Power System Contingency Analysis电力系统静态安全分析

合集下载

电力系统英文单词精编版

电力系统英文单词精编版

电力系统英文单词精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】电力系统powersystem发电机generator励磁excitation励磁器excitor电压voltage电流current升压变压器step-uptransformer母线bus变压器transformer空载损耗no-loadloss铁损ironloss铜损copperloss空载电流no-loadcurrent有功损耗activeloss无功损耗reactiveloss输电系统powertransmissionsystem 高压侧highside输电线transmissionline高压highvoltage低压lowvoltage中压middlevoltage功角稳定anglestability稳定stability电压稳定voltagestability暂态稳定transientstability 电厂powerplant能量输送powertransfer交流AC直流DC电网powersystem落点droppoint开关站switchstation调节regulation高抗highvoltageshuntreactor 并列的apposable裕度margin故障fault三相故障threephasefault分接头tap切机generatortriping高顶值highlimitedvalue 静态static(state)动态dynamic(state)机端电压控制AVR电抗reactance电阻resistance功角powerangle有功(功率)activepower 电容器Capacitor电抗器Reactor断路器Breaker电动机motor功率因数power-factor定子stator阻抗impedance功角power-angle电压等级voltagegrade有功负载:activeloadPLoad 无功负载reactiveload档位tapposition电阻resistor电抗reactance电导conductance电纳susceptance上限upperlimit下限lowerlimit正序阻抗positivesequenceimpedance 负序阻抗negativesequenceimpedance 零序阻抗zerosequenceimpedance无功(功率)reactivepower功率因数powerfactor无功电流reactivecurrent斜率slope额定rating变比ratio参考值referencevalue电压互感器PT分接头tap仿真分析simulationanalysis下降率drooprate传递函数transferfunction框图blockdiagram受端receive-side同步synchronization保护断路器circuitbreaker摇摆swing阻尼damping无刷直流电机BruslessDCmotor刀闸(隔离开关)Isolator机端generatorterminal变电站transformersubstation永磁同步电机Permanent-magnetSynchronismMotor异步电机AsynchronousMotor三绕组变压器three-columntransformerThrClnTrans 双绕组变压器double-columntransformerDblClmnTrans 固定串联电容补偿fixedseriescapacitorcompensation 双回同杆并架double-circuitlinesonthesametower单机无穷大系统onemachine-infinitybussystem励磁电流Magnetizingcurrent补偿度degreeofcompensation电磁场:Electromagneticfields失去同步lossofsynchronization装机容量installedcapacity无功补偿reactivepowercompensation故障切除时间faultclearingtime极限切除时间criticalclearingtime强行励磁reinforcedexcitation并联电容器shuntcapacitor<下降特性droopcharacteristics线路补偿器LDC(linedropcompensation)电机学ElectricalMachinery自动控制理论AutomaticControlTheory电磁场ElectromagneticField微机原理PrincipleofMicrocomputer电工学Electrotechnics电路原理Principleofcircuits电机学ElectricalMachinery电力系统稳态分析Steady-StateAnalysisofPowerSystem电力系统暂态分析Transient-StateAnalysisofPowerSystem电力系统继电保护原理PrincipleofElectricalSystem'sRelayProtection电力系统元件保护原理ProtectionPrincipleofPowerSystem'sElement 电力系统内部过电压PastVoltagewithinPowersystem模拟电子技术基础BasisofAnalogueElectronicTechnique数字电子技术DigitalElectricalTechnique电路原理实验电气工程讲座Lecturesonelectricalpowerproduction电力电子基础Basicfundamentalsofpowerelectronics高电压工程Highvoltageengineering电子专题实践Topicsonexperimentalprojectofelectronics电气工程概论Introductiontoelectricalengineering电子电机集成系统Electronicmachinesystem电力传动与控制ElectricalDriveandControl电力系统继电保护PowerSystemRelayingProtection主变压器maintransformer升压变压器step-uptransformer降压变压器step-downtransformeroperatingtransformer备用变压器standbytransformer公用变压器commontransformer三相变压器three-phasetransformer单相变压器single-phasetransformer带负荷调压变压器on-loadregulatingtransformer 变压器铁芯transformercore变压器线圈transformercoil变压器绕组transformerwinding变压器油箱transformeroiltanktransformercasing变压器风扇transformerfan变压器油枕transformeroilconservator(∽drum 变压器额定电压transformerretedvoltage变压器额定电流transformerretedcurrent变压器调压范围transformervoltageregulationrage 配电设备powerdistributionequipmentSF6断路器SF6circuitbreaker开关switch按钮button隔离开关isolator,disconnector 真空开关vacuumswitch刀闸开关knife-switch接地刀闸earthingknife-switch 电气设备electricalequipment 变流器currentconverter电流互感器currenttransformer电压互感器voltagetransformer电源powersource交流电源ACpowersource直流电源DCpowersource 工作电源operatingsource 备用电源Standbysource 强电strongcurrent 弱电weakcurrent继电器relay信号继电器signalrelay电流继电器currentrelay电压继电器voltagerelay跳闸继电器trippingrelay合闸继电器closingrelay中间继电器intermediaterelay时间继电器timerelay零序电压继电器zero-sequencevoltagerelay 差动继电器differentialrelay闭锁装置lockingdevice遥控telecontrol遥信telesignalisation遥测telemetering遥调teleregulationbreaker,circuitbreaker少油断路器mini-oilbreaker,oil-mini-mumbreaker 高频滤波器high-frequencyfilter组合滤波器combinedfilter常开触点normallyopenedcontaact常闭触点normallyclosedcontaact并联电容parallelcapacitance保护接地protectiveearthing熔断器cutout,fusiblecutout电缆cabletrippingpulse合闸脉冲closingpulse一次电压primaryvoltage二次电压secondaryvoltage并联电容器parallelcapacitor无功补偿器reactivepowercompensationdevice 消弧线圈arc-suppressingcoil母线Bus,busbar三角接法deltaconnection星形接法Wyeconnectionschematicdiagram一次系统图primarysystemdiagram二次系统图secondarysystemdiagram两相短路two-phaseshortcircuit三相短路three-phaseshortcircuit单相接地短路single-phasegroundshortcircuit 短路电流计算calculationofshortcircuitcurrent 自动重合闸automaticreclosing高频保护high-freqencyprotection距离保护distanceprotectiontransversedifferentialprotection 纵差保护longitudinaldifferentialprotection 线路保护lineprotection过电压保护over-voltageprotection母差保护busdifferentialprotection瓦斯保护Buchholtzprotection变压器保护transformerprotection电动机保护motorprotection远方控制remotecontrol用电量powerconsumption载波carrier故障fault选择性selectivity速动性speed灵敏性sensitivity可靠性reliability电磁型继电器electromagnetic无时限电流速断保护instantaneouslyover-currentprotection 跳闸线圈tripcoil工作线圈operatingcoil制动线圈retraintcoil主保护mainprotection后备保护back-upprotection定时限过电流保护definitetimeover-currentprotection 三段式电流保护thecurrentprotectionwiththreestages 反时限过电流保护inversetimeover-currentprotection 方向性电流保护thedirectionalcurrentprotection零序电流保护zero-sequencecurrentprotection阻抗impedance微机保护MicroprocessorProtection。

