题目中的隐含条件.例1 〔m-1〕x|m|+1+3x-2=0是关于x的一元二次方程,求m的值.专题2 一元二次方程的解法【专题解读】解一元二次方程时,主要考虑降次,其解法有直接方法、因式分解法、配方法及公式法,在详细的解题过程中,应结合详细的方程的特点选择简单、恰当的方法.例2 用配方法解一元二次方程2x2+1=3 x.例3 一元二次方程3x 2-x =0的解是〔 〕 A.x =0 B.x 1=0,x 2=3 C. 1210,3x x == D. 13x = 例4 解方程x 2-2x -2=0.专题3 与方程的根有关的问题【专题解读】 这局部内容主要考察方程的一根求字母的值,或者者是根与系数及判别式相联络的问题.例5 解以下方程,将所得到的解填入下面表格中:〔1〕通过填表,你发现这些方程的两个解的和与积与方程的系数有什么关系了吗? 〔2〕一般地,对于关于x 的方程x 2+px +q =0〔p ,q 为常数,且p 2-4q ≥0〕来说,是否也具备〔1〕中你所发现的规律?假如具备,请你写出规律,并说明理由;假如不具备,请举出反例.例6 假设a是关于x的方程x2+bx+a=0的根,且a≠0,那么由此可得求得以下代数式的值恒为常数的是〔〕A.abB. baC.a+bD.a-b专题4 一元二次方程的应用【专题解读】利用一元二次方程解决实际问题时,应根据详细问题找到等量关系,进而列出方程,另外,对方程的解要注意合理进展取舍.例7 农牧区校舍改造工程初见成效,农牧区最漂亮的房子是校舍,2021年政府对农牧区校舍改造的投入资金是5786万元,2021年校舍改造的投入资金是8050.9万元,假设设这两年投入农牧区校舍改造资金的年平均增长率为x,那么根据题意列方程得 .二、规律方法专题专题5 一元二次方程的解法技巧【专题解读】除了常见的几种一元二次方程的解法外,对于特殊类型的方程,可采用特殊的方法.例8 假如〔2m+2n+1〕〔2m+2n-1〕=63,那么m+n的值是 .例9 解方程〔3x+2〕2-8〔3x+2〕+15=0.例10 解方程〔x+2〕〔x+3〕〔x-4〕〔x-5〕=44.例11 先用配方法说明:无论x取何值,代数式x2-6x+10的值部大于0;再求出当x取何值时,代数式x2-6x+10的值最小,最小值是多少.例12 假设实数m,n,p满足m-n=8,mn+p2+16=0,那么m+n+p的值是〔〕A.-1B. 0 C例13 解方程3x2+11x+10=0.例14 解方程〔x-1994〕〔x-1995〕=1996×1997.三、思想方法专题专题6 建模思想【专题解读】建模思想是指根据实际问题中数量之间的关系建立方程模型表达这个等量关系,通过解方程来解决实际问题.例15 经过两年的连续治理,某城的大气环境有了明显改善,其每年每平方公里的降尘量从50吨下降到40.5吨,那么平均每年下降的百分率是 .中考真题精选 一、选择题1.关于x 的一元二次方程〔a -1〕x 2+x +|a|-1=0的一个根是0,那么实数a 的值是〔 〕A 、-1B 、0C 、1D 、-1或者12.假设一元二次方程式ax 〔x +1〕+〔x +1〕〔x +2〕+bx 〔x +2〕=2的两根为0.2,那么|3a +4b |之值为何〔 〕A .2B .5C .7D .83.关于方程式88〔x ﹣2〕2=95的两根,以下判断何者正确〔 〕 A 、一根小于1,另一根大于3 B 、一根小于﹣2,另一根大于2C 、两根都小于0D 、两根都大于24. 6.某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的选项是〔 〕A .()2001731127x += B .()0017312127x -= C .()2001731127x -= D .()2001271173x +=5.关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1〔a ,m ,b 均为常数,a ≠0〕,那么方程2(2)0a x m b +++=的解是 .6.1是关于x 的一元二次方程〔m ﹣1〕x 2+x+1=0的一个根,那么m 的值是〔 〕 A 、1B 、﹣1C 、0D 、无法确定7.以下方程中是关于x 的一元二次方程的是〔 〕A .2210x x+=B .20ax bx c ++= C .(1)(2)1x x -+=D .223250x xy y --=8.假设x=2是关于x 的一元二次方程x 2﹣mx+8=0的一个解.那么m 的值是〔 〕A.6B.5C.2D.﹣6二、填空题1.关于x 的方程x 2+mx ﹣6=0的一个根为2,那么m = ,另一个根是 . 2. 假设x=2是关于x 的方程2250x x a --+=的一个根,那么a 的值是______. 3.一元二次方程x 2+5x+6=0的根是 . 一、选择题1.某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的选项是〔 〕A .()2001731127x += B .()0017312127x -= C .()2001731127x -= D .()2001271173x +=2.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,假设灰色三角形面积为421平方公分,那么此方格纸的面积为多少平方公分〔 〕A 、11B 、12C 、13D 、143.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班一共送了2070张相片,假如全班有x 名学生,根据题意,列出方程为〔 〕A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -= 4.亚运会期间,某纪念品原价168元,连续两次降价%a 后售价为128元,以下所列方程正确的选项是( )A .128%)1(1602=+aB .128%)1(1602=-aC .128%)21(160=-aD .128%)1(160=-a5.某工厂今年元月份的产量是50万元,3月份的产值到达了72万元.假设求2、3月份的产值平均增长率,设这两个月的产值平均月增长率为x ,依题意可列方程〔 〕 A .72〔x +1〕2=50 B .50〔x +1〕2=72C .50〔x ﹣1〕2=72D .72〔x ﹣1〕2=506.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,假设平面上不同的n 个点最多可确定21条直线.那么n 的值是〔 〕 A .5 B .6 C .7 D .8二、填空题1.某商场在促销活动中,将原价36元的商品,连续两次降价m%后现价为25元.根据题意可列方程为 .2. “十二五〞时期,将建成中西部旅游强,以旅游业为龙头的效劳业将成为推动经济开展的主要动力. 2021年全全年旅游总收入大约1000亿元,假如到2021年全全年旅游总收入要到达1440亿元,那么年平均增长率应为__________.3. 某小区2021年屋顶绿化面积为2000平方米,方案2021年屋顶绿化面积要到达2880平方米.假如每年屋顶绿化面积的增长率一样,那么这个增长率是 .4.据调查,某2021年的房价为4000元/m 2,预计2021年将到达4840元/m 2,求这两年的年平均增长率.设年平均增长率为x ,根据题意,所列方程为〔 〕 A .4000(1+x )=4840 B .4000(1+x )2=4840C.4000(1-x)=4840 D.4000(1-x)2=48405.某种药品原价为100元,经过连续两次的降价后,价格变为64元,假如每次降价的百分率是一样的,那么每次降价后的百分率是.6.线段AB的长为a.以AB为边在AB的下方作正方形ACDB.取AB边上一点E.以AE为边在AB的上方作正方形AKNM.过E作EF⊥CD.垂足为F点.假设正方形AENM与四边形EFDB的面积相等.那么AE的长为________________.7.“十二五〞时期,将建成中西部旅游强,以旅游业为龙头的效劳业将成为推动经济开展的丰要动力.2021年全全年旅游总收入大约l000亿元,假如到2021年全每年旅游总收入要到达1440亿元,那么年平均增长率应为.8.某城居民最低生活保障在2021年是240元,经过连续两年的增加,到2021年进步到345.6元,那么该城两年最低生活保障的平均年增长率是 .9.如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.假设矩形的面积为4m2,那么AB的长度是m〔可利用的围墙长度超过6m〕.10.某家用电器经过两次降价,每台零售价由350元下降到299元.假设两次降价的百分率一样,设这个百分率为x,那么可列出关于x的方程为.11.如图〔1〕,在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路〔横向与纵向垂直〕,把耕地分成假设干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图〔2〕的考虑方式出发列出的方程是.三、解答题1.某商店以6元/千克的价格购进某种干果1140千克,并对其进展挑选分成甲级干果与乙级干果后同时开场销售.这批干果销售完毕以后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开场销售至销售的第x天的总销量y1〔千克〕与x的关系为y1=﹣x2+40x;乙级干果从开场销售至销售的第t天的总销量y2〔千克〕与t的关系为y2=a t2+b t,且乙级干果的前三天的销售量的情况见下表:t 1 2 3y221 44 69〔1〕求a.b的值;〔2〕假设甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,那么卖完这批干果获得的毛利润是多少元?〔3〕问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?〔说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计〕2.为落实国务院房地产调控政策,使“居者有其屋〞,某加快了廉租房的建立力度.2021年政府一共HY2亿元人民币建立了廉租房8万平方米,预计到2021年底三年一共累计HY9.5亿元人民币建立廉租房,假设在这两年内每年HY的增长率一样.〔1〕求每年政府HY的增长率;〔2〕假设这两年内的建立本钱不变,求到2021年底一共建立了多少万平方米廉租房.3.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.〔1〕求平均每次下调的百分率.〔2〕某人准备以开盘价均价购置一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?4.某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P〔个〕与每个书包销售价x〔元〕满足一次函数关系式.当定价为35元时,每天销售30个;定价为37元时,每天销售26个.问:假如要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?5.随着人们经济收入的不断进步及汽车产业的快速开展,汽车已越来越多地进入普通家庭.据某HY门统计,2021年底该汽车拥有量为75万辆,而截止到2021年底,该的汽车拥有量已达108万辆.〔1〕求2021年底至2021年底该汽车拥有量的年平均增长率;〔2〕为了保护城环境,缓解汽车拥堵状况,该HY门拟控制汽车总量,要求到2021年底全汽车拥有量不超过125.48万辆;另据统计,从2021年初起,该此后每年报废的汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量一样,请你估算出该从2021年初起每年新增汽车数量最多不超过多少万辆.6.国家HY公布的?商品房销售明码标价规定?,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.〔1〕求平均每次下调的百分率;〔2〕某人准备以开盘均价购置一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优惠?7.随着人们经济收入的不断进步及汽车产业的快速开展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某HY门统计,2021年底全汽车拥有量为15万辆,而截止到2021年底,全的汽车拥有量已达21.6万辆.〔1〕求2021年底至2021年底该汽车拥有量的年平均增长率;〔2〕为保护城环境,缓解汽车拥堵状况,从2021年初起,该HY门拟控制汽车总量,要求到2021年底全汽车拥有量不超过23.196万辆;另据估计,该从2021年起每年报废的汽车数量是上年底汽车拥有量的10%.假定在这种情况下每年新增汽车数量一样,请你计算出该每年新增汽车数多不能超过多少万辆.8.:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2﹣mx+2m ﹣14=0的两个实数根. 〔1〕当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;〔2〕假设AB 的长为2,那么▱ABCD 的周长是多少?9.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.〔1〕求平均每次下调的百分率.〔2〕某人准备以开盘价均价购置一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?10.某为争创全国文明卫生城,2021年政府对区绿化工程投入的资金是2000万元,2021年投入的资金是2420万元,且从2021年到2021年,两年间每年投入资金的年平均增长率一样.〔1〕求该对区绿化工程投入资金的年平均增长率;〔2〕假设投入资金的年平均增长率不变,那么该在2021年需投入多少万元?11.解方程:0)10553(|4|222=--+--y x y x .12.知识背景:来凤有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地场出售时,基地要求“杨梅〞用双层上盖的长方体纸箱封装〔上盖纸板面积刚好等于底面面积的2倍,如图〕〔1〕实际运用:假如要求纸箱的高为,底面是黄金矩形〔宽与长的比是黄金比,取黄金比为0.6〕,体积为.①按方案1〔如图〕做一个纸箱,需要矩形硬纸板A 1B 1C 1D 1的面积是多少平方米? ②小明认为,假如从节材料的角度考虑,采用方案2〔如图〕的菱形硬纸板A 2B 2C 2D 2做一个纸箱比方案1更优,你认为呢?请说明理由.〔2〕拓展思维:北方一家水果商打算在基地购进一批“野生杨梅〞,但他感觉〔1〕中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.13.汽车产业是我支柱产业之一,产量和效益逐年增如.据统计,2021年我某种品牌汽车的年产量为6.4万辆,到2021年,该品牌汽车的年产量到达10万辆.假设该品牌汽车年产量的年平均增长率从2021年开场五年内保持不变,那么该品牌汽车2021的年产量为多少万辆?14.随着经济的开展,尹进所在的公司每年都在元月一次性的进步员工当年的月工资.尹进2021年的月工资为2000元,在2021年时他的月工资增加到2420元,他2021年的月工资按2021到2021年的月工资的平均增长率继续增长.〔1〕尹进2021年的月工资为多少?〔2〕尹进看了甲、乙两种工具书的单价,认为用自己2021年6月份的月工资刚好购置假设干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2021年6月份的月工资少了242元,于是他用这242元又购置了甲、乙两种工具书各一本,并把购置的这两种工具书全部捐献给西部山区的.请问,尹进总一共捐献了多少本工具书?15.请阅读以下材料:问题:方程x 2+x-1=0,求一个一元二次方程,使它的根分别是方程根的2倍。

