第2章 基因操作的主要方法和工具-1
基因工程思考题
《基因工程》思考题第一章绪论1. 简述基因操作、基因重组和基因工程的关系。
2. 为什么说基因工程是生物学和遗传学发展的必然产物?3. 简述基因的结构组成对基因操作的影响。
4. 谈谈你对gene的认识,并简要说说gene概念的演变过程.5. 如何理解gene及其产物的共线性和非共线性?6. 试从理论和技术两个方面谈Gene Engineering诞生的基础.第二章基因工程的基本原理与支撑技术1. 试比较原核基因组与真核基因组的结构和功能特点2. 试比较原核基因和真核基因表达调控的主要方式和特点3. 分析比较琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳的异同点?4. 琼脂糖凝胶电泳中,简述影响DNA在凝胶中迁移速率的因素.5. 小量制备质粒DNA,用质粒中特定的酶切发现切割不动,试分析可能原因及克服方法?6. 在基因操作实践中有哪些检测核酸和蛋白质分子量的常规方法?7. 印迹分子杂交有哪些种类,并说明在什么情况下需要使用这些方法。
8. 核酸分子的标记有哪些方法,各有何特点?9. 由mRNA反转录成cDNA和DNA的PCR扩增是两个完全不同的酶催化反应过程,如何将两个过程联系在一起,实现由mRNA起始扩增出DNA?10. Primer是PCR反应体系的四大要素之一,PCR的许多应用都是通过primer设计来实现的,请问primer设计的一般原则是什么?11. 在PCR反应的后期,或者循环次数过多时,反应体系中就会出现一种所谓的平台效应(Plateau effect),请问什么叫Plateau effect?产生Plateau effect的原因有哪些?12. 在对PCR产物进行电泳检测时,有时会出现拖带或非特异性扩增条带,请分析其原因?如果检测结果是看不到DNA带或DNA带很弱,那又是为什么?13. 通过双向蛋白质电泳发现某蛋白质与某植物的一种表型密切相关,若要利用编码该蛋白质的基因来转基因植物,试问如何分离得到该基因?14. 现有一序列已知的DNA片段和一序列未知的DNA片段,你分别如何设计测序策略?15. 设想一下在什么情况下你希望知道一个基因或一段DNA的序列?16. 什么叫有性PCR?有性PCR导致DNA重组的分子机制跟体内重组有何异同?17. Explain the PCR. List the steps in carrying it out; include all the components and special conditions, explaining why each one is used. Illustrate the process with appropriate labels. Use the correct scientific terminology in your explanation.第三章基因工程操作的基本条件1. 试指出影响限制性内切核酸酶(Restriction endonuclease)切割效率的因素.2. 在酶切缓冲液中,一般需加入BSA,请问加入BSA的作用是什么?并简述其原理?3. 何谓Star activity?简述Star activity的影响因素及克服方法.4. 某DNA序列中存在DpnI酶切位点,以此DNA为模板,在体外合成DNA序列,当用该酶进行酶切时,发现切割不动,试分析可能原因?5. 天然的质粒载体(plasmid vectors)通常需经改造后才能应用,包括去除不必要的片段,引入多克隆位点等。
第2节 基因工程及其应用
ቤተ መጻሕፍቲ ባይዱ
P103
将每个受体细胞单独培养形成菌落,检测菌落中 是否有目的基因的表达产物。淘汰无表达产物的菌落, 保留有表达产物的进一步培养、研究。
无表达产物
无表达产物
有表达产物
无表达产物
三、基因工程的操作步骤
4:目的基因的检测与鉴定
P103
分子水平检测 :DNA分子杂交;mRNA分子杂交 ;抗原-抗体杂交 个体水平鉴定:抗虫或抗病的接种试验
转基因食品
安全吗?
P105
转基因植物的安全性争论
P105
• 支持派认为:如果转基因农业生物技术得 不到社会支持,这一研究将被扼杀,并且 强调,迄今为止并没有发现转基因食品危 害人体健康和环境的确切证据。
反对派的观点
P105
• 一英国科学家声称,转基因马铃薯会减 弱老鼠免疫系统功能;
• 美国康乃尔大学也发现,转基因玉米会 危害蝴蝶幼虫及其相关生态环境。
标记基 因,便 于进行 检测。
作为运载体必须具备哪些条件?
(1)一个或多个限制酶的切割位点(以便目的基因的插入)
P103
(2)具备自我复制的能力,或整合到受体染色体DNA上随染色体DNA的复制而 同步复制(以便目的基因的复制保留)。 (3) 带有标记基因(鉴别受体细胞中是否含有目的基因) (4) 安全(不会对受体细胞有害,或不能进入到除受体细胞外的其他生物细胞 中去) (5)分子大小适合(以便提取和在体外进行操作,太大就不便操作) 实际上自然存在的质粒DNA分子并不完全具备上述条件,都要进行人工改造后 才能用于基因工程操作
制酶) 专一性: 一种限制酶只能
→ 并在特定的切点上切割DNA →
大学基因工程复习归纳重点复习资料
基因工程复习归纳第一章绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体/宿主)内,使之按照人们的意愿稳定遗传、并表达出新的性状的技术。
2.基因工程概念的发展:遗传工程→DNA重组技术→分子/基因克隆(Molecular/Gene→基因工程→基因操作。
应用领域以“基因工程”、“DNA重组”为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFNα1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因(供体):外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子(克隆载体、表达载体)。
宿主(受体):,能摄取外源DNA、并能使其稳定维持的细胞(组织、器官或个体)。
4.基因工程的基本步骤(切、接、转、增、检(大肠杆菌是中心角色)(1)目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片断。
(2)重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记(抗菌素抗性)的载体分子上。
(3)重组体的转化:将重组体(载体)转入适当的受体细胞中。
(4)克隆鉴定:挑选转化成功的细胞克隆(含有目的基因)。
(5)目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。
第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸内切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。
限制性核酸内切酶的功能与类型其中II型限制性核酸内切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。
基因操作原理和方法
克隆和重组技术的应用
克隆和重组技术广泛应 用于基因工程、生物制 药、农业和医学等领域 。
在基因工程中,克隆和 重组技术用于生产重组 蛋白、疫苗和抗体等生 物制品。
在农业中,克隆和重组 技术用于改良作物品种 和提高农作物的抗逆性 和产量。
生物科学研究
基因敲除和敲入技术可用于研究基因功能、细胞信 号转导、药物筛选等生物科学研究领域,有助于深 入了解生命活动的本质。
生物制药
基因敲除和敲入技术可用于生产基因工程药物,通 过改造或增强微生物、细胞或动物细胞中的基因表 达,生产具有特定功能的药物。
敲除和敲入技术的限制和挑战
80%
技术难度高