电力系统分析基础Power System Analysis Basis(一) 336

电力系统分析基础Power System Analysis Basis(一) 336



分 电力系统有功功率—频率、无功功率

—电压的控制与调整

3
课程介绍

波过程—操作或雷击时的过电压(过程最短)
高电压技术
力 系
电磁暂态过程—与短路及励磁有关(过程较短)

涉及电压、电流
短路计算

对称分量法及序网概念

不对称故障的分析与计算
分 机电暂态过程—与动力系统有关(过程较长)

涉及功率、功角—导致系统振荡、稳定性破坏、异步运行
• 1882年,爱迪生小型电力系统(pearl street power station),6台直流发电机,16km,59个用户,电压:直 流110V。
• 1885年,制成变压器,为实现交流输电奠定了基础
• 1890年,英国从Deptford到伦敦11km的10kV线路(第一 条高压交流电力线路)
• 1891年,德国从Lauffen到法兰克福170km的15kV线路
西、南非等国) • 我国西北电网750kV(青海官亭—甘肃兰州),2005年投运 • 2009年我国首条1000kV(山西长治晋东南变电站-南阳-湖
北荆门变电站)投运,645km,实现华北和华中电网互连

20
§1.1 电力系统的基本概念
3、直流输电线路、高自然功率的紧凑型线路以及灵活交流 输电(FACTS)等多种多样输电新技术的研究也取得很大 进展,有的已进入工程实践。
静态稳定
暂态稳定

4
课程介绍
2.电力系统分析基础 -------改革后的电力系的平台课程
主要学习电力系统稳态和短路分析知识
电力系统的基本概念—发、输、变、配。

N_1故障状态下电力系统静态电压稳定极限的快速计算

N_1故障状态下电力系统静态电压稳定极限的快速计算

第32卷第17期电网技术V ol. 32 No. 17 2008年9月Power System Technology Sep. 2008 文章编号:1000-3673(2008)17-0058-06 中图分类号:TM712 文献标志码:A 学科代码:470·4051N−1故障状态下电力系统静态电压稳定极限的快速计算赵柯宇,吴政球,刘杨华,连欣乐,曾兴嘉(湖南大学电气与信息工程学院,湖南省长沙市 410082)Rapid Calculation of Power System Static Voltage Stability Limit Under N-1 Fault Condition ZHAO Ke-yu,WU Zheng-qiu,LIU Yang-hua,LIAN Xin-le,ZENG Xing-jia (College of Electrical & Information Engineering,Hunan University,Changsha 410082,Hunan Province,China)ABSTRACT: To calculate the critical point of static voltage stability under faulty branch state of power system rapidly, a Taylor series based calculation approach is proposed. Taking admittance coefficients of branches as parameters and by means of solving the 1st to n-order derivatives of critical point of original system’s static voltage stability to admittance coefficient of faulty branch, the saddle node bifurcation (SNB) point can be approximated by Taylor series method, the exact solution of voltage stability critical point under N−1 fault condition can be solved rapidly. Using IEEE 30-bus system and IEEE 118-bus system for the cases, the proposed approach is verified. Verification results show that by use of the proposed approach the critical point of static voltage stability under N−1 fault condition can be obtained rapidly and accurately.KEY WORDS: power system;static voltage stability;saddle node bifurcation (SNB);Newton method;fault analysis摘要:为了快速计算电力系统支路故障状态下的静态电压稳定临界点,提出了一种基于泰勒级数的计算方法。

英文版电力系统分析(上册)第一章

英文版电力系统分析(上册)第一章

Chapter 1 Power Systems Basics
1.3 The Requirements for Power Systems Operation
Features: • Electric Energy can not be stored in bulk • Short transit • Has close relationship with every industry and everyday life
1.3 The Requirements for Power Systems Operation
Features: • Electric Energy can not be stored in bulk • Short transit • Has close relationship with every industry and everyday life
Power Systems Analysis
• Basic knowledge • Steady-state analysis • Transient analysis electromagnetic transient analysis electromechanical transient analysis (Stability analysis)
3.15 6.3 10.5 13.8 15.75 18 20
10.5 or
35 110 220 330 500
Chapter 1 Power Systems Basics
1.2 The Rated Voltage and Rated Frequency of Power System
Chapter 1 Power Systems Basics

电力系统分析PowerSystemAnalysis

电力系统分析PowerSystemAnalysis

1 0
f
( x0
)
x(k )

x(k 1)


J
1 k
f
x(k)
(x(k) ) x(k )
5、极坐标的N-R法
P( ,U ) Psp P( ,U ) f (x) Q( ,U ) Qsp Q( ,U ) 为PV 节点的个数。
精度在3~10%范围内。
1、直流潮流
假设 1、Ui U N i 1 ~ n
2、rij 0 sinij ij cosij 1 Pij (Ui2 UiU j cosij )gij UiU j sin ijbij Pij bij (i j ) (i j ) / xij
算,这种计算要建立电路中各种电气量
和参数之间的数学方程式,就是潮流计
算的数学模型。这个模型是非线性的代
数方程组,不能直接求出解析解,需要
采用迭代的方法求解。
一、潮流计算的数学模型及解算方法
对潮流计算的要求是什么?
– 要有可靠的收敛性,对不同的系统、 不同的运行方式都能收敛;
– 占用内存要少、计算速度要快; – 调整和修改容易,能满足工程上提出
四、潮流计算问题的扩展
对潮流计算的特殊要求
为满足不等式约束,需要对可调变量进 行调整
使潮流分布满足最优化准则 负荷不确定:随机潮流 故障或并网前的开断潮流
四、潮流计算问题的扩展
1、变量的划分
网络结构关联阵A 网络元件参数p 干扰变量D 控制变量u 依从变量x
四、潮流计算问题的扩展
0
Yn