2024年中考数学真题汇编专题22 圆的相关性质+答案详解

2024年中考数学真题汇编专题22 圆的相关性质+答案详解

2024年中考数学真题汇编专题22 圆的相关性质+答案详解(试题部分)一、单选题1.(2024·湖南·中考真题)如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为( )A .60︒B .75︒C .90︒D .135︒2.(2024·甘肃临夏·中考真题)如图,AB 是O 的直径,35E ∠=︒,则BOD ∠=( )A .80︒B .100︒C .120︒D .110︒3.(2024·江苏连云港·中考真题)如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为( )A .倾斜直线B .抛物线C .圆弧D .水平直线4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,A B ,连接AB ,作AB 的垂直平分线CD 交AB 于点D ,交AB 于点C ,测出40cm 10cm AB CD ==,,则圆形工件的半径为( )A .50cmB .35cmC .25cmD .20cm5.(2024·内蒙古赤峰·中考真题)如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是( )A .61︒B .63︒C .65︒D .67︒6.(2024·湖北·中考真题)AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=︒.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A .40︒B .25︒C .20︒D .15︒7.(2024·四川宜宾·中考真题)如图,AB 是O 的直径,若60CDB ∠=︒,则ABC ∠的度数等于( )A .30︒B .45︒C .60︒D .90︒8.(2024·四川广元·中考真题)如图,已知四边形ABCD 是O 的内接四边形,E 为AD 延长线上一点,128AOC ∠=︒,则CDE ∠等于( )A .64︒B .60︒C .54︒D .52︒9.(2024·云南·中考真题)如图,CD 是O 的直径,点A 、B 在O 上.若AC BC =,36AOC ∠=,则D ∠=( )A .9B .18C .36oD .4510.(2024·黑龙江绥化·中考真题)下列叙述正确的是( )A .顺次连接平行四边形各边中点一定能得到一个矩形B .平分弦的直径垂直于弦CD .相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等11.(2024·广东广州·中考真题)如图,O 中,弦AB 的长为点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定12.(2024·黑龙江牡丹江·中考真题)如图,四边形ABCD 是O 的内接四边形,AB 是O 的直径,若20BEC ∠=︒,则ADC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒13.(2024·湖北武汉·中考真题)如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是( )A B C D二、填空题14.(2024·四川南充·中考真题)如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=︒,则ADC ∠= 度.15.(2024·北京·中考真题)如图,O 的直径AB 平分弦CD (不是直径).若35D ∠=︒,则C ∠= ︒16.(2024·江苏苏州·中考真题)如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .17.(2024·黑龙江大兴安岭地·中考真题)如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠ ︒.18.(2024·四川眉山·中考真题)如图,ABC 内接于O ,点O 在AB 上,AD 平分BAC ∠交O 于D ,连接BD .若10AB =,BD =BC 的长为 .19.(2024·陕西·中考真题)如图,BC 是O 的弦,连接OB ,OC ,A ∠是BC 所对的圆周角,则A ∠与OBC ∠的和的度数是 .20.(2024·黑龙江牡丹江·中考真题)如图,在O 中,直径AB CD ⊥于点E ,6,1CD BE ==,则弦AC 的长为 .21.(2024·江西·中考真题)如图,AB 是O 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ⊥,将DBE 沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为 .22.(2024·河南·中考真题)如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为 ,最小值为 .三、解答题23.(2024·四川甘孜·中考真题)如图,AB 为⊙O 的弦,C 为AB 的中点,过点C 作CD AB ∥,交OB 的延长线于点D .连接OA OC ,.(1)求证:CD 是⊙O 的切线;(2)若32OA BD ==,,求OCD 的面积.24.(2024·内蒙古包头·中考真题)如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答)25.(2024·安徽·中考真题)如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.26.(2024·四川眉山·中考真题)如图,BE 是O 的直径,点A 在O 上,点C 在BE 的延长线上,EAC ABC ∠=∠,AD 平分BAE ∠交O 于点D ,连结DE .(1)求证:CA 是O 的切线;(2)当8,4AC CE ==时,求DE27.(2024·江苏扬州·中考真题)如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长. 28.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈).29.(2024·江西·中考真题)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求AC 的长.30.(2024·广东深圳·中考真题)如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若AB =5BE =,求O 的半径.31.(2024·四川广元·中考真题)如图,在ABC 中,AC BC =,90ACB ∠=︒,O 经过A 、C 两点,交AB 于点D ,CO 的延长线交AB 于点F ,DE CF ∥交BC 于点E .(1)求证:DE 为O 的切线;(2)若4AC =,tan 2CFD ∠=,求O 的半径.32.(2024·内蒙古呼伦贝尔·中考真题)如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E . O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=OBD 的面积.33.(2024·江苏扬州·中考真题)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD −与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD −与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示)34.(2024·浙江·中考真题)如图,在圆内接四边形ABCD 中,AD AC ADC BAD <∠<∠,,延长AD 至点E ,使AE AC =,延长BA 至点F ,连结EF ,使AFE ADC ∠=∠.(1)若60AFE ∠=︒,CD 为直径,求ABD ∠的度数.(2)求证:①EF BC ∥;②EF BD =.2024年中考数学真题汇编专题22 圆的相关性质+答案详解(答案详解)一、单选题1.(2024·湖南·中考真题)如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为( )A .60︒B .75︒C .90︒D .135︒ 45A ∠=BOC ∴∠故选:C .2.(2024·甘肃临夏·中考真题)如图,AB 是O 的直径,35E ∠=︒,则BOD ∠=( )A .80︒B .100︒C .120︒D .110︒【答案】D 【分析】本题考查圆周角定理,关键是由圆周角定理推出2AOD E ∠=∠.由圆周角定理得到270AOD E ∠=∠=︒,由邻补角的性质求出18070110BOD ∠=︒−︒=°.【详解】解:35E ∠=︒,270AOD E ∴∠=∠=︒,18070110BOD ︒∴∠=−︒=︒.故选:D .3.(2024·江苏连云港·中考真题)如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为( )A .倾斜直线B .抛物线C .圆弧D .水平直线【答案】C 【分析】本题考查动点的移动轨迹,根据题意,易得重物移动的路径为一段圆弧.【详解】解:在移动的过程中木棒的长度始终不变,故点A 的运动轨迹是以O 为圆心,OA 为半径的一段圆弧,故选:C .4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,A B ,连接AB ,作AB 的垂直平分线CD 交AB 于点D ,交AB 于点C ,测出40cm 10cm AB CD ==,,则圆形工件的半径为( )A .50cmB .35cmC .25cmD .20cm【答案】C 【分析】本题考查垂径定理,勾股定理等知识.由垂径定理,可得出BD 的长;设圆心为O ,连接OB ,在Rt OBD △中,可用半径OB 表示出OD 的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【详解】解:∵CD 是线段AB 的垂直平分线,∴直线CD 经过圆心,设圆心为O ,连接OB .Rt 根据勾股定理得:222OD BD OB +=,即:)2221020OB OB −+=,解得:25OB =;5.(2024·内蒙古赤峰·中考真题)如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是( )A .61︒B .63︒C .65︒D .67︒6.(2024·湖北·中考真题)AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=︒.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A .40︒B .25︒C .20︒D .15︒7.(2024·四川宜宾·中考真题)如图,AB 是O 的直径,若60CDB ∠=︒,则ABC ∠的度数等于( )A .30︒B .45︒C .60︒D .90︒【答案】A 【分析】本题考查了直径所对的圆周角为直角,同弧或等弧所对的圆周角相等.根据直径所对的圆周角为直角得到90ACB ∠=︒,同弧或等弧所对的圆周角相等得到60CDB A ∠=∠=︒,进一步计算即可解答.【详解】解:AB 是O 的直径,90ACB ∴∠=︒,60CDB ∠=︒,60A CDB ∴∠=∠=︒,9030ABC A ∴∠=︒−∠=︒,故选:A .8.(2024·四川广元·中考真题)如图,已知四边形ABCD 是O 的内接四边形,E 为AD 延长线上一点,128AOC ∠=︒,则CDE ∠等于( )A .64︒B .60︒C .54︒D .52︒ 【详解】解:ABC ∠是圆周角,与圆心角12AOC ∠=又四边形ABCD 是O 的内接四边形,180ADC =︒,又180CDE ADC ∠+∠=︒,64CDE ∴∠=∠︒,故选:A .9.(2024·云南·中考真题)如图,CD 是O 的直径,点A 、B 在O 上.若AC BC =,36AOC ∠=,则D ∠=( )A .9B .18C .36oD .4510.(2024·黑龙江绥化·中考真题)下列叙述正确的是( )A .顺次连接平行四边形各边中点一定能得到一个矩形B .平分弦的直径垂直于弦C .物体在灯泡发出的光照射下形成的影子是中心投影D .相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【答案】C【分析】本题考查了矩形的判定,垂径定理,中心投影,弧、弦与圆心角的关系,根据相关定理逐项分析判断,即可求解.【详解】A. 顺次连接平行四边形各边中点不一定能得到一个矩形,故该选项不正确,不符合题意;B. 平分弦(非直径)的直径垂直于弦,故该选项不正确,不符合题意;C. 物体在灯泡发出的光照射下形成的影子是中心投影,故该选项正确,符合题意;D. 在同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,故该选项不正确,不符合题意;故选:C .11.(2024·广东广州·中考真题)如图,O 中,弦AB 的长为点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定 ,再结合特殊角的正弦值,求出O 的OC 为半径,12AD ∴=ABC =∠AOC ∴∠=在ADO △sin AOD ∠sin AD OA ∴=,即O 的半径为5OP =>∴点P 在O 外,故选:C .12.(2024·黑龙江牡丹江·中考真题)如图,四边形ABCD 是O 的内接四边形,AB 是O 的直径,若20BEC ∠=︒,则ADC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒ 【答案】B 【分析】此题考查了圆周角定理、圆内接四边形的性质,连接AC ,由AB 是O 的直径得到90ACB ∠=︒,根据圆周角定理得到20CAB BEC ∠=∠=︒,得到9070ABC BAC ∠=︒−∠=︒,再由圆内接四边形对角互补得到答案.【详解】解:如图,连接AC ,∵AB 是O 的直径,∴90ACB ∠=︒,∵20BEC ∠=︒,∴20CAB BEC ∠=∠=︒∴9070ABC BAC ∠=︒−∠=︒∵四边形ABCD 是O 的内接四边形,∴180110ADC ABC ∠=︒−∠=︒,故选:B13.(2024·湖北武汉·中考真题)如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是( )A B C 2 D 并延长交O 于点F ()SAS ADC EBC ≌,再利用圆周角定理得到函数即可求解.【详解】解:延长AB 并延长交O 于点F∵四边形ABCD 内接于O ,∴ADC ABC ABC CBE ∠+∠=∠+∠∴ADC CBE ∠=∠∵45BAC CAD ∠=∠=︒︒,DAB ∠是O 的直径,90DCB =︒DCB 是等腰直角三角形,BCAD∴()SAS ADC EBC ≌ACD ECB ∠=∠,AC 2AB AD +=2AB BE AE +==又∵90DCB ∠=︒二、填空题14.(2024·四川南充·中考真题)如图,AB是O的直径,位于AB两侧的点C,D均在O上,30∠=︒,BOC ∠=度.则ADC是O的直径,位于均在O上,∠BOC=︒,15075︒;15.(2024·北京·中考真题)如图,O的直径AB平分弦CD(不是直径).若35∠=︒,则C∠=D︒【答案】55【分析】本题考查了垂径定理的推论,圆周角定理,直角三角形的性质,熟练掌握知识点是解题的关键.先由垂径定理得到AB CD ⊥,由BC BC =得到35A D ∠=∠=︒,故903555C ︒︒∠=−=︒.【详解】解:∵直径AB 平分弦CD ,∴AB CD ⊥,∵BC BC =,∴35A D ∠=∠=︒,∴903555C ︒︒∠=−=︒,故答案为:55.16.(2024·江苏苏州·中考真题)如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴180BOC ∠=︒−∠117.(2024·黑龙江大兴安岭地·中考真题)如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠ ︒.【答案】65【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接CD ,根据直径所对的圆周角是直角得出=90ACD ∠︒,根据同弧所对的圆周角相等得出25D B ∠=∠=︒,进而根据直角三角形的两个锐角互余,即可求解.【详解】解:如图所示,连接CD ,∵ABC 内接于O ,AD 是直径,∴=90ACD ∠︒,∵AC AC =,25B ∠=︒,∴25D B ∠=∠=︒∴902565CAD ∠=︒−︒=︒,故答案为:65.18.(2024·四川眉山·中考真题)如图,ABC 内接于O ,点O 在AB 上,AD 平分BAC ∠交O 于D ,连接BD .若10AB =,BD =BC 的长为 .可证明(ASA ABD AED ≌BCE ∽△,得到BE AB 【详解】解:延长AC ,BD AB 是O 的直径,90ADB ADE ∴∠=∠=︒,∠AD 平分BAD ∴∠=又∵AD =∴(ASA ABD AED ≌25BD DE ∴==,45BE =,10AB =,25BD =,AD ∴=DAC ∠=又∵BAD ∠∴BAD ∠ADB ∠=ABD BEC ∴∽,BE BC AB AD∴=, 451045BC ∴=, 8BC ∴=,19.(2024·陕西·中考真题)如图,BC 是O 的弦,连接OB ,OC ,A ∠是BC 所对的圆周角,则A ∠与OBC ∠的和的度数是 .【答案】90︒/90度【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,熟练掌握圆周角定理是解题的关键.根据圆周角定理可得2BOC A ∠=∠,结合三角形内角和定理,可证明2180A OBC OCB ∠+∠+∠=︒,再根据等腰三角形的性质可知OBC OCB ∠=∠,由此即得答案.【详解】A ∠是BC 所对的圆周角,BOC ∠是BC 所对的圆心角,2BOC A ∴∠=∠,180BOC OBC OCB ∠+∠+∠=︒,2180A OBC OCB ∴∠+∠+∠=︒,OB OC =,OBC OCB ∴∠=∠,2180A OBC OBC ∴∠+∠+∠=︒,22180A OBC ∴∠+∠=︒,90A OBC ∴∠+∠=︒.故答案为:90︒.20.(2024·黑龙江牡丹江·中考真题)如图,在O 中,直径AB CD ⊥于点E ,6,1CD BE ==,则弦AC 的长为 .,设O 的半径为Rt OED 中,由勾股定9=,在Rt AEC 中,由勾股定理即可求解.设O的半径为Rt OED中,由勾股定理得:r,解得:=5==5,OA OE=+AE OA OERt AEC中,由勾股定理得:故答案为:321.(2024·江西·中考真题)如图,AB是O的直径,2⊥,AB=,点C在线段AB上运动,过点C的弦DE AB 将DBE沿DE翻折交直线AB于点F,当DE的长为正整数时,线段FB的长为.【详解】解:AB为直径,的长为正整数时,时,即DE为直径,∵22.(2024·河南·中考真题)如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为 ,最小值为 .与C在ABC 内部时,与C 相切于点在ABC AE 最小,分别画出图形,求出结果即可.90=︒,CA 9045︒=︒,在平面内旋转,与C 相切于点在ABC 内部时,则CD AE ⊥,∴90ADC CDE ∠=∠=︒,∴22231AD AC CD =−=−∵AC AC =,∴45CED ABC ==︒∠∠,∵90CDE ∠=︒,∴CDE 为等腰直角三角形,DE CD =AE AD =AE 的最大值为AE 与C 相切于点在ABC 外部时,则CD AE ⊥,∴90CDE ∠=︒,∴222231AD AC CD =−=−=∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =︒−=︒∠∠∴18045CED CEA =︒−=︒∠∠,∵90CDE ∠=︒,∴CDE 为等腰直角三角形,DE CD =AE AD =AE 的最小值为故答案为:三、解答题23.(2024·四川甘孜·中考真题)如图,AB 为⊙O 的弦,C 为AB 的中点,过点C 作CD AB ∥,交OB 的延长线于点D .连接OA OC ,.(1)求证:CD 是⊙O 的切线;(2)若32OA BD ==,,求OCD 的面积.24.(2024·内蒙古包头·中考真题)如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答) Rt OCE 中,利用勾股定理求解即可;,利用垂径定理等可得出BF =Rt Rt CEO OFB ≌,得出,然后利用平行线的判定即可得证;法二:连接AD ,证明CEO ADB ∽,得出ABD ∠,然后利用平行线的判定即可得证【详解】(1)解∶∵OC OB =,()11802OBC OCB BOC ∠=∠=︒−∠, 2BOC BCE ∠=∠,)90BCE BCE ∠=︒−∠即O 的半径为2)证明:法一:过∴12BF BD =, ∵2BD OE =∴OE BF =,又OC OB =,OEC ∠=∠()Rt Rt HL CEO OFB ≌,COE OBF =∠,BD OC ∥;法二:连接AD , ∵AB 是直径,∴90ADB ∠=︒,∴22AD AB BD =−=∴1OC CE OE ===,∴CEO ADB ∽,COE ABD ∠=∠,BD OC ∥.【点睛】本题考查了垂径定理,相似三角形的判定与性质,等腰三角形的性质,三角形的内角和定理,全等三角形的判定与性质等知识,明确题意,灵活运用所学知识解题是解题的关键.25.(2024·安徽·中考真题)如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.在ABC中.AB OA==2=AC ABAC的长为26.(2024·四川眉山·中考真题)如图,BE是O的直径,点A在O上,点C在BE的延长线上,EAC ABC ∠=∠,AD 平分BAE ∠交O 于点D ,连结DE .(1)求证:CA 是O 的切线;(2)当8,4AC CE ==时,求DE 的长. BE 是O 的直径,OA OB =ABC ∴∠EAC ∠=CAE ∴∠=CAE ∴∠+OAC ∴∠OA 是O 的半径,是O 的切线;)解:EAC ∠=ABC EAC ∽△,CE AC, 4, ,AD 平分BAD \?∴BD DE =BD DE ∴=BE 是O 的直径,90BDE ∴∠=︒,22DE BD ∴==27.(2024·江苏扬州·中考真题)如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长. 【答案】(1)作图见详解的值,在直角BCM 中运用勾股定理即可求解.()1Rt BCM Rt BB M HL ≌,1CM B M =,Rt AMW 中,53WM ==AM CM =−是直径,90ACB =︒,Rt ABC 中,2x =(负值舍去)36x ==,Rt BCM 中,【点睛】本题主要考查尺规作角等于已知角,掌握以上知识的综合运用是解题的关键.28.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈). Rt AHP 中,利用正切的定义求出1)证明:如图,连接Rt AHP 中,AH PH, tan606︒=⨯,APH APB −∠29.(2024·江西·中考真题)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求AC 的长. 【答案】(1)见解析(2)2π【分析】本题考查了直径所对的圆周角为直角,等边三角形的判定和性质,弧长公式,熟知相关性质和计算公式是解题的关键.(1)根据直径所对的圆周角为直角结合已知条件,可得30CAB ∠=︒,即可得90ABD??,进而可证得结论;(2)连接OC ,证明OBC △为等边三角形,求得120AOC ∠=︒,利用弧长公式即可解答.【详解】(1)证明:AB 是半圆O 的直径,90ACB ∴∠=︒, 60D ABC ∠=∠=︒,9030CAB ABC ∴∠=︒−∠=︒,18090ABD CAB D ∴∠=︒−∠−∠=︒,BD ∴是半圆O 的切线;(2)解:如图,连接OC ,,60OC OB CBA =∠=︒,OCB ∴为等边三角形,COB ∴∠=180AOC ∴∠=120360AC l ∴=30.(2024·广东深圳·中考真题)如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若AB =5BE =,求O 的半径. 的长,设O 的半径为OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,为O 的切线,BE ,为O 的直径,90ADC =︒,∴四边形BHDE 为矩形,BE ; )由(1)知四边形设O 的半径为Rt AOH △解得:3r =即:O 的半径为31.(2024·四川广元·中考真题)如图,在ABC 中,AC BC =,90ACB ∠=︒,O 经过A 、C 两点,交AB 于点D ,CO 的延长线交AB 于点F ,DE CF ∥交BC 于点E .(1)求证:DE 为O 的切线;(2)若4AC =,tan 2CFD ∠=,求O 的半径.DE CFDE CF为O的切线.)过点C作CHACB为等腰直角三角形,42,AH=22【点睛】本题考查了切线的判定,圆周角定理,正切,勾股定理等知识以及等腰三角形的性质等知识,问题难度不大,正确作出合理的辅助线,是解答本题的关键.32.(2024·内蒙古呼伦贝尔·中考真题)如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E . O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=OBD 的面积.是O 的半径;是O 的切线;)解:∵C ∠=132CD =DE ,180BDO =︒−∠33.(2024·江苏扬州·中考真题)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD −与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD −与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示) )根据题意得出ABC 是等边三角形,则CE =,设BD ,证明(AAS AFB CDB ≌①当D 在BC 上时,在AD 上截取证明CAB DEB ∽,ABE V AB ⊥于点F ,得出2AB BC =进而即可得出结论;②当D AG ,证明CAB DAG ∽,CAD BAG ∽,同①可得AB =∴ABC 是等边三角形,则∵O 是ABC 的外接圆,AD 是BAC ∠的角平分线,则AD BC ⊥∵四边形ACDB 是圆内接四边形,120CDB ∠=︒DBC =∠=在Rt BDE △中,∴cos30BE BD =︒⋅=∴3BC =,∵AD 是直径,则ABD ?∵AB AB =∴60ADB ACB ∠=∠=∴DBF 是等边三角形,∴BF BD =,则BFD ∠∴120AFB ∠=︒∵四边形ACDB CDB ∠=∴ABC 是等边三角形,则在,AFB CDB 中AFB CDB BAF BCD AB CB ∠=∠∠=∠= ∴(AAS AFB CDB ≌AF CD =,AD BD AD DF −=−AD BD CD −=;3)解:①如图所示,当在AD 上截取DE BD =∵AB AB =∴ACB ADB ??又∵,CA CB DE DB ==∴CAB DEB ∽,则∠AB BC EB BD =即AB BC =又∵ABC EBD ∠=∠ABE CBD ∠=∠ABE CBD V V ∽Rt BCF 中,sin 2BC α⋅=∴2sin2AB BC α=⋅ ∴2sin 2AD BD CD α−=,即②当D 在AB 上时,如图所示,延长∵四边形ACDB 是圆内接四边形,∴180GDA ACB ∠=∠=又∵,CA CB DG DA ==∴CAB DAG ∽,则∴AC AB AD AG =即AC AB =又∵CAB DAG ∠=∠CAD BAG ∠=∠∴CAD BAG ∽CD AC BG AB=, BG BD DG BD =+=同①可得2sin AB AC =⋅CD AC ==34.(2024·浙江·中考真题)如图,在圆内接四边形ABCD 中,AD AC ADC BAD <∠<∠,,延长AD 至点E ,使AE AC =,延长BA 至点F ,连结EF ,使AFE ADC ∠=∠.(1)若60AFE ∠=︒,CD 为直径,求ABD ∠的度数.(2)求证:①EF BC ∥;②EF BD =. 可证明ADG AEF ∽,CDA △60AFE =︒,∽,,ADG AEF,=∠,ABD ACDBGD,∽,∵ADG AEFAD GD=,AE EFAD AE=,GD EFAC AE=,BD EF=,AE AC。