基因敲除和敲入技术需要精确的 操作和设计,对技术和实验条件 要求较高,且存在一定的失败率 和不确定性。
05
基因编辑新技术
CRISPR-Cas9系统
总结词
CRISPR-Cas9系统是一种高效、简单、低成本的基因编辑技术,通过向导RNA和Cas9 蛋白的引导,实现对特定DNA序列的切割和修复。
详细描述
CRISPR-Cas9系统利用向导RNA与目标DNA序列的特异性结合,将Cas9蛋白引导至目 标位置,通过切割DNA双链形成缺口,启动细胞内的DNA修复机制。在修复过程中, 插入、删除或替换特定DNA序列成为可能,从而实现基因敲除、敲入和点突变等基因
基因操作的历史与发展
基因操作技术的起源可以追溯到20 世纪70年代,当时科学家开始探索 限制性内切酶和DNA连接酶等工具 的应用。
随着技术的不断发展,基因操作逐渐 成为现代生物学和医学研究的重要手 段,广泛应用于基因克隆、基因治疗 、基因工程等领域。
基因工程知识点全
第一章基因工程概述1.什么是基因工程,基因工程的基本流程基因工程Genetic engineering原称遗传工程;从狭义上讲,基因工程是指将一种或多种生物体供体的基因与载体在体外进行拼接重组,然后转入另一种生物体受体内,使之按照人们的意愿遗传并表达出新的性状;因此,供体、受体和载体称为基因工程的三大要素;1.分离目的基因2.限制酶切目的基因与载体3.目的基因和载体DNA在体外连接4.将重组DNA分子转入合适的宿主细胞,进行扩增培养5.选择、筛选含目的基因的克隆6.培养、观察目的基因的表达第二章基因工程的载体和工具酶1. 基因工程载体必须满足哪些基本条件➢具有对受体细胞的可转移性或亲和性;➢具有与特定受体细胞相适应的复制位点或整合位点;➢具有多种单一的核酸内切酶识别切割位点;➢具有合适的筛选标记;➢分子量小,拷贝数多;➢具有安全性;2. 质粒载体有什么特征,有哪些主要类型1、自主复制性2、可扩增性3、可转移性4、不相容性主要类型有1.克隆质粒2.测序质粒3.整合质粒4.穿梭质粒5.探针质粒6.表达质粒3. 质粒的构建1删除不必要的 DNA 区域,尽量缩小质粒的分子量,以提高外源 DNA 片段的装载量;一般来说,大于20Kb 的质粒很难导入受体细胞,而且极不稳定;2灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数3加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受体细胞;4在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的 DNA序列,即多克隆接头Polylinker,便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入;5根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件;4. 什么是人工染色体载体将细菌接合因子、酵母或人类染色体上的复制区、分配区、稳定区与质粒组装在一起,即可构成染色体载体5. 什么是穿梭载体人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的载体;6.入-噬菌体载体及构建-DNA为线状双链DNA分子,长度为,在分子两端各有12个碱基的单链互补粘性末端;➢1缩短长度提高外源 DNA 片段的有效装载量删除重复的酶切位点➢引入单一的多酶切位点接头序列,增加外源DNA片段克隆的可操作性➢灭活某些与裂解周期有关基因;➢使λ-DNA载体只能在特殊的实验条件下感染裂解宿主细菌,以避免可能出现的污染现象的发生;➢加装选择标记,便于重组体的检测单链噬菌体DNA载体➢过定点诱变技术封闭重复的重要限制性酶切口;➢引入合适的选择性标记基因,如含有启动子、操作子和半乳糖苷酶氨基端编码序列lacZ’的乳糖操纵子片段lac、组氨酸操纵子片段his以及抗生素抗性基因等;➢将人工合成的多克隆位点接头片段插在 lacZ’标记基因内部,使得含有重组子的噬菌斑呈白色,而只含有载体 DNA 的混浊噬菌斑呈蓝色;➢4在多克隆位点接头片段的两侧区域改为统一的 DNA 测序引物序列,使得重组 DNA 分子的单链形式经分离纯化后,可直接进行测序反应;8. II类限制性内切核酸酶的特点限制性核酸内切酶 Restriction endonucleases是一类能在特异位点上催化双链DNA 分子的断裂,产生相应的限制性片段的核酸水解酶;➢识别位点的特异性:每种酶都有其特定的DNA识别位点,通常是由4、5或6核苷酸组成的特定序列靶序列;➢识别序列的对称性:靶序列通常具有双重旋转对称的结构,即双链的核苷酸顺序呈回文结构;➢切割位点的规范性:双链DNA被酶切后,分布在两条链上的切割位点旋转对称可形成粘性末端或平末端的DNA分子;同位酶:一部分酶识别相同的序列,但切点不同,这些酶称为同位酶;同裂酶:识别位点与切割位点均相同的不同来源的酶称为同裂酶同尾酶Isocandamers:识别位点不同,但切出的 DNA 片段具有相同的末端序列,这些酶称为同尾酶;9.甲基化酶Ⅱ类限制性内切酶有相应甲基化酶伙伴,甲基化酶的识别位点与限制性内切酶相同,并在识别序列内使某位碱基甲基化,从而封闭该酶切口;甲基化酶在封闭一个限制性内切酶切口的同时,却产生出另一种酶的切口➢甲基化酶可修饰限制性核酸内切酶识别序列,从而使DNA免受相应的限制性核酸内切酶的切割;➢甲基化酶的用途就是在必要时可以封闭某一限制性核酸内切酶的酶切位点;连接酶连接作用的特点:①DNA连接酶需要一条DNA链的3’末端有一个游离的羟基-OH,另一条DNA链的5’末端有一个磷酸基-P的情况下,只有在这种情况下,才能发挥连接DNA分子的作用;②只有当3’-OH和5’-P彼此相邻,并且各自位于与互补链上的互补碱基配对的两个脱氧核苷酸末端时,DNA连接酶才能将它们连接成磷酸二酯键;③DNA连接酶不能连接两条单链的DNA分子或环化的单链DNA分子,被连接的DNA链必须是双螺旋DNA分子的一部分;④DNA连接酶只能封闭双螺旋DNA上失去一个磷酸二酯键所出现的单链缺口nick,而不能封闭双链DNA的某一条链上失去一个或数个核苷酸所形成的单链裂口gap;⑤由于在羟基和磷酸基团之间形成磷酸二酯键是一种吸能反应,因此,DNA连接酶在进行连接反应时,还需要提供一种能源分子NAD+或ATP11.大肠杆菌 DNA聚合酶和Klenow大片段各有什么作用DNA聚合酶作用的特点:➢要有底物4种dNTP为前体催化合成DNA;➢接受模板指导;➢需要有引物3’羟基的存在;➢不能起始合成新的DNA链;➢催化dNTP加到生长中的DNA链3’-OH末端;➢催化DNA的合成方向是5’→3’;Klenow酶的基本性质:➢大肠杆菌DNA聚合酶I经胰蛋白酶或枯草杆菌蛋白酶部分水解生成的C末端604个氨基酸残基片段,即Klenow酶;分子量为76kDa;➢Klenow酶仍拥有5’→3’的DNA聚合酶活性和5’→3’的核酸外切酶活性,但失去了5’→3’的核酸外切酶活性;Klenow酶的基本用途:➢修复由限制性核酸内切酶造成的 3’凹端,使之成为平头末端;➢以含有同位素的脱氧核苷酸为底物,对DNA片段进行标记;➢用于催化 cDNA 第二链的合成;➢用于双脱氧末端终止法测定 DNA 的序列;聚合酶T4-DNA聚合酶酶的基本特性:➢有3’→5’的核酸外切酶活性和5’→3’的DNA聚合酶活性;➢在无dNTP时,可以从任何3’-OH端外切;➢在只有一种dNTP时,外切至互补核苷酸;➢在四种dNTP均存在时,聚合活性占主导地位;T4-DNA聚合酶的基本用途:切平由核酸内切酶产生的3’粘性末端13. 影响连接效率的因素有:➢温度最主要的因素离子浓度➢ATP的浓度 10μM - 1μM➢连接酶浓度平末端较粘性末端要求高➢反应时间通常连接过夜➢插入片段和载体片段的摩尔比➢DNA末端性质➢DNA片段的大小14.如何将不同DNA分子末端进行连接1.