L

D
U

Y12
0
Y11

电力系统课件Chapter4-Representation of Power System Components

电力系统课件Chapter4-Representation of Power System Components

Power system analysis
2012/2/20
School of E.E, BJTU
16
Per Unit System
calculations for systems with several voltage levels
T1 G I line II T2 reactor cable III
Transformer
3 Phase
A
A
*
*
*
B
* *
*
B C
Power system analysis
C
2012/2/20
School of E.E, BJTU
7
Single-phase Solution of Balanced Three-phase Networks
Transformer
3 Phase
UA UB UC
* *
Example: Y/d-11 wire
Ua * Ub * Uc *
U AB
A
*
a b c
B
U ab
C U AB=U A -U B
U ab=-U b
Power system analysis
2012/2/20
School of E.E, BJTU
8
Single-phase Solution of Balanced Three-phase Networks
The per unit value of impedance If the th base b value=rated l t d value l If the base value=optional value Generator and transformer

电力系统定义与解析

电力系统定义与解析

电力系统定义与解析中文名称:电力系统英文名称:electric power system,power system 定义:由发电、变电、输电、配电和用电等环节组成的电能生产、传输、分配和消费的系统。

所属学科:电力(一级学科);电力系统(二级学科)由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。

它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输电、变电和配电将电能供应到各用户。

为实现这一功能,电力系统在各个环节和不中文名称:电力系统英文名称:electric power system,power system 定义:由发电、变电、输电、配电和用电等环节组成的电能生产、传输、分配和消费的系统。

所属学科:电力(一级学科);电力系统(二级学科)由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。

它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输电、变电和配电将电能供应到各用户。

为实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、经济、优质的电能。

英文:powersystem电力系统图由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。

它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心,通过各种设备再转换成动力、热、光等不同形式的能量,为地区经济和人民生活服务。

由于电源点与负荷中心多数处于不同地区,也无法大量储存,故其生产、输送、分配和消费都在同一时间内完成,并在同一地域内有机地组成一个整体,电能生产必须时刻保持与消费平衡。

因此,电能的集中开发与分散使用,以及电能的连续供应与负荷的随机变化,就制约了电力系统的结构和运行。

据此,电力系统要实现其功能,就需在各个环节和不同层次设置相应的信息与控制系统,以便对电能的生产和输运过程进行测量、调节、控制、保护、通信和调度,确保用户获得安全、经济、优质的电能。

Power Systems Modeling and Stability Analysis电力系统的建模和稳定性分析

Power Systems Modeling and Stability Analysis电力系统的建模和稳定性分析
hydrogen systems and storage
• Demand side management • Renewables (wind/solar) system integration • Microgrid analysis, modeling, simulation and control • Plug-in Hybrid Electric Vehicles (PHEV) • Smart Grid • PHEVs & EVs
• Power system operations, economics and planning
• Electricity Markets
– Operations, management – Ancillary services and congestion
management – Pricing of real and reactive power – CDM/DR – DG
2-Jun-20
9
Research Areas
Distribution System Engineering
– Distribution system planning – Distribution system automation (important part
of smart grids) – Load management and forecasting – Distribution system operation – Distribution system reliability – Substation grounding design – Distributed generation – Smart Grid – PHEVs and EVs

研究生专业英语_电力系统及其自动化(虚拟仪器)

研究生专业英语_电力系统及其自动化(虚拟仪器)

abnormal overload 异常过载,事故过载active power 有功功率ampere-hour efficiency 充电效率aperiodic damping 非周期阻尼arithmetic circuitry 运算电路capacitive voltage transformer 电容式电压互感器closed electric circuit 闭合电路de-energizing circuit 去激电路,去励磁电路distribution network 配电网earthing arrangement 接地系统electrical phase angle 电相(位)角electronic transducer 电子式互感器end pressure 端部压力energy conversion factor 能量转换系数equivalent admittance 等效导纳equivalent generator 等效发电机equivalent parameter 等效参数,等值参数equivalent reactance 等效电抗,等值电抗equivalent resistance 等效电阻,等值电阻excitation characteristic 励磁特性extended uncertainty 扩展不确定度faulty line selection 故障选线Ferro resonance 铁磁谐振field inspection 现场检验fully energized 全激励,满励磁fundamental frequency 基本频率,基频high tension lead 高压引线insulation 绝缘interrupt mode 中断模式inverter 逆变器。

《电力系统分析基础》第1章.pptx

《电力系统分析基础》第1章.pptx
下了基础 • 1882年,爱迪生小型电力系统(pearl street power
station),6台直流发电机,16km,59个用户,电压: 直流110V。 • 1885年,制成变压器,为实现交流输电奠定了基础 • 1890年,英国从Deptford到伦敦11km的10kV线路( 第一条高压交流电力线路) • 1891年,德国从Lauffen到法兰克福170km的15kV线 路(第一条三相交流输电线路)
静稳
暂稳
课程介绍
2.电力系统分析基础 -------改革后的电力系的平台课程
主要学习电力系统稳态和短路分析知识
电力系统的基本概念—发、输、变、配。
(8学时)
电力网元件参数及等值电路—物理元件的
数学模型
(8学时)
简单电力网稳态分析与计算—功率流动、
手工潮流计算
(8学时)
课程介绍
电力系统潮流的计算机算法 —潮流计算的
,了解新概念,专业领域的成果和分析。
第一章 电力系统的基本概念
1、电力系统的概念和组成 2、对电力系统运行的基本要求 3、电力系统的电压等级 4、电力系统的接线方式和中性点接地 5、电力系统的负荷
§1.1 电力系统的基本概念
一、基本概念
§1.1 电力系统的基本概念
• 电力系统的组成
(1)电力系统:生产、输送、分配与消费电能的系 统。包括:发电机、电力网和用电设备组成。
基本原理、数学模型、求解方法和计算程
序框图 。
(8学时)
有功最优分配及频率控制—如何保证低损
耗、 高回收
(6学时)
无功功率及电压调整—如何使无功合理分布
使功率损耗最小
(6学时)
短路电流分析与计算—三相短路及不对称故