中考数学第22题专题训练(圆及平行四边形)

中考数学第22题专题训练(圆及平行四边形)

22题如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=2,求▱ABCD的面积.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.娄底市卷(2016)如图,将等腰∠ABC绕顶点B逆时针方向旋转α度到∠A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:∠BCF∠∠BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.邵阳市卷(2016)如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.如图,点O是线段AB和线段CD的中点.第17题图(1)求证:△AOD ≌△BOC ; (2)求证:AD ∥BC .如图,在中,AE ⊥BD 于E ,CF ⊥BD 于F , 连接AF ,CE . 求证:AF =CE .如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE=CD ;(2)连接BF ,若BF∠AE ,∠BEA=60°,AB=4,求平行四边形ABCD 的面积.如图,在菱形ABCD 中,AB=2,∠ABC=60°,对角线AC 、BD 相交于点O ,将对角线AC 所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F。

(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度。

如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O,(1) 求证:△AEO≌△CDO;(2)若∠OCD=30°,AB=3,求△ACO的面积;如图,A,P,B,C是半径为8的∠O上的四点,且满足∠BAC=∠APC=60°,(1)求证:∠ABC是等边三角形;(2)求圆心O到BC的距离OD.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°。

中考数学 专题22 几何三大变换问题之旋转(中心对称)问题(含解析)

中考数学 专题22 几何三大变换问题之旋转(中心对称)问题(含解析)

专题22 几何三大变换问题之旋转(中心对称)问题轴对称、平移、旋转是平面几何的三大变换。

旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。

旋转由旋转中心、旋转的方向和角度决定。

经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上; 旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。

把一个图形绕着某一定点旋转一个角度360°/n(n 为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。

特别地,中心对称也是旋转对称的一种的特别形式。

把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。

在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。

中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。

一. 直线(线段)的旋转问题1. 如图,直线l :y 3x 3=-+与y 轴交于点A ,将直线l 绕点A 顺时针旋转75º后,所得直线的解析式为【 】A .y 33=B .y x 3=+.y x 3=-+ D .y x 3=【答案】B 。

【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,由已知,可求直线y3x3=-+与x、y轴的交点分别为B(1,0),A(0,3),2.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y x1=+,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x55=-垂直的直线l6的函数表达式。