相同粘性末端的连接如果外源DNA与载体DNA均用相同的限制性内切酶切割,则不管是单酶酶解还是双酶联合酶解,两种DNA分子均含有相同的粘性末端,因此混合后能顺利的连接成一个重组DNA分子 2.平头末端的连接T4-DNA连接酶在ATP和高浓度酶的条件下,能连接具有完全碱基配对的平末端DNA分子,但平末端连接效率不高,基因操作不经常采用;3.不用粘性末端的连接3’端的粘性末端用T4-DNA聚合酶切平5’端的粘性末端用klenow酶补平,或者用S1核酸酶切平最后用T4-DNA连接酶进行平末端连接15. 碱性磷酸酶有什么作用1.该酶用于载体 DNA的5’末端除磷操作,以提高重组效率;2.用于外源DNA片段的5’端除磷,则可有效防止外源 DNA 片段之间的连接;16. 末端脱氧核苷酸转移酶有哪些作用➢给载体或目的DNA加上互补的同聚物尾;➢DNA片段3’末端的同位素标记;17. 2、细菌转化的步骤:∙感受态的形成;感受态时细胞表面出现各种蛋白质和酶类,负责转化因子的结合、切割及加工;感受态细胞能分泌一种小分子量的激活蛋白或感受因子,其功能是与细胞表面受体结合,诱导某些与感受态有关的特征性蛋白质如细菌溶素的合成,使细菌胞壁部分溶解,局部暴露出细胞膜上的 DNA 结合蛋白和核酸酶等;∙转化因子的结合;受体菌细胞膜上的DNA结合蛋白可与转化因子的双链DNA结构特异性结合,单链DNA或RNA双链RNA以及DNA/RNA杂合双链都不能结合在膜上;∙转化因子的吸收;双链 DNA 分子与结合蛋白作用后,激活邻近的核酸酶,一条链被降解,而另一条链则被吸收到受体菌中;∙整合复合物前体的形成;进入受体细胞的单链 DNA 与另一种游离的蛋白因子结合,形成整合复合物前体结构,它能有效地保护单链DNA免受各种胞内核酸酶的降解,并将其引导至受体菌染色体DNA处;∙转化因子单链DNA的整合;供体单链DNA片段通过同源重组,置换受体染色体DNA的同源区域,形成异源杂合双链 DNA结构;+诱导转化原理:①在0℃的Cacl2低渗溶液中,细菌细胞发生膨胀,同时Cacl2使细胞膜磷脂层形成液晶结构促使细胞外膜与内膜间隙中的部分核酸酶解离开来,诱导大肠杆菌形成感受态;②Ca2+能与加入的DNA分子结合,形成抗DNA酶DNase的羟基-磷酸钙复合物,并黏附在细菌细胞膜的外表面上;当42℃热刺激短暂处理细菌细胞时,细胞膜的液晶结构发生剧烈扰动,并随之出现许多间隙,为DNA分子提供了进入细胞的通道;③Mg2+对DNA分子有很大的稳定性作用,因此利用Mgcl2与Cacl2共同处理大肠杆菌细胞,可以提高DNA的转化效率;∙但该法要求条件高,对外界污染物极为敏感,通常很少采用;介导细菌的原生质体转化∙PEG是乙二醇的多聚物, 存在不同分子量的多聚体,它可改变各类细胞的膜结构, 使两细胞相互接触部位的膜脂双层中脂类分子发生疏散和重组,此时相互接触的两细胞的胞质沟通成为可能,从而造成细胞之间发生融合;20.电穿孔法是指在细胞上施加短暂、高压的电流脉冲,在质膜上形成纳米大小的微孔,DNA直接通过这些微孔或者作为微孔闭合时所伴随发生的膜组分重新分布通过质膜进入细胞质中,这种方法称为电穿孔法;P52 接合转化,入噬菌体感染未归纳21.转化率的影响因素.载体及重组DNA方面载体本身的性质:不同的载体转化同一株受体细胞,其转化率不同;载体的空间构象:与受体细胞亲和性较强的质粒载体转化率要高于亲和性较弱的质粒载体; 插入片段大小:对质粒载体而言,插入片段越大,转化效率越低;重组DNA分子的浓度和纯度受体细胞方面:受体细胞必须与载体相匹配转化操作的影响22.转化细胞的扩增转化细胞的扩增操作:指转化完成之后细胞的短时间培养;在实验时,扩增操作往往与转化操作偶联在一起,如:∙Ca2+诱导转化后的37℃培养一个小时∙原生质体转化后的再生过程∙λ噬菌体转染后的30℃培养等,均属扩增操作扩增操作的目的∙增殖转化细胞,使得有足够数量的转化细胞用于筛选程序;∙扩增和表达载体分子上的标记基因,便于筛选;∙表达外源基因,便于筛选和鉴定;23.抗药性筛选法这是利用载体DNA分子上的抗药性选择标记进行的筛选方法;抗药性筛选法的基本原理:抗药性筛选法可区分转化子与非转化子、重组子与非重组子将外源DNA片段插在EcoRI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcr将外源DNA片段插在BamHI位点:∙非重组子呈 Apr、Tcr∙重组子呈 Apr、Tcs抗药性筛选法的基本操作:先将转化液涂布含有Ap的平板再将Ap平板上的转化子影印至含有Tc的平板上在Ap平板上生长,但在Tc平板上不长的转化子即为重组子 P56抗药性标记插入失活选择法∙经过上述抗药性筛选获得的大量转化子中既包括需要的重组子,也含有不需要的非重组子;为了进一步筛选出重组子,可利用质粒载体的双抗药性进行再次筛选;如果外源基因插入在载体的抗药性基因中间使得该抗药性基因失活,这种抗药性标记就会消失,从而筛选出阳性重组子;24. 什么是蓝白斑筛选法这种方法是根据组织化学的原理来筛选重组体;主要是在λ载体的非必要区插入一个带有大肠杆菌β—半乳糖苷酶的基因片段,携带有lac基因片段的λ载体转入lac的宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷X-gal平板上形成浅蓝色的噬菌斑;外源基因插人lac或lac基因部分被取代后,重组的噬菌体将丧失分解X-gal的能力,转入lac-宿主菌后,在含有5—溴—4—氯—3—引哚—β—D—半乳糖苷 X-gal平板上形成白色的噬菌斑,非重组的噬菌体则为蓝色噬菌斑;筛选法利用合适的引物,以从初选出来的阳性克隆中提出的质粒为模板进行PCR,通过对PCR产物的电泳分析,确定目的基因是否插入到载体中;由于在载体DNA分子中,外源DNA插入位点的两侧序列多数是已知的,可以设计合成相应的PCR引物,以待鉴定的转化子或重组子的DNA为模板进行PCR反应,反应产物经琼脂糖凝胶电泳,若出现特异性扩增DNA带,并且其分子量同预期的一致,则可确定含此重组DNA分子的重组子是期待的重组子;第三章基因工程的常规技术1. 探针有哪些类型探针标记有哪些方法类型:同源或部分同源探针cDNA探针人工合成的寡核苷酸探针标记方法:①5’端标记法②反转录标记法③缺刻前移标记法④ABC标记法4.什么是ABC荧光显色酶标记法ABC 标记法;∙A为Avidin生物素抗性蛋白,每个Avidin分子可结合3 - 4个生物素分子;∙B为Biotin生物素,每个Biotin分子可结合2个Avidin分子;∙C为Complex,首先将Biotin共价结合在探针分子上,荧光胺标记在Avidin上,两者形成复合物,即可将荧光胺标记在探针上,发出的荧光也能使普通胶片感光;如果将某一生色酶接在Avidin上,并辅以合适底物,则杂交反应还可直接以颜色反应检测,这一技术称为酶标技术5.亚克隆法∙亚克隆:是将克隆片段进一步片段化后再次进行的克隆;∙一般是将重组DNA分别用几种限制性核酸内切酶切割后,将所得各片段分别重组到载体上再转化宿主细胞,然后通过转化细胞的表型鉴定或鉴定,获得含有目的基因的重组子;此时,该重组分子中的无关DNA区域以被大量删除;6. 菌落嗜菌斑原位杂交的基本原理、流程∙该项技术是直接把菌落印迹转移到硝酸纤维素滤膜上,经溶菌和变性处理后使DNA 暴露出来并与滤膜原位结合再与特异性DNA探针杂交,筛选出含有插入序列菌落;∙操作步骤:∙①菌落生长∙②转移到NC膜上∙③DNA释放和变性∙变成单链DNA:∙ 10%SDS NaOH∙④中和 Tris-HCl pH∙⑤固定 80 ℃ 120’∙⑥杂交包括预杂交,加探针DNA杂交∙⑦放射自显影∙⑧对照比较,选出重组克隆7.