电力专业英语阅读与翻译

电力专业英语阅读与翻译

电力专业英语阅读与翻译第一课一、Summary of glossary 术语1.电力系统(electric) power systempower generation 发电transmission system(network) 输电系统(网络)distribution system 配电系统2.发电power generationpower plant 发电厂powerhouse 发电站hydropower plant 水力发电厂nuclear plant 核电厂thermal plant 热电厂fossil-power plant火电厂3.负荷分类load classificationindustrial loads 工业负荷residential loads 居民负荷commercial loads 商业负荷4.拓扑结构system topologyradial system 辐射状系统loop system 环状系统network system 网状系统二、Wording-buildingGeneral Introduction 专业英语词汇和构词方法简介专业词汇的形成主要有三种情况:1.借用日常英语词汇或其他学科的专业词汇,但是词义和词性可能发生了明显的变化。

例如:在日常英语中表示“力量、权力”和在机械专业表示“动力”的power,数学上表示“幂”,在电力专业领域可以仍作为名词,表示“电力、功率、电能”;也可以作为动词,表示“供以电能”。

在日常英语中表示“植物”的plant,在电力专业领域中用来表示“电厂”等。

2.由日常英语词汇或其他学科的专业词汇,直接合成新的词汇。

例如:over和head组合成overhead,表示“架空(输电线)”;super和conductor 合成superconductor,表示“超导体”等。

3.由基本词根和前缀或后缀组成新的词汇。

大部分专业词汇属于这种情况。

第一章 电力系统的基本概念

第一章 电力系统的基本概念

《Power System Analysis》
1.3 电力系统的结线方式和电压等级
额 定 电 压 等 级 用 电 设 备 额 定 线 电 压 3 6 10 交 流 发 电 机 线 电 压 3.15 6.3 10.5 变 压 器 线 电 压 一 次 绕 组 3 及 3.15 6 及 6.3 10 及 10.5 二 次 绕 组 3.15 及 3.3 6.3 及 6.6 10.5 及 11
断路器,电力线路等主要元器件之间的电气接线
《Power System Analysis》
电力系统的现状
输电线路的最高电压已达1000kV(2009年1月6日22时, 晋东南-荆门-南阳 特高压交流试验示范工程投入商业运 行); 输送距离大幅延长,实现了跨省、跨区域输电;
电源的构成(出现分布式能源);
《Power System Analysis》
1.3 电力系统的结线方式和电压等级
一、结线方式
无 备 用 结 线
包括放射式、干线式和链式网络 优点:简单、经济、运行方便 缺点:供电可靠性差 适用范围:二级负荷
《Power System Analysis》
1.3 电力系统的结线方式和电压等级
有 备 用 结 线
《Power System Analysis》
1.3 电力系统的结线方式和电压等级
变压器的电压等级
升压变压器(例如35/121,10.5/242)
一次侧(低压侧)接电源,相当于用电设备,一次侧 额定电压等于用电设备的额定电压UN; 直接和发电机相联的变压器一次侧额定电压等于发电 机的额定电压即105%UN; 二次侧(高压侧)接线路始端,向负荷供电,相当于 发电机,应比线路的额定电压高5%,加上变压器内耗 5%,所以二次侧额定电压等于用电设备的额定电压 110%。

电力系统分析,第二章

电力系统分析,第二章
'
IN 4 P 0.5I N IN 4 P 0.5I N
2
' k ( 2 3 )
' k ( 1 3 )
IN 4 P 0.5I N
2
' k ( 2 3 )
4) 只给出一个最大短路损耗Pkmax时(两个100%绕组间短路)
1、由短路损耗求RT 1) 对于第Ⅰ类(100/100/100)
Pk ( 1 2 ) 3 IN RT1 3 IN RT 2 Pk 1 Pk 2
2 2
Pk ( 1 3 ) 3 IN RT1 3 IN RT 3 Pk 1 Pk 3
2 2
Pk ( 2 3 ) 3 IN RT 2 3 IN RT 3 Pk 2 Pk 3
2

P
' k ( 2 3 )
参 数
旧标准
'
U k (13) % U k (13)
电压%未归算
新标准 最大短路损耗 归算的电压%
U
' k ( 2 3)
SN S3 SN % S3
2
% U k ( 2 3)
SN % S3
片树:35KV,110KV,220KV,330KV,500KV 3 7 13 19 24
作用:连接导线和绝缘子 线夹:悬重、耐张 导线接续:接续、联结 保护金具:护线条、预绞线、防震锤、阻尼线 绝缘保护:悬重锤
金具
二.电力线路电气参数及等值电路 1.电阻
r1=ρ/ s
单位:Ω•mm2/km 铜:18.8 铝: 31.3 与温度有关
0 0 N

电力系统PowerSystem4

电力系统PowerSystem4

支路电流法 网孔电流法 回路电流法 节点电压法 基尔霍夫定律(KCL,KVL)
2024/1/27
网络参数 节点注入电流
母线电压
母线功率 支路功率 支路电流
节点方程
◦ 母线电压为待求量 ◦ 基尔霍夫电流定律列写方程 ◦ 母线电压可唯一地确定网络的运行状态 ◦ 根据母线电压,可计算母线功率/支路功率和电流
2024/1/27
以书本p71图4-1(c)为例子(以节点2为例,并
简化了该节点部分)
1
y12
y24 ·
2 y23 y34
4
I1
y’10
y20 3
y’40
I4
节点2以外电压为0
y24
0 1
y12
2

y23
y34
40
y10 y20
+ -V2
30
y40
电流由1到2



Y 12
I 12

I 21

y12

条件:除 i以外所有节点都接地
Yii = yi0 + ∑yij
如果 i 、 k之间无支路直接连接: Yik =0
2024/1/27
以书本p71图4-1(c)为例子(以节点2为例,并简 化了该节点部分)
1
y12
y24 ·
4
2 y23 y34
I1
y’10
y20 3
y’40
节点2以外电压为0 I4
V2 V2
2024/1/27
VP I p z
p
Iq Vq
q
YPP
IP VP
IZ VZ
1 Z
(Vq 0)