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段阅读与思考比例线段是初中数学的一个核心问题.我们开始是用平行线截线段成比例进行研究的,随着学习的深入、知识的增加,在平行线法的基础上,我们可以利用相似三角形研究证明比例线段,在这两种最基本的研究与证明比例线段方法的基础上,在不同的图形中又发展为新的形式.在直角三角形中,以积的形式更明快地表示直角三角形内线段间的比例关系.在圆中,又有相交弦定理、切割线定理及其推论,这些定理用乘积的形式反映了圆内的线段的比例关系. 相交弦定理、切割线定理及其推论,它们之间有着密切的联系: 1.从定理的形式上看,都涉及两条相交直线与圆的位置关系;2.从定理的证明方法上看,都是先证明一对三角形相似,再由对应边成比例而得到等积式. 熟悉以下基本图形和以上基本结论.TPBDCBAPP ADCBA例题与求解【例1】如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F .若DE =34CE ,AC =85,点D 为EF 的中点,则AB = . (全国初中数学联赛试题)解题思路:设法求出AE 、BE 的长,可考虑用相交弦定理,勾股定理等.例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AC 、AB 都相切,又⊙O 与BC 的另一个交点为D ,则线段BD 的长为( )A .1B .12C .13D .14(武汉市中考试题)解题思路:由切割线定理知BE 2=BD ·BC ,欲求BD ,应先求BE . 须加强对图形的认识,充分挖掘隐含条件.【例3】如图,AB 是半圆的直径,O 是圆心,C 是AB 延长线上一点,CD 切半圆于D ,DE ⊥AB 于E .已知AE ∶ EB =4∶ 1,CD =2,求BC 的长.(成都市中考试题)解题思路:由题设条件“直径、切线”等关键词联想到相应的知识,寻找解题的突破口.【例4】如图,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DP =DC DO =23. (1)求证:直线PB 是⊙O 的切线; (2)求cos ∠BCA 的值.(呼和浩特市中考试题)解题思路:对于(1),恰当连线,为已知条件的运用创设条件;对于(2),将问题转化为求线段的比值.P【例5】如图,已知AB 为⊙O 的直径,C 为⊙O 上一点.延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BF 交⊙O 于F ,AF 交CE 于P .求证:PE =PC .(太原市竞赛试题)解题思路:易证PC 为⊙O 切线,则PC 2=PF ·PA ,只需证明PE 2= PF ·PA . 证△PEF ∽△PAE ,作出常用辅助线,突破相关角.B【例6】如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线. 过点P 作⊙O 的割线PAB ,交⊙O 于A 、B 两点,与ST 交于点C .求证:1PC =12(1PA +1PB ).(国家理科实验班招生试题)解题思路:利用切割线定理,再由三角形相似即可证.能力训练A 级1.如图,PA 切⊙O 于A 点,PC 交⊙O 于B 、C 两点,M 是BC 上一点,且PA =6,PB =BM =3,OM =2,则⊙O 的半径为 .(青岛市中考试题) 2.如图,已知△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于点E ,F 是OE 的中点.如果BD ∥CF ,BC =25,则CD = .(四川省竞赛试题)PD(第1题图) (第2题图) (第3题图) (第4题图)3.如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 、D ,OP ⊥CD 于点P . 若AB =4cm ,AD =8cm ,⊙O 的半径为5cm ,则OP = .(天津市中考试题)4.如图,已知⊙O 的弦AB 、CD 相交于点P ,PA =4,PB =3,PC =6,EA 切⊙O 于点A ,AE 与CD 的延长线交于点E ,AE =25,那么PE 的长为 .(成都市中考试题)5.如图,在⊙O 中,弦AB 与半径OC 相交于点M ,且OM =MC ,若AM =1.5,BM =4,则OC 的长为( ) A .2 6 B . 6 C .2 3 D .2 2(辽宁省中考试题)MD CBAC(第5题图) (第6题图) (第7题图)6.如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,则两圆组成的圆环的面积为( )A .16πB .36πC .52πD .81π(南京市中考试题)7.如图,两圆相交于C 、D ,AB 为公切线,若AB =12,CD =9,则MD =( )A .3B .3 3C .6D .6 38.如图,⊙O 的直径AB =10,E 是OB 上一点,弦CD 过点E ,且BE =2,DE =22,则弦心距OF 为( ) A .1 B . 2C .7D . 3(包头市中考试题)B(第8题图) (第9题图) (第10题图)9.如图,已知在△ABC 中,∠C =90°,BE 是角平分线,DE ⊥BE 交AB 于D ,⊙O 是△BDE 的外接圆. (1)求证:AC 是⊙O 的切线; (2)若AD =6,AE =62,求DE 的长.(南京市中考试题)10.如图,PA 切⊙O 于A ,割线PBC 交⊙O 于B 、C 两点,D 为PC 的中点,连结AD 并延长交⊙O 于E ,已知:BE 2=DE ·EA .求证:(1)PA =PD ;(2)2BP 2=AD ·DE .(天津市中考试题)11.如图,△ABC 是直角三角形,点D 在斜边BC 上,BD =4DC .已知⊙O 过点C 且与AC 相交于F ,与AB 相切于AB 的中点G .求证:AD ⊥BF .(全国初中数学联赛试题)(第11题图) (第12题图)12.如图,已知AB 是⊙O 的直径,AC 切⊙O 于点A . 连结CO 并延长交⊙O 于点D 、E ,连结BD 并延长交边AC 于点F.(1)求证:AD ·AC =DC ·EA ;(2)若AC =nAB (n 为正整数),求tan ∠CDF 的值.(太原市竞赛试题)B 级1.如图,两个同心圆,点A 在大圆上,AXY 为小圆的割线,若AX ·AY =8,则圆环的面积为( ) A .4π B .8π C .12π D .16π(咸阳市中考试题)2.如图,P 为圆外一点,PA 切圆于A ,PA =8,直线PCB 交圆于C 、B ,且PC =4,AD ⊥BC 于D ,∠ABC =α,∠ACB =β. 连结AB 、AC ,则sin αsin β的值等于( ) A .14 B .12 C .2 D .4(黑龙江省中考试题)βαPAD CB(第1题图) (第2题图) (第3题图)3.如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F ,若⊙O 的半径为2,则BF 的长为( )A .23 B .22 C .556 D .5544.如图,已知⊙O的半径为12,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2 CD的长(武汉市中考试题)(第4题图)(第5题图)(第6题图)5.如图,PC为⊙O的切线,C为切点,PAB是过O点的割线,CD⊥AB于D.若tan∠B=12,PC=10cm,求△BCD 的面积.(北京市海淀区中考试题)6.如图,已知CF为⊙O的直径,CB为⊙O的弦,CB的延长线与过F的⊙O的切线交于点P.(1)若∠P=45°,PF=10,求⊙O半径的长;(2)若E为BC上一点,且满足PE2=PB·PC,连结FE并延长交⊙O于点A.求证:点A是⌒BC的中点.(济南市中考试题)7.已知AC、AB是⊙O的弦,AB>AC.(1)如图1,能否在AB上确定一点E,使AC2=AE·AB?为什么?(2)如图2,在条件(1)的结论下延长EC到P,连结PB,如果PB=PE,试判断PB与⊙O的位置关系并说明理由;(3)在条件(2)的情况下,如果E是PD的中点,那么C是PE的中点吗?为什么?(重庆市中考试题)PA DCEACB(第7题图) (第8题图)8.如图,P 为⊙O 外一点,PA 与⊙O 切于A ,PBC 是⊙O 的割线,AD ⊥PO 于D ,求证:PB BD =PCCD .(四川省竞赛试题)9.如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在的直线的解析式分别为:y =43x 和y =32534+-x .D 、E 分别为边OC 和AB 的中点,P 为OA 边上一动点(点P 与点O 不重合),连接DE 和CP ,其交点为Q .(1)求证:点Q 为△COP 的外心; (2)求正方形OABC 的边长;(3)当⊙Q 与AB 相切时,求点P 的坐标.(河北省中考试题)(第9题图) (第10题图) (第11题图)10.如图,已知BC 是半圆O 的直径,D 是 ⌒AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E . (1)求证:AC ·BC =2BD ·CD ;(2)若AE =3,CD =25,求弦AB 和直径BC 的长.(天津市竞赛试题)11.如图,PA是⊙O的切线,切点为A,PBC是⊙O的割线,AD⊥OP,垂足为D.证明:AD2=BD·CD.(全国初中数学联合竞赛试题)专题22 与圆相关的比例线段例 1 设CE=4k,则DA=DF=3k,AF=AC=,由,即=3k10k,得,而AE==8,又BE===16,故AB=AE+BE=24. 例2 C例3 1 提示:设EB=x,则AE=4x.设CB=y,则由,,,得4=y(y+5x),. 例4(1)联结OB,OP,可证明△BDC∽△P AE,有.又∵OC为△ABD的中位线,∴OC∥AD,则CE⊥OC,知CE为☉O的切线,故,有,即PE=PC.例 6 解法一:如图1,过P作PH⊥ST于H,则H是ST的中点,由勾股定理得.又由切割线∴,即.解法二:如图2,联结PO 交ST 于D ,则PO ⊥ST .联结SO ,作OE ⊥PB 于E ,则E为AB 的中点,于是.∵C ,E ,O ,D 四点共圆,∴.∵Rt △SPD ∽Rt △OPS ,∴,∴,即.A 级 1. 2. 提示:△BDE ≌△CFE ,DE =EF ,OF =FE =ED ,设OF =x ,则OA =OD =3x ,AE =5x ,由,得,∴. 3. 4cm 4.4 5.D 6.B 7.A 8.C 9.(1)略 (2),△AED ∽△ABE ,=.设DE =,BE =2x ,而,解得x =.∴DE =. 10.(1)略 (2).可得PB =BD =PD ,∴PB =PD =DC ,∴又∵BD CD =AD DE ,∴. 11.作DE ⊥AC 于E ,则AC =AE ,AG =DE .由切割线定理得,故,即.∵AB =5DE ,∴,于是.又∠BAF =∠AED =90°,∴△BAF ∽△AED ,于是又∠ABF =∠EAD . ∵∠EAD+∠DAB=90°,∴∠ABF+∠DAB=90°,故AD ⊥BE. 12. ⑴如图,连接AD ,AE. ∵∠DAC=∠DAE ,∴△ADC ∽△EAC AD EAAD AC DC EA DC AC⇒=⇒•=•. ⑵∵∠CDF=∠1=∠2=∠DEA ,∴tan ∠CDF=tan ∠DEA=AD AE .由⑴知=AD DC AE AC ,故tan ∠CDF= DCAC.由圆的切割线定理知2AC DC EC =•,而EC=ED+DC ,则()2AC DC DC ED =+.又AC=nAB ,ED=AB ,代入上式得()22n AB DC DC AB =+,即222n 0DC AB DC AB +•-=,故2114n =2DC -+.显然,上式只能取加号,于是214n 1n DC DC tan CDF AC AB +-∠==.B 级1. B2. B3. C4. A5. 提示:1=2AD CD AC tanB CDDB BC===.设AD=x ,则CD=2x ,DB=4x ,AB=5x ,由△PAC ∽△PCB 得,1=2PA AC PC CB =,∴PA=5,又2PC PA PB =•,即()210=555x +,解得:x=3,∴AD=3,CD=6,DB=12,∴1362BCDSCD DB =•=. 6. ⑴略. ⑵连接FB ,证明PF=PE ,∠BFA=∠AFC.7. ⑴能.连接BC ,作∠ACE=∠B ,CE 交AB 于E. ⑵ PB 与⊙O 相切. ⑶C 是PE 的中点.8. 连接OA 、OB 、OC ,则2PA PD PO PB PC =•=•,于是,B 、C 、O 、D 四点共圆,有△PCD ∽△POB ,则=PC PO POCD OB OC= ①,又由POC ∽△PBD 得PO PB OC BD = ②,由①②得PB PCBD CD=. 9. ⑴略 ⑵ A (4,3),OA=5. ⑶P (3,94). 10. ⑴延长BA ,CD 交于点G ,由Rt △CAG ∽Rt △BDC ,得AC CG BD BC =,即AC BC BD CG •=•,又12DG CD CG ==,故2AC BC BD CG •=•. ⑵由Rt △CDE ∽Rt △CAG ,得CE CDCG AC =,即2545=,解得CE=5,从而AG= ()()222245354CG AC +=--=,GA GB GD GC •=•,即()442545AB +=⨯,解得AB=6,()222261035BC AB AC =+==++.11. 延长AD 交⊙O 于E ,连接PE 、BE 、CE ,∵PA 为⊙O 的切线,PO ⊥AE ,∴PE=PA ,12AD DE AE ==,易证△PAB ∽△PCA ,△PEB ∽△PCE ,∴,AB PA EB PE AC PC EC PC ==,则AB EB AC EC=,即AB EC AC EB •=•,由托勒密定理得=AB EC AC EB AE BC •+••. ∴=AB EC AC EB AD BC •+••,即AB BC AC BC AD EC AD EB==,,有∵∠BAE=∠BCE ,∠CAD=∠CBE , ∴△ABD ∽△CBE ,△CAD ∽△CBE ,则△ABD ∽△CAD ,∴AD CD BD AD =,故2AD BD CD =•.。

九年级数学全国各地中考数学试题分类汇编(第一期) 专题22 等腰三角形(含解析)

九年级数学全国各地中考数学试题分类汇编(第一期) 专题22 等腰三角形(含解析)