鸟枪法∙鸟枪法:将某种生物体的全基因组或单一染色体切成大小适宜的 DNA 片段,分别连接到载体 DNA上,转化受体细胞,形成一套重组克隆,从中筛选出含有目的基因的期望重组子;鸟枪法制备目的基因的主要步骤∙①目的基因组DNA片段的制备超声波处理:片段长度均一,大小可控,平头末端;原核生物的基因长度大都在2Kb以内,真核生物的基因长度变化很大,最大的基因可达100Kb以上;全酶切:片段长度不均一,粘性末端便于连接,但有可能使目的基因断开,大小不可控;部分酶切:片段长度可控,含有粘性末端,目的基因完整;∙②DNA片段与载体连接如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择多拷贝克隆载体;如果转化子采用基因产物功能检测法筛选,则选择表达型载体;∙③重组DNA分子导入受体细胞如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择大肠杆菌作为受体细胞;如果转化子采用基因产物功能检测法筛选,则选择能使目的基因表达的受体细胞;∙④筛选含有目的基因的目的重组子菌落原位杂交法、基因产物功能检测法筛选模型的建立;∙⑤目的基因的定位利用鸟枪法获得的期望重组子只是含有目的基因的 DNA 片段,必须通过次级克隆或插入灭活,在已克隆的 DNA 片段上准确定位目的基因,然后对目的基因进行序列分析,搜寻其编码序列以及可能存在的表达调控序列;法酶促逆转录主要用于合成分子质量较大,转录产物mRNA易分离的目的基因;这种方法以目的基因的mRNA为模板,在逆转录酶的作用下合成互补的DNA,即cDNA,然后在DNA聚合酶的催化下合成双链cDNA片段,与适当的载体重组后转入受体菌扩增,获得目的基因的cDNA克隆; 的分离纯化绝大多数的真核生物mRNA在其3’端都存在一个多聚腺苷酸的尾巴,利用它可以迅速的将mRNA从细胞总的混合物中分离出来,将寡聚脱氧胸腺嘧啶共价交联在纤维素分子上,制成亲和层析柱,然后将细胞总的RNA混合物上层析柱分离,mRNA会挂在层析住上,后洗脱即可分离10. 简述PCR技术的基本原理,PCR反应体系的主要成分与主要程序是怎样的PCR技术的基本原理:类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物;过程:PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火复性:模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链;重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板;每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍;11. 什么是基因组文库其构建方法是怎样的是指将某种生物的全部基因组的遗传信息贮存在可以长期保存的稳定的重组体中,以备需要时能够随时应用它分离所需要的目的基因,这种保存基因遗传信息的材料,就称为基因文库又称DNA文库;基因组文库构建的一般步骤①载体的选择和制备;②高纯度、大分子量基因组 DNA 的提取;③基因组 DNA 的部分酶切与分级分离;④载体与DNA片段的连接;⑤转化或侵染宿主细胞;⑥筛选鉴定基因组及保存;12. 基因组DNA文库的质量标准除了尽可能高的完备性外,一个理想的基因组DNA文库应具备下列条件:∙重组克隆的总数不宜过大,以减轻筛选工作的压力∙载体的装载量最好大于基因的长度,避免基因被分隔克隆;∙克隆与克隆之间必须存在足够长度的重叠区域,以利于克隆排序;∙克隆片段易于从载体分子上完整卸下;∙重组克隆能稳定保存、扩增、筛选;基因文库的构建通常采用鸟枪法和cDNA法13.外源DNA片段的切割原则片段之间要有一定的重叠序列片段大小要均一文库构建的步骤∙细胞总RNA的提取和mRNA的分离∙第一链cDNA合成∙第二链cDNA合成∙双链cDNA的分级分离∙双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖∙重组体的筛选与鉴定第四章基因在大肠杆菌、酵母的高效表达1. 启动子∙启动子:是DNA链上一段能与RNA聚合酶结合并能起始转录的序列,其大小在20~300个碱基,是控制基因转录的重要调控元件;在一定条件下mRNA的合成速率与启动子的强弱密切相关,而转录又在很大程度上影响基因的表达;∙启动子的特征:①序列特异性②方向性③位置特性④种属特异性2.启动子类型∙组成型启动子:是指在该类启动子控制下,结构基因的表达大体恒定在一定水平上,在不同组织、部位表达水平没有明显差异;∙组织特异启动子:又称器官特异性启动子;在这类启动子调控下,基因往往只在某些特定的器官或组织部位表达,并表现出发育调节的特性;∙诱导型启动子:是指在某些特定的物理或化学信号的刺激下,该种类型的启动子可以大幅度地提高基因的转录水平;目前已经分离了光诱导表达基因启动子、热诱导表达基因启动子、创伤诱导表达基因启动子、真菌诱导表达基因启动子和共生细菌诱导表达基因启动子等;3.终止子终止子:是位于结构基因下游的一段DNA序列,基因转录时,该序列被转录为mRNA的一部分,并形成特殊的二级结构,由此终止基因的转录;序列SD序列:mRNA中起始密码子上游8-13个核苷酸处有一段富含嘌呤核苷酸的顺序,它可以与30S亚基中的16S rRNA 3’端富含嘧啶的尾部互补,形成氢键结合,有助于mRNA的翻译从起始密码子处开始5.密码子不同生物对密码子的偏爱性1.生物体基因组中的碱基含量2.密码子与反密码子的相互作用的自由能3.细胞内tRNA的含量6. 密码子偏爱性对外源基因表达的影响∙由于原核生物和真核生物基因组中密码子的使用频率具有较大程大的差异性,因此外源基因尤其是高等哺乳动物基因在大肠杆菌中高效翻译的一个重要因素是密码子的正确选择;一般而言,有两种策略可以使外源基因上的密码子在大肠杆菌细胞中获得最佳表达:∙外源基因全合成∙同步表达相关tRNA编码基因7. 包涵体及其性质在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体8. 包涵体的形成机理∙①折叠状态的蛋白质集聚作用;∙②非折叠状态的蛋白质集聚作用∙③蛋白折叠中间体的集聚作用;9. 包涵体的分离检测∙包涵体的分离主要包括菌体破碎、离心收集以及清洗三大操作步骤;10. 分泌型目的蛋白表达系统的构建∙包括大肠杆菌在内的绝大多数革兰氏阴性菌不能将蛋白质直接分泌到胞外,但有些革兰氏阴性菌能将细菌的抗菌蛋白细菌素分泌到培养基中,这一过程严格依赖于细菌素释放蛋白,它激活定位于内膜上的磷酸酯酶A,导致细菌内外膜的通透性增大∙因此,只要将细菌素释放蛋白编码基因克隆在一个合适的质粒上即可构建完全分泌型的受体细胞;此时,用另一种携带大肠杆菌信号肽编码序列和目的基因的表达质粒转化上述完全分泌型受体细胞,并使用相同性质的启动子介导目的基因的转录,则可实现目的蛋白从重组大肠杆菌中的完全分泌;11融合蛋白表达质粒的构建原则:∙受体细胞的结构基因能高效表达,且其表达产物可以通过亲和层析进行特异性简单纯化;。
分子生物学5 分子生物学基本研究法
3、pBR322质粒载体
由三个不同来源的部分组成的:
第一部分来源于pSF2124质粒易位子Tn3的氨 苄青霉素抗性基因(AmpR);
第二部分来源于pSC101质粒的四环素抗性基 因(tetr);
5. 2 DNA操作技术 5. 2. 1核酸的凝胶电泳
自 从 琼 脂 糖 ( agarose ) 和 聚 丙 烯 酰 胺 (polyacrylamide)凝胶被引入核酸研究以来,按 分子量大小分离DNA的凝胶电泳技术,已经发展成 为一种分析鉴定重组DNA分子及蛋白质与核酸相互 作用的重要实验手段。
第一个核酸内切酶EcoRI是Boyer实验室在1972年发 现的,它能特异性识别GAATTC序列,将双链DNA分 子在这个位点切开并产生具有粘性末端的小片段。
图5-1 几种主要DNA内切酶所识别的序列及 其酶切末端。
Werner Arber, Hamilton Smith and Daniel Nathans were awarded the 1978 Nobel Prize for their work on REs.