和电力系统相关的专业英语

和电力系统相关的专业英语

和电力系统相关的专业英语电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current升压变压器 step-up transformer母线 bus变压器 transformer空载损耗 no-load loss铁损 iron loss铜损 copper loss空载电流 no-load current有功损耗 reactive loss无功损耗 active loss输电系统 power transmission system高压侧 high side输电线 transmission line高压 high voltage低压 low voltage中压 middle voltage功角稳定 angle stability稳定 stability电压稳定 voltage stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC直流 DC电网 power system落点 drop point开关站 switch station调节 regulation高抗 high voltage shunt reactor 并列的 apposable裕度 margin故障 fault三相故障 three phase fault分接头 tap切机 generator triping高顶值 high limited value静态 static (state)动态 dynamic (state)机端电压控制 AVR电抗 reactance电阻 resistance功角 power angle有功(功率) active power 电容器 Capacitor电抗器 Reactor断路器 Breaker电动机 motor功率因数 power-factor定子 stator阻抗 impedance功角 power-angle电压等级 voltage grade有功负载: active load PLoad 无功负载 reactive load档位 tap position电阻 resistor电抗 reactance电导 conductance电纳 susceptance上限 upper limit下限 lower limit正序阻抗 positive sequence impedance 负序阻抗 negative sequence impedance 零序阻抗 zero sequence impedance无功(功率) reactive power功率因数 power factor无功电流 reactive current斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap仿真分析 simulation analysis下降率 droop rate传递函数 transfer function框图 block diagram受端 receive-side同步 synchronization保护断路器 circuit breaker摇摆 swing阻尼 damping无刷直流电机 Brusless DC motor刀闸(隔离开关) Isolator机端 generator terminal变电站 transformer substation永磁同步电机 Permanent-magnet Synchronism Motor异步电机 Asynchronous Motor三绕组变压器 three-column transformer ThrClnTrans双绕组变压器 double-column transformer DblClmnTrans 固定串联电容补偿 fixed series capacitor compensation 双回同杆并架 double-circuit lines on the same tower 单机无穷大系统 one machine - infinity bus system励磁电流 Magnetizing current补偿度 degree of compensation电磁场:Electromagnetic fields失去同步 loss of synchronization装机容量 installed capacity无功补偿 reactive power compensation故障切除时间 fault clearing time极限切除时间 critical clearing time强行励磁 reinforced excitation并联电容器 shunt capacitor<下降特性 droop characteristics线路补偿器 LDC(line drop compensation)电机学 Electrical Machinery自动控制理论 Automatic Control Theory电磁场 Electromagnetic Field微机原理 Principle of Microcomputer电工学 Electrotechnics电路原理 Principle of circuits电机学 Electrical Machinery电力系统稳态分析 Steady-State Analysis of Power System电力系统暂态分析 Transient-State Analysis of Power System 电力系统继电保护原理 Principle of Electrical System's Relay Protection 电力系统元件保护原理 Protection Principle of Power System 's Element电力系统内部过电压 Past Voltage within Power system模拟电子技术基础 Basis of Analogue Electronic Technique数字电子技术 Digital Electrical Technique电路原理实验 Lab. of principle of circuits电气工程讲座 Lectures on electrical power production电力电子基础 Basic fundamentals of power electronics高电压工程 High voltage engineering电子专题实践 Topics on experimental project of electronics 电气工程概论 Introduction to electrical engineering电子电机集成系统 Electronic machine system电力传动与控制 Electrical Drive and Control电力系统继电保护 Power System Relaying Protection 主变压器 main transformer升压变压器 step-up transformer降压变压器 step-down transformer工作变压器 operating transformer备用变压器 standby transformer公用变压器 common transformer三相变压器 three-phase transformer单相变压器 single-phase transformer带负荷调压变压器 on-load regulating transformer变压器铁芯 transformer core变压器线圈 transformer coil变压器绕组 transformer winding变压器油箱 transformer oil tank变压器外壳 transformer casing变压器风扇 transformer fan变压器油枕transformer oil conservator(∽ drum变压器额定电压 transformer reted voltage变压器额定电流 transformer reted current变压器调压范围 transformer voltage regulation rage配电设备 power distribution equipment SF6断路器 SF6 circuit breaker开关 switch按钮 button隔离开关 isolator,disconnector真空开关 vacuum switch刀闸开关 knife-switch接地刀闸 earthing knife-switch电气设备 electrical equipment变流器 current converter电流互感器 current transformer电压互感器 voltage transformer电源 power source交流电源 AC power source直流电源 DC power source工作电源 operating source备用电源 Standby source强电 strong current弱电 weak current继电器 relay信号继电器 signal relay电流继电器 current relay电压继电器 voltage relay跳闸继电器 tripping relay合闸继电器 closing relay中间继电器 intermediate relay时间继电器 time relay零序电压继电器 zero-sequence voltage relay差动继电器 differential relay闭锁装置 locking device遥控 telecontrol遥信 telesignalisation遥测 telemetering遥调 teleregulation断路器 breaker,circuit breaker少油断路器 mini-oil breaker,oil-mini-mum breaker 高频滤波器 high-frequency filter组合滤波器 combined filter常开触点 normally opened contaact常闭触点 normally closed contaact并联电容 parallel capacitance保护接地 protective earthing熔断器 cutout,fusible cutout电缆 cable跳闸脉冲 tripping pulse合闸脉冲 closing pulse一次电压 primary voltage二次电压 secondary voltage并联电容器 parallel capacitor无功补偿器 reactive power compensation device消弧线圈 arc-suppressing coil母线 Bus,busbar三角接法 delta connection星形接法 Wye connection原理图 schematic diagram一次系统图 primary system diagram二次系统图 secondary system diagram两相短路 two-phase short circuit三相短路 three-phase short circuit单相接地短路 single-phase ground short circuit短路电流计算 calculation of short circuit current 自动重合闸 automatic reclosing高频保护 high-freqency protection距离保护 distance protection横差保护 transverse differential protection纵差保护 longitudinal differential protection线路保护 line protection过电压保护 over-voltage protection母差保护 bus differential protection瓦斯保护 Buchholtz protection变压器保护 transformer protection电动机保护 motor protection远方控制 remote control用电量 power consumption载波 carrier故障 fault选择性 selectivity速动性 speed灵敏性 sensitivity可靠性 reliability电磁型继电器 electromagnetic无时限电流速断保护 instantaneously over-current protection 跳闸线圈 trip coil工作线圈 operating coil制动线圈 retraint coil主保护 main protection后备保护 back-up protection定时限过电流保护 definite time over-current protection三段式电流保护 the current protection with three stages 反时限过电流保护 inverse time over-current protection 方向性电流保护 the directional current protection零序电流保护 zero-sequence current protection阻抗 impedance微机保护 Microprocessor Protection。