等腰三角形一.选择题1. 1.(2019•浙江衢州•3分)“三等分角”大约是在公元前五世纪由古希腊人提出来的。

借助如图所示的“三等分角仪”能三等分任一角。

这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=75°,则∠CDE的度数是()A. 60°B. 65°C. 75°D. 8 0°【答案】D【考点】三角形内角和定理,三角形的外角性质,等腰三角形的性质【解析】【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,设∠O=∠ODC=x,∴∠DCE=∠DEC=2x,∴∠CDE=180°-∠DCE-∠DEC=180°-4x,∵∠BDE=75°,∴∠ODC+∠CDE+∠BDE=180°,即x+180°-4x+75°=180°,解得:x=25°,∠CDE=180°-4x=80°.故答案为:D.【分析】由等腰三角形性质得∠O=∠ODC,∠DCE=∠DEC,设∠O=∠ODC=x,由三角形外角性质和三角形内角和定理得∠DCE=∠DEC=2x,∠CDE=180°-4x,根据平角性质列出方程,解之即可的求得x值,再由∠CDE=180°-4x=80°即可求得答案.2. (2019•湖南长沙•3分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B =30°,从而得出答案.【解答】解:在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°,故选:B.【点评】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键.3. (2019•湖南长沙•3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【解答】解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠ABE=90°,∵tanA==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AC,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选:B.【点评】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.4. (2019•湖南怀化•4分)怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,不是中心对称图形,故此选项错误;C.既是中心对称图形也是轴对称图形,故此选项正确;D.是轴对称图形,但不是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5. (2019•湖南邵阳•3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC =∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.6. (2019•湖南岳阳•3分)下列命题是假命题的是()A.平行四边形既是轴对称图形,又是中心对称图形B.同角(或等角)的余角相等C.线段垂直平分线上的点到线段两端的距离相等D.正方形的对角线相等,且互相垂直平分【分析】由平行四边形的性质得出A是假命题;由同角(或等角)的余角相等,得出B是真命题;由线段垂直平分线的性质和正方形的性质得出C.D是真命题,即可得出答案.【解答】解:A.平行四边形既是轴对称图形,又是中心对称图形;假命题;B.同角(或等角)的余角相等;真命题;C.线段垂直平分线上的点到线段两端的距离相等;真命题;D.正方形的对角线相等,且互相垂直平分;真命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.二.填空题1. (2019•湖南怀化•4分)若等腰三角形的一个底角为72°,则这个等腰三角形的顶角为36°.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵等腰三角形的一个底角为72°,∴等腰三角形的顶角=180°﹣72°﹣72°=36°,故答案为:36°.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.2. (2019•湖南邵阳•3分)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是(﹣2,﹣2).【分析】作BH⊥y轴于H,如图,利用等边三角形的性质得到OH=AH=2,∠BOA=60°,再计算出BH,从而得到B点坐标为(2,2),然后根据关于原点对称的点的坐标特征求出点B′的坐标.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等边三角形的性质.3. (2019•湖北天门•3分)如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为14.4m.【分析】作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD=CD=9.6m,在Rt△ADE中,由直角三角形的性质得出AE=AD=4.8m,即可得出答案.【解答】解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,∴AE=AD=4.8m,∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、矩形的判定与性质、等腰三角形的判定;正确作出辅助线是解题的关键.4(2019,四川成都,4分)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为215,则△OAB 内部(不含边界)的整点的个数为.【解析】此题考查了三角形最值问题如图,已知OA =3,要使△AOB 的面积为215,则△OAB 的高度应为3(如图),当B 点在3 y 这条线段上移动时,点2B 处是以OA 为底的等腰三角形是包含的整点最多,在距离2B 的无穷远处始终会有4个整点,故整点个数有4个5.(2019▪贵州毕节▪5分)如图,以△ABC 的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接A D .若∠B =40°,∠C =36°,则∠DAC 的大小为 34° .【分析】根据三角形的内角和得出∠BAC =180°﹣∠B ﹣∠C =104°,根据等腰三角形两底角相等得出∠BAD =∠ADB =(180°﹣∠B )÷2=70°,进而根据角的和差得出∠DAC =∠BAC ﹣∠BAD =34°.【解答】解:∵∠B =40°,∠C =36°, ∴∠BAC =180°﹣∠B ﹣∠C =104° ∵AB =BD∴∠BAD =∠ADB =(180°﹣∠B )÷2=70°, ∴∠DAC =∠BAC ﹣∠BAD =34°故答案为:34°.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.6. (2019•南京•2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠AC B.若AD=2,BD=3,则AC的长.【分析】作AM⊥BC于E,由角平分线的性质得出==,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出==,NE=x,BE=BN+EN=x,CE=CN﹣EN=x,再由勾股定理得出方程,解方程即可得出结果.【解答】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴==,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴==,∴NE=x,∴BE=BN+EN=x,CE=CN﹣EN=x,由勾股定理得:AE2=AB2﹣BE2=AC2﹣CE2,即52﹣(x)2=(2x)2﹣(x)2,解得:x=,∴AC=2x =;故答案为:.【点评】本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.7. (2019•江苏苏州•3分)如图,一块含有45︒角的直角三角板,外框的一条直角边长为10cm,三角板的外框线和与其平行的内框线之间的距离均为2cm,则图中阴影部分的面积为_______cm(结果保留根号)【解答】14162+【解析】如右图:过顶点A作AB⊥大直角三角形底边由题意:2,2CD AC==∴()5222CD=-+=422-∴()()22=52422S--阴影=14162=+8.(2019▪黑龙江哈尔滨▪3分)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接B D.CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为2.D【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC,BC的长.【解答】解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==2【点评】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.9. (2019•湖北武汉•3分)如图,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.【分析】设∠ADE=x,由等腰三角形的性质和直角三角形得出∠DAE=∠ADE=x,DE =AF=AE=EF,得出DE=CD,证出∠DCE=∠DEC=2x,由平行四边形的性质得出∠DCE=∠BCD﹣∠BCA=63°﹣x,得出方程,解方程即可.【解答】解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.【点评】本题考查了平行四边形的性质、直角三角形的性质、等腰三角形的性质等知识;根据角的关系得出方程是解题的关键.10. (2019•湖北武汉•3分)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是2.【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=P A,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF(SAS),得出PE=PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D.E.O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,∠BAG=∠DAP,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴∠AGC=60°=∠APG,∴∠APE=60°,∴∠EPC=60°,连接EC,延长BC到F,使CF=P A,连接EF,∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠EAC=60°,∠EPC=60°,∵AE=AC,∴△ACE是等边三角形,∴AE=EC=AC,∵∠P AE+∠APE+∠AEP=180°,∠ECF+∠ACE+∠ACB=180°,∠ACE=∠APE=60°,∠AED=∠ACB,∴∠P AE=∠ECF,在△APE和△ECF中∴△APE≌△ECF(SAS),∴PE=PF,∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D.E.O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,最短路径问题,构造等边三角形是解答本题的关键.11. (2019•甘肃武威•4分)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=或.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.12 ( 2019甘肃省兰州市) (5分)在△ABC中,AB=AC,∠A=400,则∠B=___________. 【答案】700.【考点】等腰三角形性质.【考察能力】空间想象能力.【难度】容易【解析】∵AB=AC,∠A=400,∴∠B=∠C=700.13 (2019甘肃省陇南市)(4分)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=或.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.三.解答题1. (2019•湖北十堰•8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BA C.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BA C.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.2. (2019•湖北十堰•12分)已知抛物线y=a(x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.【分析】(1)利用待定系数法,转化为解方程组即可解决问题.(2)可能.分三种情形①当DE=DF时,②当DE=EF时,③当DF=EF时,分别求解即可.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,P B.设P[n,﹣(n﹣2)2+3],构建二次函数求出△PBD的面积的最大值,再根据对称性即可解决问题.【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当DE=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△AED,∴△BEF≌△AED,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△AEF∽△BCE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,P B.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).【点评】本题属于二次函数综合题,考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,学会用转化的思想思考问题,属于中考压轴题.3 (2019•湖南长沙•10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.【分析】(1)令y=0,可得ax(x+6)=0,则A点坐标可求出;(2)①连接PC,连接PB延长交x轴于点M,由切线的性质可证得∠ECD=∠COE,则CE=DE;②设OE=m,由CE2=OE•AE,可得,由∠CAE=∠OBE可得,则,综合整理代入可求出的值.【解答】解:(1)令ax2+6ax=0,ax(x+6)=0,∴A(﹣6,0);(2)①证明:如图,连接PC,连接PB延长交x轴于点M,∵⊙P过O、A.B三点,B为顶点,∴PM⊥OA,∠PBC+∠BOM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDP=∠CDE,∴∠ECD=∠COE,∴CE=DE.②解:设OE=m,即E(m,0),由切割线定理得:CE2=OE•AE,∴(m﹣t)2=m•(m+6),∴①,∵∠CAE=∠CBD,∠CAE=∠OBE,∠CBO=∠EBO,由角平分线定理:,即:,∴②,由①②得,整理得:t2+18t+36=0,∴t2=﹣18t﹣36,∴.【点评】本题是二次函数与圆的综合问题,涉及二次函数图象与x轴的交点坐标、切线的性质、等腰三角形的判定、切割线定理等知识.把圆的知识镶嵌其中,会灵活运用圆的性质进行计算是解题的关键.4 (2019•甘肃武威•10分)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2,求⊙D的半径.【分析】(1)连接AD,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°﹣60°﹣30°=90°,于是得到AC是⊙D的切线;(2)连接AE,推出△ADE是等边三角形,得到AE=DE,∠AED=60°,求得∠EAC =∠AED﹣∠C=30°,得到AE=CE=2,于是得到结论.【解答】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°﹣60°﹣30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED﹣∠C=30°,∴∠EAC=∠C,∴AE=CE=2,∴⊙D的半径AD=2.【点评】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.5. (2019•广西贵港•10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D ⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB =,求线段P A+PF的最小值.(结果保留根号)【分析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CF A′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出P A+PF=P A+PB′≥AB′,求出AB′即可解决问题.数学【解答】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠F A′O=∠OEC=60°,∴△A′OF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴P A+PF=P A+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴P A+PF的最小值为.【点评】本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.6. (2019•湖北天门•10分)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,D C.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB+AC=AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.【分析】(1)在AD上截取AE=AB,连接BE,由条件可知△ABE和△BCD都是等边三角形,可证明△BED≌△BAC,可得DE=AC,则AB+AC=AD;(2)延长AB至点M,使BM=AC,连接DM,证明△MBD≌△ACD,可得MD=AD,证得AB+AC=;(3)延长AB至点N,使BN=AC,连接DN,证明△NBD≌△ACD,可得ND=AD,∠N=∠CAD,证△NAD∽△CBD,可得,可由AN=AB+AC,求出的值.【解答】解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=A D.(2)AB+AC=A D.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥A D.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.【点评】本题属于圆的综合题,考查了圆周角定理,全等三角形的判定与性质,相似三角形的判定和性质,等边三角形的判定与性质等知识,解题的关键是正确作出辅助线解决问题.7. (2019•湖北武汉•8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=D C.(2)如图1,在边AB上画一点G,使∠AGD=∠BG C.(3)如图2,过点E画线段EM,使EM∥AB,且EM=A B.【分析】(1)作平行四边形AFCD即可得到结论;(2)根据等腰三角形的性质和对顶角的性质即可得到结论;(3)作平行四边形AEMB即可得到结论.【解答】解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.【点评】本题考查了作图﹣应用与设计作图,平行线四边形的判定和性质,等腰三角形的判定和性质,对顶角的性质,正确的作出图形是解题的关键.8 (2019•湖北孝感•8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.【解答】证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,数学在Rt△ACB和Rt△BDA中,,∴Rt△ACB≌Rt△BDA(HL),∴∠ABC=∠BAD,∴AE=BE.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定;熟练掌握等腰三角形的判定定理,证明三角形全等是解题的关键.9 (2019•湖南衡阳•12分)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.【分析】(1)当BQ=2BP时,∠BPQ=90°,由此构建方程即可解决问题.(2)如图1中,连接BF交AC于M.证明EF=2EM,由此构建方程即可解决问题.(3)证明DE=AC即可解决问题.(4)如图3中,连接AM,AB′.根据AB′≥AM﹣MB′求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),数学∴t=3,∴t=3时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=∠ABC=30°,∴EF=2EM,∴t=2•(3﹣t),解得t=3.(3)如图2中,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴P A=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=(AK+CK)=AC=3(cm).(4)如图3中,连接AM,AB′∵BM=CM=3,AB=AC,∴AM⊥BC,∴AM==3,∵AB′≥AM﹣MB′,∴AB′≥3﹣3,∴AB′的最小值为3﹣3.【点评】本题属于四边形综合题,考查了等边三角形的性质,平行四边形的判定和性质,翻折变换,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

2022年湖北省武汉市中考数学真题(解析版)

2022年湖北省武汉市中考数学真题(解析版)