多核苷酸激酶
把磷酸基团加到多聚核苷酸链的5'-OH末端 (进行末端标记实验或用来进行DNA的连接
末端转移酶
在双链核酸的3‘末端加上多聚或单核苷酸
DNA外切酶III
从DNA链的3'末端逐个切除单核苷酸
λ噬菌体DNA外切酶
从DNA链的5'末端逐个切除单核苷酸
碱性磷酸酯酶
切除位于DNA链末端的磷酸基团
嘌呤
人教版高中生物选择性必修第3册 第3章 基因工程 第2节 基因工程的基本操作程序(一)
转基因抗虫棉
非转基因抗虫棉
以转基因抗虫棉为例 学习基因工程的基本操作程序
第一步:目的基因的筛选与获取 第二步:基因表达载体的构建 第三步:将目的基因导入受体细胞 第四步:目的基因的检测与鉴定
转基因抗虫棉
非转基因抗虫棉
第一步:目的基因的筛选与获取
★ 什么是目的基因?
[资料一] 棉花本身不具有抗虫基因。苏云金杆菌有一种抗虫基因,能 表达出抗虫蛋白来杀死棉铃虫。利用基因工程将抗虫基因导 入棉花细胞,培育出自身就能抵抗虫害的棉花新品种。
(1)图中科学家在进行①操作时,要使用的酶是__________ ___限__制__酶__和__D_N_A_连__接__酶____。
(2)图中Ⅱ由目的基因、____启__动__子_____、 ___终__止__子______、 ___标__记__基__因____、复制原点等组成。
(3)基因工程基本操作程序的核心是_基__因__表__达__载__体__的__构__建__。
[资料二] 胰岛素是治疗糖尿病的特效药。健康人含有胰岛素基因,能 表达胰岛素,从而降低血糖浓度。大肠杆菌本身不具有胰岛 素基因。1978年,科学家将编码人胰岛素的基因导入大肠杆 菌细胞中,使大肠杆菌表达重组人胰岛素。
在基因工程的设计和操作中,用于改变受体细胞 性状或获得预期表达产物等的基因就是目的基因。
大肠杆菌后,采用含有不同抗生素的平板进行筛选,得到A、B、C、D四
种菌落,其生长情况如下表(“+”代表生长,“-”代表不生长)。
根据表中结果判断,含有重组质粒的菌落是
( B)
平板 无抗 菌落 生素
氨苄青 霉素
四环素
氨苄青霉素 +四环素
菌落A +
+
基因工程原理练习题及其答案
基因工程复习题题型:名词解释(10个)30分;填空(每空1分) 20分;选择题(每题1分)10分;简答题(4个)20分;论述题(2个)20分。
第一章绪论1.名词解释:基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
遗传工程广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。
狭义:基因工程。
克隆:无性(繁殖)系或纯系。
指由同个祖先经过无性繁殖方式得到的一群由遗传上同一的DNA分子、细胞或个体组成的特殊生命群体。
2.什么是基因克隆及基本要点?3.举例说明基因工程发展过程中的三个重大事件。
A) 限制性内切酶和DNA连接酶的发现(标志着DNA重组时代的开始);B) 载体的使用;C) 1970年,逆转录酶及抗性标记的发现。
4.基因工程研究的主要内容是什么?基础研究:基因工程克隆载体的研究基因工程受体系统的研究目的基因的研究基因工程工具酶的研究基因工程新技术的研究应用研究:基因工程药物研究转基因动植物的研究在食品、化学、能源和环境保护等方面的应用研究第二章基因克隆的工具酶1.名词解释:限制性核酸内切酶:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
回文结构:双链DNA中的一段倒置重复序列,当该序列的双链被打开后,可形成发夹结构。
同尾酶:来源不同、识别序列不同,但产生相同粘性末端的酶。
同裂酶:不同来源的限制酶可切割同一靶序列和具有相同的识别序列黏性末端:DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为粘性末端。
平末端:DNA片段的末端是平齐的。
第28讲 基因工程
• ⑤培育转基因植物,受体细胞可选受精卵或 体细胞。若受体细胞是体细胞,再将导入了 目的基因的受体细胞进行组织培养,即可获 得转基因植株。 • ⑥生产基因工程药品(如胰岛素)时,受体细 胞一般采用细菌,利用细菌繁殖快的特点, 可短期内获得大量基因工程产品。 • ⑦抗虫棉只能抗虫,不能抗病毒。
• 基因诊断与基因治疗 • 1.基因诊断 • (1)原理:DNA分子杂交 • (2)过程:①制备DNA探针(用放射性同位素, 荧光分子标记的单链DNA分子); • ②待测DNA:患者DNA制成的单链DNA;
一、知识概述
操作工具 基因工程 操作步骤 基因工程和成 果与发展前景
存在:主要在微生物中 限制性 作用与特性:一种限制酶只识别一种特 核酸内 定的核苷酸序列,并在特定的切点上切 切酶 割DNA分子。常形成 黏性末端 操 作 工 具
DNA连接酶
• 条件:①能在宿主细胞中复制,并 限制酶 切点; 稳定保存;②具有多个 ③具有某些标记基因 • 种类:质粒、噬菌体、动植物病毒 等
•
(2008· 上海)以重组DNA技术为核心的基 因工程正在改变着人类的生活。请回答下列 问题。 • (1)获得目的基因的方法通常包括 •化学合成(人工合成) 和 。 酶切获取(从染色 • 体DNA分离/从生物细胞分离/鸟枪法) 。 • (2)切割和连接DNA分子所使用的酶分别是 限制性核酸内切酶(限制酶) DNA连接酶 和 。 • (3)运送目的基因进入受体细胞的载体一般选 用病毒或 质粒 ,后者的形状呈 小型环状(双链环状、环状 。 •
第六单元
生 物 工 程
第
基
28
因 工
讲
程
• • • •
【考纲搜索】 (1)基因操作的工具; (2)基因操作的基本步骤; (3)基因工程的成果与发展前景。
基因工程的基本操作程序的步骤
相同点
原则
碱基互补配对
原料 4种游离的脱氧核苷酸
模板
DNA双链
不同点 解旋方式
加热
解旋酶Biblioteka 场所体外细胞核
酶 结果
Taq酶 细胞内的 DNA聚合酶
大量的DNA 形成整个的
片段
DNA分子
(三)用化学方法直接人工合成 条件:基因较小,核苷酸序列已知。 仪器:DNA合成仪
二、基因表达载体的构建
1、元件:
复制原点+目的基因+标记基因+启动子+终止子
与细胞膜无关 用Ca2+处理细胞→ 感受态细胞
重组表达载体DNA分子与感受态细胞混合
感受态细胞吸收DNA分子
四、目的基因的检测与鉴定
1、导入目的基因后需要检测哪些方面? 各采取什么方法?