电力系统英文单词

电力系统英文单词

电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current升压变压器 step-up transformer母线 bus变压器 transformer空载消耗 no-load loss铁损 iron loss铜损 copper loss空载电流 no-load current有功消耗 active loss无功消耗 reactive loss输电系统 power transmission system 高压侧 high side输电线 transmission line高压 high voltage低压 low voltage中压 middle voltage功角稳固 angle stability稳固 stability电压稳固 voltage stability暂态稳固 transient stability电厂 power plant能量输送 power transfer沟通 AC直流 DC电网 power system落点 drop point开关站 switch station调理 regulation高抗 high voltage shunt reactor 并列的 apposable裕度 margin故障 fault三相故障 three phase fault分接头 tap切机 generator triping高顶值 high limited value静态 static (state)动向 dynamic (state)机端电压控制 AVR电抗 reactance电阻 resistance功角 power angle有功(功率) active power 电容器 Capacitor电抗器 Reactor断路器 Breaker电动机 motor功率因数 power-factor定子 stator阻抗 impedance功角 power-angle电压等级 voltage grade有功负载 : active load PLoad 无功负载 reactive load档位 tap position电阻 resistor电抗 reactance电导 conductance电纳 susceptance上限 upper limit下限 lower limit正序阻抗 positive sequence impedance 负序阻抗 negative sequence impedance 零序阻抗 zero sequence impedance无功(功率) reactive power功率因数 power factor无功电流 reactive current斜率 slope额定 rating变比 ratio参照值 reference value电压互感器 PT分接头 tap仿真剖析 simulation analysis降落率 droop rate传达函数 transfer function框图 block diagram受端 receive-side同步 synchronization保护断路器 circuit breaker摇晃 swing阻尼 damping无刷直流电机 Brusless DC motor刀闸 ( 隔走开关 ) Isolator机端 generator terminal变电站 transformer substation永磁同步电机 Permanent-magnet Synchronism Motor异步电机 Asynchronous Motor三绕组变压器 three-column transformer ThrClnTrans双绕组变压器 double-column transformer DblClmnTrans 固定串连电容赔偿fixed series capacitor compensation双回同杆并架 double-circuit lines on the same tower 单机无量大系统one machine - infinity bus system励磁电流 Magnetizing current赔偿度 degree of compensation电磁场 :Electromagnetic fields失掉同步 loss of synchronization装机容量 installed capacity无功赔偿 reactive power compensation故障切除时间 fault clearing time极限切除时间 critical clearing time强行励磁 reinforced excitation并联电容器 shunt capacitor<降落特征 droop characteristics线路赔偿器 LDC(line drop compensation)电机学 Electrical Machinery自动控制理论 Automatic Control Theory电磁场 Electromagnetic Field微机原理 Principle of Microcomputer电工学 Electrotechnics电路原理 Principle of circuits电机学 Electrical Machinery电力系统稳态剖析Steady-StateAnalysis of Power System电力系统暂态分析Transient-State Analysis of Power System电力系统继电保护原理Principle ofElectrical System's Relay Protection电力系统元件保护原理ProtectionPrinciple of Power System 's Element电力系统内部过电压Past Voltagewithin Power system模拟电子技术基础Basis ofAnalogue Electronic Technique数字电子技术DigitalElectrical Technique电路原理实验Lab. ofprinciple of circuits电气工程讲座Lectures onelectrical power production电力电子基础Basic fundamentals of power electronics高电压工程High voltageengineering电子专题实践Topics onexperimental project of electronics电气工程概论Introductionto electrical engineering电子电机集成系统Electronicmachine system电力传动与控制ElectricalDrive and Control电力系统继电保护Power SystemRelaying Protection主变压器main transformer升压变压器step-up transformer降压变压器step-down transformer工作变压器operating transformer备用变压器standby transformer公用变压器common transformer三相变压器three-phase transformer单相变压器single-phase transformer带负荷调压变压器on-load regulating transformer 变压器铁芯transformer core变压器线圈transformer coil变压器绕组transformer winding变压器油箱transformer oil tank变压器外壳transformer casing变压器电扇transformer fan变压器油枕transformer oil conservator(∽ drum 变压器额定电压transformer reted voltage变压器额定电流transformer reted current变压器调压范围transformer voltage regulation rage配电设施power distribution equipmentSF6 断路器SF6 circuit breakerswitch按钮button隔走开关isolator,disconnector 真空开关vacuum switch刀闸开关knife-switch接地刀闸earthing knife-switch 电气设施electrical equipment 变流器current converter电流互感器current transformer 电压互感器voltage transformerpower source沟通电源AC power source 直流电源DC power source 工作电源operating source 备用电源Standby source 强电strong current弱电weak current继电器relay信号继电器signal relay电流继电器current relay电压继电器voltage relay跳闸继电器tripping relay合闸继电器closing relay中间继电器intermediate relay时间继电器time relay零序电压继电器zero-sequence voltage relay 差动继电器differential relay闭锁装置locking device遥控telecontrol遥信telesignalisationtelemetering遥调teleregulation断路器breaker,circuit breaker少油断路器mini-oil breaker,oil-mini-mum breaker 高频滤波器high-frequency filter组合滤波器combined filter常开触点normally opened contaact常闭触点normally closed contaact并联电容parallel capacitance保护接地protective earthingcutout,fusible cutout电缆cable跳闸脉冲tripping pulse合闸脉冲closing pulse一次电压primary voltage二次电压secondary voltage并联电容器parallel capacitor无功赔偿器reactive power compensation device 消弧线圈arc-suppressing coil母线Bus,busbardelta connection星形接法Wye connection原理图schematic diagram一次系统图primary system diagram二次系统图secondary system diagram两相短路two-phase short circuit三相短路three-phase short circuit单相接地短路single-phase ground short circuit 短路电流计算calculation of short circuit current 自动重合闸automatic reclosinghigh-freqency protection距离保护distance protection横差保护transverse differential protection 纵差保护longitudinal differential protection 线路保护line protection过电压保护over-voltage protection母差保护bus differential protection瓦斯保护Buchholtz protection变压器保护transformer protection电动机保护motor protectionremote control用电量power consumption载波carrier故障fault选择性selectivity速动性speed敏捷性sensitivity靠谱性reliability电磁型继电器electromagnetic无时限电流速断保护instantaneously over-current protectiontrip coil工作线圈operating coil制动线圈retraint coil主保护main protection后备保护back-up protection准时限过电流保护definite time over-current protection三段式电流保护the current protection with three stages 反时限过电流保护inverse time over-current protection方向性电流保护the directional current protection零序电流保护zero-sequence current protection阻抗impedance微机保护Microprocessor Protection。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Power System Contingency Analysis: A Study of Nigeria’s 330KVTransmission GridNnonyelu, Chibuzo Joseph Department of Electrical Engineering University of Nigeria, Nsukkachibuzo.nnonyelu@.ngProf. Theophilus C. MaduemeDepartment of Electrical EngineeringUniversity of Nigeria, Nsukka AbstractsAs new sources of power are added to the Nigeria’s power system, an over-riding factor in the operation of the power system is the desire to maintain security and expectable reliability level in all sectors –generation, transmission, and distribution. System security can be assessed using contingency analysis. In this paper, contingency analysis and reliability evaluation of Nigeria power system will be performed using the load flow method. The result of this analysis will be used to determine the security level of the Nigeria power system and suggestions will also be made on the level of protection to be applied on the Nigeria power system with aim of improving system security.Keywords: Contingency Analysis, Contingency, Power System Security, Overload Index1.INTRODUCTIONPower system protection is an important factor of consideration in all sectors of a power system during both planning and operation stages. This is because any loss of component leads to transient instability of the system and can be checked immediately by the help of protective devices put in place. As we propose and