2022年武汉市初中毕业生学业考试数学试卷一、选择题1.2022的相反数是()A.12022 B.12022C.−2022D.2022【答案】C【解析】【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数.【详解】解:2022的相反数是−2022.故选:C.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件【答案】D【解析】【分析】直接根据随机事件的概念即可得出结论.【详解】购买一张彩票,结果可能为中奖,也可能为不中奖,中奖与否是随机的,即这个事件为随机事件.故选:D.【点睛】本题考查了随机事件的概念,解题的关键是熟练掌握随机事件发生的条件,能够灵活作出判断.3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】利用轴对称图形的概念可得答案.【详解】解:A .不是轴对称图形,故此选项不合题意;B .不是轴对称图形,故此选项不合题意;C .不是轴对称图形,故此选项不合题意;D .是轴对称图形,故此选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4.计算()342a 的结果是()A.122a B.128a C.76a D.78a 【答案】B 【解析】【分析】直接运用幂的乘方、积的乘方计算即可.【详解】解:()()()4134233228a a a ==.故答案为B .【点睛】本题主要考查了幂的乘方、积的乘方的运算,灵活运用相关运算法则成为解答本题的关键.5.如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B.C. D.【答案】A 【解析】【分析】根据从正面所看得到的图形为主视图,据此解答即可.【详解】解:从正面可发现有两层,底层三个正方形,上层的左边是一个正方形.故选:A .【点睛】本题主要考查了三视图的知识,掌握主视图是从物体的正面看得到的视图成为解答本题的关键.6.已知点()11,A x y ,()22,B x y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是()A.120y y +< B.120y y +> C.12y y < D.12y y >【答案】C 【解析】【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系.【详解】解:∵点()11,A x y ,()22,B x y )是反比例函数6y x=的图象时的两点,∴11226x y x y ==.∵120x x <<,∴120y y <<.故选:C .【点睛】本题主要考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.7.匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是()A.B. C. D.【答案】A 【解析】【分析】根据函数图象的走势:较缓,较陡,陡,注水速度是一定的,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,从而得到答案.【详解】解:从函数图象可以看出:OA 段上升最慢,AB 段上升较快,BC 段上升最快,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,∴题中图象所表示的容器应是下面最粗,中间其次,上面最细;故选:A .【点睛】本题考查了函数图象的性质在实际问题中的应用,判断出每段函数图象变化不同的原因是解题的关键.8.班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是()A.14B.13C.12D.23【答案】C 【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A ,B 两位同学座位相邻的概率是61122=.故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.9.如图,在四边形材料ABCD 中,AD BC ∥,90A ∠=︒,9cm AD =,20cm AB =,24cm BC =.现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A.110cm 13B.8cmC.62cmD.10cm【答案】B 【解析】【分析】如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,据此求解即可.【详解】解:如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,∵AD BC ∥,∠BAD =90°,∴△EAD ∽△EBC ,∠B =90°,∴EA AD EB BC=,即92024EA EA =+,∴12cm EA =,∴EB =32cm ,∴2240cm EC EB BC =+=,设这个圆的圆心为O ,与EB ,BC ,EC 分别相切于F ,G ,H ,∴OF =OG =OH ,∵=EBC EOB COB EOC S S S S ++△△△△,∴11112222EB BC EB OF BC OG EC OH ⋅=⋅+⋅+⋅,∴()2432=243240OF ⨯++⋅,∴8cm OF =,∴此圆的半径为8cm ,故选B .【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作出辅助线是解题的关键.10.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12【答案】D【解析】【分析】根据题意设出相应未知数,然后列出等式化简求值即可.【详解】解:设如图表所示:x62022z yn m根据题意可得:x+6+20=22+z+y,整理得:x-y=-4+z,x+22+n=20+z+n,20+y+m=x+z+m,整理得:x=-2+z,y=2z-22,∴x-y=-2+z-(2z-22)=-4+z,解得:z=12,∴x +y =3z -24=12故选:D .【点睛】题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.二、填空题11.的结果是_________.【答案】2【解析】【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.12.某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.尺码/cm 2424.52525.526销售量/双131042【答案】25【解析】【分析】直接根据众数的定义:一组数据中出现次数最多的数即为众数即可得出结论.【详解】由表格可知:尺码25的运动鞋销售量最多为10双,即众数为25.故答案为:25.【点睛】本题考查了众数,解题的关键是熟练掌握众数的定义.13.计算:22193x x x ---的结果是__.【答案】13x +.【解析】【分析】【详解】原式23(3)(3)(3)(3)x x x x x x +=-+-+-23(3)(3)x x x x --=+-3(3)(3)x x x -=+-13x =+.故答案为:13x +.14.如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取150ABC ∠=︒,1600m BC =,105BCD ∠=︒,则C ,D 两点的距离是_________m .【答案】【解析】【分析】如图所示:过点C 作CE BD ⊥于点E ,先求出800m CE =,再根据勾股定理即可求出CD 的长.【详解】如图所示:过点C 作CE BD ⊥于点E ,则∠BEC =∠DEC =90°,150ABC ∠=︒ ,30CBD ∴∠=︒,∴∠BCE =90°-30°=60°,又105BCD ∠=︒ ,45CDB ∴∠=︒,∴∠ECD =45°=∠D ,∴CE DE =,1600m BC = ,111600800m 22CE BC ∴==⨯=,22222CD CE DE CE ∴=+=,即CD ==.故答案为:【点睛】本题考查三角形内角和定理、等腰三角形的判定与性质、直角三角形的性质及勾股定理,解题的关键是熟练掌握相关内容并能灵活运用.15.已知抛物线2y ax bx c =++(a ,b ,c 是常数)开口向下,过()1,0A -,(),0B m 两点,且12m <<.下列四个结论:①0b >;②若32m =,则320a c +<;③若点()11,M x y ,()22,N x y 在抛物线上,12x x <,且121x x +>,则12y y >;④当1a ≤-时,关于x 的一元二次方程21ax bx c ++=必有两个不相等的实数根.其中正确的是_________(填写序号).【答案】①③④【解析】【分析】首先判断对称轴02bx a=->,再由抛物线的开口方向判断①;由抛物线经过A (-1,0),(),0B m ,当32m =时,()312y a x x ⎛⎫=+- ⎪⎝⎭,求出32c a =-,再代入32a c +判断②,抛物线()()()2211y ax bx c a x x m ax a m x am =++=+-=+--,由点()11,M x y ,()22,N x y 在抛物线上,得()21111y ax a m x am =+--,()22221y ax a m x am =+--,把两个等式相减,整理得()()1212121y y a x x x x m -=-++-,通过判断12x x -,121x x m ++-的符号判断③;将方程21ax bx c ++=写成a (x -m )(x +1)-1=0,整理,得()2110x m x m a+---=,再利用判别式即可判断④.【详解】解: 抛物线过()1,0A -,(),0B m 两点,且12m <<,122b m x a -+∴=-=,12m <<,11022m -+∴<<,即02ba-, 抛物线开口向下,0a <,0b ∴>,故①正确;若32m =,则()23131222y a x x ax ax a ⎛⎫=+-=-- ⎪⎝⎭,32c a ∴=-,3323202a c a a ⎛⎫∴+=+⨯-= ⎪⎝⎭,故②不正确;抛物线()()()2211y ax bx c a x x m ax a m x am =++=+-=+--,点()11,M x y ,()22,N x y 在抛物线上,∴()21111y ax a m x am =+--,()22221y ax a m x am =+--,把两个等式相减,整理得()()1212121y y a x x x x m -=-++-,120,a x x << ,121x x +>,12m <<,12120,10x x x x m ∴-<++->,()()12121210y y a x x x x m ∴-=-++->,12y y ∴>,故③正确;依题意,将方程21ax bx c ++=写成a (x -m )(x +1)-1=0,整理,得()2110x m x m a+---=,()()2214141m m m a a ⎛⎫∴∆=----=++ ⎪⎝⎭,12m << ,1a ≤-,()2419m ∴<+<,44a≥-,()2410m a∴++>,故④正确.综上所述,①③④正确.故答案为;①③④.【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.16.如图,在Rt ABC 中,90ACB ∠=︒,AC BC >,分别以ABC 的三边为边向外作三个正方形ABHL ,ACDE ,BCFG ,连接DF .过点C 作AB 的垂线CJ ,垂足为J ,分别交DF ,LH 于点I ,K .若5CI =,4CJ =,则四边形AJKL 的面积是_________.【答案】80【解析】【分析】连接LC 、EC 、EB ,LJ ,由平行线间同底的面积相等可以推导出:JAL CAL BAE EAC S S S S == ,,由CAL EAB ≅ ,可得CAL EAB S S = ,故JAL CAL BAE EAC S S S S === ,证得四边形ALKJ 是矩形,可得2ALJ ALKJ S S = 矩形,在正方形ACDE 中可得:2EAC ACDE S S = 正方形,故得出:2ALKJ S AC =矩形.由ACJ CBJ ,可得CJ AJBJ CJ=,即可求出8AJ =,可得出【详解】连接LC 、EC 、EB ,LJ ,在正方形ABHL ,ACDE ,BCFG 中90,ALK LAB EAC ACD BCF ∠=∠=∠=∠=∠=︒,,,,AL AB EA AC BC CF AC CD AE CD ==== ,AB LH ,2EAC ACDE S S = 正方形.∵CK LH ⊥,∴90CKL ∠=︒,CK AB⊥∴180CKL ALK ∠+∠=︒,90CJA CJB ∠=∠=︒∴CK AL ,∴CAL JAL S S = .∵90JKL ALK JAL ∠=∠=∠=︒,∴四边形ALKJ 是矩形,∴2ALJ ALKJ S S = 矩形.∵LAB EAC ∠=∠,∴LAB BAC EAC BAC ∠+∠=∠+∠,∴EAB CAL ∠=∠,∵,,AL AB EA AC ==∴CAL EAB ≅ ,∴CAL EAB S S = .∵AE CD ∥,∴EAB EAC S S = .∴JAL CAL BAE EACS S S S === ∴22EAC ALKJ ACDE S S S AC === 矩形正方形.∵90,DCA BCF DCF BCD ∠=∠=︒∠=∠.∴90DCF BCD ∠=∠=︒,∵,,BC CF AC CD ==∴ABC DCF ≅ ,∴,CAB CDF AB DF ∠=∠=,∵90,90ACB CJB ∠=︒∠=︒,∴90,90CAB ABC JCB CBJ ∠+∠=︒∠+∠=︒,∴CAB JCB ∠=∠,∵DCI JCB ∠=∠,∴DCI IDC ∠=∠,∴5ID CI ==,∵90,90IDC DFC DIC ICF ∠+∠=︒∠+∠=︒,∴ICF IFC ∠=∠,∴5IF CI ==,∴10DF =,∴10AB =.设,10AJ x BJ x ==-,∵,,CAJ BCJ CJA CJB ∠=∠∠=∠∴ACJ CBJ ,∴CJ AJBJ CJ=,∴4104xx =-,∴1228x x ==,,∵AC BC >,∴AJ BJ >,∴10x x >-,∴5x >,∴8x =.∴222224880AC CJ AJ =+=+=,∴280ALKJ S AC ==矩形.故答案为:80.【点睛】此题考查正方形的性质、矩形的性质与判定、相似三角形的判定与性质、勾股定理,平行线间同底的两个三角形,面积相等;难度系数较大,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键.三、解答题17.解不等式组2532x x x -≥-⎧⎨<+⎩①②请按下列步骤完成解答.(1)解不等式①,得_________;(2)解不等式②,得_________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集是_________.【答案】(1)3x ≥-(2)1x <(3)详见解析(4)31x -≤<【解析】【分析】分别求出每一个不等式的解集,根据口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”原则取所含不等式解集的公共部分,即确定为不等式组的解集.【小问1详解】解:解不等式①,得3x ≥-【小问2详解】解:解不等式②,得1x <【小问3详解】解:把不等式①和②的解集在数轴上表示出来:【小问4详解】解:由图可得,原不等式组的解集是:31x -≤<【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证:AE DC ∥.【答案】(1)100BAD ∠=︒(2)详见解析【解析】【分析】(1)根据两直线平行,同旁内角互补,即可求解;(2)根据AE 平分BAD ∠,可得50DAE ∠=︒.再由AD BC ∥,可得50AEB DAE ∠=∠=︒.即可求证.【小问1详解】解:∵AD BC ∥,∴180B BAD ∠+∠=°,∵80B ∠=︒,∴100BAD ∠=︒.【小问2详解】证明:∵AE 平分BAD ∠,∴50DAE ∠=︒.∵AD BC ∥,∴50AEB DAE ∠=∠=︒.∵50BCD ∠=︒,∴BCD AEB ∠=∠.∴AE DC ∥.【点睛】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键19.为庆祝中国共青团成立100周年,某校开展四项活动:A 项参观学习,B 项团史宣讲,C 项经典诵读,D 项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是__________,B 项活动所在扇形的圆心角的大小是_________,条形统计图中C 项活动的人数是_________;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.【答案】(1)80,54︒,20(2)大约有800人【解析】【分析】(1)根据“总体=部分÷对应百分比”与“圆心角度数=360°×对应百分比”可求得样本容量及B 项活动所在扇形的圆心角度数,从而求得C 项活动的人数;(2)根据“部分=总体×对应百分比”,用总人数乘以样本中“参观学习”的人数所占比例可得答案.【小问1详解】解:样本容量:16÷20%=80(人),B 项活动所在扇形的圆心角:123605480︒⨯=︒,C 项活动的人数:80-32-12-16=20(人);故答案为:80,54°,20;【小问2详解】解:32200080080⨯=(人),答:该校意向参加“参观学习”活动的学生大约有800人.【点睛】本题主要考查了条形统计图,扇形统计图,用样本估计总体,读懂图,找出对应数据,熟练掌握总体、部分与百分比之间的关系是解题的关键.20.如图,以AB 为直径的O 经过ABC 的顶点C ,AE ,BE 分别平分BAC ∠和ABC ∠,AE 的延长线交O 于点D ,连接BD .(1)判断BDE 的形状,并证明你的结论;(2)若10AB =,BE =BC 的长.【答案】(1)BDE 为等腰直角三角形,详见解析(2)8BC =【解析】【分析】(1)由角平分线的定义、结合等量代换可得BED DBE ∠=∠,即BD ED =;然后再根据直径所对的圆周角为90°即可解答;(2)如图:连接OC ,CD ,OD ,OD 交BC 于点F .先说明OD 垂直平分BC .进而求得BD 、OD 、OB 的长,设OF t =,则5DF t =-.然后根据勾股定理列出关于t 的方程求解即可.【小问1详解】解:BDE 为等腰直角三角形,证明如下:证明:∵AE 平分BAC ∠,BE 平分ABC ∠,∴BAE CAD CBD ∠=∠=∠,ABE EBC ∠=∠.∵BED BAE ABE ∠=∠+∠,DBE DBC CBE ∠=∠+∠,∴BED DBE ∠=∠.∴BD ED =.∵AB 为直径,∴90ADB ∠=︒.∴BDE 是等腰直角三角形.【小问2详解】解:如图:连接OC ,CD ,OD ,OD 交BC 于点F .∵DBC CAD BAD BCD ∠=∠=∠=∠,∴BD DC =.∵OB OC =,∴OD 垂直平分BC .∵BDE 是等腰直角三角形,BE =∴BD =.∵10AB =,∴5OB OD ==.设OF t =,则5DF t =-.在Rt BOF 和Rt BDF V 中,22225(5)t t -=--.解得,3t =.∴4BF =.∴8BC =.【点睛】本题主要考查了角平分线的定义、等腰三角形的判定与性质、勾股定理的应用、垂直平分线的判定与性质、圆的性质等知识点,灵活运用相关知识成为解答本题的关键.21.如图是由小正方形组成的96⨯网格,每个小正方形的顶点叫做格点.ABC 的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D ,E 分别是边AB ,AC 与网格线的交点.先将点B 绕点E 旋转180︒得到点F ,画出点F ,再在AC 上画点G ,使DG BC ∥;(2)在图(2)中,P 是边AB 上一点,BAC α∠=.先将AB 绕点A 逆时针旋转2α,得到线段AH ,画出线段AH ,再画点Q ,使P ,Q 两点关于直线AC 对称.【答案】(1)作图见解析(2)作图见解析【解析】【分析】(1)取格点,作平行四边形,利用平行四边形对角顶点关于对角线交点对称即可求点F;平行四边形对边在网格中与格线的交点等高,连接等高点即可作出DG BC ∥;(2)取格点,作垂直平分线即可作出线段AH ;利用垂直平分线的性质,证明三角形全等,作出P ,Q 两点关于直线AC 对称【小问1详解】解:作图如下:取格点F ,连接AF,AF BC ∥且AF BC =,所以四边形ABCF 是平行四边形,连接BF,与AC 的交点就是点E ,所以BE =EF ,所以点F 即为所求的点;连接CF ,交格线于点M ,因为四边形ABCF 是平行四边形,连接DM 交AC 于一点,该点就是所求的G 点;【小问2详解】解:作图如下:取格点D 、E ,连接DE ,AC 平行于DE ,取格点R ,连接BR 并延长BR 交DE 于一点H ,连接AH ,此线段即为所求作线段;理由如下:取格点W 连接AW 、CW ,连接CR ,∴AWC RCB ≅ ,∴WAC CRB ∠=∠,∵90WAC ACW ∠+∠=︒,∴90CRB ACW ∠+∠=︒,∴90RKC ∠=︒,∴AC BH ⊥,∵DH CK ∥,∴BK BCBH BD=,∵点C 是BD 的中点,∴点K 是BH 的中点,即BK KH =,∴AC 垂直平分BH ,∴AB AH =.连接PH ,交AC 于点M ,连接BM 交AH 于点Q ,则该点就是点P 关于AC 直线的对称点.理由如下:∵AC 垂直平分BH ,∴BMH 是等腰三角形,PAM QAM ∠=∠,∴BMK AMQ HMK AMP ∠=∠=∠=∠,∴AMP AMQ ≅ ,∴AP AQ =,∴P ,Q 两点关于直线AC 对称.【点睛】本题考查了用无刻度直尺在网格中作图的知识,找准格点作出平行四边形和垂直平分线是解决本题的关键.22.在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A 处开始减速,此时白球在黑球前面70cm 处.小聪测量黑球减速后的运动速度v (单位:cm/s )、运动距离y (单位:cm )随运动时间t (单位:s )变化的数据,整理得下表.运动时间/s t 01234运动速度/cm/s v 109.598.58运动距离/cmy 09.751927.7536小聪探究发现,黑球的运动速度v 与运动时间t 之间成一次函数关系,运动距离y 与运动时间t 之间成二次函数关系.(1)直接写出v 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm 时,求它此时的运动速度;(3)若白球一直..以2cm/s 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.【答案】(1)1102v t =-+,21104y t t =-+(2)6cm/s(3)黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球【解析】【分析】(1)根据黑球的运动速度v 与运动时间t 之间成一次函数关系,设表达式为v =kt +b ,代入两组数值求解即可;根据运动距离y 与运动时间t 之间成二次函数关系,设表达式为2y at bt c =++,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm 时,代入(1)式中y 关于t 的函数解析式求出时间t ,再将t 代入v 关于t 的函数解析式,求得速度v 即可;(3)设黑白两球的距离为cm w ,得到217028704w t y t t =+-=-+,化简即可求出最小值,于是得到结论.【小问1详解】根据黑球的运动速度v 与运动时间t 之间成一次函数关系,设表达式为v =kt +b ,代入(0,10),(1,9.5)得,109.5b k b =⎧⎨=+⎩,解得1210k b ⎧=-⎪⎨⎪=⎩,∴1102v t =-+,根据运动距离y 与运动时间t 之间成二次函数关系,设表达式为2y at bt c =++,代入(0,0),(1,9.75),(2,19)得09.751942c a b a b =⎧⎪=+⎨⎪=+⎩,解得14100a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴21104y t t =-+;【小问2详解】依题意,得2110644t t -+=,∴2402560t t -+=,解得,18t =,232t =;当18t =时,6v =;当232t =时,6v =-(舍);答:黑球减速后运动64cm 时的速度为6cm/s .【小问3详解】设黑白两球的距离为cm w ,217028704w t y t t =+-=-+21(16)64t =-+,∵104>,∴当16t =时,w 的值最小为6,∴黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球.【点睛】本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.23.问题提出:如图(1),ABC 中,AB AC =,D 是AC 的中点,延长BC 至点E ,使DE DB =,延长ED 交AB 于点F ,探究A FA B 的值.(1)先将问题特殊化.如图(2),当60BAC ∠=︒时,直接写出A F A B 的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在ABC 中,AB AC =,D 是AC 的中点,G 是边BC 上一点,()12CG n BC n =<,延长BC 至点E ,使DE DG =,延长ED 交AB 于点F .直接写出A F A B 的值(用含n 的式子表示).【答案】(1)[问题提出](1)14;(2)见解析(2)[问题拓展]24n -【解析】【分析】[问题探究](1)根据等边三角形的性质结合已知条件,求得30ADF ADB ∠=∠=︒,90AFD ∠=︒,根据含30度角的直角三角形的性质,可得111,222AF AD AD AC AB ===,即可求解;(2)取BC 的中点H ,连接DH .证明DBH DEC △≌△,可得BH EC =,根据DH AB ∥,证明EDH EFB △∽△,根据相似三角形的性质可得32FB EB DH EH ==,进而可得14AF AB =;[问题拓展]方法同(2)证明DBH DEC △≌△,得出,GH EC =,证明EDH EFB △∽△,得到2+2FB EB n DH EH ==,进而可得AF AB =24n -.【小问1详解】[问题探究]:(1)如图,ABC 中,AB AC =,D 是AC 的中点,60BAC ∠=︒,ABC ∴ 是等边三角形,12AD AB =30ABD DBE ∴∠=∠=︒,60A ∠=︒,DB DE ∴=,30E DBE ∴∠=∠=︒,180120DCE ACB ∠=︒-∠=︒ ,18030ADF CDE E DCE ∴∠=∠=︒-∠-∠=︒,60A ∠=︒ ,90AFD ∴∠=︒,12AF AD ∴=,1124AD AF AB AB ∴==.(2)证明:取BC 的中点H ,连接DH.∵D 是AC 的中点,∴DH AB ∥,12DH AB =.∵AB AC =,∴DH DC =,∴DHC DCH ∠=∠.∵BD DE =,∴DBH DEC ∠=∠.∴BDH EDC ∠=∠.∴DBH DEC △≌△.∴BH EC =.∴32EB EH =.∵DH AB ∥,∴EDH EFB △∽△.∴32FB EB DH EH ==.∴34FB AB =.∴14AF AB =.【小问2详解】[问题拓展]如图,取BC 的中点H ,连接DH .∵D 是AC 的中点,∴DH AB ∥,12DH AB =.∵AB AC =,∴DH DC =,∴DHC DCH ∠=∠.∵DE DG =,∴DGH DEC ∠=∠.∴GDH EDC ∠=∠.∴DGH DEC ≌.∴GH EC =.HE CG∴= ()12CG n BC n=<BC nCG∴=()1BG n CG ∴=-,()1111222n CE GH BC BG nCG n CG CG ⎛⎫==-=--=- ⎪⎝⎭∴1221+22nCG EB BC CE n n EH EH n C CG G ⎛⎫-+++==== ⎪⎝⎭.∵DH AB ∥,∴EDH EFB △∽△.∴2+2FB EB n DH EH ==.∴24FB n AB +=.∴42244AF n n AB ---==.∴AF AB =24n -.【点睛】本题考查了等边三角形的性质,全等三角形的性质与判定,相似三角形的性质与判定,等边对等角,掌握相似三角形的性质与判定是解题的关键.24.抛物线223y x x =--交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图(1),当OP OA =时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图(2),直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m .求FP OP的值(用含m 的式子表示).【答案】(1)()1,0A -,()3,0B ;(2)0,3412-或3412+;(3)13m .【解析】【分析】(1)令223=0x x --求出x 的值即可知道A ,B 两点的坐标;(2)求出直线AC 的解析式为1y x =+,分情况讨论:①若点D 在AC 下方时,②若点D 在AC 上方时;(3)设点E 的横坐标为n .过点P 的直线解析式为y kx b =+.联立223y kx by x x =+⎧⎨=--⎩,得2(2)30x k x b -+--=.利用A ,B 点的横坐标求出3m b =+,13b n =--,设直线CE 的解析式为y px q =+,求出3mn q =--,进一步求出OP b =,213FP b b =+即可求出答案.【小问1详解】解:令223=0x x --,解得:11x =-,2=3x ,∴()1,0A -,()3,0B .【小问2详解】解:∵1OP OA ==,∴()0,1P ,∴直线AC 的解析式为1y x =+.①若点D 在AC 下方时,过点B 作AC 的平行线与抛物线的交点即为1D .∵()3,0B ,1BD AC ∥,∴1BD 的解析式为3y x =-.联立2323y x y x x =-⎧⎨=--⎩,解得,10x =,23x =(舍).∴点1D 的横坐标为0.②若点D 在AC 上方时,点()10,3D -关于点P 的对称点为()0,5G .过点G 作AC 的平行线l ,则l 与抛物线的交点即为符合条件的点D .直线l 的解析式为5y x =+.联立2523y x y x x =+⎧⎨=--⎩,得2380x x --=,解得,13412x -=,23412x +=.∴点2D ,3D 的横坐标分别为3412,3412+.∴符合条件的点D 的横坐标为:0,3412-或3412+.【小问3详解】解:设点E 的横坐标为n .过点P 的直线解析式为y kx b =+.联立223y kx by x x =+⎧⎨=--⎩,得2(2)30x k x b -+--=.设1x ,2x 是方程2(2)30x k x b -+--=两根,则123x x b =--.(*)∴3A C B E x x x x b ==--.∵1A x =-,∴3C x b =+,∴3m b =+.∵3B x =,∴13E b x =--,∴13b n =--.设直线CE 的解析式为y px q =+,同(*)得3mn q =--,∴3q mn =--.∴21(3)13233b q b b b ⎛⎫=-+---=+ ⎪⎝⎭.∴2123OF b b =+.∵OP b =,∴213FP b b =+.∴1111(3)1333FP b m m OP =+=-+=.【点睛】本题考查二次函数与一次函数的综合,难度较大,需要掌握函数与x 轴交点坐标,x x--进行求解;(2)的关键是分点D在AC下方和在AC上方时(1)的关键是令223=0两种情况讨论:(3)的关键是求出OP,FP.。