2、什么是DNA分子探针?检测时的DNA探 针通过什么原理来检测目的基因和相 应的mRNA?
3、利用抗体-抗原杂交检测的原理是什 么?
基
片段 拼接到载体上
因
组
导入受体细胞DN?
依据目的基因的有关信息。
如:根据 基因的核苷酸序列 基因的功能 基因在染色体上的位置 基因的转录产物mRNA
基因翻译产物蛋白质等特性。
b.使目的基因能够表达和发挥作用。
载体与基因表达载体的区别:
载体的组成:
复制原点+目的基因插入位点+标记基因 基因表达载体的组成:
复制原点+目的基因+标记基因+启动子+终止子
同:二者均有标记基因和复制原点 异:表达载体在载体的基础上增加了目的基因、启动子、
终止子三部分结构 (其中启动子、终止子对于目的基因的表达(转录步骤)
第二章基因操作的主要技术原理2
22
nothernblot
Gene engineering
四、斑点印迹杂交和狭线印迹杂交
斑点印迹杂交(dot blotting)和狭线印迹杂 交(slot blotting )是在Southern印迹杂交的基 础上发展的量种类式的快速检测特定核酸 (DNA和RNA)分子的核酸杂交技术。由于在 实验的加样过程中使用了特殊设计的加样装置, 使众多待测样品能够一次同步转移到杂交滤膜 上,并有规律地排列成点阵或线阵。这两项技 术更适应与核酸样品的定量检测。
10
Gene engineering
尼龙膜
很强的抗张性,易于操作,与核酸分子 的结合能力大。 DNA以天然的形式从凝胶上转移到膜上, 在尼龙膜上进行原位碱变性。
11
Gene engineering
尼龙膜或硝酸纤维素膜杂交的步骤
1)核酸印迹转移:将核酸样品转移到固体 支持膜上(毛细管作用)
2)印迹杂交: 将具有核酸印迹的滤膜同带 有标记的DNA/RNA进行杂交。
43
Gene engineering
DNA + DMS
+ Saturating [Protein] Gel Shift
44
Gene engineering
4、甲基化干扰实验(methyltion interference assay)
根据DMS(硫酸二甲酯)能够使G残基甲基化,而六氢吡 啶又能够特异切割甲基化的G残基这一原理,设计出了另一 种研究DNA与蛋白质相互作用的实验方法,即甲基化干扰 实验。这种技术可以检测靶DNA中特异G残基的优先甲基化 对而后的蛋白质结合作用究竟会有什么效应,从而更加详细 地揭示DNA与蛋白质之间相互作用的模式。
3-2 基因工程的基本操作程序(教学课件)——高中生物人教版(2019)选择性必修3
转基因抗虫棉 DNA合成仪
一.目的基因的筛选与获取 (3)利用PCR获取和扩增目的基因
PCR技术:PCR是_聚__合___酶__链__式__反__应_的缩写,是一项根据__D__N_A__半__保__留复制 的原理,在_体__外_提供参与DNA复制的_各__种组___分_与_反_ 应_条__件____,对 目__的___基__因__的__核___苷__酸__序_ 列_进行_大___量__复制__的技术;
培育转基因抗虫棉一般需要哪些步骤?
转基因抗虫棉(使棉铃虫死亡,左) 与非转基因抗虫棉(右)
从社会中来
培育转基因抗虫棉的简要过程
1.目的基因的 筛选与获取
与载体拼接
2.基因表达 载体的构建
抗虫基因
普通棉花 (无抗虫特性)
3.将目的基因 导入受体细胞
导入 棉花细胞
重组DNA分子
4.目的基因的 检测与鉴定
害虫肠上皮细胞的特异性受体结合,导致细胞 膜穿孔,最后造成害虫死亡。 2.抗虫棉中的Bt抗虫蛋白会不会对人畜产生危害?
Bt抗虫蛋白只有在某类昆虫肠道的碱性环 境中才能表现出毒性,而人和牲畜的胃液呈酸 性,肠道细胞也没有特异性受体,因此,Bt抗 虫蛋白不会对人畜产生上述影响。
一.目的基因的筛选与获取 3.筛选合适目的基因 ①筛选方法之一
2.原则:_碱___基__互__补__配___对__原__则___ (A-__T___;C-___G___)
(3)利用PCR获取和扩增目的基因 ①DNA复制所需的基本条件:
参与的组分
解旋酶(体外用高温代替) DNA母链
4种脱氧核苷酸 DNA聚合酶
(体外用耐高温的DNA聚合酶)
基因工程操作步骤
基因工程操作步骤基因工程是一种通过改变生物体的遗传物质(DNA)来改变其性状的技术。
下面是基因工程的操作步骤:1.选择目标基因:首先需要确定要改变的目标基因,以及理想中的改变效果。
目标基因可以来自不同的生物体,其中包括人类、动物、植物和微生物等。
2.克隆目标基因:将目标基因扩增出来,以便后续的操作。
常用的方法是聚合酶链式反应(PCR)。
3.构建载体:选择适当的载体,如质粒、病毒或其他载体,将目标基因插入其中。
载体是基因工程的重要工具,可以帮助将目标基因引入到目标生物体中。
4.转化目标生物体:将构建好的载体转化到目标生物体中。
这可以通过多种方法实现,如化学方法、电穿孔、冷冻、注射或基因枪等。
5.识别转化体:经过转化后,需要对转化体进行筛选和识别,以确定是否成功引入了目标基因。
这可以通过检测目标基因的表达或特定的标记物等方式进行。
6.表达目标基因:成功转化的生物体中,目标基因应该被正常地表达出来。
这意味着目标基因的DNA序列应被转录成RNA,然后进一步被翻译成蛋白质。
7.分离目标产品:如果目标基因编码的是其中一种蛋白质,可以通过分离和纯化的方法获取纯度较高的蛋白质产品。
这可以通过蛋白质层析、电泳等技术来实现。
8.分析目标产品:对目标产品进行分析和检测,以确保其质量和功能。
这可以使用多种方法,如质谱、免疫检测、活性测定等。
9.应用目标产品:根据目标产品的性质和用途,将其应用在相应的领域。
基因工程的应用非常广泛,包括生物制药、农业、环境监测等。
10.后续监测:对应用后的生物体或产品进行监测和评估。
这可以包括长期的安全性评估、产量和质量监控、环境影响评估等。
需要注意的是,在进行基因工程操作时,需要遵循一系列的伦理规范和法律法规。
此外,基因工程是一个复杂的过程,需要多学科的合作和专业知识,因此在实际操作中需要谨慎和耐心。
13秋基因工程复习提纲1.doc
第一章绪论基因工程概况1、第一个实现DNA重组的人,现代基因工程的创始人——1972年,美国斯坦福大学医学屮心的P.Berg2、基因工程诞生的元年——1973年,以科恩(Coher)和博耶(Boyer)建立的基因工程的基本模式为标志3、基因工程概念:按照人们事先设计的蓝图,在体外将不同来源的DNA分子进行剪切重组,与载体DNA形成镶嵌DNA分子(即重组DNA分子),然后将之导入宿主细胞,使之在宿主细胞屮扩增表达,从而使宿主或宿主细胞获得新的遗传特性,或形成新的基因产物。
理论依据:不同基因具科相同的物质基础、基因是可以切割的、基因是可以转移的、多肽与葙因之间存在对应关系、遗传密码是通用的、葙因可以通过制把遗传信息传递给下一代。
基本技术路线主要内容(基因工程的上游操作过程可简化为:切、接、转、增、检)及基本要素。
①从供体细胞屮分离出基因纟II DNA,川限制性核酸内切酶分别将外源DNA (包拈外源基因或目的基因)和载体分子切开(切);②川DNA连接酶将含有外源基因的DNA片段接到载体分子上,形成DNA重组分子(接);③借助于细胞转化手段将DNA重组分子导入受体细胞中(转):④短时间培养转化细胞,以扩増DNA重组分了•或使其整合到受体细胞的难因组中(增);⑤筛选和鉴定转化细胞,获得使外源基因高效稳定表达的基因工程菌或细胞(检)。