source new sources of power in order to meet up the Nigeria energy demand, it is important to access the security level of the existing grid in order to devise a more defensive approach of operation.Currently, the Transmission Company of Nigeria (TCM), projected to have the capacity to deliver about 12,500 MW in 2013, has the capacity of delivering 4800 MW of electricity. Nigeria has a generating capacity of 5,228 MW but with peak production of 4500 MW against a peak demand forecast of 10,200MW. This shows that if the generation sector is to run at full production, the transmission grid will not have the capacity to handle the produced power reliably [7]. This goes a long way to tell that the 330 KV transmission system is not running effectively as expected. Therefore to maintain and ensure a secure operation of this delicate system, the need for contingency analysis cannot be over emphasized.Contingencies are defined as potentially harmful disturbances that occur during the steady state operation of a power system [1] Contingencies can lead to some abnormalities such as over voltage at some buses, over loading on the lines, which if are unchecked, can lead to total system collapse.Power system engineers use contingency analysis to predict the effect of any component failure. Periodically, maintenance operation are carried out on generating units or transmission lines. During this, a unit is taken offline for servicing. The effect of this forced outage on other parts of the system can be observed using contingency analysis.As demand for power increases, more generating units are installed in Nigeria with no corresponding increase in transmission capacity. This makes the transmission lines run at their maximum power capacity which is very dangerous as there is too much power in the system at any moment. This power will be shifted to any available portion of the transmission system in case of any contingency thereby overloading the available portion. This effect can be analysed by the calculation of Line Outage Distribution Factor (LODF). Also, the overloading index of the remaining lines will can be obtained equally.2.POWER SYSTEM SECURITYOne of the most important factors in the operation of any power system is the desire to maintain system availability and reliability. This ensures a secure operation of the system and improved economic operation. Power system security is the ability of the system to withstand one or more component outages with the minimal disruption of service or its quality. System security involves practices designed to keep the system operating in emergency state when components fail and to restore it to its preventive state. For instance, a generating unit may break down or have to be taken off-line for maintenance purposes. This leads to frequency and voltage instability as the available generating unit experiences more loads than usual, hence frequency drops and bus voltages lowers. If this is not foreseen and defensively prevented by use of protective devices such as relays for load shading, it can lead to the collapse of the concerned system. Therefore the control objective in the emergency state is to relieve system stress by appropriate actions while economic consideration becomes of secondary.2.1CONTINGENCY ANALYSISContingency analysis is the study of the outage of elements such as transmission lines, transformers and generators, and investigation of the resulting effects on line power flows and bus voltages of the remaining system. It represents an important tool to study the effect of elements outages in power system security during operation and planning. Contingencies referring to disturbances such as transmission element outages or generator outages may cause sudden and large changes in both the configuration and the state of the system. Contingencies may result in severe violations of the operating constraints. Consequently, planning for contingencies forms an important aspect of secure operation [2].There are various methods of contingency analysis which include the following:a.AC Load flow methodb.DC Load flow methodc.Z-Matrix methodd.Performance Index methodOf all the above listed methods, methods based on AC power flow calculations are considered to be deterministic methods which are accurate compared to DC power flow methods. In deterministic methods line outages are simulated by actual removal of lines instead of modelling. AC power flow methods are accurate but they are computationally expensive and excessively demanding of computational time. Because contingency analysis is the only toolfor detecting possible overloading conditions requiring the study by the power system planner computational speed and ease of detection are paramount considerations. [1]Results of contingency analysis are usually ranked based on some indices calculated during the analysis. The choice of performance index to calculate depends on the engineer. In a deregulated power system, a discernibly purely profit driven, economic operation is of utmost importance hence Available Transfer Capability (ATC) is normally calculated to ascertain the available transfer capability of the system in case of any contingency. Other Indices include Voltage Stability Index (VSI), Active Power Loading Performance Index (APLPI), Line Outage Distribution Factor (LODF), Line loadability, etc.Generally, once the current working state of a system is known, contingency analysis can be broken down into the following steps:a.Contingency definitionb.Contingency selectionc.Contingency evaluationContingency definition involves preparing a list of probable contingencies. This typically includes line outages and generator outages.Contingency selection process consists of selecting the set of most probable contingencies; they need to be evaluated in terms of potential risk to the system. Usually, fast power flow solution techniques such as DC power flow are used to quickly evaluate the risks associated with each contingency. But in this work, the Newton-Raphson load flow method will be used to ensure higher accuracy.Finally, the selected contingencies are ranked in order of their security, till no violation of operating limits is observed.The algorithm for a typical contingency analysis is shown in Figure 1.Figure 1: Algorithm of a typical contingency analysis2.2 LINE LOADABILITYLine Loadability can be defined as Transmission-line voltages decrease when heavily loaded and increase when lightly loaded. When voltages on EHV lines are maintained within ±5% of rated voltage, corresponding to about 10% voltage regulation, unusual operating problems are not encountered. Ten percent voltage regulation for lower voltage lines including transformer-voltage drops is also considered good operating practice.In addition to voltage regulation, line loadability is an important issue. Three major line-loading limits are:a.the thermal limit,b.the voltage-drop limit, andc.the steady-state stability