中考数学复习考点题型专题练习22---不等式与不等式组实际应用(解析版)

中考数学复习考点题型专题练习22---不等式与不等式组实际应用(解析版)

建 地 停 位 地 停 位 (1)该小区新 1 个 上 车 和 1 个 下 车 各需多少万元?
根据 况 建地 停 位 投 (2) 实际情 ,该小区新 上 车 不多于 33 个,且预计 资金额不超过 11 万
建造 元,则共有几种 方案?
地 停 位 地 停 位 (3)已知每个 上 车 月租金 100 元,每个 下 车 月租金 300 元,在(2)的条
生人 和车辆 .
15.在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完 毕 天 清 渣土 施工 天 输 ,每 至少需要 运 12720m3, 方准备每 租用大、小两种运 车共 80 辆.已 天 渣土 天 渣土 天 知每辆大车每 运送 200m3,每辆小车每 运送 120m3,大、小车每 每辆租车 别 9 天 费用分 为 1200 元, 00 元,且要求每 租车的总费用不超过 85300 元. 施工 (1) 方共有多少种租车方案? 低 低 (2)哪种租车方案费用最 ,最 费用是多少?
2.A 市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和 垃圾箱,若购买 2 个提示牌和 3 个垃圾箱共需 550 元,且垃圾箱的单价是提示牌单价的 3 倍. (1)求提示牌和垃圾箱的单价各是多少元? (2)该小区至少需要安放 48 个垃圾箱,如果购买提示牌和垃圾箱共 100 个,且费用不 超过 10000 元,请你列举出所有购买方案.
苹果品种
A
B
载量 吨 每辆汽车运 ( )
3
2
吨苹 获 每 果 利(元)
500
900
苹 吨 获 些 输 (1)若要求一次性运出 果超过 26 ,且一次性 利超过 15000 元,有哪 运 方案? 获 (2)哪种方案 利最大,并求出最大利润为多少元?