要素:基因工異酶载体受体细胞7、基因工程的现实应用方Ifti噬歯体遗传学细歯抗药性的遗传学插人生殖细胞定点突变改功能分析序列分析变基因结构基因工程的诞生与有关学科之间的联系第二章基因克隆所需的工具酶1、基因工程使用的工其酶的种类:限制性内切酶、连接酶和修饰酶,其巾以限制性内切酶和DNA连接酶为主的多种工具酶的发现和应用,为葙因操作提供广丨•分重要的技术菽础。
2、限制性核酸内切酶的类型(I、II、III类)命名(一般是以微生物属名的第一个字母和种名的前两个字母组成,第叫个字母表示菌株(品系),即属名+种名+株名。
基因工程基础知识复习归纳
基因工程复习归纳第一章绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体〔供体〕的基因与载体在体外进展拼接重组,然后转入另一种生物体〔受体/宿主〕内,使之按照人们的意愿稳定遗传、并表达出新的性状的技术。
2.基因工程概念的开展:遗传工程→DNA重组技术→分子/基因克隆〔Molecular/Gene→基因工程→基因操作。
应用领域以“基因工程〞、“DNA重组〞为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFNα1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因〔供体〕:外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子〔克隆载体、表达载体〕。
宿主〔受体〕:,能摄取外源DNA、并能使其稳定维持的细胞〔组织、器官或个体〕。
4.基因工程的根本步骤〔切、接、转、增、检〔大肠杆菌是中心角色〕〔1〕目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,别离出带有目的基因的DNA片断。
〔2〕重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记〔抗菌素抗性〕的载体分子上。
〔3〕重组体的转化:将重组体〔载体〕转入适当的受体细胞中。
〔4〕克隆鉴定:摘要转化成功的细胞克隆〔含有目的基因〕。
〔5〕目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。
第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸内切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。
限制性核酸内切酶的功能与类型其中II型限制性核酸内切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。
华中农业大学《基因操作原理》2022-2023学年第一学期期末试卷
华中农业大学2022-2023学年第一学期期末试卷课程基因操作原理考试形式(闭卷,考试)学院系专业班级学号姓名一、单项选择题(每题2分,共20分)1.DNA分子中,A与T之间的氢键数量是:A.1个B.2个C.3个D.4个2.在基因操作中,常用的启动子是:A.TATA盒B.GATA盒C.CAT盒AAT盒3.在聚合酶链式反应(PCR)中,DNA聚合酶的主要作用是:A.切割DNAB.退火C.延伸DNA链D.变性4.在基因表达过程中,转录后修饰主要发生在:A.DNAB.mRNAC.tRNAD.rRNA5.基因组编辑技术CRISPR-Cas9中,Cas9的作用是:A.引导RNAB.切割DNAC.合成DNAD.连接DNA片段6.在质粒载体中,多克隆位点的主要功能是:A.提供启动子B.提供终止子C.提供多个限制性内切酶切割位点D.提供复制起点7.使用RNA干扰技术可以:A.增强基因表达B.静默特定基因C.切割DNAD.复制RNA8.在基因操作中,常用的报告基因是:A.GFPB.RFPC.β-半乳糖苷酶D.荧光素酶9.基因操作中,连接DNA片段的常用方法是:A.电泳B.PCRC.DNA连接酶D.限制性内切酶10.DNA测序技术中,二代测序的特点是:A.使用放射性同位素B.高通量测序C.使用双脱氧核苷酸D.基于毛细管电泳二、多项选择题(每题3分,共30分,多选或少选均不得分)1.限制性内切酶的类型包括:A.I型B.II型C.III型D.IV型E.V型2.聚合酶链式反应(PCR)中的关键成分有:A.模板DNAB.引物C.DNA聚合酶D.dNTPsE.MgCl23.核酸杂交技术可以用于:A.DNA-DNA杂交B.RNA-RNA杂交C.DNA-RNA杂交D.蛋白质-蛋白质杂交E.蛋白质-DNA杂交4.基因操作的常用工具酶包括:A.DNA聚合酶B.RNA聚合酶C.逆转录酶D.DNA连接酶E.限制性内切酶5.转基因技术中常用的植物转化方法有:A.基因枪法B.农杆菌介导法C.电穿孔法D.热休克法E.微注射法6.基因编辑的应用领域包括:A.基因治疗B.转基因生物C.疾病模型构建D.农作物改良E.进化研究7.常用的基因操作载体有:A.质粒B.病毒载体C.BAC载体D.YAC载体E.LINE序列8.RNA干扰技术可应用于:A.基因功能研究B.疾病治疗C.作物改良D.病毒抑制E.药物筛选9.基因操作中的同源重组修复需要:A.同源DNA序列B.DNA聚合酶C.DNA连接酶D.核酸内切酶E.核酸外切酶10.基因操作的伦理问题涉及:A.基因隐私B.基因歧视C.基因专利D.基因公平E.基因安全1.请描述CRISPR-Cas9基因编辑技术的基本原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNA沉淀用乙醇洗涤,再用水或TE缓冲液溶解。
进一步纯化——氯化铯梯度密度离心、透析、凝 胶排阻层析
①酚提取/ 沉淀法
经典方法是酚:氯仿抽提法。
裂解细胞;等体积酚:氯仿:异戊醇(25 :24 :1 体积) 混合液抽提;离心分离;疏水性的蛋白质→有机相, 核酸→上层水相。
缓冲液饱和酚——蛋白变性;氯仿增加有机相比重, 防止酚流入水相;异戊醇可减少操作过程中产生的 气泡,下层的界面更清晰 。
核酸盐经有机溶剂沉淀浓缩
Genome Size (Mb)
Zea mays (玉米) 8,000 Homo sapiens 3,000 Oryza sativa(稻) 400 Drosophila melanogaster 165 Arabidopsis thaliana(拟南芥) 100 Saccharomyces cerevisiae 12 E.coli 4.6
第2章 基因操作的主要方 法和工具-1
1. 分子生物学基本知识
1.1基因组(genome): 生物所具有的携带遗传信息的遗传物 质的总和,是指生物细胞中所有的DNA,包括所 有的基因和基因间区域。
人的核基因组:30亿bp(最新资料说28.5亿) 2∼2.5万个蛋白编码基因
真核生物基因组: 核基因组 线粒体基因组 叶绿体基因组 原核生物基因组: 染色体 质粒 病毒基因组:病毒颗粒携带的遗传物质
(1.2) 酶处理
裂解液中加入蛋白酶(蛋白酶K 或链酶蛋白酶) , 降解蛋白质;灭活核酸酶(DNase 和RNase) 加入DNase 和RNase 去除不需要的核酸。
(1.3) 核酸的分离与纯化
高电荷磷酸骨架比蛋白质、多糖、脂肪等其他生 物大分子物质更具亲水性。 根据理化性质差异,选择性沉淀、层析、密度梯 度离心等方法。