limit.The maximum temperature of a conductor determines its thermal limit. Conductor temperature affects the conductor sag between towers and the loss of conductor tensile strength due to annealing. If the temperature is too high, prescribed conductor-to-ground clearances may not be met, or the elastic limit of the conductor may be exceeded such that it cannot shrink to its original length when cooled.Conductor temperature depends on the current magnitude and its time duration, as well as on ambient temperature, wind velocity, and conductor surface conditions.The loadability of short transmission lines (less than 80 km in length) is usually determined by the conductor thermal limit or by ratings of line terminal equipment such as circuit breakers.For longer line lengths (up to 300 km), line loadability is often determined by the voltage-drop limit. Although more severe voltage drops may be tolerated in some cases, a heavily loaded line with V R/V S ≥ 0.95 is usually considered safe operating practice. For line lengths over 300 km, steady-state stability becomes a limiting factor [4].3.METHODOLOGYIn this paper, the AC load flow method of contingency analysis was adopted. The Newton-Raphson load flow algorithm, an algorithm under the AC load flow method, was used to solve the power flow problems during the analysis using MATLAB. This is because the NRLF method has more accuracy than other AC Load flow methods and converges faster. Newton-Raphon’s Load flow method is discussed more in [3, 4].3.1 Calculating System Line Overload Index (SLOI)To obtain the overall system overload index, a new performance index was proposed and calculated based on the Line Loadability discussed in Section 2.2. As stated, for safe operation, the ratio of the receiving end voltage and the sending end voltage must be greater than 0.95. This newly proposed index relies on this to calculate the system line overload index. It helps tell the system designer at a glance, the lines that should be given utmost attention in terms of protection. SLOI is computed by equation (1):SLOI=1− [min(V RV S )]k(1)whereV R, V S are the receiving end and sending end voltages respectively, andk the number of lines whose V R/V S < 0.95The Nigerian transmission grid is shown in Figure 2 with the single line diagram shown in Figure 3.Figure 2: the Nigerian power system. Blue lines indicate the 330-KV lines(Source: Nigeria System Operator)Figure 3: one-line diagram of the Nigeria 330-KV transmission gridThe network parameters – generator data, load data, and line & transformer data, of the Nigeria power system as used in this work were collated from [8, 9, 10] and are shown in tables 1, 2, and 3 respectively.Table 1: Generator data3.1 Simulation of Line OutageSimulation of transmission line outage is carried out by the formulation of the corresponding admittance matrix [5]. For instance, after outage of a line connecting bus ‘a’and ‘b’, the components of the Y bus that will be affected are Y aa, Y bb, Y ab, and Y ba. For a ‘π-modelled’transmission line, the admittance values after this outage is obtained by subtracting the admittance of the line a-b and the shunt susceptance jb ab/2 and jb ba/2 from Y aa and Y bb.Line outages was simulated by simply removing the line information from the line data matrix. This is similar to the line not existing initially as the information no longer exists.3.2 Simulation of Generator OutageThis simulates mainly outage of one unit (or more) in a power station. Let the total generation for the station at bus ‘m’ be P gm, and assume that there exist identical (g) units, then [6]:)(2) P gm′=P gm−n(P gmgwhereP’gm: Active power generated at bus m after the outageP gm: Active power generated at bus m before the outagen: Number of outage generation units in the stationP gm/g: Active power generated at bus m per generator unitIn this work, generator outages were not simulated as only the effect of line outages were desired.4.Results and DiscussionThe results of the analysis (the SLOI) is shown in Table 4 ordered by the SLOI from the most critical to the least critical.The result as shown in Table 4 contains the SLOI values of the different lines for line outages. It has been organised in the order in descending order.This shows that the outage of line 11 to 14 (Oshogbo to Aiyede) will have the most critical effect on the system followed by 11 – 15, 16 – 20, 20 – 24, 25 – 16. These lines have been shown to pose serious danger on the system stability if they fail, and therefore should be secured defensively to avoid the level of system instability caused by the outage of any of the lines.5.ConclusionFrom this study, it is has been shown with values, the importance of operating the transmission system defensively to avoid system collapse due to overloading. Also, the writer suggests that the Transmission Company of Nigeria (TCN) should adopts the (Flexible AC Transmission), FACT devices as they can improve the lines active power capability in any contingency event as have faster switching than the traditional compensation devices. Also additional lines should be used to connect Oshogbo to Aiyede through different routes to create more links for power to be transmitted through to Lagos area in order to reduce the SLOI value of Oshogbo to Aiyede line.References[1] Chary, D. M., “Contingency Analysis in Power Systems, Transfer CapabilityComputation and Enhancement Using Facts Devices in Deregulated Power System.”Ph.D. diss., Jawaharlal Nehru Technological University, 2011[2] Wood, A. J.; Wallenberg, B. F., “Power Generation, Operation and Control”. 2nd ed.,New York/USA: John Wiley& Sons, 1996, pp. 410-432.][3] Saadat, H., Power System Analysis, New Delhi: McGraw Hill, 2002, pp 189 – 256.[4] Glover, J. D., Sarma, M. S., Overbye, T. J., Power System Analysis and Design, 5h ed.Stamford: Cengage Learning, 2012.[5] Nara, K.,Tanaka,K., Kodama, H., Shoults, R. R., Chen, M. S., Olinda, P. V. andBertagnolli, D., “On-Line Contingency Selection for voltage Security Anal ysis”, ibid, Vol.PAS – 104, pp. 847-856, April 1985.[6] Mohamed, S. E. G., Mohamed, A. Y., and Abdelrahim, Y. H., “Power SystemContingency Analysis to detect Network Weaknesses”, Zaytoonah UniversityInternational Engineering Conference on Design and Innovation in Infrastructure, Amman, Jordan, pp. I3-4 Jun., 2012.[7] “Nigeria's Power Generation hits 5,228 Mega Watt”, Nigeria Compass, May 4, 2013.[Online]. Available: /index.php/special-desk/business-news/12769-nigerias-power-generation-hits-5228-megawatts [Accessed July 15, 2013]. [8] Ogbuefi, U. C., “A Powerflow Analysis of Niegria Power System with Compensation onSome Buses”,PhD thesis, University of Nigeria, Nsukka, Nigeria, 2013.[9] Nigeria System Operator, “Profile of Transmission”, 2011. [Online]. Available:/spread/profile/ [Accessed: July 15, 2013].[10] Onohaebi, O. S., “Power Outages in Nigeria Transmission Grid,” Research Journal ofApplied Science, vol. 4, Issue 1, pp 1- 9, 2009.。

相关文档
最新文档