中考数学复习考点题型专题练习22 与二次函数相关的压轴题

中考数学复习考点题型专题练习22 与二次函数相关的压轴题

中考数学复习考点题型专题练习专题22 与二次函数相关的压轴题解答题1.(2022·湖北鄂州)某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M到定点F(0,14a)的距离MF,始终等于它到定直线l:y=﹣14a上的距离MN(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,y=﹣14a叫做抛物线的准线方程.其中原点O为FH的中点,FH=2OF= 12a ,例如,抛物线y=12x2,其焦点坐标为F(0,12),准线方程为l:y=﹣12.其中MF=MN,FH=2OH=1.(1)【基础训练】请分别直接写出抛物线y=2x2的焦点坐标和准线l的方程:,.(2)【技能训练】如图2所示,已知抛物线y=18x2上一点P到准线l的距离为6,求点P的坐标;(3)【能力提升】如图3所示,已知过抛物线y=ax2(a>0)的焦点F的直线依次交抛物线及准线l于点A、B、C.若BC=2BF,AF=4,求a的值;(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段AB 分为两段AC 和CB ,使得其中较长一段AC 是全线段AB与另一段CB 的比例中项,即满足:AC AB =BC AC 这个数称为“黄金分割”把点C 称为线段AB 的黄金分割点.如图4所示,抛物线y =14x 2的焦点F (0,1),准线l 与y 轴交于点H (0,﹣1),E 为线段HF 的黄金分割点,点M 为y 轴左侧的抛物线上一点.当MHMF请直接写出△HME 的面积值.2.(2022·江苏无锡)已知二次函数214y x bx c =-++图像的对称轴与x 轴交于点A (1,0),图像与y 轴交于点B (0,3),C 、D 为该二次函数图像上的两个动点(点C 在点D 的左侧),且90CAD ∠=.(1)求该二次函数的表达式;(2)若点C 与点B 重合,求tan ∠CDA 的值;(3)点C 是否存在其他的位置,使得tan ∠CDA 的值与(2)中所求的值相等?若存在,请求出点C 的坐标;若不存在,请说明理由.3.(2022·山西)综合与探究:如图,二次函数213442y x x =-++的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,点P 是第一象限内二次函数图象上的一个动点,设点P 的横坐标为m .过点P 作直线PD x ⊥轴于点D ,作直线BC 交PD 于点E(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的函数表达式;(2)当CEP △是以PE 为底边的等腰三角形时,求点P 的坐标;(3)连接AC ,过点P 作直线l AC ∥,交y 轴于点F ,连接DF .试探究:在点P 运动的过程中,是否存在点P ,使得CE FD =,若存在,请直接写出m 的值;若不存在,请说明理由.4.(2022·四川宜宾)如图,抛物线2y ax bx c =++与x 轴交于()3,0A 、()1,0B -两点,与y 轴交于点()0,3C ,其顶点为点D ,连结AC .(1)求这条抛物线所对应的二次函数的表达式及顶点D 的坐标;(2)在抛物线的对称轴上取一点E ,点F 为抛物线上一动点,使得以点A 、C 、E 、F 为顶点、AC 为边的四边形为平行四边形,求点F 的坐标;(3)在(2)的条件下,将点D 向下平移5个单位得到点M ,点P 为抛物线的对称轴上一动点,求35PF PM +的最小值.5.(2022·湖北恩施)在平面直角坐标系中,O 为坐标原点,抛物线2y x c =-+与y 轴交于点()0,4P .(1)直接写出抛物线的解析式.(2)如图,将抛物线2=-+向左平移1个单位长度,记平移后的抛物线顶点为Q,平移y x c后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线2=-+交于M、N两点(点N在点M的右侧),请探究在x轴上是y x c否存在点T,使得以B、N、T三点为顶点的三角形与ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线2=-+进行适当的平移,当平移后的抛物线与直线BC最多只有一个公y x c共点时,请直接写出拋物线2y x c=-+平移的最短距离并求出此时抛物线的顶点坐标.B(A在6.(2022·广西玉林)如图,已知抛物线:22y x bx c与x轴交于点A,(2,0)B的左侧),与y轴交于点C,对称轴是直线1x=,P是第一象限内抛物线上的任一点.2(1)求抛物线的解析式;(2)若点D 为线段OC 的中点,则POD 能否是等边三角形?请说明理由;(3)过点P 作x 轴的垂线与线段BC 交于点M ,垂足为点H ,若以P ,M ,C 为顶点的三角形与BMH 相似,求点P 的坐标.7.(2022·广西)已知抛物线2y x 2x 3=-++与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)求点A ,点B 的坐标;(2)如图,过点A 的直线:1l y x =--与抛物线的另一个交点为C ,点P 为抛物线对称轴上的一点,连接PA PC 、,设点P 的纵坐标为m ,当PA PC =时,求m 的值;(3)将线段AB 先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN ,若抛物线2(23)(0)y a x x a ++≠=-与线段MN 只有一个交点,请直接写出....a 的取值范围.8.(2022·福建)在平面直角坐标系xOy 中,已知抛物线2y ax bx =+经过A (4,0),B (1,4)两点.P 是抛物线上一点,且在直线AB 的上方.(1)求抛物线的解析式;(2)若△OAB 面积是△PAB 面积的2倍,求点P 的坐标; (3)如图,OP 交AB 于点C ,PD BO ∥交AB 于点D .记△CDP ,△CPB ,△CBO 的面积分别为1S ,2S ,3S .判断1223S S S S +是否存在最大值.若存在,求出最大值;若不存在,请说明理由.9.(2022·贵州黔东南)如图,抛物线2y ax 2x c =++的对称轴是直线1x =,与x 轴交于点A ,()3,0B ,与y 轴交于点C ,连接AC .(1)求此抛物线的解析式;(2)已知点D 是第一象限内抛物线上的一个动点,过点D 作DM x ⊥轴,垂足为点M ,DM 交直线BC 于点N ,是否存在这样的点N ,使得以A ,C ,N 为顶点的三角形是等腰三角形.若存在,请求出点N 的坐标,若不存在,请说明理由;(3)已知点E 是抛物线对称轴上的点,在坐标平面内是否存在点F ,使以点B 、C 、E 、F 为顶点的四边形为矩形,若存在,请直接写出点F 的坐标;若不存在,请说明理由.10.(2022·湖南长沙)若关于x 的函数y ,当1122t x t -≤≤+时,函数y 的最大值为M ,最小值为N ,令函数2M Nh -=,我们不妨把函数h 称之为函数y 的“共同体函数”. (1)①若函数4044y x =,当1t =时,求函数y 的“共同体函数”h 的值;②若函数y kx b =+(0k ≠,k ,b 为常数),求函数y 的“共同体函数”h 的解析式; (2)若函数21y x x=≥(),求函数y 的“共同体函数”h 的最大值; (3)若函数24y x x k =-++,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.11.(2022·湖北武汉)如图,在平面直角坐标系中,已知抛物线223y x x =--的顶点为A ,与y 轴交于点C ,线段CB x ∥轴,交该抛物线于另一点B .(1)求点B 的坐标及直线AC 的解析式:(2)当二次函数223y x x =--的自变量x 满足2m x m +时,此函数的最大值为p ,最小值为q ,且2p q -=.求m 的值:(3)平移抛物线223y x x =--,使其顶点始终在直线AC 上移动,当平移后的抛物线与射线BA 只有一个公共点时,设此时抛物线的顶点的横坐标为n ,请直接写出n 的取值范围.12.(2022·内蒙古通辽)如图,抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于C 点,直线BC 方程为3y x =-.(1)求抛物线的解析式;(2)点P 为抛物线上一点,若12PBCABCS S =,请直接写出点P 的坐标;(3)点Q 是抛物线上一点,若45ACQ ∠=︒,求点Q 的坐标.13.(2022·山东烟台)如图,已知直线y =43x +4与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2+bx +c 经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线x =﹣1.(1)求抛物线的表达式;(2)D 是第二象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时D 点的坐标;(3)若点P 在抛物线对称轴上,是否存在点P ,Q ,使以点A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请求出P ,Q 两点的坐标;若不存在,请说明理由.14.(2022·山东聊城)如图,在直角坐标系中,二次函数2y x bx c =-++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C ,对称轴为直线1x =-,顶点为点D .(1)求二次函数的表达式;(2)连接DA ,DC ,CB ,CA ,如图①所示,求证:DAC BCO ∠=∠; (3)如图②,延长DC 交x 轴于点M ,平移二次函数2y x bx c =-++的图象,使顶点D 沿着射线DM 方向平移到点1D 且12CD CD =,得到新抛物线1y ,1y 交y 轴于点N .如果在1y 的对称轴和1y 上分别取点P ,Q ,使以MN 为一边,点M ,N ,P ,Q 为顶点的四边形是平行四边形,求此时点Q 的坐标.15.(2022·黑龙江齐齐哈尔)综合与探究如图,某一次函数与二次函数2y x mx n =++的图象交点为A (-1,0),B (4,5).(1)求抛物线的解析式;(2)点C 为抛物线对称轴上一动点,当AC 与BC 的和最小时,点C 的坐标为;(3)点D 为抛物线位于线段AB 下方图象上一动点,过点D 作DE ⊥x 轴,交线段AB 于点E ,求线段DE 长度的最大值;(4)在(2)条件下,点M 为y 轴上一点,点F 为直线AB 上一点,点N 为平面直角坐标系内一点,若以点C ,M ,F ,N 为顶点的四边形是正方形,请直接写出点N 的坐标.16.(2022·湖南)如图,已知抛物线2()30y ax bx a =++≠的图像与x 轴交于(1,0)A ,(4,0)B 两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,3CE=.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF 向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与BOC∆相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线图像上的动点.若过点Q的直线9:()4l y kx m k=+<与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH GK+为定值.17.(2022·内蒙古包头)如图,在平面直角坐标系中,抛物线2(0)y ax c a=+≠与x轴交于A,B两点,点B的坐标是(2,0),顶点C的坐标是(0,4),M是抛物线上一动点,且位于第一象限,直线AM与y轴交于点G.(1)求该抛物线的解析式;(2)如图1,N 是抛物线上一点,且位于第二象限,连接OM ,记AOG MOG ,的面积分别为12,S S .当122S S =,且直线CN AM ∥时,求证:点N 与点M 关于y 轴对称;(3)如图2,直线BM 与y 轴交于点H ,是否存在点M ,使得27OH OG -=.若存在,求出点M 的坐标;若不存在,请说明理由.18.(2022·广西梧州)如图,在平面直角坐标系中,直线443y x =--分别与x ,y 轴交于点A ,B ,抛物线2518y x bx c =++恰好经过这两点.(1)求此抛物线的解析式;(2)若点C 的坐标是()0,6,将ACO △绕着点C 逆时针旋转90°得到ECF △,点A 的对应点是点E .①写出点E 的坐标,并判断点E 是否在此抛物线上;②若点P 是y 轴上的任一点,求35BP EP +取最小值时,点P 的坐标.19.(2022·辽宁锦州)如图,抛物线2y x bx c =++与x 轴交于,(4,0)A B 两点(A 在B 的左侧),与y 轴交于点(0,4)C -,点P 在抛物线上,连接,BC BP .(1)求抛物线的解析式;(2)如图1,若点P 在第四象限,点D 在线段BC 上,连接PD 并延长交x 轴于点E ,连接CE ,记DCE 的面积为1S ,DBP 的面积为2S ,当12S S 时,求点P的坐标;(3)如图2,若点P 在第二象限,点F 为抛物线的顶点,抛物线的对称轴l 与线段BC 交于点G ,当90PBC CFG ∠+∠=︒时,求点P 的横坐标.20.(2022·辽宁)如图,抛物线23y ax bx =++交x 轴于点(3,0)A 和(1,0)B -,交y 轴于点C .(1)求抛物线的表达式;(2)D 是直线AC 上方抛物线上一动点,连接OD 交AC 于点N ,当DNON的值最大时,求点D 的坐标;(3)P 为抛物线上一点,连接CP ,过点P 作PQ CP ⊥交抛物线对称轴于点Q ,当3tan 4PCQ ∠=时,请直接写出点P 的横坐标.21.(2022·辽宁营口)在平面直角坐标系中,抛物线212y x bx c =-++经过点127,28A ⎛⎫- ⎪⎝⎭和点()4,0B ,与y 轴交于点C ,点P 为抛物线上一动点.(1)求抛物线和直线AB的解析式;(2)如图,点P为第一象限内抛物线上的点,过点P作PD AB⊥,垂足为D,作PE x⊥轴,垂足为E,交AB于点F,设PDF的面积为1S,BEF的面积为2S,当1249 25SS=时,求点P坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N坐标,若不存在,请说明理由.22.(2022·四川广安)如图,在平面直角坐标系中,抛物线2y ax x m=++(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,-4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接AD 、BD ,探究是否存在点D ,使得△ABD 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得△PAB 为直角三角形,请求出点P 的坐标.23.(2022·海南)如图1,抛物线2y ax 2x c =++经过点(1,0)(0,3)A C -、,并交x 轴于另一点B ,点(,)P x y 在第一象限的抛物线上,AP 交直线BC 于点D .(1)求该抛物线的函数表达式;(2)当点P 的坐标为(1,4)时,求四边形BOCP 的面积;(3)点Q 在抛物线上,当PDAD的值最大且APQ 是直角三角形时,求点Q 的横坐标;(4)如图2,作,CG CP CG ⊥交x 轴于点(,0)G n ,点H 在射线CP 上,且CH CG =,过GH 的中点K 作KI y ∥轴,交抛物线于点I ,连接IH ,以IH 为边作出如图所示正方形HIMN ,当顶点M 恰好落在y 轴上时,请直接写出点G 的坐标.24.(2022·内蒙古呼和浩特)如图,抛物线212y x bx c =-++经过点(4,0)B 和点(0,2)C ,与x 轴的另一个交点为A ,连接AC 、BC .(1)求抛物线的解析式及点A的坐标;(2)如图1,若点D是线段AC的中点,连接BD,在y 轴上是否存在点E,使得BDE是以BD为斜边的直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由;∥轴,分别交BC、x轴于(3)如图2,点P是第一象限内抛物线上的动点,过点P作PQ y点M、N,当PMC△中有某个角的度数等于OBC∠度数的2倍时,请求出满足条件的点P 的横坐标.25.(2022·吉林)如图,在平面直角坐标系中,抛物线2=++(b,c是常数)经y x bx c过点(1,0)A,点(0,3)B.点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式;(2)当点P 在x 轴上方时,结合图象,直接写出m 的取值范围;(3)若此抛物线在点P 左侧部分(包括点P )的最低点的纵坐标为2m -.①求m 的值;②以PA 为边作等腰直角三角形PAQ ,当点Q 在此抛物线的对称轴上时,直接写出点Q 的坐标.26.(2022·黑龙江哈尔滨)在平面直角坐标系中,点O 为坐标原点,抛物线2y ax b =+经过点521,28A ⎛⎫ ⎪⎝⎭,点13,28B ⎛⎫- ⎪⎝⎭,与y 轴交于点C .(1)求a ,b 的值;(2)如图1,点D 在该抛物线上,点D 的横坐标为2-,过点D 向y 轴作垂线,垂足为点E .点P 为y 轴负半轴上的一个动点,连接DP 、设点P 的纵坐标为t ,DEP 的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)如图2,在(2)的条件下,连接OA ,点F 在OA 上,过点F 向y 轴作垂线,垂足为点H ,连接DF 交y 轴于点G ,点G 为DF 的中点,过点A 作y 轴的平行线与过点P 所作的x 轴的平行线相交于点N ,连接CN ,PB ,延长PB 交AN 于点M ,点R 在PM 上,连接RN ,若35CP GE =,2PMN PDE CNR ∠+∠=∠,求直线RN 的解析式.27.(2022·湖北宜昌)已知抛物线22y ax bx =+-与x 轴交于()1,0A -,()4,0B 两点,与y 轴交于点C .直线l 由直线BC 平移得到,与y 轴交于点()0,E n .四边形MNPQ 的四个顶点的坐标分别为()1,3M m m ++,()1,N m m +,()5,P m m +,()5,3Q m m ++.(1)填空:=a ______,b =______;(2)若点M 在第二象限,直线l 与经过点M 的双曲线ky x=有且只有一个交点,求2n 的最大值;(3)当直线l 与四边形MNPQ 、抛物线22y ax bx =+-都有交点时,存在直线l ,对于同一条直线l 上的交点,直线l 与四边形MNPQ 的交点的纵坐标都不大于它与抛物线22y ax bx =+-的交点的纵坐标.①当3m =-时,直接写出n 的取值范围;②求m 的取值范围.28.(2022·四川达州)如图1,在平面直角坐标系中,已知二次函数22y ax bx =++的图象经过点(1,0)A -,(3,0)B ,与y 轴交于点C .(1)求该二次函数的表达式;(2)连接BC ,在该二次函数图象上是否存在点P ,使PCB ABC ∠=∠?若存在,请求出点P 的坐标:若不存在,请说明理由;(3)如图2,直线l 为该二次函数图象的对称轴,交x 轴于点E .若点Q 为x 轴上方二次函数图象上一动点,过点Q 作直线AQ ,BQ 分别交直线l 于点M ,N ,在点Q 的运动过程中,EM EN +的值是否为定值?若是,请求出该定值;若不是,请说明理由.29.(2022·重庆)如图,在平面直角坐标系中,抛物线212y x bx c =++与直线AB 交于点()0,4A -,()4,0B .(1)求该抛物线的函数表达式;(2)点P 是直线AB 下方拋物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作y 轴的平行线交x 轴于点D ,求PC PD +的最大值及此时点P 的坐标;(3)在(2)中PC PD +取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,M 为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N ,使得以点E ,F ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.30.(2022·江苏苏州)如图,在二次函数2221y x mx m =-+++(m 是常数,且0m >)的图像与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .其对称轴与线段BC 交于点E ,与x 轴交于点F .连接AC ,BD .(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求OBC ∠的度数;(2)若ACO CBD ∠=∠,求m 的值;(3)若在第四象限内二次函数2221y x mx m =-+++(m 是常数,且0m >)的图像上,始终存在一点P ,使得75ACP ∠=︒,请结合函数的图像,直接写出m 的取值范围.。

湖北省武汉市2022年中考[数学]考试真题与答案解析

湖北省武汉市2022年中考[数学]考试真题与答案解析

湖北省武汉市2022年中考[数学]考试真题与答案解析一、选择题下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。

1. 实数2022的相反数是( )A. -2022B. C.D. 202212022-120222. 彩民李大叔购买1张彩票,中奖.这个事件是( )A. 必然事件B. 确定性事件C. 不可能事件D. 随机事件3. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C. D.4. 计算的结果是( )()342a A. B. C. D. 122a 128a 76a 78a 5. 如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B. C. D.6. 已知点,在反比例函数的图象上,且,则下列结论一定正()11,A x y ()22,B x y 6y x=120x x <<确的是( )A. B. C. D. 120y y +<120y y +>12y y <12y y >7. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度随时间的变化规律h t 如图所示(图中为一折线).这个容器的形状可能是()OABCA. B. C. D.8. 班长邀请,,,四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机A B C D坐在①②③④四个座位,则,两位同学座位相邻的概率是()A BA. B.1413C. D.12239. 如图,在四边形材料中,,,,,ABCD AD BC∥90A∠=︒9cmAD=20cmAB= .现用此材料截出一个面积最大的圆形模板,则此圆的半径是()24cmBC=A. B. C. D.110cm138cm10cm10. 幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则与的和是()x yA. 9B. 10C. 11D. 12二、填空题下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档