1.4 新基因产生的主要方式:
①基因加倍之后的趋异,这类基因基本保持原有的基因 功能,但往往获得了新的表达模式,这是新基因产生的主 要方式。酵母基因组在1亿年前经历了一次完全的加倍
②外显子或结构域洗牌(domain shuffling or exon shuffling):功能域或外显子洗牌由不同基因中编码不同结构域 的片段彼此连接形成的全新编码序列。它们有一个全新的结构 组合,可为细胞提供完全不同的生物学功能。 不同的结构域加倍或重组,产生具有创新功能的基因.真核生物 约19%的基因产生于外显子洗牌。
②层析法
利用待分离核酸与其他组分的物质与理化性质差 异建立的分离分析方法。
包括吸附层析、亲和层析、离子交换层析等。
商品试剂盒,分离和纯化同步进行。
核酸质量好、产量高、成本低、快速、简便、节 省人力以及易于实现自动化。
亲和层析法分离mRNA
全自动核酸分离纯化系统
Roche MagNA Pure 96
①核酸的膜杂交
原理:核酸变性和复性 杂交在膜上进行——核酸印迹杂交 分类:DNA印迹杂交(Southern blot ) RNA印迹杂交(Northern blot )
核酸杂交的基本过程
• 制备样品 • 待检测组织样品:动、植物器官、组织,培养细
胞,细菌,病毒等
• 核酸:分离提取DNA(RNA)
(3)核酸质量鉴定
A260/A280
DNA纯品: A260/A280 = 1.8, >1.8 RNA污染,<1.8蛋白污染
RNA纯品: A260/A280 = 2.0
电泳
28s 18s
5s
(4) 核酸的凝胶电泳
当前核酸研究中最常用的方法,常用于检测核酸
的分子量、纯度、结构变化、序列分析等 种类: 琼脂糖凝胶电泳(水平电泳) 聚丙烯酰胺凝胶电泳(垂直电泳, 分辨率可达1bp 常用于测序)
涌动率决定因素:分子大小,空间构型,电荷数。 涌动方向
PAGE
OC:open-coiled L:line SC:supercoiled
(5) 核酸样品的保存
DNA: DNA样品溶于pH8.0的TE,4 ℃或-20 ℃保存; 长期保存样品中可加入1滴氯仿。 RNA: RNA样品溶于0.3 mol/L NaAc (pH5.2)或双蒸灭菌 水中,-70 ℃保存;
近年来完成的原核生物和真
核生物的基因组测序揭示, 在一些最基本的生命特征方 面,地球上所有生物可分为 三大类群,即真细菌 (bacteria),古细菌或古生 菌(archaea)和真核生物
(eukarya)三界(domain)。
1.3 基因组进化的分子基础
1. 突变 系指基因组中小段区域内核苷酸序列的改变。大多数突变是点突变,即核苷 酸序列中某一碱基取代了另一碱基,其他的突变则涉及一个或几个核苷酸的 插入或缺失。 2. 重组 系指染色体或DNA分子之间的交换与重组,涉及染色体区段或DNA序列之间的 新的连锁关系。 3. 转座 转座是基因组进化的一种重要方式,出现在几乎所有生物类型中。其结果是 一段DNA或其拷贝从基因组的一个位置转移到另一位置,并在插入位点两侧产 生一对很短的正向重复序列。
• 酶切:限制性内切酶消化DNA
•
电泳:凝胶电泳分离酶切DNA混合物
DNA变性:获得单链DNA 转膜 :将核酸样品转移到支持膜上(硝酸纤维 素膜、 尼龙膜)
探针(probe): 互补于靶基因顺序的单 链DNA或RNA片段,通常带有标记物如:放射 性同位素、荧光化合物或半抗原地高辛等,以 检测目的基因。
转座子的发现
1951年,B. McClintock发现玉米中的Ac-Ds系统。
转座子可以分为两大类: DNA-DNA方式转座的转座子: 反转录转座子(retrotransposon):在结构和复制上与反转录病 毒类似,只是没有病毒感染必须的env基因,它通过转录合成 mRNA,再逆转录合成新的元件整合到基因组中完成转座。
长期保存可以沉淀形式贮于乙醇中;
在RNA溶液中,加1滴0.2 mol/L VRC(氧钒核糖核 苷复合物)冻贮于-70℃,可保存数年。
(6) 核酸的检测
PCR:常规PCR、RT-PCR、荧光定量PCR 杂交:膜杂交(Southern Blot、Northen Blot)、组 织样品原位杂交
探针的制备-核酸标记
基因组DNA探针:应用最广
cDNA探针:不含内含子序列
cRNA探针:以cDNA为模板,体外转录获得,单链 探针,cRNA-RNA杂交体稳定;RNase敏感 人工合成寡核苷酸探针 :DNA合成仪合成,不需要 纯化,组织穿透性极好;长短控制,过长——错配, 过短——特异性差 探针长度:<500碱基
1.15kb
电 泳 方 向
0.2kb
正常人 突变携带着 患者源自+Northern Blot:检测RNA,基因的表达水平
斑点杂交——耗时短
菌落原位杂交筛 选目地基因
②原位杂交
应用已知碱基顺序并带有标记物的核酸探针 与组织、细胞中待检测的核酸进行杂交,再用 与标记物相应的检测系统,通过放射自显影、 组织化学或免疫组织化学方法在被检测的核酸 原位形成带颜色的杂交信号,在显微镜或电子 显微镜下进行细胞内定位的技术。
C. 杂
交
D. 漂洗、检测
Southern Blot:检测DNA,基因的有无 ——遗传病、感染性疾病等 镰状红细胞贫血患者基因组的限制性酶切分析 MstⅡ酶切位点(GCTNAGG)
5´ 1.15kb 3´
正常基因
×
5´ 1.35kb 3´
突变基因
镰状红细胞贫血患者基因组的限制性酶切分析
﹣
1.35kb
树的进化年代。
2. 核酸操作
2.1 核酸的分离和检测
DNA, RNA——提取、分离与纯化——重要的
第一步
(1) 核酸的分离、提取通则
核酸在细胞中通常与各种蛋白质结合在一起。
分离原则:保证核酸分子一级结构的完整性;排 除其他分子污染。 核酸提取一般包括破碎细胞、酶处理、核酸释放 及与其他细胞组分分离、核酸纯化等几个主要步
骤。
(1.1) 破碎细胞
机械作用:低渗、超声、微波、冻融裂解和颗粒破碎等。不适于高分子量长
链核酸的分离。 化学作用:一定p H 和变性条件下,细胞破裂,蛋白变性沉淀,核酸→水相。 变性条件:加热、表面活性剂(SDS、Triton X-100 、Tween 20 、NP-40 等) 、 强离子剂(异硫氰酸胍、盐酸胍等) 。p H 环境:强碱(NaOH) 或缓冲液 ( TE、 STE 等)。 金属离子螯合剂( EDTA 等) 螯合Mg2+ 、Ca2+,抑制核酸酶活性。 酶作用:溶菌酶或蛋白酶(蛋白酶K、植物蛋白酶或链酶蛋白酶)破裂细胞。降 解与核酸结合的蛋白质,促进核酸的分离。 联合使用:细胞、待分离核酸类型及后续实验目。
两端具有反向重复序列
转座后靶位点形成正向重
复
转座子转移
已知的转座因子的转座途径有两种: 复制转座和非复制转座。 复制转座:转座因子在转座期间先复制一份拷贝,而后拷 贝转座到新的位置,在原先的位置上仍然保留原来的转座 因子。 非复制转座:转座因子直接从原来位置上转座插入新的位 置,并留在插入位置上,结果是在原来的位置上丢失了转 座因子,而在插入位置上增加了转座因子。
标记物
同位素
非同位素标记技术有生物素、地高辛、碱
性磷酸酶、辣根过氧化酶和荧光素 ——直
接标记、间接标记
探针标记方法
末端标记法:将标记物导入核算分子的5’端或3’
端,适用于合成寡核苷酸探针的标记。末端标记, 标记强度低。
切口平移法:Dnase I产生切口-DNA 聚合酶I加入 标记物。标记强度高。